Transport SDN @ OIF

Hans-Martin Foisel
Deutsche Telekom
OIF Carrier WG Chair
Member of OIF-BoD

October 16, 2013
What is the OIF?

• Since 1998 OIF has brought together industry groups from the data and optical worlds

• Mission: To foster the development and deployment of interoperable products and services for data switching and routing using optical networking technologies

• Our 100+ member companies represent the entire industry ecosystem:
 • Carriers and network users
 • Component and systems vendors
 • Testing and software companies

www.oiforum.com
How OIF is organized

- Board of Directors
 - Carrier WG
 - Networking & Operations WG
 - Physical & Link Layer WG
 - Interop WG
- Technical Committee
 - Implementation Agreements
 - Interop Demonstrations
 - Implementation Agreements

*PLUG: Physical Layer User Group

OIF: Optical Internetworking Forum
• **Requirements on Transport Networks in SDN**
 - **Architectures - Transport SDN**
 - Document is based on contributions of major carriers worldwide
 - Comprises requirements on Transport SDN
 - Orchestrator (transport network relevant part)
 - Control and management planes
 - Data plane
 - Being used as guidance within OIF but also communicated to other SDO and forums
SDN Reference Architecture
Components of Transport SDN

Service

Orchestrator

Application Plane

Mgt- & Control-Plane

Transport Network

Data Plane

SDN northbound: OGF NSI, ...

Mgt

TN Controller

SDN southbound: OF, XML, SNMP, PCEP, ...
(could be NE-internal)

Data Center

Transport

Data Plane

OIF OPTICAL INTERNETWORKING FORUM
General Requirements

- Requirements are not aimed at a particular set of protocols, HW and SW implementations
 - Packet & circuit switching
 - Centralized & distributed control instances
 - Allow multiple protocols
 - Modular SW and HW (COTS)
 - Decoupling of network layers
- Guarantee interoperability among different vendor implementations, carrier network domains, data center functions, ...
 - Well defined interfaces for an increased level of interoperability
SDN Reference Architecture

Orchestrator

Service

SDN northbound: OGF NSI, ...

Application Plane

Mgt- & Control-Plane

Transport Network

Data Plane

DC Mgt/Controller

TN Controller

Data Center

SDN southbound: OF, XML, SNMP, PCEP, ...
(could be NE-internal)

OF, MTOSI, REST, ...

Transport
Requirements on Orchestrator

- The Orchestrator is responsible for the coordination and management of SDN services
- The Orchestrator
 - Coordinates data center and transport network actions
 - Requests transport network service primitives from the control and management plane
 - Represents the transport network to the Application Plane using virtualization and abstraction
- The Orchestrator needs to provide structured, extensible, flexible, well defined interfaces
 - To the application plane (northbound API)
 - To the TN control and MP (southbound)
 - To the DC control and Mgt. systems (southbound)
 - Between SDN controllers (hierarchical/federated)
SDN Reference Architecture
Management & Control Plane

Orchestrator

Application Plane

Mgt- & Control-Plane

Transport Network

Data Plane

SDN northbound:
OGF NSI, ...

SDN southbound:
OF, XML, SNMP, PCEP, ...
(could be NE-internal)

OF, MTOSI, REST, ...

Data Center

Transport

DC Mgt/Controller

TN Controller

Mgt

Service
Service
Service

Data Plane

Application Plane

Mgt- & Control-Plane

Transport Network
SDN Reference Architecture
Data Plane

SDN northbound:
OGF NSI, ...

SDN southbound:
OF, XML, SNMP, PCEP, ...
(could be NE-internal)

Data Center

Transport

Orchestrator

Service

Service

Service

Application Plane

Mgt- & Control-Plane

Transport Network

Data Plane

DC Mgt/Controller

TN Controller

Mgt
The Vision - Seamless Interworking

- On-demand services are provisioned, based on ASON/GMPLS control plane functions
 - Multi-domain
 - Multi-layer
 - Multi-technology
- OIF control plane follows ASON multi-domain architecture and allows UNI, E-NNI protocol separate from domain operation
- Interworking with SDN domains is ensured

Domains can use Network Management, SDN or distributed control plane internally

Domains can use different technologies internally
Summary

- **SDN has great promise to improve transport control**
 - Programmability
 - Ability to deliver new behaviors not (yet) considered by standards, vendors, …
 - Simplified multi-layer control
 - Common behavior in heterogeneous NE deployments
 - Application awareness

- **OIF is providing guidance to accelerate deployment**
 - Use cases and architecture
 - Carrier requirements
 - Framework document
 - Demonstrations
Thank you for your kind attention!

Carrier Requirements Document

www.oiforum.com