

Implementation Agreement for the High Bandwidth Coherent Driver Modulator

(HB-CDM)

OIF-HB-CDM-02.0

July 15,2021

Implementation Agreement created and approved

OIF

www.oiforum.com

The OIF is an international non profit organization with over 100 member companies, including the world's leading carriers and vendors. Being an industry group uniting representatives of the data and optical worlds, OIF's purpose is to accelerate the deployment of interoperable, cost-effective and robust optical internetworks and their associated technologies. Optical internetworks are data networks composed of routers and data switches interconnected by optical networking elements.

With the goal of promoting worldwide compatibility of optical internetworking products, the OIF actively supports and extends the work of national and international standards bodies. Working relationships or formal liaisons have been established with CFP-MSA, COBO, EA, ETSI NFV, IEEE 802.3, IETF, INCITS T11, ITU SG-15, MEF, ONF.

For additional information contact: OIF 5177 Brandin Ct, Fremont, CA 94538 510-492-4040 Φ info@oiforum.com

www.oiforum.com

Working Group:

Physical and Link Layer (PLL) Working Group

TITLE: Implementation Agreement for High Bandwidth Coherent Driver Modulator (HB-CDM)

SOURCE: TECHNICAL EDITOR

Richard J. R. B. Ward Intel Corporation 2200 Mission College Blvd Santa Clara, CA 95054, USA Phone: +1 408 653 5638 Email: richard.ward@intel.com

WORKING GROUP CHAIR Karl Gass Qorvo, Inc. Phone: +1 505 301 1511 Email: iamthedonutking@mac.com

WORKING GROUP CHAIR

David R. Stauffer Kandou Bus, S.A. EPFL Innovation Park, Building 1015 Lausanne, Switzerland Phone: +1 802 316 0808 Email: david@kandou.com

ABSTRACT: This Implementation Agreement specifies key aspects of High Bandwidth Coherent Driver Modulators operating at rates including 64GBd, 96GBd, and up to 128GBd.

Notice: This Technical Document has been created by the Optical Internetworking Forum (OIF). This document is offered to the OIF Membership solely as a basis for agreement and is not a binding proposal on the companies listed as resources above. The OIF reserves the rights to at any time to add, amend, or withdraw statements contained herein. Nothing in this document is in any way binding on the OIF or any of its members.

The user's attention is called to the possibility that implementation of the OIF implementation agreement contained herein may require the use of inventions covered by the patent rights held by third parties. By publication of this OIF implementation agreement, the OIF makes no representation or warranty whatsoever, whether expressed or implied, that implementation of the specification will not infringe any third party rights, nor does the OIF make any representation or warranty whatsoever, whether expressed or implied, with respect to any claim that has been or may be asserted by any third party, the validity of any patent rights related to any such claim, or the extent to which a license to use any such rights may or may not be available or the terms hereof.

Copyright © 2021 Optical Internetworking Forum

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such as by removing the copyright notice or references to the OIF, except as needed for the purpose of developing OIF Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted above are perpetual and will not be revoked by the OIF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE OIF DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY, TITLE OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents

TABL	E OF CONTENTS	.4
1	LIST OF FIGURES	. 5
2	LIST OF TABLES	. 5
3	DOCUMENT REVISION HISTORY	. 6
4	INTRODUCTION	.7
5	FUNCTIONALITY	. 8
6	MECHANICAL	. 9
7	HIGH SPEED ELECTRICAL INTERFACE	10
8	LOW SPEED ELECTRICAL INTERFACE	13
9	ELECTRO-OPTICAL SPECIFICATIONS	15
10	POWER SEQUENCING REQUIREMENTS	17
11	RF FREQUENCY RESPONSE	18
12	FIBER TYPES	22
13	SPI BASED LOW SPEED ELECTRICAL INTERFACE	23
14	REFERENCES	30
15	APPENDIX A: GLOSSARY	30
16	APPENDIX B: OPEN ISSUES / CURRENT WORK ITEMS	31
17	APPENDIX C: LIST OF COMPANIES BELONGING TO OIF WHEN DOCUMEN	Т
WAS	APPROVED	31

1 List of Figures

2 List of Tables

Table 1 Outline mechanical size of the HB-CDM	9
Table 2 High speed electrical interface description	10
Table 3 Type 1 and Type 2 High speed electrical interface dimensions	10
Table 4 Type 1 and Type 2 Landing Pad Dimension Table	11
Table 5 Type 3 Landing Pad Dimension Table	12
Table 6 Low speed electrical interface definition	13
Table 7 Electro-Optical Specifications and Operating Characteristics	16
Table 8 Input fiber characteristics	22
Table 9 SPI Control Signals	23
Table 10 SPI voltage and control specification	24
Table 11 SPI data telegram structure	25
Table 12 SPI read / write timing specifications	27

3 Document Revision History

Working Group: Physical and Link Layer (PLL) Working Group

SOURCE: TECHNICAL EDITOR

Richard J. R. B. Ward Intel Corporation 2200 Mission College Blvd Santa Clara, CA 95054, USA Phone: +1 408 653 5638 Email: richard.ward@intel.com

WORKING GROUP CHAIR

David R. Stauffer Kandou Bus, S.A. EPFL Innovation Park, Building 1015 Lausanne, Switzerland Phone: +1 802 316 0808 Email: david@kandou.com

DATE:

Jul 15, 2021

4 Introduction

This document details an Implementation Agreement (IA) for a High Bandwidth Coherent Driver Modulator (HB-CDM) targeting modulation and data-rate agnostic coherent applications having nominal symbol rates including 64Gbaud, 96Gbaud and up to 128Gbaud. The IA aims to identify and specify the common features and properties of coherent transmitters to enable them to broadly meet the needs of current and future coherent systems and is an extension to the orginal OIF Specification OIF-HB-CDM-01.0, which defined rates to 64Gbaud (also called Class 40) and is a superset of that IA.

This IA defines the following: (1) Required functionality; (2) High speed electrical interfaces; (3) Low speed electrical interfaces; (4) Electro-Optical Specifications and Operating Characteristics; (5) Mechanical requirements.

The original HB-CDM IA defined a single electro-mechanical form factor labeled as Type 1 having a surface mount configuration and nominally targeting Class 40 or 60 for 64GBd or 96GBd applications respectively. This revision additionally defines Type 2 and 3 form-factors which retain the package size, but modify the SMT RF pin pitch (for Type 2) and use Flexible Printed Circuit (FPC) interfaces for the RF and DC (for Type 3). This IA also introduces Class 60 and Class 80 EO masks for nominally 96GBd and 128GBd operation respectively. It is noted that while Type and Class are independent it is expected higher Class devices are accomodated by the Type 2 and Type 3 definitions.

The IA defines an SPI bus to control the Driver in the HB-CDM, including frame format and electrical specifications. The document includes vendor specific options for analog control using the optional Vendor Specific – Analog pins defined in the pin list, but these have not been standardized in this document.

The IA does not define the technologies used to implement the IA, nor the expected optical transmission performance of coherent systems using transmit components conforming to the IA.

Figure 1 Type 1 and 2 modules (L), Type 3 modules (R)

5 **Functionality**

This Implementation Agreement specifies a single opto-electronic module with the functionality shown in Figure 2 and consisting of an integrated Coherent Driver and a Polarization Multiplexed Quadrature Modulator.

Figure 2 Functional schematic for the HB-CDM

Notes:

- 1. While one configuration for the position of the SM and PM fibers is shown here, the reverse orientation is equally acceptable for compliance.
- 2. An output shutter and VOA are optional
- 3. The MPDs are optional
- 4. The Vpilot tone modulation is optional
- 5. Pre and Post SOAs are optional
- 6. Per polarization PDs may be complementary or tap structures

The differential RF modulation inputs are fed to the Driver stage to amplify the electrical signals to match the modulator electrode requirements to induce sufficient optical phase change.

The PM fiber optical input is split and independently modulated by quadrature modulators, then recombined with their polarizations orthogonal to each other using a Polarization Rotator. The resulting optical signal is output through a Single Mode fiber.

6 Mechanical

6.1 Types 1, 2, and 3 Overview

The electro-mechanical form factors use a surface mount configuration (Types 1 and 2) or Flexible Printed Circuit (Type 3) with the low speed electrical interface signals applied from the left side of the package (viewed from top, optical south).

The outline mechanical size of the HB-CDM is shown in Table 1. These figures represent an informative specification with the key compliance of the module being compatible with the Landing Pad definitions in Section 7.

Form Factor	Width (mm)	Height (mm)	Length ¹ (mm)	RF signal-signal (pitch)	RF channel (pitch)	DC (pitch)	Proposed Rates ²
Turne 1	<12		<20	SMT	SMT	SMT	
туре т	512	\$5.5	≤30	(0.8mm)	(2.4mm)	(0.7mm)	64, 96GBa
Turne 2	-12		<20	SMT	SMT	SMT	
Type 2	512	≤5.5	≤30	(0.65mm)	(2.4mm)	(0.7mm)	64, 96, 128GB0
T	(12)		(20	FPC	FPC	SMT or FPC	
Type 3	<u><u></u> 512</u>	≤5.5	≤30	(0.45mm)	(2.4mm)	(0.7mm)	96, 128GB0

Table 1 Outline mechanical size of the HB-CDM

Notes:

- 1. Extensions to the Length parameter while keeping to the same pad frame are permitted and deemed compliant to the Implementation Agreement
- 2. These proposed rates are informative only to guide expected system usage

The top surface of the module is defined as the Hot Area (opposite side to the PCB).

IN1P GND

High Speed Electrical Interface 7

The high speed electrical output interface uses surface mounted pins in a differential co-planar waveguide arrangement (GSSG), with shared ground pins. The pin definitions and pitches shall be as detailed in Table 2, Table 3, and Figure 3. It is noted that alternate channel configurations for the differential signals shown are acceptable.

	-		Parameter	Value					
	←→		Interface type	Differential					
•		GND	Channel number	4					
^		IN4N	Channel configuration	G-S-S-G					
^B ↓	-	IN4P	Signal line coupling	AC					
⊳∔		GND	Signal line impedance	100 Ohm Differential					
Ť		IN3N		1					
⊿₫			Channel nin out	2					
1			Channel pin-out	3					
		INDN		4					
•				Signal					
			Differential pin-out	Complimentary Signal N					
E		GND		· - ·					
Ţ	_	IN1N	Table 2 High speed ele	ctrical interface description	n				

Figure 3 High speed electrical interface definition

D		Type 1 and 2 SMT Pin Dimensions (mm)					
Parameter	Symbol	Min.	Тур.	Max.	Note		
Signal/Ground lead pitch	А		0.8		Type 1 only		
Signal/Signal lead pitch	В		0.8		Type 1 only		
Signal/Ground lead pitch	А		0.87 5		Type 2 only		
Signal/Signal lead pitch	В		0.65		Type 2 only		
Signal & Ground lead length	С	1.75	2.0	2.25			
Signal & Ground lead width	D	0.15	0.2	0.25			
Channel pitch	E		2.4				

Table 3 Type 1 and Type 2 High speed electrical interface dimensions

Figure 4 Type 1 and 2 RF and DC Landing Pads

		Type 1 and 2 PCB Landing Dimensions (mm)					
Parameter	Symbol	Min.	Тур.	Max.	Note		
RF pad pitch (Sig-Gnd)	А		0.80		Fixed, Type 1		
RF pad pitch (Sig-Sig)	В		0.80		Fixed, Type 1		
RF pad pitch (Sig-Gnd)	А		0.875		Fixed, Type 2		
RF pad pitch (Sig-Sig)	В		0.65		Fixed, Type 2		
RF pad length (Sig)	С	2.55					
RF pad length (Gnd)	D	2.55					
RF pad width (Sig)	E	0.35					
RF pad width (Gnd)	F	0.35					
RF Channel pitch	G		2.4		Fixed		
DC Channel pitch	I		0.70		Fixed		
DC pad width	J	0.35					
DC pad length	К	3.10					
		Standard		30			
x_keep_out	L	Extended		55			
y_keep_out	М			13			
boot_keep_out	Ν			15			
RLP_y			1.20		Fixed		
DLP_x			1.00		Fixed		

Table 4 Type 1 and Type 2 Landing Pad Dimension Table

Figure 5 Type 3 RF and DC Landing Pads

	Symbol	Type 3 PCB Landing Dimensions (mm)						
Parameter		Min.	Тур.	Max.	Note			
RF pad pitch (Sig-Gnd)	А		0.975		Fixed			
RF pad pitch (Sig-Sig)	В		0.45		Fixed			
RF pad length (Sig)	С	0.7	0.8					
RF pad length (Gnd)	D	0.9	1.0					
RF pad width (Sig)	E	0.1	0.2					
RF pad width (Gnd)	F	0.4	1.0					
RF Channel pitch	G		2.4		Fixed			
RF pad length offset (Sig/Gnd)	Н		0.2					
DC Channel pitch	I		0.70		Fixed			
DC pad width	J	0.35						
DC pad extension from ref line	К	3.1						
		Standard		30				
x_keep_out	L	Extended		55				
y_keep_out	М			13				
boot_keep_out	N			15				
Reference line to DC pad start	Q	0		1.1				
RLP_y			2.4		Fixed			
DLP_x			1.00		Fixed			
FL_x (ref. line to far pad edge)			7.0		Fixed			

Table 5 Type 3 Landing Pad Dimension Table

OIF

8 Low Speed Electrical Interface

The low speed electrical connections are provided through 40 signals with the orientation shown in Figure 6 and numbered as shown in Table 6. An HB-CDM vendor may choose to populate fewer signals, but the definitions of the populated signals should match those in the table. While Vendor-Specific-Analog (VSA) signals are optional, each has an assumed function as shown. If a vendor chooses to use VSA signals for alternative functions, the electrical specification should match the listed function to allow electrical compatibility so as not to damage module or host.

Figure 6 RF and DC signal orientation

For Table 6, refer to Figure 2 for reference numbers for PHASE#, MPD# and SOA#

Signal Name	Description	Pin DC#	Signal Name	Description
VSA1	VSA / pre-SOA 3, 4 Anode (current)	21	PHASE3N	MZ Phase control or VSA
VSA2	VSA / pre-SOA 1, 2 Anode (current)	22	PHASE4P	MZ Phase control
VSA3	VSA / Pilot (voltage)	23	PHASE4N	MZ Phase control or VSA
GND	Ground	24	PHASE5P	MZ Phase control
VCC	3.3V supply	25	PHASE5N	MZ Phase control or VSA
SPI-RST	SPI Reset	26	PHASE6P	MZ Phase control
SPI-MISO	SPI MasterInSerialOut	27	PHASE6N	MZ Phase control or VSA
SPI-MOSI	SPI MasterOutSerialIn	28	THERMP	Thermistor +
SPI-CLK	SPI Clock	29	THERMN	Thermistor -
SPI-CS	SPI ChipSelect	30	TECN	TEC power -
VDR-BIAS	Driver far end bias	31	TECP	TEC power +
VSUB1	MZ substrate bias (voltage)	32	GND	Ground
VSA4	VSA / MZ substrate bias2	33	MPD-A3	Monitor PD Anode 3 or VSA
VSA5	VSA / MZ substrate bias3	34	MPD-C3	Monitor PD Cathode 3 or VSA
VSA6	VSA / MZ substrate bias4 (or GND)	35	MPD-A1	Monitor PD Anode 1 or VSA
PHASE1P	MZ Phase control	36	MPD-A2	Monitor PD Anode 2 or VSA
PHASE1N	MZ Phase control or VSA	37	MPD-C12	Monitor PD Cathode 1 and 2 or VSA
PHASE2P	MZ Phase control	38	VSA7	VSA / post SOA 1, 2 Anode (current)
PHASE2N	MZ Phase control or VSA	39	VSA8	VSA / post SOA 3 ,4 Anode (current)
PHASE3P	MZ Phase control	40	VSA9	VSA / post SOA Cathode (current)
	Signal Name VSA1 VSA2 VSA3 GND VCC SPI-RST SPI-MISO SPI-MISO SPI-MISO SPI-CLK SPI-CS VDR-BIAS VSUB1 VSA4 VSA5 PHASE1P PHASE2N PHASE3N	Signal NameDescriptionVSA1VSA / pre-SOA 3, 4 Anode (current)VSA2VSA / pre-SOA 1, 2 Anode (current)VSA3VSA / Pilot (voltage)VSA3GroundVCC3.3V supplySPI-RSTSPI ResetSPI-MISOSPI MasterInSerialOutSPI-CLKSPI ClockSPI-CLKSPI ChipSelectVDR-BIASDriver far end biasVSA4VSA / MZ substrate bias2VSA5VSA / MZ substrate bias3VSA6VSA / MZ substrate bias4 (or GND)PHASE1PMZ Phase control or VSAPHASE2PMZ Phase control or VSAPHASE3PMZ Phase control or VSAPHASE3PMZ Phase control or VSA	Signal NameDescriptionPin DC#VSA1VSA / pre-SOA 3, 4 Anode (current)21VSA2VSA / pre-SOA 1, 2 Anode (current)22VSA3VSA / Pilot (voltage)23GNDGround24VCC3.3V supply25SPI-RSTSPI Reset26SPI-MISOSPI MasterInSerialOut27SPI-CLKSPI Clock29SPI-CSSPI Clock30VDR-BIASDriver far end bias31VSUB1MZ substrate bias (voltage)32VSA4VSA / MZ substrate bias334VSA6VSA / MZ substrate bias4 (or GND)35PHASE1PMZ Phase control or VSA37PHASE2PMZ Phase control or VSA39PHASE2PMZ Phase control or VSA39PHASE2PMZ Phase control or VSA39PHASE3PMZ Phase control or VSA39PHASE3PMZ Phase control or VSA39	Signal NameDescriptionPin DC#Signal NameVSA1VSA / pre-SOA 3, 4 Anode (current)21PHASE3NVSA2VSA / pre-SOA 1, 2 Anode (current)22PHASE4PVSA3VSA / Pilot (voltage)23PHASE4NGNDGround24PHASE5PVCC3.3V supply25PHASE6NSPI-RSTSPI Reset26PHASE6NSPI-MISOSPI MasterInSerialOut27PHASE6NSPI-CLKSPI Clock29THERMPSPI-CSSPI ChipSelect30TECNVSA3Driver far end bias31TECPVSA4VSA / MZ substrate bias233MPD-A3VSA5VSA / MZ substrate bias334MPD-A3VSA6VSA / MZ substrate bias4 (or GND)35MPD-A1PHASE1PMZ Phase control or VSA37MPD-A2PHASE2PMZ Phase control or VSA38VSA7PHASE2PMZ Phase control or VSA39VSA8PHASE3PMZ Phase co

Notes:

- 1. VSA1 and VSA2 use common Cathode to GND for the pre-SOA
- 2. Thermistor function may be implemented with a single THERMP pin in which case THERMN becomes VSA (optionally connected to GND).
- 3. PHASE#N controls may be omitted for single-end bias adjust implementations and VSA used in place
- 4. VOA functionality may be included and controlled by VSA pins

9 Electro-Optical Specifications

Basic operating characteristics and specifications are listed in Table 7 at the End of Life over the operating temperature and frequency ranges.

Parameter	Unit	Min	Тур	Max	Remarks/Note	
On anothing for any one of	C-band	T 11-	191.35		196.20	Note 1
Operating frequency	L-band	THZ	186.00		191.50	Note 1
Optical input power		dBm			18	Peak power
Insertion loss		dB			16	Per polarization
PDL		dB			1	
Optical return loss		dB		27		Input and output
Parent MZI ER		dB		22		
Child MZI ER		dB		25		
Polarization ER		dB		20		
Monitor DD bios voltage	Option 3.3	V	3.14	3.3	3.46	Noto 2
Wonitor PD bias voltage	Option 5.0	V	4.75	5.0	5.25	Note 2
Monitor PD responsivity (referred to output power	combined <i>,</i>)	mA/W	10		800	Note 3
Monitor PD Bandwidth (c	ombined)	GHz	1			Note 3
Monitor PD Bandwidth (p	er pol)	GHz	0.1			Note 3
VOA control voltage (opti	onal)	V	0		9	Note 4
Thermistor resistance		kOhm		10		At 25°C
Thermistor beta value		К		3930		
TEC voltage		V	-3.3		3.3	Note 6
TEC current		А	-1.8		1.8	Note 6
Driver Supply Voltage		V	3.14	3.3	3.46	
VDR-BIAS (Driver far end	termination)	V			6.0	Class 40
VDR-BIAS (Driver far end	termination)	V			7.0	Class 60 and 80
Maximum differential inp	ut swing	mVpp	600			Note 7
Minimum differential inpu	ut swing	mVpp			300	Note 7
RF differential impedance		Ohm		100		
S21 E/O Bandwidth (3dB), referenced to 1GHz						+/- 1GHz span moving average See Figure 7, 9 and 11
S11 electrical return loss					See Figure 8, 10 and 12	
I/Q skew (channels 1/2 or	3/4)	ps			50	
Total skew		ps			100	

I/Q skew variation (chann	ps		1.5		
Total skew variation	ps		4		
Low frequency cut-off	MHz		1		
ESD (HBM)	V	250			
Operating humidity (non-	%RH	5	85		
	Standard		-5	75	Note E
Operating temperature	Preferred	°C	-5	80	Note 5
	Class 40			4.5	
Power dissipation	Class 60	W		5.5	Note 6
	Class 80			6.5	

Table 7 Electro-Optical Specifications and Operating Characteristics

Notes:

- 1. Specifications should be maintained across at least one of the described ranges.
- 2. Vendor shall state which Bias Voltage Option or Options are allowed.
- 3. Monitor PDs are optional.
- 4. The VOA shall be of type "normally bright".
- 5. The operating temperature is defined as the minimum/maximum of the HB-CDM case "hot zone" surface temperature.
- 6. Over the Standard Operating Temperature as defined in the table. Higher TEC voltage is preferred over higher TEC current for overall TEC efficiency and TEC driver/controller solution size.
- 7. Peak to peak differential. HB-CDM contains AC coupling capacitors. Normative input swing is 300 to 600mVppd.
- 8. THD is not defined in this IA and remains Application Specific and should be included in the HB-CDM Vendor Specification.

10 Power Sequencing Requirements

The following baseline power sequence is recommended but informative as HB-CDM vendors and customers have the flexibility to change with agreement between them:

Power On:

- 1. TEC enable
- 2. Enable substrate bias and set voltage VSUB to the maximum VDR-BIAS value
- 3. Enable driver VCC (3.3V supply)
- 4. Establish driver VDR-BIAS within 1s
- 5. Adjust substrate bias VSUB to final set point
- 6. Enable SOAs if present
- 7. Enable remaining pins

Power Off:

- 1. Disable SOAs if present
- 2. Disable VDR-BIAS
- 3. Disable VCC within 1s
- 4. Disable substrate bias VSUB
- 5. Disable remaining pins

11 <u>RF Frequency Response</u>

11.1 Measurement Methods

The HB-CDM electrical-to-optical S_{21} transfer function and S_{11} electrical return loss frequency responses shall be measured *differentially* to evaluate conformance to the RF masks in Section 11.2.

For these measurements, the HB-CDM shall be *soldered* to the measurement test fixture, and the collected data shall be de-embedded to the *RF reference point*. The *RF reference point* is defined as the point on the Host PCB RF traces that is 2.5mm beyond the maximum extent of the HB-CDM RF lead pad.

The masks of Figure 7 to Figure 12 show *target* ranges for the electrical-to-optical S_{21} transfer functions and S_{11} electrical return loss frequency responses, allowing for component to component variations. These masks may be revised in a future revision of the document as more component and system level performance data becomes available.

11.2 EO S₂₁ Transfer Function Masks

The ideal RF frequency response for the transmit chain of a coherent modem – consisting of the DAC at the output of the ASIC, the differential signal traces between the DSP and the HB-CDM – is a low pass response which is flat up to the targeted signal bandwidth and rolls off steeply beyond that. Given that the losses of the signal traces between the DSP ASIC and the HB-CDM increase gradually with frequency, it is generally preferred that the RF frequency response of the HB-CDM increases gradually with frequency up to the targeted signal bandwidth, and then rolls off steeply.

The S_{21} transfer functions shall be measured at a HB-CDM gain condition and temperature agreed with the customer. All S_{21} responses shall be normalized to the response at 1GHz. It is assumed that any Driver functionality that manipulates the S_{21} transfer function (i.e. bandwidth adjust functions) can be utilized to obtain compliance with the masks provided in this section.

Figure 7 Normalized EO S₂₁ transfer function mask for Class-40 HB-CDMs

Figure 8 Differential S₁₁ electrical return loss mask for Class-40 HB-CDMs

Figure 9 Normalized EO S21 transfer function mask for Class-60 HB-CDMs

Figure 10 Differential S₁₁ electrical return loss mask for Class-60 HB-CDMs

Frequency [GHz]	Lower_Mask [dB]	Upper_Mask [dB]
1	-1	1
4	-2	1.5
30	-2	7
75	-3	7
83	-30	5
96		-15

Upper_Mask

[dBe]

-8

-8

-6

-6

-4

-4

Figure 11 Normalized EO S₂₁ transfer function mask for Class-80 HB-CDMs

Figure 12 Differential S11 electrical return loss mask for Class-80 HB-CDMs

12 Fiber Types

The input and output optical fiber types are defined in Table 8.

Parameter		Unit	Min	Тур	Max	Note
"Minimum bend radius" specifica fiber input	Mm			7.5	1, 2	
"Minimum bend radius"	Option 1				5.0	3
specification for SM fiber output	Option 2	Mm			7.5	4
Fiber cladding diameter (SM and	μm		125			
Fiber coating diameter (SM and F	μm		250			
PM fiber colour			Transparent			
SM fiber colour			Red			

Table 8 Input fiber characteristics

Notes:

- 1. The polarization state in the PM fiber shall be aligned to the slow axis of the PM fiber.
- 2. The slow axis of the PM fiber shall be aligned to the connector key.
- 3. The Option 1 SMF shall be compliant to ITU-T Recommendations G.657.B3 and G.652.D.
- 4. The Option 2 SMF shall be compliant to ITU-T Recommendations G.657.B2 and G.652.D.

OIF

13 SPI Based Low Speed Electrical Interface

The Low Speed control method for the Driver inside the HB-CDM is SPI and the following sections describe the Voltage Specifications, Read/Write Datagram, Operation Diagrams and Timing Specifications. Register definitions are not contained in this Implementation Agreement as these are deemed Vendor Specific and are not required to enable hardware compatibility between HB-CDM vendor units. The HB-CDM is defined as the *Client* or *Slave* in the SPI interface with the terms used interchangeably.

Hardware features controlled by the SPI interface may include, but are not required or limited to:

- Gain control
- Equalization/Peaking control
- Reading the output signal level
- Die temperature reading

Signal name	In/Out	Function
SCLK	In	SPI Clock
MISO	Out	Master In Serial Out
MOSI	In	Master Out Serial In
CS	In	Chip Select (active low)
RST	In	Reset (active low)

Table 9 SPI Control Signals

13.1 SPI Interface Voltage and Control Specifications

The SPI used is a full duplex synchronous serial interface originally defined by Motorola. The key voltage and control specifications are summarized in Table 10.

			Value						
Parameter	Conditions	Unit	Min	Max					
	VIL	V	-0.3	0.8					
	V _{IH}	V	2.0	VCC + 0.3					
Voltage threshold levels ²	V _{OL}	V		0.4					
	V _{OH}	V	VCC – 0.4	VCC					
IO Standard ²	LVCMOS	V	3	3.6					
SCLK cycle time		ns	50	1000					
SCLK frequency ¹		MHz	1	20					
Time delay between asserting CS and toggling SCLK		ns	25						
	Address+Op-code	bit	16						
Data register width	Data block	bit		16					
Data register shift direction			MSB first						
Clock polarity			Idle state for CLK is low						
Clock phases			Data is latched on the leading edge of CLK, data changes on th trailing edge						
Client select state for data transmission			Chip select for read/write commands (active low)						
Client reset (via Reset pin)			Asynchronous Reset (active low						

Table 10 SPI voltage and control specification

Notes:

- 1. SPI control can be operated by any specific frequency within the Min/Max range.
- 2. Type 2 and Type 3 optionally support a V_{IH} (min) of 1.5V to enable 1.8V logic compatibility

13.2 SPI Read / Write Datagram

Table 11 depicts the data structure of the SPI command datagram. The protocol is designed to work with OIF IA compliant HB-ICR receivers using SPI control, where the HB-ICR addressing will reside in memory addresses 0x0000 to 0x01fff and the HB-CDM will reside in memory addresses 0x0200 to 0x03fff.

	Opcode – 16b																				Dat	a Blo	ock -	16b								
	HB	3-CD	M d	evic	e sel	lect	Ch Add	an* Iress		Register Address					RW	Data in via MOSI, or Data out via MISC							(SO									
Bit#	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Nama	Α	Α	Α	Α	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	D/W	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Name	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	K/ W	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Value	0	0	0	0	0	1	00 01 10 11	= 1 = 2 = 3 = 4		Select register				0=W 1=R	Data																	

* Chan Address references are defined in Figure 2-1.

Table 11 SPI data telegram structure

When an SPI controlled HB-ICR and a HB-CDM are connected in-system, they may share all the SPI signaling without duplication as shown in Figure 13 below as long as unique addressing and highZ MISO modes are available for both devices.

Figure 13 Connection example of SPI controlled HB-ICR and HB-CDM, when MISO sharing by address space is enabled on both devices

13.3 SPI Read / Write Operation Timing Diagrams

Figure 14 and Figure 15 show the SPI write operation timing and the SPI read timing operation.

Figure 15 SPI read operation timing diagram

13.4 SPI Timing Specifications

The SPI timing specifications are summarized in Table 12 and illustrated in Figure 16 and Figure 17. The SPI client hardware reset is defined as asynchronous. After the reset, the Driver configuration should be returned to its defaults.

Description		Symbo		Value					
Description	Condition	Î.	Unit	min.	max.				
CLK clock frequency			MHz	1	20				
CLK clock period		t _{ск}	ns	50	1000				
CLK peak-peak jitter			ps		500				
CLK high time		t _{скн}	ns	20	550				
CLK low time		t _{скь}	ns	20	550				
CLK 10%-90% rise time	15 - 18 pF capacitive load	t _{ckr}	ns	0.5	5				
CLK 10%-90% fall time		t _{ckf}	ns	0.5	5				
CSN to SPI CLK个 setup time		t _{cscк}	ns	50	1000				
CLK \downarrow to SPI CSN hold time		t _{сксs}	ns	50	1000				
CLK \downarrow to SPI MISO valid time	15 - 18 pF capacitive load	t _{скso}	ns	2	11				
MISO 10%-90% rise time	15 - 18 pF capacitive load	t _{sor}	ns	0.5	5				
MISO 10%-90% fall time		t _{SOF}	ns	0.5	5				
MOSI to SPI CLK个 edge setup time		t _{моск}	ns	8					
MOSI to SPI CLK个 edge hold time		t _{скмо}	ns	8					
MOSI 10%-90% rise time		t _{MOR}	ns	0.5	5				
MOSI 10%-90% fall time		t _{MOF}	ns	0.5	5				
Min. SPI access inactive time		t _{cscs}	ns	5*t ск					
RSN time		t _{RS}	ns	t _{ск}					
RSN10%-90% rise time	15 - 18 pF capacitive load	t _{RSR}	ns	0.5	5				
RSN10%-90% fall time		t _{RSF}	ns	0.5	5				

Table 12 SPI read / write timing specifications

Figure 16 SPI client read/write timing

Figure 17 SPI client reset timing – asynchronous

13.5 SPI Registers Specification

Register maps are not defined as part of this Implementation Agreement except for Address 0x0200 which should be reserved for a 16bit Driver manufacturer vendor ID to allow device specific register maps and capabilities to be loaded.

The Vendor ID should follow the LSB 16bits of the 24bit Organizationally Unique Identifier (OUI) code system assigned to device manufacturers by the IEEE. If a manufacturer doesn't have an OUI, another unique identifier may be used as the Vendor ID.

Further information on OUI numbers is available from:

https://en.wikipedia.org/wiki/Organizationally unique identifier

Currently assigned OUI numbers are listed here:

http://standards-oui.ieee.org/oui.txt

Extra functions that could be provided as part of the SPI register map include:

- Gain control
- Equalization/Peaking control
- Peak detector reading
- Unique serial number tracking ability
- Temperature readout

For a HB-CDM module to be compliant to this Implementation Agreement, only the Address 0x0200 device manufacturer register is a strict requirement, all other functions are optional.

OIF

14 <u>References</u>

14.1 Informative references

- OIF-HB-CDM-01.0 Implementation Agreement for the High Bandwidth Coherent Driver Modulator
- OIF-DPC-RX-01.2 Implementation Agreement for Integrated Dual Polarization Intradyne Coherent Receivers (November 2013)
- OIF-CFP2-ACO-01.0 Implementation Agreement for Analogue Coherent Optics Module (January 2016)
- OIF-HBPMQ-TX-01.0 Implementation Agreement for the High Bandwidth Integrated Polarization Multiplexed Quadrature Modulators

15 Appendix A: Glossary

ADC	Analog to Digital Converter
AGC	Automatic Gain Control
BS	Beam Splitter
CMRR	Common Mode Rejection Ratio
DSP	Digital Signal Processor
FPC	Flexible Printed Circuit
Gbaud	10 ⁹ Symbols per second
IA	Implementation Agreement
HB-ICR	High Bandwidth Intradyne Coherent Receiver
MPD	Monitor Photodiode
MSA	Multi-Source Agreement
OIF	Optical Internetworking Forum
PBS	Polarization Beam Splitter
РСВ	Printed Circuit Board
SOA	Semiconductor Optical Amplifier
SPI	Serial Port Interface
THD	Total Harmonic Distortion
VOA	Variable Optical Attenuator
VSA	Vendor-Specific-Analog (signal type)

16 Appendix B: Open Issues / current work items

17 <u>Appendix C: List of companies belonging to OIF when document was</u> <u>approved</u>

Accton Technology Corporation	MACOM Technology Solutions
ADVA Optical Networking	Marvell Semiconductor, Inc.
Alibaba	Maxim Integrated Inc.
Alphawave IP Inc.	MaxLinear Inc.
Amphenol Corp.	MediaTek
AnalogX Inc.	Microchip Technology Incorporated
Applied Optoelectronics, Inc.	Microsoft Corporation
Ayar Labs	Molex
BitifEye Digital Test Solutions GmbH	Multilane Inc.
Broadcom Inc.	NEC Corporation
Cadence Design Systems	NeoPhotonics
CICT	Nitto Denko Corporation
China Telecom	Nokia
Ciena Corporation	NTT Corporation
Cisco Systems	Nubis Communications, Inc.
Commscope Connectivity Belgium BVBA	NVIDIA Corporation
Corning	O-Net Communications (Shenzhen) Limited
Credo Semiconductor (HK) LTD	Open Silicon Inc.
Dell, Inc.	Optomind Inc.
DustPhotonics	Orange
EFFECT Photonics B.V.	PETRA
Eoptolink Technology	Precise-ITC, Inc.
Epson Electronics America, Inc.	Quintessent Inc.
ETRI	Rambus Inc.
Facebook Inc.	Ranovus
Foxconn Interconnect Technology Ltd	Rockley Photonics
Eujikura	Rosenberger Hochfrequenztechnik GmbH &
	Co. KG
Fujitsu	Samsung Electronics Co. Ltd.
Furukawa Electric Japan	Samtec Inc.
Global Foundries	Semtech Canada Corporation
Google	Senko Advanced Components
Hewlett Packard Enterprise (HPE)	Sicoya GmbH

Hisense Broadband	SiFotonics Technologies Co., Ltd.
Huawei Technologies Co., Ltd.	Socionext Inc.
I-Pex	Source Photonics, Inc.
IBM Corporation	Spirent Communications
Idea Sistemas Electronicos S.A.	Sumitomo Electric Industries, Ltd.
II-VI Incorporated	Sumitomo Osaka Cement
Infinera	Synopsys, Inc.
InnoLight Technology Limited	TE Connectivity
Innovium	Telefonica S.A.
Integrated Device Technology	TELUS Communications, Inc.
Intel	US Conec
IPG Photonics Corporation	Viavi Solutions Deutschland GmbH
Juniper Networks	Wilder Technologies, LLC
Kandou Bus	Xelic
KDDI Research, Inc.	Xilinx
Keysight Technologies, Inc.	Yamaichi Electronics Ltd.
Lumentum	ZTE Corporation
Luxshare-ICT	

OIF