Network Processing Forum Software Working Group

Network Processing Forum

Software API Conventions
Implementation Agreement

Revision 2.0

Editor (9):
Philippe Damon, damon@fr.ibm.com

Peter Watkins, peter.watkins@cportcorp.com

Copyright © 2003 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THISDOCUMENT AND THE INFORMATION CONTAINED HEREIN ISPROVIDED ON AN "ASIS' BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOESNOT WARRANT THE INFORMATION IN THISDOCUMENT ISACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", “MAY", and "OPTIONAL" in the remainder of this
document are to be interpreted as described in the NPF Software APl Conventions | mplementation
Agreement revision 2.0.

For additional information contact:
The Network Processing Forum, 39355 California Street,
Suite 307, Fremont, CA 94538
+1 510 608-5990 phone info@npforum.org

Foundations Task Group 1

mailto:damon@fr.ibm.com
mailto:peter.watkins@cportcorp.com

Network Processing Forum Software Working Group

Table of Contents

10
11

S V1 o T o Y OSSR 4
L aLug0o (W Tox 1 o o SRR PRUSPRTRIN 5
2.1 Definitions of Normative and INFOrMBELIVEccoveiirenininieeee e 5
2.2 Requirements Language K&y WOIS.........couriiiieriniiiienieee et 5
2.3 Guidance in the use of theSe IMPEraliVESccceeveiiere e 6
SPECITICATON LANQUABJE.....c . eeueeieeeieeeesiie e eee sttt st e sttt saeesteeseesseesbesntesaeesbeeneesneenseeneas 7
NaMING CONVENLIONS.ccuiitieieeieseesiesee e esteseesreesteseesseeeessaesseesseaseesseessesseesseessesseessesanssenns 8
4.1 USEOf the NPF_ PrEfiX ..cueieiieeeeeesee et e 8
4.2 CONSLANTS. ... eeeieeiieesiee e e e s e e e e s e s e e s e e e neesne e e se e nmn e e neeann e e ne e nar e e ne e e nn e e nneenre s 8
A3 VaTADIES ...t b et ae e a e ne e b nes 8
A4 TYPEINBIMIES......eeeiieieitieeette e rtee st e e st et e e st e e s be e e s sbe e e s bt e e s sbeesabeeesbeeesbeeesaseeesnneeesnnenenn 8
A5 FUNCHON NAIMES......oiiiitieii ettt sttt st et e e bt et e e st e sbe et e sseesbeentesaeesaeensesneebeenes 8
4.6 ENUMEIAted VAIUES.......ccoiiiiieceeeee ettt bbb 8
N o o = Y (0] SRR 9
4.8 Function, Type, and Variable Name Lengths..........cccccvevvveenieie s 9
4.9 NPF Function Name COMPOSITION........cuiiiiiriirie e s seesee s ee e seee e 9
(D= = R 1Y 0 PP 11
N R S-S Tl D= = R I =< SRRSO 11
5.2 COMMON DBLA TYPES ...ccuvieiiiiie ittt sttt st e s e se e s sse e e s seeesneessneeenaneeens 11
5.3 Rulesfor Construction of New Data TYPES.......ccceerererrerrienieseesie e eee e see e e 12
e = 1 (= =S T 13
6.1 SCAlAr ATQUIMENTS. ... couiiiiitieieeiie ettt st sttt st et e s se et e s seesaeenbe et e saeebeeneesreenee e 13
6.2 ATTAY ATQUIMENTStiiiiieeeiiie ettt ettt st st e s sab e e s sss e s nbae e sbe e e sbe e e sabee e saneeennns 13
6.3 RESOUICE HANAIES ... et 13
6.4 MEMOrY OWNEISNIP ..uveiueeiiieieeiesteeieeee st e e s ae e ste e e reesseessesseesseeneesseesseensessenssenseasenns 13
6.5 NPF_IN/NPF_OUT/NPF_IN_OUT Parameters.........cccccevverererenenenenieeseesiesseseeseesnens 13
6.6 Coherent State Image of Dynamic Elements..........cccccvevvveenierci v 15
6.7 Support for Local Parameters/Avoidance of Complex LOCKINgcccceveererienrennnnenns 15
6.8 API SIgNature GUIAEIINEScccveieeiiee ettt e esse e e sreenneaneens 16
6.9 Packet BUffer Handlingoooooiiiiiiiiee et e 17
Function Invocation Model, Events and Completion Callbacks............ccccoovevevcvicieccincnee, 18
7.1 APl Completion CallDaCKScciiiiiiieeeesee e 18
7.2 Lost or Duplicate CallDacks..........ccoiiieiieieie s 24
7.3 EVENE NOUTICAION. ... cctiiiiieeieee ettt s sreeaesneens 25
T (o gl =" o T TS 29
8.1 SynchronoUS Error REIUIMNS..........ooiiiiiiiiierieeiesee et ee s 29
8.2 EITOr COUBVEIUES ..ottt bbb 29
Compliance and EXENSIDIITYccoiiiiiiiieeee e 31
9.1 NPF-Defined Optional Functions and Data StrUCLUIES..........c.ccveveeeeveerieeieseeseeeeneens 31
9.2 ReVIiSING NPF-DEfINEA APIS.......ooiiiiiiiesiee et nne s 31
9.3 Vendor proprietary EXtENSIONS.........coveuereereeeeseeseeseesseseeseeseeseesseessesseessesesssesssesenns 32
Multi-Vendor / MUulti-INStance SUPPOITcoeererieieeneeie et 34
Design and Implementation GUIAEINES...........ceiieieiieieece et 35
0 I 1Yo o LB = 2 PSR RR 35

Foundations Task Group 2

Network Processing Forum Software Working Group

11.2 MUITICASE INVOCALIONS.......ciueeiieieiesiesie sttt st s bbb e sne e e nes 35
11.3 COMPELIDHTTY ..ot b et r e nre s 36
12 REFEIENCES oot b et bbb bbbttt e e nae e 37
Appendix A Header File: NPF.N..... et 38
Appendix B List of companies belonging to NPF during approval process............cceeveene.. 40

Table of Figures

Figure 1 Example strongly typed API function call accepting an array of related items.............. 16
Figure 2 Example strongly typed API function call returning a set of related items.................... 16
Figure 3 Generic Control Interface EXAMPIE.......cocoviviiieeciiee ettt 16
Figure 4 NPF Callback USA0E SEQUENCE........ccciiiuriiiiiiieieeesiiteie s esiree e s ssbseesssssbeeesssbseessssssressssnnes 18
Figure 5 MUItiCast INVOCAIIONcocveiiireieiiteeceiteeceteeeeiresesaresessaesssbeessbeessbeesssbessssbesssssesesnressssees 35

Table of Tables

Figure 1 Example strongly typed API function call accepting an array of related items............. 16
Figure 2 Example strongly typed API function call returning a set of related items.................... 16
Figure 3 Generic Control Interface EXAMPIE.......cocoviiiiiee et 16
Figure 4 NPF Callback USA0E SEOUENCE........ccciiirriiiiiireie e eeiteie s esiree e s ssbseesssssbeeesssbseessssssaessssnnes 18
Figure 5 MUItiCast INVOCALIONccccveeiiireieiteeeetieeeteeeetresestreeesaaesssseessbeessbeessabessssbessssseessnressssens 35

Foundations Task Group 3

Network Processing Forum Software Working Group

1 Revision History

Revision Date Reason for Changes
1.0 09/13/2002 | Created Rev 1.0 of the implementation agreement by taking the Software
Conventions (npf2001.098.28) and making minor editoria corrections.
20 09/29/2003 | Created Rev 2.0 of the implementation agreement by taking the Software

Conventions (npf2003.114.12) and making minor editoria corrections.

Foundations Task Group

Network Processing Forum Software Working Group

2 Introduction

The Network Processor Forum Software APl Working group is defining a variety of APIsfor the
purposes of exposing the functionality of network processors. In order to ensure that the APIs are
uniform and consistent in behavior, look, and fedl, this document defines a set of conventions that MUST
be followed by al NPF Software WG API specifications. This document will also define the
interoperability goals of the Software API specifications with other NPF and industry specifications.

2.1 Definitions of Normative and Informative

This document defines the following terms for usage here and elsewhere in the Software APl Working
Group until such time as they have been defined by the NPF operating procedures.

Normative: That portion of a specification that specifieswhat is required for an implementation to be
considered conformant; the mandatory portion of a specification. Note: Specifications may describe non-
mandatory (optional) features. Because optional features must satisfy the specification to be considered
conformant, their descriptions contain normative text.

Normative information for NPF Software WG specifications SHALL only appear in the main text of
documents and MUST NOT appear in annexes or appendices.

Informative: Portions of a specification document that are included as examples, ancillary information,
or that in other ways contribute to common understanding of the specification, but do not specify
anything required of an implementation to be considered conformant.

Note that informative information MAY be included in either the main text of NPF Software WG
documents or in appendices.

2.2 Requirements Language Key Words

In order to enable clear and concise specificationsit is necessary to have a uniform set of terminology
when describing specifications. This document defines a set of terms that MUST be used in al Software
APl Working Group documents that define any sort of specification or requirement for the behavior of the
software of a network processor.

Authors MUST incorporate this phrase near the beginning of their document:

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL", “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in
this document are to be interpreted as described in the NPF Software API Conventions
Implementation Agreement revision 2.0.

These key words are defined as follows and MUST be capitalized whenever used in a manner intended to
specify abehavior or requirement:

1. MUST Thisword, or theterms“REQUIRED” or “SHALL", mean that the definition isan
absolute requirement of the specification.

2. MUST NOT Thisphrase, or the phrase “SHALL NOT”, mean that the definition is an absolute
prohibition of the specification.

3. SHOULD Thisword, or the adjective “RECOMMENDED”, mean that there may exist valid
reasons in particular circumstances to ignore a particular item, but the full implications must be
understood and carefully weighed before choosing a different course.

Foundations Task Group 5

Network Processing Forum Software Working Group

4. SHOULD NOT This phrase, or the phrase “NOT RECOMMENDED” mean that there may exist
valid reasonsin particular circumstances when the particular behavior is acceptable or even
useful, but the full implications should be understood and the case carefully weighed before
implementing any behavior described with thislabel.

5. MAY Thisword, or the adjective “OPTIONAL", meansthat an itemistruly optional. One
vendor may choose to include the item because a particular marketplace requires it or because the
vendor feelsthat it enhances the product while another vendor may omit the sameitem. An
implementation that does not include a particular option MUST be prepared to interoperate with
another implementation which does include the option, though perhaps with reduced
functionality. In the same vein an implementation that does include a particular option MUST be
prepared to interoperate with another implementation that does not include the option (except, of
course, for the feature the option provides.)

These definitions are an almost verbatim copy of the IETF Best Current Practices Document #14 [2]
authored by Scott Bradner. Small changes have been made in order to better align the definitions with
NPF Software Working Group needs.

2.3 Guidance in the use of these Imperatives

Imperatives of the type defined in this memo must be used with care and sparingly. In particular, they
must only be used where it is actually required for interoperation or to limit behavior that has potential for
causing harm (e.g., system crashes). For example, they must not be used to try to impose a particular
method on implementors where the method is not required for interoperability.

Foundations Task Group 6

Network Processing Forum Software Working Group

3 Specification Language

The interface specification language normatively used to define APIsin the Software WG SHALL beC
asfound in the ANSI C89 Specification [1]. In addition to expressing the APIsin C, informative
addendums to the specification SHOULD be made that define an IDL-based representation of the APIs.
In defining the APIs, the conventions for constructing APIs listed in the remainder of this document
SHALL befollowed. These conventions SHOULD be written so asto facilitate a mapping of the APIsto
IDL.

Foundations Task Group 7

Network Processing Forum Software Working Group

4 Naming Conventions

This section will define aset of conventions for naming all parameters, functions, etc., such that their type
is easily recognizable across specifications.

4.1 Use of the NPF_ prefix

The NPF__ prefix MUST be used with functions, constants, types, and parameters that are defined by the
NPF. Conversely, the NPF_ prefix MUST NOT be used with functions that are not defined by the NPF.
Any implementation of the NPF APIs that uses the prefix NPF_ in away that is not found in an NPF
specification is considered non-compliant.

4.2 Constants

Constants MUST contain only capital letters. Words are separated with underscores and SHOULD
include scope prefixes:

#def i ne NPF_MAX_SCORE 10

4.3 Variables

Variable names MUST use mixed upper and lower case. The first |etter of the first word in avariable
name MUST NOT be capitalized unlessit is an acronym. All other words in avariable name MUST start
with acapital letter. If the previous word or acronym endsin a capital |etter then an underscore MUST be
inserted: NPF_days| nWeek, NPF_MPLS Entry

Some guidelines are:
* Avoid numeralsin names. 2-Z, 1-I, 0-O.
* Never use capitalization to differentiate names.
* Homonyms make discussing variables confusing: rap-wrap.

4.4 Type Names

Type names follow the same naming rules as variables with the additiona rule that they MUST append a
_t to the end of atype name. This applies to basic types, enumerations, function pointers, and structures.
Example: NPF_counter _t, NPF_soneEnuneration_t, NPF_sonmeStruct t.

45 Function Names

Each word in a function name MUST start with a capital letter. If the previous word ends in a capital
letter then an underscore MUST beinserted: NPF_Ent r yAdd(); NPF_A Function()

4.6 Enumerated Values

Enumeration values follow the convention defined in section 4.4 with the addendum that each
enumeration value MUST have an explicit numerical value associated with it and enumeration value
names MUST contain only capital |etters. Enumerations SHOULD be used instead of #defines to achieve
strong typing.

Typedef enun{ NPF_SATURDAY = 1, NPF_SUNDAY = 2} NPF_bestDays t;

Foundations Task Group 8

Network Processing Forum Software Working Group

4.7 Abbreviations

Variable names should fully describe the entity the variable represents. When naming variables, statein
words what the variable represents and try to create a concise but not cryptic abbreviation. A good

mnemonic name generally speaks to the problem rather than the solution. A good name tends to express
the ‘what’ more than the *how’.

Industry-standard abbreviations SHOULD be used where possible and the following guidelines followed:

» Don't abbreviate by removing just one letter from aword, use July not Jul

» Always use the same abbreviation for the same concept, if using Num do not use No.
* Make them pronounceable.

» Useathesaurusto help resolve conflicts.

Al'loc Allocate

AVg Average

cB Callback

Max Maximum

Mn Minimum

Mux Multiplexed

Rx Receive

Sync Synchronization
T Transmit

Xe Cross-connect.

Table 1 Abbreviation Examples

4.8 Function, Type, and Variable Name Lengths

All NPF defined functions, types and variables shall observe the ANSI C89 standard [1] for uniquely
discriminating function names by being unique in the first 31 characters of the name.

4.9 NPF Function Name Composition

Function names SHALL be composed of attributesin big-to-small order, ending in averb that
characterizes its operation, for example

NPF_<Mbdul e><Feat ur e><Ver b> = NPF_I pv4Uni cast Al ar nGet ()

Components and features MAY be followed by subcomponents and sub-features whenever applicable.
Consecutive duplicate attributes SHOULD be combined (e.g., NPF_I| pv4Uni cast | nit isthedevice
initialization function, not NPF_| pv4Uni cast I nitlnit).

49.1 NPF Module
NPF_<Mbdul e><Feat ur e><Ver b> = NPF_I pv4Uni cast Al ar nGet ()
The names of functions, type definitions, and constants affiliated with a component type SHOULD

specify the component name immediately after the NPF_ prefix. For example,
NPF_| pv4Uni cast Al arniet ().

Foundations Task Group 9

Network Processing Forum Software Working Group

49.2 NPF Features
NPF_<Mbdul e><Feat ur e><Ver b> = NPF_Devi ceAl ar ntGet ()
Feature provides the identifier for what is to be controlled by this function. Many of these names will be

component specific. APIs SHOULD use the following list of terms where possible for describing
features.

Prov Provision or configure the component
St atus Status of the component
Al arm

Alarm

Al ar mPer si st Alarm persistency

All oc To allocate memory for data structures
Chi I dren Identify children

Parents Identify parents

Ver si on

To get the API version of a component

Table 2 Feature examples

4.9.3 NPF Verbs
NPF_<Mbdul e><Feat ur e><Ver b> = NPF_Devi ceAl ar ntGet ()

The function verb identifies the action being performed on the feature of a component.

Function verbs often come in pairs such as add/remove and begin/end. Verbs MAY also be concatenated,
for example to get all the enabled elements of amodule NPF_Modul eFeat ur eEnabl edGet ()

d ear Reset latched status indications
Conv Convert (e.g., to/ffrom interrupt id)
Get Get information

Set Set information

Start Start a one-shot or periodic operation
Next Get the next item

Create Initialize/Create

Dest r oy Finalize/Destroy

Rei ni t Reinitialize/Recreate

All oc Allocate resources

Free Free resources

Enabl e Enable a component

Di sabl e Disable a component

Table 3 Verb examples

Foundations Task Group 10

5 Data Types

In this section, common data types will be defined, as well as guidelinesto follow in definition of more

complex types.

5.1 Basic Data Types

Network Processing Forum Software Working Group

This section lists the of basic data typesthat MUST be used in NPF APIs. When APIs are approved the
associated datatypes MUST also be approved.

Rules of datatypes:

» Datastructures packing and endiannessis generally considered beyond the scope of this
document as source code compatibility can be achieved without awareness of either one. Certain
types (e.g. for IP Addresses) MAY have a specified endianness but most types shall not.

Basic Data Types Notes
NPF_bool ean_t An enumeration of NPF_TRUE (value 1) and NPF_FALSE. (value 0)
NPF_char 8_t An eight bit wide character format.

NPF_uchar 8 _t

An eight bit wide unsigned character format suitable for passing
arrays of bytes.

NPF_i nt 16_t A sixteen bit signed integer format.
NPF_int32_t A thirty-two bit signed integer format.
NPF_int 64 _t A sixty-four bit signed integer format.
NPF_uint 16_t A sixteen bit unsigned integer format.
NPF_ui nt 32_t A thirty-two bit unsigned integer format.
NPF_ui nt 64_t A sixty-four bit unsigned integer format.

NPF _fl oat 32 t

A thirty-two bit signed floating point format.

NPF_fl oat 64 t

A sixty-four bit signed floating point format.

Table 4 Basic NPF Data Types

5.2 Common Data Types

This section lists a set of basic datatypes that are common throughout the NPF APIs. These data types are
built upon the basic data types defined above.

Common Data Types

Notes

NPF_error _t

A 32-bit wide numerical error code value.

NPF_cal | backHandl e_t

A handle used to identify a callback function.

NPF_cal | backType_t

A per-API family enumeration used to discriminate callback types.

NPF _correl ator _t

An opaque 32-bit wide value that API users use to contain opaque
per-function invocation data that is returned during callbacks.

NPF_user Cont ext _t

An opaque 32-bit wide value that API users use to contain opaque
per-callback function invocation data that is returned during
callbacks.

NPF_event Mask t

A per-API family bit-mask, used to indicate which events an
application wishes to receive.

NPF_error Reporting_t

An enumeration used to indicate the degree of error reporting
desired from callback functions when registering for them.

Table 5 Derived NPF Data Types

Foundations Task Group

11

Network Processing Forum Software Working Group

5.3 Rules for Construction of New Data Types

Construction of new data types MUST follow the following guidelines:

» All datatypes defined by official NPF specifications MUST use the NPF_ prefix as described in
section 4.1.

» All NPF constructed data types MUST be constructed out of types defined in sections 5.1, 5.2, or
structures built using these basic types.

» Datatypesthat will be passed by value should be of reasonable size. Reasonable sizeisa
necessarily vague term as it takes into account multiple factors, including but not limited to the
frequency atype will be used, the size of the members of the type (if a struct), and the expected
environment (e.g. a FAPI level call vs. ahigher level API call).

* When passing larger amounts of data, or passing a sizable amount of data very frequently, itis
recommended that a pointer be passed rather than passing the data itself on the stack.

Foundations Task Group 12

Network Processing Forum Software Working Group

6 Parameter Passing

This section describes conventions used in passing parametersto API functions. Thisincludes
classification of parameters types for ordering in the function definitions, options for when to pass
parameters by value or by reference, as well as standard behavior for treatment of in, out and in-out types
of parameters. Memory allocation and release are described where applicable.

6.1 Scalar Arguments
Scalar arguments SHOULD be passed by value only; not by pointer.

6.2 Array Arguments

Array arguments SHOULD be accompanied by scalar argument(s) that indicate the dimension(s) of the
array. The scalar argument(s) MAY be omitted when the array size is known and fixed.

6.3 Resource Handles

Many API functions will use “handles’ to reference structures resident in the memory of the caller or the
callee, but not both. Use of handlesin NPF Software API specifications SHOULD adhere to the
following guidelines:

» The APl definition should assume that only the entity that generated the handle knows what the
actual content of the handle valueis.

» The APl definition should put no assumption on the handle value. Especially the handle value
should not be assumed that they are globally unique. (Handle is only required to be unique within
the entity and the context in which the handleis generated.)

* TheAPI should be designed so that any necessary resources associated with the handle be
allocated by the entity that generated the handle.

» TheAPI should be designed so that the removal of handle be done by the entity that has
generated the handle, which enables the entity to de-all ocate any resources related to the handle.

6.4 Memory Ownership

Memories that are used to hold values that are passed around as parameters are initialy “owned” by the
side (caller or callee of afunction) that allocated them. An owner of amemory is responsible for de-
allocating the memory when the memory is no longer in use.

In general, passing parameters through NPF defined functions will not change the ownership of the
memory that is passed as parameters. For example, if a caler of an NPF defined function allocated a
block of memory and passed a pointer to the memory as a parameter to the function, the memory
ownership and the responsibility to de-allocate the memory remain with the caller.

Thisisthe default behavior, and any NPF defined functions that involve changes to memory ownership
MUST clearly state it in the function definition.

6.5 NPF_IN/NPF_OUT/NPF_IN_OUT Parameters

In order to better document the function of each parameter in NPF defined API function calls, a set of null
macros named NPF_| N, NPF_QUT, and NPF_| N_QUT SHALL be used with all NPF API function calls.
These macros MUST be included in front of each parameter of an NPF specified function so asto guide

Foundations Task Group 13

Network Processing Forum Software Working Group

the API client in usage. These macros are associated with a specific memory management and ownership
scheme for parameters. The following subsections describe these schemes.

Note: In the following table, rows with “ Design” keyword describes the API design guideline,
and rowswith “ Impl” keyword describes implementation guideline for such API.

6.5.1 NPF_IN Scheme

Parameter | Guideline | Guideline

Type Type

Scalar Design Scalar NPF_I N parameter MUST be passed by value.

Impl. The value MUST be assigned by the caller.

Compound | Design Compound type NPF_I N parameter can be passed either by value or by
pointer. Guideline for API designers on whether value passing or pointer
passing SHOULD be used, is set by the “Parameter Passing” section of the
SwAPI Software Convention document.

When passed by pointer, const modifier SHOULD be used to protect the
value of the parameter from being modified by the callee.
Impl. The caller MUST assign the value of the parameter.

When pointer passing is used, the passed pointer MUST be pointing to a
valid buffer at the point of function call. Callee MUST not change the value of
the parameter (the buffer), or the implementation will be considerered NPF
API incompliant.

6.5.2 NPF_OUT Scheme

Parameter | Guideline | Guideline
Type Type
Scalar Design Scalar NPF_QOUT parameter MUST be passed by a pointer.
Impl. The pointer MUST be pointing to a valid buffer at the point of method
invocation.
The content of the buffer, if any, pointed by the pointer, will be ignored by
the callee. (The buffer does not need to be initialized.)
The callee will set the value to the buffer, which the pointer is pointing to.
Compound | Pattern 1 Design | Compound type NPF_OUT parameter MUST be passed by
pointer.
Impl The pointer MUST be pointing to a valid buffer at the point of
method invocation.
The content of the buffer, if any, pointed by the pointer, will be
ignored by the callee (The buffer does not need to be initialized.)
The callee will set the value to the buffer, which the pointer is
pointing to.
Pattern 2 Design | Compound type NPF_QOUT parameter is passed as a pointer(2) to
a pointer(1).
Impl. The pointer(2) is pointing to a valid buffer for pointer(1), at the

point of method invocation,

The pointer (1) does not need to be pointing anywhere, and its
value will be ignored by the callee.

The callee will set the pointer(1) to point to a valid buffer that
contains the value of the NPF_QUT parameter.

The caller does not change the value of the NPF_QUT parameter

(the buffer that the pointer(1) is pointing to).

Pattern 2 for NPF_QOUT parameters MUST NOT be used.

Foundations Task Group 14

Network Processing Forum Software Working Group

6.5.3 NPF_IN_OUT Scheme

Parameter | Guideline | Guideline

Type Type
Scalar Design Scalar NPF_| N_QUT parameter MUST be passed by a pointer.
Impl. The pointer MUST point to a valid buffer when the function is called.

The caller MUST set a valid input value to the buffer, which will then be
overridden by the callee with an output value

Compound | Pattern 1 Design | Compound type NPF_I N_QUT parameter MUST be passed by
pointer.

Impl The pointer MUST be pointing to a valid buffer at the point of
method invocation.

The caller MUST set a valid input value to the buffer, which will
then be overridden by the callee with an output value.

Pattern 2 Design | Compound type NPF_I N_OUT parameter is passed as a
pointer(2) to a pointer(1).

Impl. The pointer(2) is pointing to a valid buffer for pointer(1), at the

point of method invocation,

The pointer (1) is pointing to a valid buffer, which contains a valid

value as an input parameter, at the point of method invocation.

The callee can either do the following

- Set the pointer(1) to point to a valid buffer that contains the
output value of the parameter. In which case the caller does
not modify the value of the buffer that the pointer(1) is
pointing to.

- Set the output value to the buffer that the pointer(1) is pointing
to. In which case, the callee will overwrite the values set by
the caller. The caller is free to modify the buffer that pointer(1)
is pointing to, after the method is completed.

Pattern 2 for NPF_| N_QUT parameters MUST NOT be used.

6.6 Coherent State Image of Dynamic Elements

Some functions will be designed to return a data set whose size is not known to the caller. If the set
represents the state of a dynamic entity, i.e. one that can change state at any time, it SHOULD be returned
in away that guarantees that the caller receives a complete and self-consistent image of the data asit was
at some instant in time while the call was being processed.

6.7 Support for Local Parameters/Avoidance of Complex Locking

Applications MUST be allowed to pass parameters that are contained in local variables. That is, an
application should be able to passin apointer to aloca variablein cases where it needs to provide a
string or other array viaan NPF API. Similarly, it isimportant to not require resources to be locked across
several invocations of functions. Thus, for all normal parameter passing, it isincumbent on the callee to
make a copy of any array or pointer handles before returning from afunction call. Thisisthe default
behavior; any exceptions MUST be explicitly documented. In general, APIs must protect themselves
against dangling handles and lingering memory allocations for structures that are no longer in use.

It is noted that there may be APIswhere the amount of data expected to be transferred acrossit ishigh
enough that aforced copy will cause a performance hit. In such scenariosit is acceptable to use a buffer
handling semantic that reduces copies at the cost of delaying release of a buffer beyond the duration of a
function call. Thisisfurther addressed in the Packet Handler API.

Foundations Task Group 15

Network Processing Forum Software Working Group

6.8 API Signature Guidelines

Strong typing SHOULD be used in defining API function cals. The following subsections set forth
guidelines for defining different kinds of API function calls.

6.8.1 Multi-Field Inputs

For API function calls that are reasonably expected to accept arelated set of information al at the same
time, a struct SHOULD be used to carry that information, particularly in cases where multiple instances
of the information are expected. Figure 7 shows an example of what such an API function call might look
like.

NPF_error _t NPF_EntryAdd(NPF_I N NPF_t abl eHandl e_t myTabl eHandl e,
NPF_ I N NPF_entry t routes[],
NPF_| N NPF_ushort 16 _t entryCount);

Figure 1 Example strongly typed API function call accepting an array of related items

6.8.2 Multi-Field Queries

When querying for information such as a set of related counters for an interface, the function doing so
SHOULD use awell defined structure for the information, accepting a handle indicating the device being
gueried and providing an out parameter with a pointer to a structure that contains the countersin question,
with areturn parameter indicating whether the handl e type matches the type of the call. This optimizes for
having a simple, well-defined approach for querying multiple counters while minimizing the number of
function calls required. It isnoted that this approach can result in more counters being retrieved than is
strictly needed, however, thisis considered acceptable given that the overall cost of such afunction call is
very low compared to issues such as overhead for accessing an NPE. For those queries where a very large
collection of related items may be retrieved, APl writers SHOULD partition the items into subsets, and
then define functions for retrieving each of the subsets.

NPF_error_t NPF_StatsQuery(NPF_IN NPF_device_t myDevi ceHandl e,
NPF_OUT NPF_counters_t *counters);

Figure 2 Example strongly typed API function call returning a set of related items

6.8.3 Control Interfaces

Functions used to deliver configuration information for interfaces and other devices are expected to
typically require the ability to manipulate a single setting without having to reset the entire configuration
of adevice. Assuch, contral interfaces SHOULD typically be written to manipulate a single characteristic
of acontrolled device. In order to facilitate re-use and avoid function proliferation, functions SHOULD
be made generic for individual functions across arange of controlled interface types where possible.

Thus, figure 3 is an example of how the Foo attribute could be set on awide variety of interface types
without requiring multiple Set FooFor { Fool nt er f ace| Bar | nt er f ace| Bazl nt erface} ()
functions.

NPF_error _t NPF_FooSet (NPF_I N NPF_device_t nmyDevi ceHandl e,
NPF_| N NPF_foo_t f ooVval ue) ;

Figure 3 Generic Control Interface Example

Foundations Task Group 16

Network Processing Forum Software Working Group

6.9 Packet Buffer Handling

Guidelines and semantics for packet buffer ownership and handling are described in the Packet Handler
API document.

Foundations Task Group

17

Network Processing Forum Software Working Group

7 Function Invocation Model, Events and Completion
Callbacks

7.1 API Completion Callbacks

The function invocation model for NPF APIsis based on asynchronous callbacks, where thereisasingle
callback for each function call. The completion of work associated with an API function call is not
indicated by the return of the call, but by the invocation of a separate completion callback function by the
calleeto thecaller. Thisallows more flexibility in that the caller is not blocked waiting for the result.
This enables more parallelism to be achieved, while still allowing synchronous behavior to be easily
layered on top of the asynchronous callbacks if desired.

Note that in some cases, the work can be completed before the original call returns. In those cases, the
completion callback may be called before the original call returns, whether on the same thread or a
different worker thread, which isimplementation dependent. In atypica multi-threaded environment, the
work performed on behaf of an asynchronous request may be accomplished by a separate worker
thread (or threads). Thisthread, unless synchronized with the original call, may complete its work before
or after the original call completes. Rather than constrain the implementation to synchronize or perform
itswork on the original call thread, no guarantee is made for when the completion callbacks can be called.
In addition, because an application must design for true asynchronous completion callbacks due to this
lack of guarantee, it is not useful to allow some implementations to optionally return and indicate that a
completion callback is unnecessary. However, an implementation is free to perform completion callbacks
on the original call threadsif the work can be performed immediately and to reduce context switches.

user NPF API provider
I \ I

register()
user_context

*user_callback() \
/

1. Registration

cb_handle

api_call()
cb_handle
correlator
N
*may go to NPE\,\
2. Use the APIs *several times ,+* >
Pty
user_callback()
N times user_context
correlator
- out_data
deregister()
cb_hm.
3. Deregistration [

Figure 4 NPF Callback Usage Sequence

There need not be a 1:1 relationship between an asynchronous request call and a completion callback. A
single request call may generate multiple asynchronous response callbacks. Partial completions may
happen, for example, when there are multiple input arguments in the request, and the implementation

Foundations Task Group 18

Network Processing Forum Software Working Group

chooses to process and compl ete the arguments independently. The application SHOULD keep track of
outstanding and partially completed requests, to ensure detection of full completion.

Some error conditions may result in areturn without invocation of the completion callback. Thisis
further described in the Error Handling section.

Completion callbacks for API functions are grouped into separate categories. The application will
register a completion callback function for each of the categories of completion callbacks that are of
interest. A completion callback handleis provided to the application upon successful registration. The
application provides this completion callback handle when using API callsfor that type. The application
may register and de-register completion callbacks at initiaization and shutdown respectively, or as
needed during the execution of the application.

The application provides two types of application context information. A NPF_user Cont ext _t is
provided at callback registration time. In addition, aNPF_cor r el at or _t isprovided at API function
call time. When the completion callback is called for a particular call, the application will receive the
callback type, and both the NPF_user Cont ext _t andthe NPF_corr el at or _t contexts, aswell as
result information. Thisinformation allows the application to associate a completion callback call with a
specific instance of the original function call. The callback type MAY indicate a specific type within a
category.

The application can also provide an error reporting level with the API function call to indicate interest in
receiving the completion callback (e.g. call back only if an error occurs, aways call back, never call
back). While an APl implementation SHOULD provide best effort to deliver callbacks, delivery of
callbacksis not guaranteed. Thusit is the application’s responsibility to protect itself against duplicated or
lost callbacks.

Figure 4 shows the basic model and usage of NPF asynchronous APIs as defined in this document.

Below are examples of the registration, de-registration and completion callback functions, where XxxXx
will represent a category for the callback and cal | back Ty pe will represent a specific typein a
category. Xxxx and cal | backType will be replaced with category and type definitions as defined by
each API. Alsoincluded isaconvention for API function parameters that are required for callback
support. Note: the registration, de-registration and completion callback functions are synchronous.

7.1.1 NPF_XxxxRegister

This function alows the application to register a completion callback function for the related callback
category, and to associate a unique callback handle as well as application context.
Signature: NPF_error _t NPF_XxxxRegi ster (NPF_I N NPF_user Cont ext _t,
NPF_I N NPF_XxxxCal | backFunc_t,
NPF_QUT NPF_cal | backHandl e_t *)
Parameters In: NPF_user Cont ext _t
NPF_xxxxCal | backFunc_t

Parameters Out: NPF_cal | backHandl e_t

Return Values: NPF_NO _ERROR
NPF_E BAD CALLBACK FUNCTI ON
NPF_E CALLBACK ALREADY_ REGQ STERED
NPF_E_UNKNOWN

7.1.2 NPF_XxxxDeregister

Thisfunction allows the application to de-register the callback function that is associated with this
callback handle.

Foundations Task Group 19

Network Processing Forum Software Working Group

Signature: NPF_error _t
NPF_XxxxDer egi ster (NPF_I N NPF_cal | backHandl e_t)
Parameters In: NPF_cal | backHandl e_t

Parameters Out: None

Return Values: NPF_NO ERROR
NPF_E BAD CALLBACK_HANDLE
NPF_E_UNKNOWN

The callback routine might be called after the deregistration function has been invoked, but the API
implementation SHALL guarantee that the callback function is not called after the deregister function has
returned.

7.1.3 NPF_XxxxCallback_FUNC

Thisisthe function template for function completion callbacks. These callbacks are asynchronously
invoked in response to NPF API calls.

The context and correlator parameters come from the callback function registration function and the
original function call, respectively. The callback datais a structure that contains result information about
the original function call.

Typedef void (*NPF_xxxxCal |l BackFunc_t)(NPF_I N NPF_user Cont ext t,
NPF_ I N NPF_correlator _t,
NPF_| N NPF_xxxxCal | backDat a_t)

7.1.4 Callback Data Structure

This section defines the data structure used to deliver result information in the context of a callback. The
comment text below explains the parameters and structures and their usage.

Typedef NPF_uint32 t NPF_xxxxErrorType_ t; /* Error code (NPF_XXXX E YYYY) */

/ *
* An asynchronous response contains an error/success code,
e other optional information that correl ates the response
e toaneementinarequest array, and in some cases a
» function-specific structure embedded in aunion. One or
* more of these is passed to the callback function as an

» array within the NPF_xxxxCallbackData t structure (below).
*/

typedef struct { /* Asynchronous Response Structure */
NPF_xxxxError Type_t error; /* Error code for this response */
NPF_xxxxl d_t resource; /* User’s resource id for handle */
uni on { /* Function-specific structures: */
NPF_ui nt 32_t unused; /* Default */
NPF_xxxxHandl e_t xxxxHandl e; /* Handl e from NPF_XxxxTabl eCr eat e*/
Pous

} NPF_xxxxAsyncResponse_t;

/ *
» The callback function receives the following structure containing
» one or more asynchronous responses from a single function call.
e Thereare severd possbilities:
* 1. Thecalled function does a single request

Foundations Task Group 20

*/

Network Processing Forum Software Working Group

- numCallbackResp = 1, and the resp array hasjust one element.
- alOK = TRUE if the request completed without error

and the only return value is the response code.

- if dlOK = FALSE, the “resp” structure has the error code.
2. The called function supports an array of requests

a. All completed successfully, at the sametime

-alOK =TRUE, n_resp =0.

b. Some completed, but not al, or there are values besides
the response code to return:

- alOK = FALSE, n_resp = the number completed

- the “resp” array will contain one element for

each completed request, with the error code

in the NPF_XxxxAsyncResponse t structure, along

with any other information needed to identify

which request element the response belongs to.

- Callback function invocations are repeated in

this fashion until al requests are complete.

Responses are not repeated for request el ements

aready indicated as complete in earlier callback

function invocations.

typedef struct {
NPF_xxxxCal | backType_t type; /* ldentifies the function called */
NPF_bool ean_t al | C&; /* TRUE if all requests conpleted OK*/
NPF_ui nt 32_t nuntCal | backResp;/* Nunber of responses in array */
NPF_xxxxAsyncResponse_t *resp; /* Array of response structures */

} NPF_xxxxCal | backData_t;

Some NPF APIs may support aform of batched request that lets an application pass a variable-length
array of “request elements’ to the APl implementation. Examples: the Ipv4 route add function can take
an array of prefix/length parameters; the Interface Create API takes an array of interface specifications,
and creates many with asingle cal.

The callback mechanisms should be defined similarly for these APIs. Points they will have in common:

1. Theimplementation generates one “response element” for each “request element”. A

response element contains a status code and something that identifies the request element to
which it belongs. Examples of identifiers: prefix/length values (for route add and route
delete); next hop index (for next hop entry add and delete); |P address and interface (for
resolution table entry add and delete).

Theimplementation MAY pass an array of response e ements to the callback function at
any time after the API function is called. For any API function call, the total number of
response elements passed to the callback function should be exactly the same as the number
of request elements passed to the API function. There should be exactly one status code
returned for each request element.

How many response elements are passed each time the implementation invokes the
callback function? How many invocations of the callback function is the implementation

Foundations Task Group 21

Network Processing Forum Software Working Group

allowed to make in order to return all the response elements for asingle API function call?
These are for the implementor to decide. The minimum number of callback invocationsis
one (unlesstheer r or Repor t i ng parameter causes responses to be suppressed); the
maximum is the number of request elements passed in the API function call.

4. An NP Forum API module, such asthe Ipv4 Unicast Forwarding API or the Interface
Management API, MAY support the“Al | OK” option, defined as follows:

a. The structure defined by the API to be passed to the callback function contains avariable
caled“Al | OK”, with values of TRUE and FALSE.

B. IF the APl implementation passes the complete list of response elementsin asingle
invocation of the callback function, and IF the status code for every response e ement is
“no error”, theimplementation SHALL return Al | OK = TRUE and omit the array of
response elements (i.e. pass back an array length of zero).

C. If, a the time of callback invocation, aresponse element for any of the request elements
indicates an error or ismissing, the implementation SHALL return Al | OK = FALSE and
pass an array of response elements that includes responses for all request elements for
which the completion status is known.

7.1.4.1 Cdlback Typeand Error Fields

These members of the callback data structure defined above are associated with the original function call
that caused the callback to be made. They are used to determine which member type of the unionis
present.

Within each API family a specific enumeration SHALL be defined for the callback type and error type
fields that are described above. The callback type field shall correspond on a 1:1 basis with the original
function calls that invoke callbacks. The error field values may be standard across a set of functions
within an API family or specific to aparticular function.

7.1.4.2 Guiddinesfor definition of callback union structures

Callback union structures defined for specific API function calls may need to include additional data as
part of the structuresincluded in the union. Since the datawill be present as part of aunion, large data
may seriously affect memory requirements for these structures as unions alocate the amount of memory
needed for the largest member of the union irrespective of the actual member typein use. In such cases, a
pointer to the data may be a better choice to define as a member of one of the structures that make up the
union.

Vendors can define their own callback structure types by adding proprietary fields within the union to
provide additional data. These are not be defined by NPF.

7.1.5 API Function Signature Requirements

API function calls use three parameters to support asynchronous completion callbacks. Each API
function will correspond to a defined callback category. NPF_cal | backHandl e_t is provided to the
application upon registration. NPF_cor r el at or _t isan application context.

NPF_error Reporti ng_t indicates whether the application wishes to receive a completion callback
or not, or only upon errors. NPF_er r or Repor ti ng_t isan enumeration containing
NPF_REPORT_ALL, NPF_REPORT_NONE, and NPF_REPORT _ERROCRS. If the function iscreating a

Foundations Task Group 22

Network Processing Forum Software Working Group

resource, then “other function parameters’ MUST include asinput aresource id parameter, declared as
type NPF_xxxxI d_t, foridentifyinglost or duplicate callbacks.
Signature: NPF_error _t NPF_Xxxx<api function name> (
NPF_| N NPF_cal | backHandl e_t,
NPF_ I N NPF_correlator _t,
NPF_I N NPF_errorReporting_t,
<..other function paraneters..>)
Required Parameters In; NPF_cal | backHandl e_t
NPF _correl ator _t
NPF_error Reporting_t

Required Parameters Out: None

7.1.5.1 Error Reporting and Callbacks

TheNPF_error Reporting_t enumeration defines three values: NPF_ REPORT _ALL,
NPF_REPORT_NONE, and NPF_REPORT _ERRORS. When invoking a function with an asynchronous
callback in the NPF APIs one of these values MUST be passed in. These values cause the following
behavior on the part of a compliant implementation:

 NPF_REPORT_ALL will cause dl function calls associated with an asynchronous callback to
result in a callback, whether the function succeeded or not. The only exception to thisis function
callsthat immediately return an error code instead of NPF_NO_ERROR.

* NPF_REPORT_NONE causes function calls associated with asynchronous callbacks to never
result in acallback. Thisvalueis useful when the results of afunction call do not matter.

* NPF_REPORT_ERRCRS causes function calls associated with asynchronous callbacks to only
callback to an application when an error occurs as part of the execution of the call. Note that
function calls that immediately return an error code will not later result in a callback.

Certain types of function calls (e.g. statistics queries) are nonsensical when used with
NPF_REPORT _NONE or NPF_REPORT _ERRORS. Such functions MUST immediately return an error
code when invoked with these values and MUST be clearly documented as such.

7.1.6 Reentrancy

The NPF API function calls consist of two categories of invocations:

1) Synchronous API function calls (e.g. various register, deregister APIfunction calls) and
asynchronous API function calls (e.g. API function calls for manipulating the various tables on
the forwarding plane).

2) Completion callbacks and event notifications

API function call reentrancy means that an application can invoke afunction call a second time, before
its first invocation has completed. Similarly, callbacks or event notification functions reentrancy means
that a second callback or event notification invocation is handled, before its first invocation has completed

Synchronous function calls SHOULD be reentrant. Using reentrancy with synchronous function callsis
rather rare. A synchronous function call can be invoked before its previous invocation completed only by
application code running at a higher priority level than the first invoking code.

Reentrancy is used frequently with asynchronous function calls. For example, an application can invoke a
function call to add routes a second time before its first invocation has completed. In order to ensure
applications portability to any NPF APl implementation, asynchronous function calls MUST be reentrant.

Foundations Task Group 23

Network Processing Forum Software Working Group

7.2 Lost or Duplicate Callbacks

Because an APl implementation provides only best effort delivery of callback responses, delivery of
callbacksis not actually guaranteed. It is the application’s responsibility to handle lost or duplicate
callbacks.

In order to allow an application to recover in these cases, an API function call which requests the creation
of one or more new resources MUST include a user-generated resource id parameter for each new
resource. Thisresourceid isanon-zero integer that is unique for agiven resource type, for the life of the
resource.

The implementation can detect duplicate creation requests by checking for a previously existing resource
id. A user may then safely repeat the request to create a resource when they suspect the original create

callback was lost. Duplicate create callbacks can be ignored. Similarly, missing or duplicate callbacks for
API’swhich destroy a resource may be handled by simply repeating the request or ignoring the duplicate.

Because handling lost or duplicate callbacks requires adding a new resource id argument to certain handle
creating calls, it is a backwards incompatible change. The “NPF API” and Task Group major revision
numbers must therefore be incremented to Version 2.X.

7.21 Resourceld Types

The data type for the resource id is defined per APl and MUST be of the form NPF_xxxxId_t. An API
may define more than one resource id type, as desired. However, there should be at most one resourceid
type for each handle type. A single resource id type may be used by different handle types, but not the
other way around. A generic example declaration would be:

typedef NPF_uint32 t NPF xxxxld_t;

7.2.2 Createand Destroy Error Codes

When a duplicate create request is detected, the NPF_E RESOURCE_EXI STS error is returned and no
new resource is created. Duplicate request errors may be reported by the implementation at either API
function call invocation time or completion callback time. All callbacks for the resource type MUST
include the resourceid.

Similarly, when a duplicate request to destroy or free aresource is detected, the
NPF_E_RESOURCE_NONEXI STENT error is returned to the called. Duplicate destroy errors aso may
be reported at either API function call invocation time or completion callback time.

7.2.3 Querying Resourceld’s

The NPF Implementation Agreement MAY provide aquery function for aresource so that a user may
determine whether a given resource id already exists. If it does not already exigt, the create request may
be repeated. The query function returns an array of <handle,resource id> pairsfor all resources of agiven
type. Query functions are asynchronous, to allow a user program to make progress with partial
completion of the query.

7.2.4 Atomic Modification of Resour ce State

In order to allow clean recovery from missing or duplicate callbacks, al API’s which modify the state of
aresource MUST be atomic. Partial or incremental modification of resource state is not permitted by any
API.

Foundations Task Group 24

Network Processing Forum Software Working Group

7.3 Event notification

Any applications interested in events occurring on the network processor may register for notification of
these events. The events may or may not be related to invocation of NPF API calls, and may include
indications of such occurrences as alink going down, or an IP address changing. Events are organized in
separate categories and an application can register for individual events, or for an entire category of
interest.

A handleis provided to the application upon successful registration. The application provides this handle
when unregistering for the events. The application may register and de-register for events at initialization
and shutdown respectively, or as needed during the execution of the application.

An application can register a handler to receive selected events by setting a bit in the

NPF_event Mask _t parameter for each event it wishesto receive, when it calls the event registration
function. A mask with all bits set (Ox FFFFFFFF) selects al events of the particular category. If the
application wishes to change the selection of eventsfor a particular handler function, it may call the event
registration function again with the same handler function address and context, but with a different event
selection mask. The events enabled are those whose bits were set in the most recent registration function
call for aparticular handler function/context pair. Re-registration of one function/context pair does not
change the event selection for any other function/context pair that might also be registered at the time.

The application provides context information, of type NPF_user Cont ext _t, at event registration
time. TheNPF_correl at or _t used with API function calls is unnecessary in the event notification
model, as no invocations are made that can be correlated. When the event notification is made for a
particular event, the application will receive the event information, and the NPF_user Cont ext _t
context information.

Below are templates of registration, de-registration, and event call functions, where Xxxx will represent a
category or a specific event in acategory. Xxxx will be replaced with category and event definitions
and structures as defined by each API. Note: the registration, de-registration and event call functions are
synchronous.

7.3.1 NPF_XxxxEventRegister

Thisfunction allows the application to register a function for the event or event category, and associate a
handle with the registration. Registration accomplishes two things: It registers the event naotification
function (the “handler”) to the API, and also enables notifications for the events selected by the bits that
are set in the NPF_event Mask_t parameter. Note that the implementation may begin to invoke the
event handler before returning from the registration function.
Signature: NPF_error _t NPF_XxxxEvent Regi st er (

NPF_I N NPF_user Context t,

NPF_I N NPF_xxxxEvent Cal | Func_t,

NPF_ I N NPF_event Mask t,
NPF_QUT NPF_cal | Handl e t *)

Foundations Task Group 25

Network Processing Forum Software Working Group

Parameters In: NPF_user Cont ext _t
NPF_xxxxEvent Cal | Func_t

NPF_event Mask_t
Parameters Out: NPF_cal | Handl e_t *

Return Values: NPF_NO ERROR
NPF_E BAD CALLBACK FUNCTI ON
NPF_E_CALLBACK_ALREADY_REG STERED
NPF_E_UNKNOWN

7.3.2 NPF_XxxxEventDer egister

Thisfunction allows the application to de-register the event notification function that is associated with
this callback handle.

Signature: NPF_error _t NPF_EventDeregi ster(NPF_IN NPF _call Handl e_t)
Parameters In: NPF_cal | Handl e_t
Parameters Out: None

Return Values: NPF_NO ERROR
NPF_E BAD CALLBACK_HANDLE
NPF_E_UNKNOWN

The event routine might be called after the deregistration function has been invoked, but the API
implementation SHALL guarantee that the event function is not called after the deregister function has
returned.

7.3.3 NPF_xxxxEventCallFunc t

Thisisthe event notification function format. Xxxx indicates either a category of events, or a particular
event. Thisfunction isinvoked when the related event happens. NPF_user Cont ext _t isthe original
value provided by the application during event registration. NPF_xxxxEvent Dat a_t containsan
event type indicator and a union of event types provided by a particular API specification.
NPF_xxxxEvent Array_t isastructurethat contains an array of NPF_xxxxEvent Dat a_t
structures, accompanied by a scalar describing the array length.
Definition: typedef void (*NPF_xxxxEvent Call Func_t) (NPF_I N NPF_user Cont ext _t,
NPF_|I N NPF_xxxxEvent Array_t)

Definition: typedef struct({

NPF_uint 16 nunEvent Data; /* nunber of structures */

NPF_xxxxEvent Dat a_t *event Dat a;

} NPF_xxxxEvent Array_t;

Definition: typedef struct NPF_xxxxEventData {
NPF_xxxxEvent _t event Type;
uni on {

event Dat aTypel_t c;
event Dat aType2_t d;
<.»
by
} NPF_xxxxEventData_t;

7.3.3.1 NPF xxxxEvent t

Thetype NPF_xxxxEvent _t isused toindicate the type of the structures returned in the union of event
structures. The definition of thistypeis specific to each xxxx API family and MUST be an enumeration
of event types supported by that family.

Foundations Task Group 26

Network Processing Forum Software Working Group

Each API family SHALL define its own event type,. For instance, the Ipv4 Unicast Forwarding API
defines:

typedef enum
NPF_I pv4Event { NPF_I| PV4A_ROUTE TABLE M SS = 0,
NPF_I PV4_NHR_UNREACHABLE = 1} NPF_I| pv4Event _t;

7.3.3.2 NPF_event Mask_t bit definitions

Each APl SHALL define NPF_event Mask_t bitsfor all of its events, beginning with the rightmost bit
of the mask. For example,

/ *
» Definitions for selectively enabling IPV4UC events

*/
#defi ne NPF_I| PV4UC_EV_PREFI X_TBL_M SS_ENABLE (1 << 0)
#defi ne NPF_I PVAUC_EV_NEXT_HOP_TBL_M SS_ENABLE (1 << 1)
#defi ne NPF_I PVAUC EV_ADD RES TBL_M SS_ENABLE (1 << 2)
#defi ne NPF_I| PVAUC EV_FI B_PREFI X M SS_ENABLE (1 << 3)
#defi ne NPF_| PVAUC_EV_LAST (1 << 3)

This document defines the following value for use by al API families:
#define NPF_EV_ALL_EVENTS_ENABLE (OXFFFFFFFF)

7.3.3.3 Guiddinesfor definition of event structures

Event structures defined for specific API function calls may need to include additional data as part of the
structure. Since the data will be present as part of a union, large data may seriously affect memory
requirements for these structures. In such cases, a pointer to the data may be a better choiceto define asa
member of the structure.

Vendors MAY define their own event structure types by adding proprietary fields within the union for
additional data

7.3.3.4 Example of event structures

Example of individual event structures.

typedef struct NPF_pscData {
NPF_portl D t portid;
NPF_port St at us_t st at us;
} NPF_pscData_t;

typedef struct NPF_pspData {
NPF_portl| D t portid;
NPF_ui nt 64 _t speed;
} NPF_pspData_t;

Example of category event structures:

typedef struct NPF_itfData {
NPF_itfEvent _t event Type;
uni on {
NPF_pscDat a_t pscDat a;
<.»
NPF_pspData_t pspDat a;
}ou;
} NPF_itfData_t;

Foundations Task Group 27

Network Processing Forum Software Working Group

7.3.4 Event Notification Example

voi d NPF_InterfaceEvent Cal | Func(NPF I N NPF_user Cont ext t cont ext
NPF IN NPF_itfDataList t data)
{

swi tch (data. event Type) {
case NPF_EVENT_PORT_STATUS CHANGE:
br eak;
case NPF_EVENT_PORT_SPEED:
br eak;
def aul t:
}
}
int main() {
NPF_cal | Handl e_t cal | Handl e;
NPF_error t retval;
NPF itfEventCal | Func_t eventCal |l Func =
& NPF_I nterfaceEvent Cal | Func;
retval = NPF_I TF_Event Regi ster ((voi d*) getpi d(),
event Cal | Func, &cal |l Handl e);

retval = NPF_I TF_Event Der egi st er(cal | Handl e) ;

Foundations Task Group

28

Network Processing Forum Software Working Group

8 Error Handling

This section describes how error conditions are indicated to clients of the NPF API function calls.

8.1 Synchronous Error Returns

Error codes SHALL be returned synchronously from synchronous API function call invocations (such as
callback registration) and from asynchronous API function call invocations where errors are detected
before a completion callback isrequired. This may include error conditions such asinvalid parameters or
processing errors which occur in the context of the call or which prevent an asynchronous completion
callback. Returnvaluesfor API function call invocations shall be of type NPF_error _t.

8.2 Error Code Values

Valid error code values will be partitioned into ranges of values, with each API defining a corresponding
range. See Appendix A. NPF.h for more information.

API Family Error Code Range
I(:((Z)grr::r?gr? o2l apis) | 7%

Ipv4 100-199

Interfaces 200-299

Table 6 Assigned Error Code Ranges

8.21 NPF_NO_ERROR

Thisvalue MUST be returned when afunction was successfully invoked. Thisvalueis also used in
completion callbacks (see section 6) where it MUST be the only value used to signify success.

8.22 NPF_E_UNKNOWN

An unknown error occurred in the implementation such that there is no error code defined that is more
appropriate or informative.

8.23 NPF_E BAD CALLBACK_HANDLE

A function was invoked with a callback handle that did not correspond to avalid NPF callback handle as
returned by aregistration function, or a callback handle was registered with a registration function
belonging to a different API than the function call where the handle was passed in.

824 NPF_E_BAD_CALLBACK_FUNCTION

A callback registration was invoked with a function pointer parameter that was invalid.

825 NPF_E_CALLBACK_ALREADY_REGISTERED

A callback or event registration was invoked with a pair composed of afunction pointer and a user
context which was previously used for an identical registration.

Foundations Task Group 29

Network Processing Forum Software Working Group

8.2.6 NPF_E_FUNCTION_NOT_SUPPORTED

This error value MUST be returned when an optional function cal is not implemented by an
implementation. Thiserror value MUST NOT be returned by any required function call. This error value
MUST be returned as the function return value (i.e. synchronously, as defined in this document).

8.2.7 NPF_E_RESOURCE_EXISTS

A duplicate request to create a resource was detected. No new resource was created.

8.2.8 NPF_E_RESOURCE_NONEXISTENT

A duplicate request to destroy or free aresource was detected. The resource was previously destroyed or
never existed.

Foundations Task Group 30

Network Processing Forum Software Working Group

9 Compliance and Extensibility

In order to utilize the benefits of a common interface, a client application must be ableto rely on the
support of the interface by a conforming implementation. However, it is unreasonable to expect that an
interface, once specified, will never change. Furthermore, some vendors may wish to provide their own
useful extensionsto the interfaces. Theterm “core” will be used to describe the common interfaces. The
term “extended” will be used to describe additional or proprietary interfaces.

9.1 NPF-Defined Optional Functions and Data Structures

Certain NPF APISMAY be defined to contain optional methods and/or data structures. Implementation of
NPF APIs do not need to implement optional methods and data structures in order to be NPF compliant,
but upon implementing all or a portion of the optional methods and data structures, all related optional
methods and data structures required for proper functioning of the implementation must be implemented.

Example: If an optional method A assumes optional method B and optiona data structure C for proper
function, then if method A isimplemented, method B and data structure C MUST be implemented.

The dependency among optional methods and data structures, if any, MUST be clearly documented in the
API specification.

9.2 Revising NPF-Defined APIs

9.2.1 Version Number Assignment

NPF APIs can be seen as a collection of APIswhere each APl is defined by aTG. Since each APIs may
evolvein difference paces, they each have their own versions. NPF APIswill aso have aversion number
asawhole. (Mainly for vendors to express that they are NPF API 1.1 compliant rather than saying that
they are Ipv4 1.2 Interfaces 1.3 Packet Handler 1.0 Diffserv 1.0 compliant.) The versioning of APIs
MUST adhere to the following rules:

* Maor version number will be shared among all NPF APIs. Major version numbering will be
controlled by the Foundations TG with consensus from the entire WG.

» Minor version number for each API will be assigned by each TG defining the API.

* Minor version number for NPF APIs as awhole will be assigned by the Foundations TG.

* When mgjor version number changes, all NPF APIS major version number will change
accordingly (even if there is no change to the spec.).

A version of NPF APIs as awhole will be defined as a collection of versions of each separate APIs. Such
version will be defined by the Foundations TG with consensus from the entire WG.

Example : NPF APl version 1.1 can be defined as:
Foundations version 1.0
Ipv4 version 1.2
Interfaces version 1.3
Packet Handler version 1.1
FAPI 1.0
Diffserv 1.0

Foundations Task Group 31

Network Processing Forum Software Working Group

9.2.2 Version Number Checking

An implementation of an NPF API must define a macro with the following signature to express the
version of APl that it supports:

#def i ne NPF_<MODULE>_<MAJOR VERSI ON> <M NOR_VERS| ON>_COVPLI ANT

The macro can be used to check the version of API that an implementation supports at compilation time.
It also can be used to do selective compilation.

An implementation can support multiple version of the same API if thereis no conflict between them.

Example:

#define NPF_IPV4_1 2 COVPLI ANT

#define NPF_I PV4_1 3 COVPLI ANT

#define NPF_IPV4_1 4 COVPLI ANT

means that the implementation supports Ipv4 1.2, 1.3 and 1.4 spec. It also suggests that there has been an
alteration between 1.1 and 1.2 that broke backward compatibility.

Note : See 4.9.1 for definition of <MODUL E>
9.2.3 Revising Method and Data Structure

When revising an API, occasionally new parameters may need to be added to a function, data structure
need to be changed, or new semantics may be applied to an existing function. In order to maximize
backward compatibility and to avoid confusion, the following rules must be followed when revising an
API.

* Addition of acompletely new function or data structureis always allowed.

» Changing parameters of an existing function within a same major version is prohibited except for
bug fixes. When parameters need to be changed, a different function name must be used.

» Changing semantic or behavior of an existing function within a same major version is prohibited
except for bug fixes. When semantic or behavior need to be changed, a different function name
must be used.

» Changing return value of an existing function within a same major version is prohibited except
for bug fixes. When return value need to be changed, a different function name must be used.

e Addition of new return value to an existing function is allowed, but should be avoided if possible
since it may break backward compatibility.

» Changing existing data structure within a same major version is prohibited except for adding
members to a union, adding members to the tale of a structure, or for bug fixes. Changing data
structure may break backward compatibility.

» Changing type definition within a same major version is prohibited except for bug fixes. When a
new type is needed, a new type should be defined.

e Changing value assignment to a constant is allowed.

e Changing contents of an enumeration is allowed.

» All changes listed above that are permitted without incrementing the major revision number
require incrementing the minor revision number.

There are no restrictions in terms of changes when a major version number changes.

9.3 Vendor proprietary extensions

Vendors that implement the NPF APIs are allowed to a certain extent to modify the NPF API definition
and its behavior and still claim conformance. The type of modification that a vendor can perform over
NPF APIs are strictly limited to the following.

Foundations Task Group 32

Network Processing Forum Software Working Group

Addition of acompletely new proprietary function or data structure is always allowed.

Changing parameters of an existing function within a same major version is prohibited. When
parameters need to be changed, a different function name must be used.

Changing semantic or behavior of an existing function is prohibited. When semantic or behavior
need to be changed, a different function name must be used.

Changing return value of an existing function is prohibited except for bug fixes. When return
value need to be changed, a different function name must be used.

Addition of new return value to an existing function is allowed, but should be avoided if possible
since it may break backward compatibility.

Changing existing data structure is prohibited except for adding members to a union, adding
members to the end of a structure, or for bug fixes. Changing data structure may break backward
compatibility.

Changing value assignment to a constant SHOULD NOT be done.

Foundations Task Group 33

Network Processing Forum Software Working Group

10 Multi-Vendor / Multi-Instance Support

In the implementation of the NPF APIs, it is possible that the same APIs needs to be integrated multiple
times. For example, this may happen when integrating the same Functional APIs from different vendors
or if aparticular implementer decides to integrate multiple instances of the same API (e.g. a Packet
Handler API instance per forwarding blade). These types of multi-vendor or multi-instance integration
can lead to conflicts such as:

e Conflictsin structures, typedefs, enums, etc

* Function name conflicts
The resolution of this problem of multiple-defined symbolsis|eft to the integrator of the NPF APIs. The
Software Conventions document will NOT propose any normative solution considering that: (1) there are
anumber of possible solutions, and (2) most operating systems provide efficient ways to solve this
problem.

Foundations Task Group 34

Network Processing Forum Software Working Group

11 Design and Implementation Guidelines

The NPF Software APl working group is primarily concerned with specifying a set of interoperable APIs.
As such, vendors have complete control over theinterna design and implementation of software
implementing these APIs. This section provides some informative guidelines for implementation. This
section of this document is NOT considered normative.

11.1 Modularity

A moduleisacollection of data and the routines that act on the data. A module might also be a collection
of routines that provides a cohesive set of services even if no common dataisinvolved. A modulein Cis
asourcefile. One goal of amoduleisto hideinformation. In general, it is suggested that modules
implementing the NPF APIs reveal aslittle as possible about their inner workings.

11.2 Multicast Invocations

In some architectures, a single services API function invocation can result in repeated calls to multiple
forwarding elements to accomplish the result. For example, in a system with multiple network processors
and asingle FIB, aFIB update must be sent to all NPs. If not all NPs are successfully updated, does the
request succeed or fail? How are the complex results of success and failure reported to the application?

The Software APl Framework describestwo API levels:
» Services API, whose purpose isto support applications while concealing details of the underlying

system architecture;
* Functional API (FAPI), which addresses the specific functions of individua network processing
elements.

Considering the example above: if the Services APl must hide the fact of multiple NPs, an application call

User APIs NPE1 NPE2
Imple/:nF:rsnalion

API Call

Return

Completion
Callback

Retun___J

Figure 5 Multicast Invocation

to update a FIB must result in asingle indication of success or failure, just asif there were only one
underlying forwarding process to be notified of the update. The FAPI, likewise, addresses individua
elements; so the FAPI-level request to update the Classification Element should also result in asingle
indication of success or failure.

Foundations Task Group 35

Network Processing Forum Software Working Group

This means that the coordination of multiple forwarding elementsin a complex architectureisthe
function of software (“middleware”) residing below the Services API and above the FAPI. In no case
shall any NP Forum API definition specify that requests are distributed to multiple elements with the
possibility of multiple callbacks with differing results.

In the FIB example, middleware underlying the Services API must invoke the FAPI once to update each
forwarding element. It SHOULD return success if the Services API request was valid and executable. |If
any of theindividual FAPI callsfails, therefore, the failure should be aresult of some incapacity of the
system, not a problem with the nature of the request The incapacity should result in an asynchronous
notification to the application (through Services API Event Notification) of afailure of some part of the
system, such as an interface going down. The middleware should increment error counters and generate
event logs for diagnosis of the problem, as well as generate an event notification as described in this
document.

11.3 Compatibility

Within a particular major version number, NPF APIs are only required to be compatible at the source
code level and not at the binary code level.

Foundations Task Group 36

Network Processing Forum Software Working Group

12 References
[1] “American National Standards Institute (ANSI), Standard for the C Language”’, ANSI X3.159-1989.

[2] Bradner, Scott, “Key Words for Use in RFCs to Indicate Requirement Levels’, IETF RFC 2119,
Harvard University, March 1997.

Foundations Task Group 37

Network Processing Forum Software Working Group

Appendix A Header File: NPF.h

/* This header file defines typedefs, constants, and functions*/
/* that apply to all NPF Software Wrking group APIs. */
#ifndef = NPF H
#define _ NPF H

#i fdef __cpl uspl us
extern “C {
#endi f

#define NPF_IN
#defi ne NPF_OUT
#defi ne NPF_I N_OUT

/* This section defines base NPF types and will differ from */
/* platformto platform The type shown here are based on */
/* Linux 6.2 on an x86. */
t ypedef char NPF_char8_t;

t ypedef unsi gned char NPF_uchar8_t;

typedef char NPF_int8 t;

t ypedef short NPF_int16_t;

typedef int NPF_i nt 32_t;

typedef long long int NPF_int64 t;

t ypedef unsi gned char NPF_uint8_ t;

t ypedef unsi gned short NPF_uint16_t;

t ypedef unsigned int NPF_ui nt 32_t;

t ypedef unsigned | ong [ong int NPF_ui nt 64_t ;

t ypedef fl oat NPF_fl oat32_t;

typedef |ong doubl e NPF _fl oat64_t;

/* This section defines constructed NPF types and is */
/* identical for all inplenentations of the NPF APIs. */
typedef NPF_uint32_t NPF_error t;

typedef NPF_uint32_t NPF_cal | backHandl e_t;

typedef NPF_uint32_t NPF _correl ator t;

typedef NPF_uint32_t NPF_user Cont ext t;

typedef enum
NPF_bool ean {NPF_FALSE = 0, NPF_TRUE = 1} NPF_bool ean_t;

typedef NPF_uint32_t NPF_event Mask_t;
/* Exanpl es of other NPF types */
typedef NPF_uint32_t NPF_| pv4Address_t ;
typedef NPF_uchar8_t NPF_MAC Address_t[6];
typedef enum
NPF_error Reporting { NPF_REPORT_ALL =1,
NPF_REPORT_NONE = 2,
NPF_REPORT_ERRORS = 3 } NPF _errorReporting t;
/ *
* NPF Event constants
*/
#define NPF_EV_ALL_EVENTS ENABLE OxFFFFFFFF

Foundations Task Group 38

/*
*/
#def i

#def i
#def i

#def i
#def i
#def i
#def i
#def i

#def i
#def i

#def i
#def i

Network Processing Forum Software Working Group

NPF Error constants

ne

ne
ne

ne
ne
ne
ne
ne

ne
ne

ne
ne

NPF_NO_ERROR

NPF_FOUNDATI ONS_BASE_ERR
NPF_FOUNDATI ONS_MAX_ERR

NPF_E_UNKNOWN
NPF_E_BAD_CALLBACK_HANDLE
NPF_E_BAD_CALLBACK_FUNCTI ON
NPF_E_RESOURCE_EXI STS
NPF_E_RESOURCE_NONEXI STENT

NPF_| PV4_BASE_ERR
NPF_| PV4_MAX_ERR

NPF_| NTERFACES BASE_ERR
NPF_| NTERFACES_MAX_ERR

#i fdef __cpl uspl us

}

#endi f

#endi f

/* _NPF_H_ */

(0)

(1)
(NPF_FOUNDATI ONS_BASE_ERR + 98)

(NPF_FOUNDATI ONS_BASE_ERR)

(NPF_FOUNDATI ONS_BASE_ERR + 1)
(NPF_FOUNDATI ONS_BASE_ERR + 2)
(NPF_FOUNDATI ONS_BASE_ERR + 3)
(NPF_FOUNDATI ONS_BASE_ERR + 4)

(NPF_FOUNDATI ONS_MAX_ERR + 1)
(NPF_I PV4_BASE_ERR + 99)

(NPF_I PV4_MAX_ERR + 1)
(NPF_I NTERFACES_BASE_ERR + 99)

Foundations Task Group

39

Network Processing Forum Software Working Group

Appendix B List of companies belonging to NPF during
approval process

Agere Systems IBM Samsung Electronics
Alcatel IDT Sandburst Corporation
Altera Intel Silicon & Software Systems
AMCC IP Infusion Silicon Access

Analog Devices Kawasaki LSI Sony Electronics

Avici Systems LSI Logic STMicroelectronics
Azanda Network Devices Modelware Sun Microsystems
Cypress Semiconductor Mosaid Teja Technologies
Ericsson Motorola TranSwitch

Erlang Technologies NEC U4EA Group

EZ Chip NetLogic Xelerated

Flextronics Nokia Xilinx

Fujitsu Ltd. Paion Co., Ltd. Zettacom

FutureSoft PMC Sierra ZTE

HCL Technologies RadiSys

Hi/fn

Foundations Task Group

	Revision History
	Definitions of Normative and Informative
	Requirements Language Key Words
	Guidance in the use of these Imperatives
	Use of the NPF_ prefix
	Constants
	Variables
	Type Names
	Function Names
	Enumerated Values
	Abbreviations
	Function, Type, and Variable Name Lengths
	NPF Function Name Composition
	NPF Module
	NPF Features
	NPF Verbs

	Data Types
	Basic Data Types
	Common Data Types
	Rules for Construction of New Data Types

	Parameter Passing
	Scalar Arguments
	Array Arguments
	Resource Handles
	Memory Ownership
	NPF_IN/NPF_OUT/NPF_IN_OUT Parameters
	NPF_IN Scheme

	Coherent State Image of Dynamic Elements
	Support for Local Parameters/Avoidance of Complex Locking
	API Signature Guidelines
	Multi-Field Queries
	Control Interfaces

	Packet Buffer Handling

	Function Invocation Model, Events and Completion Callbacks
	API Completion Callbacks
	NPF_XxxxRegister
	NPF_XxxxDeregister
	NPF_XxxxCallback_FUNC
	Callback Data Structure
	Callback Type and Error Fields
	Guidelines for definition of callback union structures

	API Function Signature Requirements
	Error Reporting and Callbacks

	Reentrancy

	Lost or Duplicate Callbacks
	Resource Id Types
	Create and Destroy Error Codes
	Querying Resource Id’s
	Atomic Modification of Resource State

	Event notification
	NPF_XxxxEventRegister
	NPF_XxxxEventDeregister
	NPF_xxxxEventCallFunc_t
	NPF_xxxxEvent_t
	NPF_eventMask_t bit definitions
	Guidelines for definition of event structures
	Example of event structures

	Event Notification Example

	Error Handling
	Synchronous Error Returns
	Error Code Values
	NPF_NO_ERROR
	NPF_E_UNKNOWN
	NPF_E_BAD_CALLBACK_HANDLE
	NPF_E_BAD_CALLBACK_FUNCTION
	NPF_E_CALLBACK_ALREADY_REGISTERED
	NPF_E_FUNCTION_NOT_SUPPORTED
	NPF_E_RESOURCE_EXISTS
	NPF_E_RESOURCE_NONEXISTENT

	Compliance and Extensibility
	NPF-Defined Optional Functions and Data Structures
	Revising NPF-Defined APIs
	Version Number Assignment
	Version Number Checking
	Revising Method and Data Structure

	Vendor proprietary extensions

	Multi-Vendor / Multi-Instance Support
	Design and Implementation Guidelines
	Modularity
	Multicast Invocations
	Compatibility

	References
	Appendix A 	Header File: NPF.h
	Appendix B	List of companies belonging to NPF during approval process

