Very Short Reach (VSR) OC-192 Interface Using 1310 Wavelength and 4dB and 11dB Link Budgets

OIF-VSR4-05.0

October, 2002

Implementation Agreement Created and Approved by the Optical Internetworking Forum
www.oiforum.com
Implementation Agreement VSR4-05.0

Implementation Agreement: VSR4-05.0

Working Group: Physical and Link Layer (PLL) Working Group

TITLE: Very Short Reach (VSR) OC-192 Interface Using 1310 Wavelength and 4dB and 11dB Link Budgets

SOURCE: Raj Savara
VP Product Marketing
Network Elements Inc
15425 SW Koll Parkway
Beaverton, OR 97006 USA
Phone: (503) 601-3327
Email: rsavara@nei.com

Mike Lerer
Working Group Chair
Avici Systems Inc.
Email: milerer@adelphia.net

Supporters:
Taha Landolsi
Laszlo Szerenyi
MCI Worldcom
2400 North Glenville Drive
Richardson, TX 75082
Phone: (972) 729-5201

Peter Liu
OptronX Inc.
7450 Tilghman St. Suite 105
Allentown, PA 18106
Phone: (610) 336-5895 x102

Bob Zona
Rao Tataravti
Intel Inc.
8674 Thornton Ave
Newark, CA 94560
510-578-5623
bzona@lightlogic.com

Ceyba Networks Inc.
1506 N. Greenville Ave Suite #250
Allen, TX 75002
(613) 599-5797
rao@ceyba.com

DATE: October 2002

Document Status: Implementation Agreement OIF-VSR4-05.0
Project Name: VSR4

Abstract: This is an Implementation Agreement for a Serial 1310 Very Short Reach (VSR) interface which includes both 4dB and 11dB optical link budgets, which covers distances from 2m to 600m. The 11dB option can be deployed in an optical network where the optical path includes a passive (transparent) Photonic Cross-connect (PXC), patch panels and up to 600m of single mode fibre.

Notice: This implementation agreement document has been created by the Optical Internetworking Forum (OIF). This document is offered to the OIF Membership solely as a basis for agreement and is not a binding proposal on the companies listed as resources above. The OIF reserves the rights to at any time to add, amend, or withdraw statements contained herein. Nothing in this document is in any way binding on the OIF or any of its members. The user's attention is called to the possibility that implementation of the OIF implementation agreement contained herein may require the use of inventions covered by the patent rights held by third parties. By publication of this OIF implementation agreement, the OIF makes no representation or warranty whatsoever, whether expressed or implied, that implementation of the specification will not infringe any third party rights, nor does the OIF make any representation or warranty whatsoever, whether expressed or implied, with respect to any claim that has been or may be asserted by any third party, the validity of any patent rights related to any such claim, or the extent to which a license to use any such rights may or may not be available or the terms hereof.

For additional information contact:
The Optical Internetworking Forum, 39355 Califonia Street, Suite 307, Fremont, CA 94538
510-608-5928 phone / info@oiforum.com

Copyright (C) The Optical Internetworking Forum (OIF) (2002). All Rights Reserved.
Implementation Agreement VSR4-05.0

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such as by removing the copyright notice or references to the OIF, except as needed for the purpose of developing OIF Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted above are perpetual and will not be revoked by the OIF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE OIF DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY, TITLE OR FITNESS FOR A PARTICULAR PURPOSE.
Implementation Agreement VSR4-05.0

1 Table of Contents

0 Cover Sheet ..1
1 Table of Contents ..4
2 List of Figures ...4
3 List of Tables ...4
4 Document Revision History ...5
5 Introduction ..6
6 Applications ...6
7 Functional Description ...9
8 Optical Interface Specifications ...11

2 List of Figures

Figure 1. Reference model for applications 2, 3...7
Figure 2. Applications for OC192 VSR Interfaces Ref Models 1 - 38
Figure 3. Reference model for application 4...8
Figure 4. Application for OC192 VSR Interface Ref Model 4................................9
Figure 5. High level implementation of OC192 VSR...9
Figure 6. Serial VSR Transponder Module – Detailed Implementation10
Figure 7. Eye mask mask for optical transmit signal ..12

3 List of Tables

Table 1. OC192 VSR Reference models ...7
Table 2 Eye mask parameters ...12
Table 3. Serial OC-192 1310nm VSR Optical Parameter Interface Specifications ...13
4 Document Revision History

OIF2000.147.1 August, 2000
Baseline document adopted at the August, 2000 OIF meeting.

OIF2000.147.2 November, 2000
Revised document containing comment resolution from straw ballot, and minor editorial changes.

OIF-PLL-04.0 December 21, 2000

OIF2001.530.0 October 22nd 2001
Added 12dB option column into table 2, extracted from ITU G.693

OIF2001.530.1 January 20th 2002
Changes to 12dB option column into table 3 and definition of eye mask.

OIF2001.530.2 April 15th 2002
Changes to 12dB option column into table 3 and use of G.693 eye mask.

OIF2002.206.01 July 9th 2002
Changes to Table 3 on Chromatic Dispersion. Added note 6 regarding amount of dispersion in link. Changed spelling error on OptronX.
5 Introduction

This technical document describes and offers detailed specifications for a Serial OC-192 Very Short Reach (VSR) optical interface that provides additional flexibility and advantages in the design of interoperable central office (CO) equipment. The serial OC-192 VSR interface described in this document provides a robust and cost effective solution to meet the desire to reduce the cost of interconnecting network elements and other CO equipment over shorter distances.

The parameter specifications for this VSR interface are based on a laser operating in the 1310nm region, transmitting at approximately 10Gb/s (OC-192/OC-192c), with a target distance of 600 meters on Single-Mode Fiber (SMF). This specification references the range of application models defined by the OIF for 10Gb/s VSR. Two different optical link budgets with maximum attenuation of 4dB and 11dB are defined, which collectively meet all the requirements of all the application models. The 11dB link is specifically intended for application through a photonic crossconnect (PXC).

6 Applications

Serial OC-192 VSR Interfaces may be used to provide interconnection of Dense Wavelength Division Multiplexing (DWDM) terminals, Photonic Cross-Connects (PXC), SONET/SDH Add Drop Multiplexers (ADM), Routers and other networking elements that are all co-located, or located within short distances of each other, as in a central office.

Currently, in many central offices, interconnection between network elements may only require fiber links of several hundred meters. Optical transmitters/receivers compliant to the Serial VSR OC-192 interface spec proposed in this contribution provide a cost-effective solution covering these distances (<600m), as opposed to using interface specifications intended for longer distance applications (20km-80km) which require more costly optical transmitters and receivers.

Examples of applications that could benefit from a more cost effective serial VSR solution are listed below and shown in Figure 1:

A. Router to PXC
B. Transport Equipment (SONET) to PXC
C. PXC to DWDM
D. Transport to DWDM
E. Router to DWDM
F. DWDM to DWDM
G. PXC Transparency—Router/Transport to DWDM
The reference models for OC192 VSR were defined in OIF2000.317 and are summarized in table 1 below. It is intended that all reference models can be addressed with the Optical link budgets included in this Implementation agreement.

Table 1. OC192 VSR Reference models

<table>
<thead>
<tr>
<th>Ref Model #</th>
<th>Link description</th>
<th>Link specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2m to between 50m and 100m intra-office direct connection, no patch panel or junction boxes</td>
<td>4dB</td>
</tr>
<tr>
<td>2</td>
<td>2m to 300m intra-office inter-connection, with 0-2 patch panels</td>
<td>4dB</td>
</tr>
<tr>
<td>3</td>
<td>2m to 600m intra-office inter-connection, with 0-2 patch panels</td>
<td>4dB</td>
</tr>
<tr>
<td>4</td>
<td>2m to 600m intra-office inter-connection with exactly one PXC in the interconnect, and 0-4 junction boxes</td>
<td>11dB</td>
</tr>
</tbody>
</table>

Reference model 1 is a simple direct point to point connection between 2 equipments.

Reference models 2, 3 have up to 2 patch panels, with up to 600m of fibre. A typical arrangement is shown in fig. 1.

Figure 1. Reference model for applications 2, 3

![Reference model for applications 2, 3](image-url)
Figure 2 below shows typical interfaces relating to application nos 1, 2, 3.

Figure 2. Applications for OC192 VSR Interfaces Ref Models 1 - 3

Reference model 4 defines a VSR link through a transparent Photonic Crossconnect. A typical arrangement is shown in figures 3 and 4 below.

Figure 3. Reference model for application 4

2m to 600m, with one PXC, and 0-4 junction boxes
7 Functional Description

A way to realize an optical interface compliant to the VSR interface specification proposed in section 6 is an optical transponder device which generates and receives a single 10Gbit/s data-stream and is designed to work on standard single-mode fiber. This solution incorporates the SERDES (Mux/Demux) and transceiver devices into a single module, with a SONET compliant OC-192 Framer used externally. The transponder described in Figures 1 through Figure 6 does not preclude the possible integration of the components (i.e. Framer and SERDES) at a later date, but instead offers one possible implementation that meets the parameter specification as shown in Table 2.
The transmit direction includes an electrical multiplexer, laser driver and the 1310 nm laser with spectral characteristics appropriate to link lengths of 600m. The 16:1 multiplexer receives the data and clock from an external OC-192 Framer. The output of the multiplexer is a data stream framed in a SONET/SDH compliant OC-192 (9.95Gb/s) manner, along with the clock. The multiplexer function usually includes a clock synthesis PLL, which generates a low jitter clock from an external reference. A direct modulation laser driver uses both the clock and 9.95Gb/s data signal from the mux to drive a laser, such as an uncooled 1310 nm Fabry-Perot laser, which places the 9.95Gb/s optical output on Single Mode Fiber (SMF).

The receive direction includes a PIN Photodetector, pre-amplifier, post-amplifier and electrical demultiplexer which delivers the 16 data outputs and clock from the Deserializer. The demultiplexer function conventionally includes the clock and data recovery.

Both transmit and receive portions of the OC-192 VSR serial transponder proposal are shown in Figure 6.

It is important to note that the OC-192 transponder modules, as shown in Figure 6, are fully compliant with the SFI-4 electrical I/O specifications (at SERDES interface). Use of a Fabry-Perot laser to achieve the proposed VSR parameter specification in this contribution does not preclude the use of other technologies or lasers to achieve the same performance criteria, allowing for new technologies in the future that may also yield significant cost savings with the serial approach.
8 Optical Interface Specifications

The optical interface specifications, as shown in Table 2, are derived from ITU-T specifications for STM-64 Optical Interfaces. The 4dB link budget is copied from G.693. The 11dB Link budget is modified from that defined in G.693. Since work has already been done in this area, the optical physical layer parameters are listed below with a reference to the ITU-T G.691 and G.693 recommendations.

It should be noted that the distance of 600 m is not limited by the power budget of 4 dB, but by the worst case transmitter rms spectral width of 3 nm, which in combination with a wide operating wavelength range of 1260 – 1360 nm, creates a worst case dispersion limit of 600 m on standard single-mode fiber. The above mentioned spectral characteristics are chosen to allow Fabry Perot Lasers to be manufactured at lowest cost.

Table 3 provides the necessary optical parameter requirements for a serial OC-192 VSR interface on SMF. The ITU-T and other standards bodies (for example IEC) have approved and accepted recommendations that cover measurement of optical parameters (i.e. jitter, eye-mask, extinction ratio), terminology, and detailed descriptions of all the optical parameters contained within this recommendation. Rather than reproduce this work, the proposed serial VSR parameter specification will be included in detail in Table 3, with a reference for additional information that directs the user to the series of ITU-T recommendations (G.691 and G.693 in particular) on optical physical layer interfaces.

Jitter specifications will be as defined in ITU G.783.

8.1 Eye Pattern Masks

The transmitted pulse shape for both the 4 dB and 11 dB links are specified in the form of a mask shape as in fig. 7 below. Parameters specifying the eye mask are defined in table 2. This eye mask for the 4 dB link is as defined in G.693. The eye mask for the 11 dB link is also from G.693. Eye mask measurements are made with a fourth order Bessel Thomson filter as defined in G.691 and G.693.
Figure 7. Eye diagram mask for optical transmit signal

![Eye Diagram Mask](image)

Table 2. Eye mask parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_3 - x_2$</td>
<td>0.2</td>
</tr>
<tr>
<td>y_1</td>
<td>0.25</td>
</tr>
<tr>
<td>y_2</td>
<td>0.75</td>
</tr>
<tr>
<td>y_3</td>
<td>0.4</td>
</tr>
<tr>
<td>y_4</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Note: x_2 and x_3 of the rectangular eye mask need not be equidistant with respect to the vertical axes at 0UI and 1UI.
Table 3. Serial OC-192 1310nm VSR Optical Parameter Interface Specifications

<table>
<thead>
<tr>
<th>Application</th>
<th>Unit</th>
<th>4dB VSR</th>
<th>11dB VSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITU Reference</td>
<td>G.693 VSR600-2R1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmitter Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source type</td>
<td>MLM</td>
<td>MLM</td>
<td></td>
</tr>
<tr>
<td>Operating wavelength range</td>
<td>nm</td>
<td>1260-1360</td>
<td>1260 – 1360</td>
</tr>
<tr>
<td>Mean launched power (note 5)</td>
<td>dBm</td>
<td>-1</td>
<td>+2</td>
</tr>
<tr>
<td>- maximum</td>
<td></td>
<td>-6</td>
<td>-1</td>
</tr>
<tr>
<td>- minimum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- maximum RMS width (σ)</td>
<td>nm</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>- maximum –20 dB width</td>
<td>nm</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>- minimum SMSR</td>
<td>dB</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Minimum EX</td>
<td>dB</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Main Optical Path Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiber type</td>
<td>Single Mode</td>
<td>Single Mode</td>
<td></td>
</tr>
<tr>
<td>Attenuation range</td>
<td>dB</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>- maximum</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>- minimum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromatic dispersion (note 4,6)</td>
<td>ps/nm</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>- maximum</td>
<td></td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Maximum DGD</td>
<td>ps</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Min ORL of cable plant at MPI-S, including any connectors</td>
<td>dB</td>
<td>-27</td>
<td>-27</td>
</tr>
<tr>
<td>Maximum discrete reflectance between MPI-S and MPI-R</td>
<td>dB</td>
<td>-14</td>
<td>-14</td>
</tr>
<tr>
<td>Receiver Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum sensitivity (BER of 1*10^{-12}) (note 5)</td>
<td>dBm</td>
<td>-11</td>
<td>-13</td>
</tr>
<tr>
<td>Minimum overload</td>
<td>dBm</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>Maximum optical path penalty</td>
<td>dB</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Maximum reflectance of receiver, measured at MPI-R</td>
<td>dB</td>
<td>-14</td>
<td>-14</td>
</tr>
</tbody>
</table>

Notes:
1. Optical parameters are derived from Table 3 in ITU-T recommendation G.693.
2. In the case that passive optical devices in the main optical path introduce additional chromatic dispersion, the achievable link distance may be reduced. Alternatively an application with a higher chromatic dispersion tolerance may be used to overcome this restriction.
3. The Serdes function, clocking scheme and synchronization method should comply with SFI-4 and are all defined in OIF199.102.8
4. Refer to ITU-T G.691 and 693 for other relevant optical parameter criteria (e.g. reference points)
5. A value of 12dB link loss and 1dB path penalty is highly desirable and should be adopted when the TX/RX technology matures and/or optical cross connects insertion loss improves
6. Chromatic dispersion is not added through the Optical Cross Connect Switch. The dispersion is a result of the 600m of SLM fiber as indicated in the application model shown in Figure 3.
Appendix A. List of companies belonging to the OIF at time of approval

<table>
<thead>
<tr>
<th>Company Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerant Networks</td>
</tr>
<tr>
<td>Accelight Networks</td>
</tr>
<tr>
<td>Actel</td>
</tr>
<tr>
<td>Acterna Eningen GmbH</td>
</tr>
<tr>
<td>ADC Telecommunications</td>
</tr>
<tr>
<td>Aeluros</td>
</tr>
<tr>
<td>Agere Systems</td>
</tr>
<tr>
<td>Agilent Technologies</td>
</tr>
<tr>
<td>Agility Communications</td>
</tr>
<tr>
<td>Alcatel</td>
</tr>
<tr>
<td>All Optical Networks, Inc.</td>
</tr>
<tr>
<td>Altamar Networks</td>
</tr>
<tr>
<td>Altera</td>
</tr>
<tr>
<td>Alvesta Corporation</td>
</tr>
<tr>
<td>AMCC</td>
</tr>
<tr>
<td>America Online</td>
</tr>
<tr>
<td>Ample Communications</td>
</tr>
<tr>
<td>Analog Devices</td>
</tr>
<tr>
<td>ANDO Corporation</td>
</tr>
<tr>
<td>Anritsu</td>
</tr>
<tr>
<td>Aralight</td>
</tr>
<tr>
<td>ASTRI</td>
</tr>
<tr>
<td>AT&T</td>
</tr>
<tr>
<td>Atrica Inc.</td>
</tr>
<tr>
<td>Avici Systems</td>
</tr>
<tr>
<td>Axiowave Networks</td>
</tr>
<tr>
<td>Bandwidth9</td>
</tr>
<tr>
<td>Bay Microsystems</td>
</tr>
<tr>
<td>Big Bear Networks</td>
</tr>
<tr>
<td>Bit Blitz Communications</td>
</tr>
<tr>
<td>Blaze Network Products</td>
</tr>
<tr>
<td>Blue Sky Research</td>
</tr>
<tr>
<td>Bookham Technology</td>
</tr>
<tr>
<td>Booz-Allen & Hamilton</td>
</tr>
<tr>
<td>Broadcom</td>
</tr>
<tr>
<td>Cable & Wireless</td>
</tr>
<tr>
<td>Cadence Design Systems</td>
</tr>
<tr>
<td>Calient Networks</td>
</tr>
<tr>
<td>Calix Networks</td>
</tr>
<tr>
<td>Caspian Networks</td>
</tr>
<tr>
<td>Celion Networks</td>
</tr>
<tr>
<td>Centellax</td>
</tr>
<tr>
<td>Centillium Communications</td>
</tr>
<tr>
<td>Ceyba</td>
</tr>
<tr>
<td>Chiaro Networks</td>
</tr>
<tr>
<td>Chunghwa Telecom Labs</td>
</tr>
<tr>
<td>Ciena Communications</td>
</tr>
<tr>
<td>Cisco Systems</td>
</tr>
<tr>
<td>Coherent Telecom</td>
</tr>
<tr>
<td>Conexant</td>
</tr>
<tr>
<td>Company Name</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>CoreOptics</td>
</tr>
<tr>
<td>Coriolis Networks</td>
</tr>
<tr>
<td>Corrigent Systems</td>
</tr>
<tr>
<td>Cortina Systems</td>
</tr>
<tr>
<td>Corvis Corporation</td>
</tr>
<tr>
<td>Cypress Semiconductor</td>
</tr>
<tr>
<td>Data Connection</td>
</tr>
<tr>
<td>Department of Defense</td>
</tr>
<tr>
<td>Derivelt</td>
</tr>
<tr>
<td>E2O Communications</td>
</tr>
<tr>
<td>ELEMATICS</td>
</tr>
<tr>
<td>Elisa Communications</td>
</tr>
<tr>
<td>Emcore</td>
</tr>
<tr>
<td>Equant Telecommunications SA</td>
</tr>
<tr>
<td>Equipe Communications</td>
</tr>
<tr>
<td>Ericsson</td>
</tr>
<tr>
<td>ETRI</td>
</tr>
<tr>
<td>Extreme Networks</td>
</tr>
<tr>
<td>EZChip Technologies</td>
</tr>
<tr>
<td>Fiberhome Telecommunications</td>
</tr>
<tr>
<td>Fiberspace</td>
</tr>
<tr>
<td>Finisar Corporation</td>
</tr>
<tr>
<td>Flextronics</td>
</tr>
<tr>
<td>Force 10 Networks</td>
</tr>
<tr>
<td>France Telecom</td>
</tr>
<tr>
<td>Free Electron Technology</td>
</tr>
<tr>
<td>Fujikura</td>
</tr>
<tr>
<td>Fujitsu</td>
</tr>
<tr>
<td>Furukawa Electric Technologies</td>
</tr>
<tr>
<td>Galazar Networks</td>
</tr>
<tr>
<td>General Dynamics</td>
</tr>
<tr>
<td>Glimmerglass Networks</td>
</tr>
<tr>
<td>Harris Corporation</td>
</tr>
<tr>
<td>Harting Electro-Optics GmbH</td>
</tr>
<tr>
<td>Helix AG</td>
</tr>
<tr>
<td>Hi/ln</td>
</tr>
<tr>
<td>Hitachi</td>
</tr>
<tr>
<td>Huawei Technologies</td>
</tr>
<tr>
<td>IBM Corporation</td>
</tr>
<tr>
<td>Ignis Optics</td>
</tr>
<tr>
<td>Industrial Technology Research Institute</td>
</tr>
<tr>
<td>Infineon Technologies</td>
</tr>
<tr>
<td>Infinera</td>
</tr>
<tr>
<td>Innovance Networks</td>
</tr>
<tr>
<td>Inphi</td>
</tr>
<tr>
<td>Integrated Device Technology</td>
</tr>
<tr>
<td>Intel</td>
</tr>
<tr>
<td>Internet Machines</td>
</tr>
<tr>
<td>Interoute</td>
</tr>
<tr>
<td>Intune Technologies, Ltd.</td>
</tr>
<tr>
<td>Iolon</td>
</tr>
<tr>
<td>Japan Telecom</td>
</tr>
<tr>
<td>Company</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td>JDS Uniphase</td>
</tr>
<tr>
<td>Jennic</td>
</tr>
<tr>
<td>Juniper Networks</td>
</tr>
<tr>
<td>KDDI R&D Laboratories</td>
</tr>
<tr>
<td>Kirana Networks</td>
</tr>
<tr>
<td>KT Corporation</td>
</tr>
<tr>
<td>Larscom</td>
</tr>
<tr>
<td>Lattice Semiconductor</td>
</tr>
<tr>
<td>LSI Logic</td>
</tr>
<tr>
<td>Lucent</td>
</tr>
<tr>
<td>Lumentis</td>
</tr>
<tr>
<td>LuxN</td>
</tr>
<tr>
<td>LYNX - Photonic Networks</td>
</tr>
<tr>
<td>Mahi Networks</td>
</tr>
<tr>
<td>Marconi Communications</td>
</tr>
<tr>
<td>MathStar</td>
</tr>
<tr>
<td>Maxim Integrated Products</td>
</tr>
<tr>
<td>MergeOptics GmbH</td>
</tr>
<tr>
<td>Meriton</td>
</tr>
<tr>
<td>Metro-OptiX</td>
</tr>
<tr>
<td>Mintera</td>
</tr>
<tr>
<td>Mitsubishi Electric Corporation</td>
</tr>
<tr>
<td>Multilink Technology Corporation</td>
</tr>
<tr>
<td>Multiplex</td>
</tr>
<tr>
<td>MultiWave Networks</td>
</tr>
<tr>
<td>Myrica Networks</td>
</tr>
<tr>
<td>Mysticom</td>
</tr>
<tr>
<td>National Semiconductor</td>
</tr>
<tr>
<td>Nayna Networks</td>
</tr>
<tr>
<td>NEC</td>
</tr>
<tr>
<td>NetTest</td>
</tr>
<tr>
<td>Network Elements</td>
</tr>
<tr>
<td>NIST</td>
</tr>
<tr>
<td>Nortel Networks</td>
</tr>
<tr>
<td>NTT Corporation</td>
</tr>
<tr>
<td>NurLogic Design</td>
</tr>
<tr>
<td>OpNext</td>
</tr>
<tr>
<td>Optical Datacom</td>
</tr>
<tr>
<td>Optillion</td>
</tr>
<tr>
<td>Optium</td>
</tr>
<tr>
<td>Optix Networks</td>
</tr>
<tr>
<td>Optobahn</td>
</tr>
<tr>
<td>OptronX</td>
</tr>
<tr>
<td>PacketLight Networks</td>
</tr>
<tr>
<td>Parama Networks</td>
</tr>
<tr>
<td>Paxonet Communications</td>
</tr>
<tr>
<td>Peta Switch Solutions</td>
</tr>
<tr>
<td>PhotonEx</td>
</tr>
<tr>
<td>Photuris, Inc.</td>
</tr>
<tr>
<td>Phyworks</td>
</tr>
<tr>
<td>Picarro</td>
</tr>
<tr>
<td>Pine Photonics Communications</td>
</tr>
<tr>
<td>Company</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td>PMC Sierra</td>
</tr>
<tr>
<td>Polaris Networks, Inc.</td>
</tr>
<tr>
<td>Princeton Optronics</td>
</tr>
<tr>
<td>Procket Networks</td>
</tr>
<tr>
<td>Quake Technologies</td>
</tr>
<tr>
<td>Qwest Communications</td>
</tr>
<tr>
<td>RedClover Networks</td>
</tr>
<tr>
<td>RF Micro Devices</td>
</tr>
<tr>
<td>RHK</td>
</tr>
<tr>
<td>Sandia National Laboratories</td>
</tr>
<tr>
<td>Santec Corporation</td>
</tr>
<tr>
<td>Santel Networks</td>
</tr>
<tr>
<td>Santur</td>
</tr>
<tr>
<td>SBC</td>
</tr>
<tr>
<td>Siemens</td>
</tr>
<tr>
<td>Sierra Monolithics</td>
</tr>
<tr>
<td>Silicon Access Networks</td>
</tr>
<tr>
<td>Silicon Labs</td>
</tr>
<tr>
<td>Silicon Logic Engineering</td>
</tr>
<tr>
<td>Sky Optix</td>
</tr>
<tr>
<td>Solidum</td>
</tr>
<tr>
<td>Southampton Photonics</td>
</tr>
<tr>
<td>Spirent Communications</td>
</tr>
<tr>
<td>StrataLight Communications</td>
</tr>
<tr>
<td>Stratos Lightwave</td>
</tr>
<tr>
<td>Sumitomo Electric Industries</td>
</tr>
<tr>
<td>Sun Microsystems</td>
</tr>
<tr>
<td>Sycamore Networks</td>
</tr>
<tr>
<td>TDK Semiconductor</td>
</tr>
<tr>
<td>Tektronix</td>
</tr>
<tr>
<td>Telcordia Technologies</td>
</tr>
<tr>
<td>Telecom Italia Lab</td>
</tr>
<tr>
<td>Tellabs</td>
</tr>
<tr>
<td>Tellium</td>
</tr>
<tr>
<td>Tenor Networks</td>
</tr>
<tr>
<td>TeraBurst Networks</td>
</tr>
<tr>
<td>TeraConnect</td>
</tr>
<tr>
<td>Teradiant Networks, Inc.</td>
</tr>
<tr>
<td>Texas Instruments</td>
</tr>
<tr>
<td>T-Networks, Inc.</td>
</tr>
<tr>
<td>Toshiba Corporation</td>
</tr>
<tr>
<td>Transpectrum</td>
</tr>
<tr>
<td>Transpera Networks</td>
</tr>
<tr>
<td>TriQuint Semiconductor</td>
</tr>
<tr>
<td>Tropic Networks Inc.</td>
</tr>
<tr>
<td>Tsunami Photonics</td>
</tr>
<tr>
<td>T-Systems Nova</td>
</tr>
<tr>
<td>Turin Networks</td>
</tr>
<tr>
<td>US Conec</td>
</tr>
<tr>
<td>Velio Communications</td>
</tr>
<tr>
<td>Velocium (TRW)</td>
</tr>
<tr>
<td>Verizon</td>
</tr>
</tbody>
</table>
Implementation Agreement VSR4-05.0

<table>
<thead>
<tr>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitesse Semiconductor</td>
</tr>
<tr>
<td>VSK Photonics</td>
</tr>
<tr>
<td>W.L. Gore & Associates</td>
</tr>
<tr>
<td>Wavecrest Corporation</td>
</tr>
<tr>
<td>Wavium AB</td>
</tr>
<tr>
<td>West Bay Semiconductor</td>
</tr>
<tr>
<td>Xanoptix</td>
</tr>
<tr>
<td>Xelerated</td>
</tr>
<tr>
<td>Xignal Technologies</td>
</tr>
<tr>
<td>Xilinx</td>
</tr>
<tr>
<td>Xindium</td>
</tr>
<tr>
<td>Xlight Photonics</td>
</tr>
<tr>
<td>Zagros Networks</td>
</tr>
<tr>
<td>Zarlink Semiconductor</td>
</tr>
</tbody>
</table>