Standards Activities
Supporting Transport SDN

Jonathan Sadler
Coriant
Vice Chairman
OIF Technical Committee

September 21, 2014
Many Standards Bodies Active

Different Areas of Focus
“Godfather of SDN”

- Home of OpenFlow protocol
 - Dataplane/Control Plane separation
- Historically Packet Focused (OF1.0, 1.1, 1.3)

Many Transport SDN related projects active

- “Optical” Extensions for OpenFlow
- Common Architecture
 - Hierarchical SDN Controllers
- Core Information Model
 - Common data model
Specialized Forum for Optical Transport

- Dataplane (100G, CEI25)
- Control Plane (OIF UNI, OIF E-NNI)

SDN activities underway

- SDN Carrier Requirements
- SDN Framework document
 - Controller API discussion
- OIF/ONF Joint Prototype Demonstration
Carrier Requirements

- Requirements on Transport Networks in SDN Architectures
 - Document is based on contributions of major carriers worldwide
 - Comprises requirements on Transport SDN
 - Orchestrator (transport network relevant part)
 - Control and management planes
 - Data plane
 - Being used as guidance within OIF but also communicated to other SDO and forums
ONF & OIF Team Up on Transport SDN Prototype Demo

What and Who:
- Joint prototype testing and marketing activity
- Organized by OIF Interop WG and ONF Optical Transport WG
- 5 Carriers including CATR, China Mobile, China Telecom, Telus, Verizon
- 9 Vendors: ADVA, Alcatel-Lucent, Ciena, Coriant, FiberHome, Fujitsu, Huawei, NEC, ZTE

Why:
- Assure seamless evolution of transport networks in an SDN architecture
- Assure seamless operation of heterogeneous networks in an SDN architecture
- Leverage strengths of ONF and OIF:
 - ONF OpenFlow/SDN specifications, with optical extensions and use cases
 - OIF carrier and optical expertise, worldwide interop testing experience

When, Where, How:
- March-April: Technical spec development, contracts and NDAs
- August-September: Carrier-hosted lab testing
- October: Demo events culminating in read-out at L123 SDN WC Dusseldorf
Three separate but related activities

- **Cloud - SG 13: Q17, Q18, Q19**
 - Network to support cloud computing

- **Packet - SG 13: Q3, Q6, Q11, Q14**
 - QoS, Service Awareness

- **Transport - SG 15: Q12**
 - Applicability of ASON Architecture
 - Modeling of Compute, Storage and Network
Q 12/15: Trinitarian Architecture

Past: Networks composed of switches and links

Now: Networks composed of
 • Processing (Switching or Computing)
 • Storage
 • Communicating (Links)

Architecture facilitates understanding of NFV
Three parallel activities

- I2RS
- ALTO
- ABNO
Interface to the Routing System

- Retrieve internal information from routing protocols
 - Topology
 - State

- Inject policy
 - Route preferences
Service request interface

Query service/network condition

- Make distribution decisions
- Parameters (Cost, SLA)
- Scenarios are time dependent
ABNO Architecture

Leverages PCE for service awareness/control
Utilizes GMPLS for service provisioning

Figure 1: Generic ABNO Architecture
Phase 1: (2012-2014)
- Requirements and Architecture Focused
 - Specified
- Not specifically Transport or Packet focused

Phase 2: (2014-)
- Implementation focused
 - Open source projects
 - APIs
- Initial focus is packet network VNFs
NFV Architecture
Application of NFV to Optical Transport

Common NE Functions
- “One-size fits all” package

NFV puts function into containers
- Enable/Disable
- Location independent
 - Move off-board

VNF enabled NE can introduce new functions
- Firewall

VNFs are interconnected to deliver services
- “Service Chaining”
- Requires orchestration
Summary

Transport SDN fundamentally changes the operation of the network

Standards are needed to ensure interoperability, efficient ecosystem

Many standards bodies are active in Transport SDN

- Compute aspects
- Packet network
- Transport network
Thank you for your kind attention!

SDN Carrier Requirements Document
www.oiforum.com