SDN Framework and APIs

Lyndon Ong
OIF Marketing Committee Co-Chair
Ciena

OFC 2016
March 22, 2016
Multi-Domain Transport SDN Model

Multi-Domain Integration

Transport SDN framework for carrier networks

- Used to unify diverse carrier domains
 - multiple technology layers
 - multiple domains with differing control planes
 - greenfield and brownfield

- Need for standards on application layer interface to control layer (SDN NBI)
Framework for SDN APIs

- Opening up access to control components
 - Call/Connection Control, Topology, Path Query, Virtualization
 - Replace internal, proprietary interfaces, decouple functions/SW
Transport SDN Framework and APIs

- **Focus on work in OIF Transport SDN Framework and joint work between OIF and ONF on Transport API**

 - **OIF Network & Operations Working Group**
 - **Objective**: facilitate the development of interoperable networking and operations solutions for multi-technology networks
 - **Leadership**: Peter Landon, BTI, Chair

 - **OIF Interoperability Working Group (Network)**
 - **Objective**: define and carry out proofs of concept multi-vendor interoperability trials of OIF Implementation Agreements
 - **Leadership**: Jonathan Sadler, Coriant, Chair

 - **OIF Carrier Working Group**
 - **Objective**: develop requirements and guidelines for the services and functions to be supported by future optical networks
 - **Leadership**: Vishnu Shukla, Verizon, Chair

 - **ONF Open Transport Working Group**
 - **Objectives**
 - Develop SDN and OpenFlow® standard-based control capabilities for carrier transport networks.
 - Recent change: addition of Wireless Transport project
 - **Leadership**: Lyndon Ong, Ciena, Chair
 - **Work to date**
 - Transport SDN Use Cases & Functional Requirements
 - OpenFlow Extensions for Optical Transport
 - 2014 Joint Demo with OIF
 - **In Progress**: T-API, Information Model & OpenFlow v1.1
Achieving Common APIs
The Tools and Remaining Challenges

Existing Work
- Current API work is being done in fragmented silos
- Some linkage of APIs to existing protocol environments

Keys to achieving interoperable common APIs
- Base work on common Information model and API specification
 - Take advantage of ONF Common Information Model project - aligns ONF, ITU, TMF, MEF, OIF
- Verify APIs provide the necessary functionality
 - Use case review and convergent SDO work
 - Refinement for transport network applications
 - Prototype, demonstrate, implement!
Common Information Model

- Defines a common object model for all types of Software Defined Networks
 - Basic components like network resources, service constructs

- Common agreements on modeling across SDOs
 - ONF, ITU-T, TMF, MEF...

- Apply Transport requirements to Common Info Model to create Transport API (TAPI)
Transport API Model

- Can be hierarchically applied – Parent controller to Child controller
OIF Transport API Project Overview

Collaborative Effort with ONF
- Develop Use Cases and Functional Requirements
 - Basis of work
- Information Model
 - Based on and extends ONF Core IM
- Data Models/Schema
 - YANG model and JSON schema
 - https://github.com/OpenNetworkingFoundation/ONFOpenTransport
- Implement, test, refine – “agile” process

Software and Automation Tools
- Englewood Open Source SW project
 - https://github.com/OpenNetworkingFoundation/ENGLEWOOD
- Eagle ONF Open Source Tools project

OIF Interop testing and IAs to follow
Connectivity Service Functional Requirements (draft)

<table>
<thead>
<tr>
<th>TAPI_FR_0001</th>
<th>Create Connectivity Service</th>
</tr>
</thead>
</table>
| **Description** | • Causes creation of a *Forwarding-Construct* representing the *Service* request to connect the *Service-End-Points* within the shared *Context* between API Client and Provider
• Returns Service ID to be used as reference for future actions
• Initial definition will be for a basic point-to-point bidirectional service |
| **Pre-conditions** | • Requestor/Client has visibility of the set of *Service-End-Points* between which connectivity is desired within the *Context*
• Requestor/Client has information about the types of connectivity available and constraints it can specify such as Service Level
• Requestor/Client may be aware of other existing Connectivity *Services* and their IDs |
| **Inputs** | • List of *ServiceEnds* and details of each including
 – Role of the terminating *ServiceEndPoint* in the context of the *Service*
 – Directionality of the terminating *ServiceEndPoint* in the context of the *Service*
 – Reference (Name/ID) to terminating *ServiceEndPoint*
• Connectivity Requirements such as Layer and Capacity
• Connectivity Constraints such as Latency, Cost, etc
• Start Time & End Time |
| **Outputs** | • Service ID
• Operational State
• Lifecycle State
• Confirmation of Service Characteristics : See above inputs |
| **Notifications** | Success/Failure
Change of Operational State |
| **Error-conditions** | Service not supported
Service input not supported
Endpoint not recognized |
| **Post-conditions** | Oif – cite specific documents
Onf
IETF |
| **Sources** | https://github.com/OpenNetworkingFoundation/ONFOpenTransport |

Model of data plane resources in an SDN-enabled network

- Technology agnostic
- Recursive (Forwarding Domain may contain FDs)
- Models static and dynamic elements
- Extensible to different technologies and environments
Future Work

- **Implement and Demonstrate**
 - OIF/ONF Demonstration

- **Develop OIF Implementation Agreements**
 - Select options from base TAPI spec in ONF
 - Specify formats and encoding agreements

- Iterate with more experience and use