Transport SDN Toolkit:
Framework and APIs

John McDonough
OIF Vice President
NEC
BTE 2015
Providing carriers with essential tools in the Transport SDN toolkit

- How to apply SDN to a carrier’s multi-domain, multi-layer transport network
- Transport SDN API specifications to allow deployment of SDN applications
- Prototyping and testing of real implementations for experience and interoperability
SDN Benefit and Challenges

Benefit:
Totally automated, programmable, integrated and flexible network - leveraging the installed base in and optimized way.

Challenges:

Technical:
- Agree on standardized architectures and abstraction/virtualization models -
- Performance of centralized systems & OF

Commercial:
- Open Source business models -
- New business models leveraging SDN

Organizations:
- Adapt processes to leverage SDN flexibility

Availability:
- Carrier grade SDN systems for field deployments
- Availability of new network technology in field deployments & legacy network
What is the Transport SDN Framework?

- **SDN 3 Layer Model**
 - Application,
 - Controller,
 - Infrastructure

- **How is this applied to a Carrier’s Transport Network?**
 - Multiple Layers
 - Multiple Vendors
 - Multiple Domains, e.g., Vendor or Administrative
Multi-Domain Carrier Transport SDN Framework

Infrastructure Layer - contains Network Elements
Multi-domain/multi-technology
- Geographic/Admnistrative domains (e.g., metro, core)
- Technology domains (L0/1/2)
- Vendor-specific domains

Accessed via SouthBound Interface of Controller

OIF: Optical Internetworking Forum
Multi-Domain Carrier Transport SDN Framework

Control Layer
- Carrier network will likely have multiple controllers
 - Administrative and other reasons
- May have hierarchical controllers
 - SBI-type interface from Parent to Domain controller

Infrastructure Layer
- Domain 1
 - NE
- Domain 2
 - NE
- Domain 3
 - NE

Parent Controller
- Domain Controller
 - SBI

Domain Controller
- NE
Multi-Domain Carrier Transport SDN Framework

Application Layer
- Business apps
- Network apps
- Orchestration

Isolated from Controller
- Accesses Control layer via NorthBound Interface such as REST/JSON

Infrastructure Layer
- Domain 1
- Domain 2
- Domain 3
Tested in 2014 OIF/ONF Demonstration

- 5 Carrier Labs
 - 2 Consulting Carriers
- 9 System Vendors
 - L2 and L1 Switches
 - Greenfield and Brownfield environments
 - SDN Controller and EMS
- 3 Layer SDN Framework Model
 - Infrastructure Layer with Real NEs
 - Controller Layer with multiple implementations
 - Application Layer with network orchestration
The Interfaces: Transport SDN SBI

SDN SouthBound Interface

- Open interface for Network Element switching and forwarding control
 - Logical Switch abstraction
 - Model both physical & virtual
 - E.g. OpenFlow

- Multi - Layer Support
 - L0 - Optical/WDM/OCH
 - L1 - TDM/OTN/ODU
 - L2 - Packet/Ethernet/MPLS-TP

- Utilizes Common protocol neutral Information Model
The Interfaces: Transport SDN NBI

SDN NorthBound Interface

- **Common interface for controlling and analyzing networks**
 - BoD services
 - Cross-domain provisioning
 - Enabling Analytics
- **Flexible interface**
 - Different levels of control
 - Potential abstraction
 - Virtual networks
- **Utilizes Common Information Model**
 - Consistency rather than divergence
General Use Cases - What are use cases driving the NBI?

- **Standards talking mainly about service creation/restoration**
 - Packet layer to steer the flows (OpenFlow as standard exists)
 - Transport layer to create services (under development ONF/OIF/IETF/etc…)

- **Operators may want to solve other problems**
 - Integration problems between vendors
 - Interworking between layers
 - Planning and equipment management
 - Optimization of the network
Flavors of Service Creation Use Case

Service Management
- Automated service creation covering L0 to L3
- **Addressing**
 - Time to service
 - Ease of operation
 - Service differentiation

Elastic Bandwidth Provisioning
- Creation of elastic services with automatic or “on request” changes in bandwidth
- **Dealing with**
 - Statistical bandwidth sharing
 - Dynamic data flow changes

Datacenter Interconnections
- Automatic load dependent fast service creation
- **Matching**
 - Hypergrowth in data volume

Network or Transport as a Service (NaaS/TaaS)
- Fully automate service requests incl. network planning and equipment configuration
- **Addressing**
 - Non-automated Operational processes
 - Extremely dynamic traffic pattern

Multi-layer Network Management
- Multilayer optimized L0-3 system with
 - Common workflows
 - Automatic routing
 - Interworking
- **Dealing with**
 - Heterogeneous technologies
 - Optimized layer usage
 - High network complexity

Multi-vendor Support
- Multilayer optimized L0-3 system with
 - Different control interfaces
 - Missing control IF between vendors

Key Points
- Matching Hypergrowth in data volume
- Extremely dynamic traffic pattern
- Addressing Time to service
- Addressing Statistical bandwidth sharing
- Addressing Dynamic data flow changes

What does the NBI access? A look at the ITU-T ASON Control Model

ITU-T ASON Model Identifies key control elements

- Call and connection control
- Routing and topology
- Resource management
- Protocols

Figure does not imply specific distribution of components, e.g., centralized or distributed
External APIs to ASON Control Functions

- Request service from the network
 - Service Level determines call control processing
- Control virtual network slice
 - Allocate dedicated resources for connection

* Figure does not imply specific distribution of components, e.g., centralized or distributed
APls to Access Functions: Information

Retrieve information from the network

- **Request Path Computation between endpoints**
 - Network returns path (plus alternatives, backup paths)
- **Request Topology information**
 - Invoke analytics or external path computation algorithms

* Figure does not imply specific distribution of components, e.g., centralized or distributed
SDN Controller for Transport - Functional Tool Box

- Service-request / Intent Resolver
- Connection Control
- Path Computation
- Tenant Network Virtualization
- Network Planning

Network Topology/Graph Abstraction

Southbound/Legacy Device/Protocol specific drivers/adapters

Northbound API (A/I-CPI)

Southbound API (D/I-CPI)

OIF OPTICAL INTERNETWORKING FORUM
SDN Controller for Transport – Functional Tool Box (2)

<table>
<thead>
<tr>
<th>Southbound Protocol Driver and Device Control Interface Module</th>
<th>Multilayer Network Topology Abstraction and Virtualization</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Responsible for interfacing to network elements using device specific protocols (incl. Openflow)</td>
<td>• Maintains network topology database</td>
</tr>
<tr>
<td>• Could also interface with legacy management systems as well as non-SDN control systems</td>
<td>• Provides abstracted topology views to clients as per negotiated policy and contract</td>
</tr>
<tr>
<td></td>
<td>• Assigns network resources to virtual abstractions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Northbound API - Service/Intent Resolver</th>
<th>Multilayer Path Computation and Connection Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Interfaces with client applications requesting connectivity (P2P, P2MP, MP) service</td>
<td>• Works with multi-layer (logical) network detail and logic for path computation</td>
</tr>
<tr>
<td>• Allows separation of service intent from components used to deliver the service</td>
<td>• Coordinates provisioning of the connections into the network (elements)</td>
</tr>
<tr>
<td>• Service endpoints, traffic & QoS parameters</td>
<td>• Monitors the health and status of connections</td>
</tr>
<tr>
<td>• Requirements for bandwidth, availability, reliability, resiliency, diversity, etc</td>
<td>• Manages autonomous restoration</td>
</tr>
</tbody>
</table>

OIF INTERNET WORKING FORUM
Network Virtualization and Abstraction

Network Abstraction
- Reduce underlying complexity - simplified logical representation of resources/topology
 - Information hiding – filter/summarize details
- Management/control software systems use abstracted logical model of the network
 - e.g. ITU-T G.805 architecture
 - Subnetwork (forwarding domain/switch)
 - Link (physical, logical server trails)
 - Termination Point (logical port)
 - Subnetwork (cross) Connection (forwarding relationship in device)
 - Link Connection (monitoring & capacity assigned to a connection)

Network Virtualization
- Abstraction to decouple the logical view from underlying physical resources
- Involves a mapping function to dedicate real network resources to the presented virtual entities
- Allows for presenting every client with its own exclusive virtual view of same provider network
- Allows for provider to dynamically optimize and effectively manage/maintain network resources
- Subject to negotiated policy and pricing between the provider and its client
- Provides a level of flexibility to the clients to allocate and manage their “virtual resources”
Network Virtualization: Service-specific Abstraction

Type of virtual network topology exposed to client would be based on negotiated contract

- Prune irrelevant nodes/links, subject to constraints, information hiding and reduction

Based on granularity

- Client’s desired level of detail which depends on its intended application and its sophistication
- More granular topology would provide client software with more dynamic control flexibility, but at higher-end of pricing model
- e.g. dynamic VN topology-change events

Based on Service Objectives

- Presented VN topology abstraction could be a function of service objectives: e.g. optimization: lowest latency, lowest cost, highest reliability, etc
Quick Survey of Current Work

- **Transport SDN Framework**
- **Transport API Project**
- **E-NNI Specifications**
- **Optical Transport Protocol Extensions**
- **Transport API’s project**
- **Common Information Model**
- **Previous GMPLS work**
- **PCE Interface for path computation**
- **Newer work such as I2RS**

- **ASON Modeling**
- **SG 15 Architecture and Modeling**
 - Aligning with ONF SDN Architecture & Common Information Model work

- **Infrastructure Network**
- **SDN for Inter-NFVI PoP**
Next Steps: Filling the Toolbox

- **SDN Framework Whitepaper**
 - Documenting model and identifying APIs

- **Northbound Interface - OIF API Project**
 - Use ONF work aiming at commonality across platforms
 - Common Core Information Model across technologies
 - Mappable to REST/JSON interfaces
 - OIF Project to define Transport API specs
 - Use joint OIF/ONF prototyping and testing, ideally with open source participation such as ONOS, ODL

- **East/West Interface (future)**
 - Peer controllers - e.g., carrier-to-carrier
 - Work still in early stages
 - OIF E-NNI principles can be applied

- **Potential 2016 interop demonstration**
Thank You!

www.oiforum.com
Agenda

Transport SDN Drivers, Needs, Challenges
- Dave Brown, OIF VP of Marketing; Alcatel-Lucent

Global Transport SDN Prototype Demo
- Jonathan Sadler, OIF Technical Committee Vice Chair; Coriant

Transport SDN Tool Kit - SDN Framework and APIs
- John McDonough, OIF Vice President; NEC Corporation of America

Virtual Transport Network Service
- Evelyne Roch, OIF Networking and Operations Working Group Chair; Huawei Technologies Co., Ltd.

Wrap up