
Network Processing Forum Software Work Group

 Foundations Task Group 1

Software API Conventions
Implementation Agreement

Revision 1.0

Editor(s):

David M. Putzolu, Intel Corporation, david.putzolu@intel.com

Copyright © 2002 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THIS DOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Network Processing Forum Software Work Group

 Foundations Task Group 2

Table of Contents
1 Revision History ... 4
2 Introduction... 5

2.1 Definitions of Normative and Informative .. 5
2.2 Requirements Language Key Words .. 5
2.3 Guidance in the use of these Imperatives.. 6

3 Specification Language... 7
4 Naming Conventions .. 8

4.1 Use of the NPF_ prefix ... 8
4.2 Constants ... 8
4.3 Variables ... 8
4.4 Type Names .. 8
4.5 Function Names .. 8
4.6 Enumerated Values ... 8
4.7 Abbreviations .. 8
4.8 Function, Type, and Variable Name Lengths ... 9
4.9 NPF Function Name Composition.. 9

5 Data Types .. 11
5.1 Basic Data Types .. 11
5.2 Common Data Types .. 11
5.3 Rules for Construction of New Data Types .. 11

6 Parameter Passing ... 13
6.1 Scalar Arguments .. 13
6.2 Array Arguments... 13
6.3 Resource Handles.. 13
6.4 Memory Ownership .. 13
6.5 NPF_IN/NPF_OUT/NPF_IN_OUT Parameters... 13
6.6 Coherent State Image of Dynamic Elements .. 15
6.7 Support for Local Parameters/Avoidance of Complex Locking....................................... 15
6.8 API Signature Guidelines ... 15
6.9 Packet Buffer Handling... 16

7 Function Invocation Model, Events and Completion Callbacks .. 17
7.1 API Completion Callbacks ... 17
7.2 Event notification.. 22

8 Error Handling .. 26
8.1 Synchronous Error Returns ... 26
8.2 Error Code Values... 26

9 Compliance and Extensibility... 27
9.1 NPF-Defined Optional Functions and Data Structures... 27
9.2 Revising NPF-Defined APIs ... 27
9.3 Vendor proprietary extensions .. 28

10 Design and Implementation Guidelines .. 30
10.1 Modularity... 30
10.2 Multicast Invocations .. 30
10.3 Compatibility .. 31

11 References ... 32

Network Processing Forum Software Work Group

 Foundations Task Group 3

Appendix A. NPF.h... 33

Table of Figures

Figure 1 Example strongly typed API accepting an array of related items 16
Figure 2 Example strongly typed API returning a set of related items... 16
Figure 3 Generic Control Interface Example .. 16
Figure 4 NPF Callback Usage Sequence .. 17
Figure 5 Multicast Invocation... 30

Table of Tables
Table 1 Abbreviation Examples.. 9
Table 2 Feature examples ... 10
Table 3 Verb examples ... 10
Table 4 Basic NPF Data Types... 11
Table 5 Derived NPF Data Types... 11
Table 6 Assigned Error Code Ranges... 26

Network Processing Forum Software Work Group

 Foundations Task Group 4

1 Revision History

Revision Date Reason for Changes

1.0 09/13/2002 Created Rev 1.0 of the implementation agreement by taking the
Software Conventions (npf2001.098.28) and making minor editorial
corrections.

Network Processing Forum Software Work Group

 Foundations Task Group 5

2 Introduction
The Network Processor Forum Software API Working group is defining a variety of APIs for the
purposes of exposing the functionality of network processors. In order to ensure that the APIs are
uniform and consistent in behavior, look, and feel, this document defines a set of conventions that MUST
be followed by all NPF Software WG API specifications. This document will also define the
interoperability goals of the Software API specifications with other NPF and industry specifications.

2.1 Definitions of Normative and Informative
This document defines the following terms for usage here and elsewhere in the Software API Working
Group until such time as they have been defined by the NPF operating procedures.
Normative: That portion of a specification that specifies what is required for an implementation to be
considered conformant; the mandatory portion of a specification. Note: Specifications may describe non-
mandatory (optional) features. Because optional features must satisfy the specification to be considered
conformant, their descriptions contain normative text.
Normative information for NPF Software WG specifications SHALL only appear in the main text of
documents and MUST NOT appear in annexes or appendices.
Informative: Portions of a specification document that are included as examples, ancillary information,
or that in other ways contribute to common understanding of the specification, but do not specify
anything required of an implementation to be considered conformant.
Note that informative information MAY be included in either the main text of NPF Software WG
documents or in appendices.

2.2 Requirements Language Key Words
In order to enable clear and concise specifications it is necessary to have a uniform set of terminology
when describing specifications. This document defines a set of terms that MUST be used in all Software
API Working Group documents that define any sort of specification or requirement for the behavior of the
software of a network processor.
Authors MUST incorporate this phrase near the beginning of their document:

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in the NPF Software API Conventions
Implementation Agreement revision 1.0.

These key words are defined as follows and MUST be capitalized whenever used in a manner intended to
specify a behavior or requirement:

1. MUST This word, or the terms "REQUIRED" or "SHALL", mean that the definition is an
absolute requirement of the specification.

2. MUST NOT This phrase, or the phrase "SHALL NOT", mean that the definition is an absolute
prohibition of the specification.

3. SHOULD This word, or the adjective "RECOMMENDED", mean that there may exist valid
reasons in particular circumstances to ignore a particular item, but the full implications must be
understood and carefully weighed before choosing a different course.

4. SHOULD NOT This phrase, or the phrase "NOT RECOMMENDED" mean that there may exist
valid reasons in particular circumstances when the particular behavior is acceptable or even
useful, but the full implications should be understood and the case carefully weighed before
implementing any behavior described with this label.

Network Processing Forum Software Work Group

 Foundations Task Group 6

5. MAY This word, or the adjective "OPTIONAL", means that an item is truly optional. One
vendor may choose to include the item because a particular marketplace requires it or because the
vendor feels that it enhances the product while another vendor may omit the same item. An
implementation that does not include a particular option MUST be prepared to interoperate with
another implementation which does include the option, though perhaps with reduced
functionality. In the same vein an implementation that does include a particular option MUST be
prepared to interoperate with another implementation that does not include the option (except, of
course, for the feature the option provides.)

These definitions are an almost verbatim copy of the IETF Best Current Practices Document #14 [2]
authored by Scott Bradner. Small changes have been made in order to better align the definitions with
NPF Software Working Group needs.

2.3 Guidance in the use of these Imperatives
Imperatives of the type defined in this memo must be used with care and sparingly. In particular, they
must only be used where it is actually required for interoperation or to limit behavior that has potential for
causing harm (e.g., system crashes). For example, they must not be used to try to impose a particular
method on implementors where the method is not required for interoperability.

Network Processing Forum Software Work Group

 Foundations Task Group 7

3 Specification Language
The interface specification language normatively used to define APIs in the Software WG SHALL be C
as found in the ANSI C89 Specification [1]. In addition to expressing the APIs in C, informative
addendums to the specification SHOULD be made that define an IDL-based representation of the APIs.
In defining the APIs, the conventions for constructing APIs listed in the remainder of this document
SHALL be followed. These conventions SHOULD be written so as to facilitate a mapping of the APIs to
IDL.

Network Processing Forum Software Work Group

 Foundations Task Group 8

4 Naming Conventions
This section will define a set of conventions for naming all parameters, functions, etc., such that their type
is easily recognizable across specifications.

4.1 Use of the NPF_ prefix
The NPF_ prefix MUST be used with functions, constants, types, and parameters that are defined by the
NPF. Conversely, the NPF_ prefix MUST NOT be used with functions that are not defined by the NPF.
Any implementation of the NPF APIs that uses the prefix NPF_ in a way that is not found in an NPF
specification is considered non-compliant.

4.2 Constants
Constants MUST contain only capital letters. Words are separated with underscores and SHOULD
include scope prefixes:
#define NPF_MAX_SCORE 10

4.3 Variables
Variable names MUST use mixed upper and lower case. The first letter of the first word in a variable
name MUST NOT be capitalized unless it is an acronym. All other words in a variable name MUST start
with a capital letter. If the previous word or acronym ends in a capital letter then an underscore MUST be
inserted: NPF_daysInWeek, NPF_MPLS_Entry
Some guidelines are:

• Avoid numerals in names: 2-Z, 1-I, 0-O.
• Never use capitalization to differentiate names.
• Homonyms make discussing variables confusing: rap-wrap.

4.4 Type Names
Type names follow the same naming rules as variables with the additional rule that they MUST append a
_t to the end of a type name. This applies to basic types, enumerations, function pointers, and structures.
Example: NPF_counter_t, NPF_someEnumeration_t, NPF_someStruct_t.

4.5 Function Names
Each word in a function name MUST start with a capital letter. If the previous word ends in a capital
letter then an underscore MUST be inserted: NPF_EntryAdd(); NPF_A_Function()

4.6 Enumerated Values
Enumeration values follow the convention defined in section 4.4 with the addendum that each
enumeration value MUST have an explicit numerical value associated with it and enumeration value
names MUST contain only capital letters. Enumerations SHOULD be used instead of #defines to achieve
strong typing.
typedef enum{NPF_SATURDAY = 1, NPF_SUNDAY = 2} NPF_bestDays_t;

4.7 Abbreviations
Variable names should fully describe the entity the variable represents. When naming variables, state in
words what the variable represents and try to create a concise but not cryptic abbreviation. A good

Network Processing Forum Software Work Group

 Foundations Task Group 9

mnemonic name generally speaks to the problem rather than the solution. A good name tends to express
the ‘what’ more than the ‘how’.
Industry-standard abbreviations SHOULD be used where possible and the following guidelines followed:

• Don’t abbreviate by removing just one letter from a word, use July not Jul
• Always use the same abbreviation for the same concept, if using Num do not use No.
• Make them pronounceable.
• Use a thesaurus to help resolve conflicts.

Alloc Allocate

Avg Average
CB Callback
Max Maximum

Min Minimum
Mux Multiplexed
Rx Receive

Sync Synchronization
Tx Transmit
Xc Cross-connect.

Table 1 Abbreviation Examples

4.8 Function, Type, and Variable Name Lengths
All NPF defined functions shall observe the ANSI C89 standard [1] for uniquely discriminating function
names by being unique in the first 31 characters of the name.

4.9 NPF Function Name Composition
Function names SHALL be composed of attributes in big-to-small order, ending in a verb that
characterizes its operation, for example
NPF_<Module><Feature><Verb> = NPF_IPv4UnicastAlarmGet()
Components and features MAY be followed by subcomponents and sub-features whenever applicable.
Consecutive duplicate attributes SHOULD be combined (e.g., NPF_IPv4UnicastInit is the device
initialization function, not NPF_IPv4UnicastInitInit).

4.9.1 NPF Module
NPF_<Module><Feature><Verb> = NPF_IPv4UnicastAlarmGet()
The names of functions, type definitions, and constants affiliated with a component type SHOULD
specify the component name immediately after the NPF_ prefix. For example,
NPF_IPv4UnicastAlarmGet().

4.9.2 NPF Features
NPF_<Module><Feature><Verb> = NPF_DeviceAlarmGet()
Feature provides the identifier for what is to be controlled by this function. Many of these names will be
component specific. APIs SHOULD use the following list of terms where possible for describing
features.

Prov Provision or configure the component

Network Processing Forum Software Work Group

 Foundations Task Group 10

Status Status of the component
Alarm Alarm

AlarmPersist Alarm persistency
Alloc To allocate memory for data structures
Children Identify children

Parents Identify parents
Version To get the API version of a component

 Table 2 Feature examples

4.9.3 NPF Verbs
NPF_<Module><Feature><Verb> = NPF_DeviceAlarmGet()
The function verb identifies the action being performed on the feature of a component.
Function verbs often come in pairs such as add/remove and begin/end. Verbs MAY also be concatenated,
for example to get all the enabled elements of a module NPF_ModuleFeatureEnabledGet()

Clear Reset latched status indications

Conv Convert (e.g., to/from interrupt id)
Get Get information
Set Set information

Start Start a one-shot or periodic operation
Next Get the next item
Create Initialize/Create

Destroy Finalize/Destroy
Reinit Reinitialize/Recreate
Alloc Allocate resources

Free Free resources
Enable Enable a component
Disable Disable a component

 Table 3 Verb examples

Network Processing Forum Software Work Group

 Foundations Task Group 11

5 Data Types
In this section, common data types will be defined, as well as guidelines to follow in definition of more
complex types.

5.1 Basic Data Types
This section lists the of basic data types that MUST be used in NPF APIs. When APIs are approved the
associated Data Types MUST also be approved.
Rules of data types:

• Data structures packing and endianness is generally considered beyond the scope of this
document as source code compatibility can be achieved without awareness of either one. Certain
types (e.g. for IP Addresses) MAY have a specified endianness but most types shall not.

Basic Data Types Notes
NPF_boolean_t An enumeration of NPF_TRUE and NPF_FALSE.
NPF_char8_t An eight bit wide character format.
NPF_uchar8_t An eight bit wide unsigned character format suitable for passing

arrays of bytes.
NPF_int16_t A sixteen bit signed integer format.
NPF_int32_t A thirty-two bit signed integer format.
NPF_int64_t A sixty-four bit signed integer format.
NPF_uint16_t A sixteen bit unsigned integer format.
NPF_uint32_t A thirty-two bit unsigned integer format.
NPF_uint64_t A sixty-four bit unsigned integer format.
NPF_float32_t A thirty-two bit signed floating point format.
NPF_float64_t A sixty-four bit signed floating point format.

Table 4 Basic NPF Data Types

5.2 Common Data Types
This section lists a set of basic data types that are common throughout the NPF APIs. These data types are
built upon the basic data types defined above.

Common Data Types Notes
NPF_error_t A 32-bit wide numerical error code value.
NPF_callbackHandle_t A handle used to identify a callback function.
NPF_callbackType_t A per-API family enumeration used to discriminate callback types.
NPF_correlator_t An opaque 32-bit wide value that API users use to contain opaque

per-function invocation data that is returned during callbacks.
NPF_userContext_t An opaque 32-bit wide value that API users use to contain opaque

per-callback function invocation data that is returned during
callbacks.

NPF_event_t A per-API family enumeration used to discriminate event types.
NPF_errorReporting_t An enumeration used to indicate the degree of error reporting

desired from callback functions when registering for them.

Table 5 Derived NPF Data Types

5.3 Rules for Construction of New Data Types
Construction of new data types SHOULD follow the following guidelines:

Network Processing Forum Software Work Group

 Foundations Task Group 12

• All data types defined by official NPF specifications MUST use the NPF_ prefix as described in
section 4.1.

• All NPF constructed data types MUST be constructed out of types defined in sections 5.1, 5.2, or
structures built using these basic types.

• Data types that will be passed by value should be of reasonable size. Reasonable size is a
necessarily vague term as it takes into account multiple factors, including but not limited to the
frequency a type will be used, the size of the members of the type (if a struct), and the expected
environment (e.g. a FAPI level call vs. a higher level API call).

• When passing larger amounts of data, or passing a sizable amount of data very frequently, it is
recommended that a pointer be passed rather than passing the data itself on the stack.

Network Processing Forum Software Work Group

 Foundations Task Group 13

6 Parameter Passing
This section describes conventions used in passing parameters to API functions. This includes
classification of parameters types for ordering in the function definitions, options for when to pass
parameters by value or by reference, as well as standard behavior for treatment of in, out and in-out types
of parameters. Memory allocation and release are described where applicable.

6.1 Scalar Arguments
Scalar arguments SHOULD be passed by value only; not by pointer.

6.2 Array Arguments
Array arguments SHOULD be accompanied by scalar argument(s) that indicate the dimension(s) of the
array. The scalar argument(s) MAY be omitted when the array size is known and fixed.

6.3 Resource Handles
Many API functions will use “handles” to reference structures resident in the memory of the caller or the
callee, but not both. Use of handles in NPF Software API specifications SHOULD adhere to the
following guidelines:

• The API definition should assume that only the entity that generated the handle knows what the
actual content of the handle value is.

• The API definition should put no assumption on the handle value. Especially the handle value
should not be assumed that they are globally unique. (Handle is only required to be unique within
the entity and the context in which the handle is generated.)

• The API must be designed so that any necessary resources associated with the handle be allocated
by the entity that generated the handle.

• The API must be designed so that the removal of handle be done by the entity that has generated
the handle, which enables the entity to de-allocate any resources related to the handle.

6.4 Memory Ownership
Memories that are used to hold values that are passed around as parameters are initially "owned" by the
side (caller or callee of a function) that allocated them. An owner of a memory is responsible for de-
allocating the memory when the memory is no longer being used.
In general, passing parameters through NPF defined functions will not change the ownership of the
memory that is passed as parameters. For example, if a caller of an NPF defined function allocated a
memory and passed a pointer to the memory as a parameter to the function, the memory ownership and
the responsibility to de-allocate the memory remain with the caller.
This is the default behavior, and any NPF defined functions that involve changes to memory ownership
MUST clearly state it in the function definition.

6.5 NPF_IN/NPF_OUT/NPF_IN_OUT Parameters
In order to better document the function of each parameter in NPF defined APIs, a set of null macros
named NPF_IN, NPF_OUT, and NPF_IN_OUT SHALL be used with all NPF APIs. These macros
MUST be included in front of each parameter of an NPF specified function so as to guide the API client
in usage. These macros are associated with a specific memory management and ownership scheme for
parameters. The following subsections describe these schemes.

Network Processing Forum Software Work Group

 Foundations Task Group 14

Note: In the following table, rows with “Design” keyword describes the API design guideline,
and rows with “Impl” keyword describes implementation guideline for such API.

6.5.1 NPF_IN Scheme
Parameter
Type

Guideline
Type

Guideline

Design Scalar NPF_IN parameter must be passed by value. Scalar
 Impl. The value must be assigned by the caller.

Design Compound type NPF_IN parameter can be passed either by value or by
pointer. Guideline for API designers on whether value passing or pointer
passing should be used, is set by the "Parameter Passing" section of the
SwAPI Software Convention document.
When passed by pointer, "const" modifier should be used to protect the value
of the parameter from being modified by the callee.

Compound

Impl. The caller must assign the value of the parameter.
When pointer passing is used, the passed pointer must be pointing to a valid
buffer at the point of method invocation. Callee must not change the value of
the parameter (the buffer), or the implementation will be considerer NPF API
incompliant.

6.5.2 NPF_OUT Scheme
Parameter
Type

Guideline
Type

Guideline

Design Scalar NPF_OUT parameter must be passed by a pointer. Scalar
Impl. The pointer must be pointing to a valid buffer at the point of method

invocation.
The content of the buffer, if any, pointed by the pointer, will be ignored by
the callee. (The buffer does not need to be initialized.)
The callee will set the value to the buffer, which the pointer is pointing to.

Pattern 1 Design Compound type NPF_OUT parameter must be passed by pointer. Compound
 Impl The pointer must be pointing to a valid buffer at the point of

method invocation.
The content of the buffer, if any, pointed by the pointer, will be
ignored by the callee (The buffer does not need to be initialized.)
The callee will set the value to the buffer, which the pointer is
pointing to.

Pattern 2 Design Compound type NPF_OUT parameter must be passed as a
pointer(2) to a pointer(1).

 Impl. The pointer(2) must be pointing to a valid buffer for pointer(1), at
the point of method invocation,
The pointer (1) does not need to be pointing anywhere, and its
value will be ignored by the callee.
The callee will set the pointer(1) to point to a valid buffer that
contains the value of the NPF_OUT parameter.
The caller must not change the value of the NPF_OUT parameter
(the buffer that the pointer(1) is pointing to).

Pattern 2 for NPF_OUT parameters MUST NOT be used.

6.5.3 NPF_IN_OUT Scheme
Parameter
Type

Guideline
Type

Guideline

Scalar Design Scalar NPF_IN_OUT parameter must be passed by a pointer.

Network Processing Forum Software Work Group

 Foundations Task Group 15

 Impl. The pointer must be pointing to a valid buffer at the point of method
invocation.
The caller must set a valid input value to the buffer, which will then be
overridden by the callee with an output value

Pattern 1 Design Compound type NPF_IN_OUT parameter must be passed by
pointer.

 Impl The pointer must be pointing to a valid buffer at the point of
method invocation.
The caller must set a valid input value to the buffer, which will
then be overridden by the callee with an output value.

Pattern 2 Design Compound type NPF_IN_OUT parameter must be passed as a
pointer(2) to a pointer(1).

Compound

 Impl. The pointer(2) must be pointing to a valid buffer for pointer(1), at
the point of method invocation,
The pointer (1) must be pointing to a valid buffer, which contains a
valid value as an input parameter, at the point of method
invocation.
The callee can either do the following
- Set the pointer(1) to point to a valid buffer that contains the

output value of the parameter. In which case the caller must
not modify the value of the buffer that the pointer(1) is
pointing to.

- Set the output value to the buffer that the pointer(1) is pointing
to. In which case, the callee will overwrite the values set by
the caller. The caller is free to modify the buffer that pointer(1)
is pointing to, after the method is completed.

Pattern 2 for NPF_IN_OUT parameters MUST NOT be used.

6.6 Coherent State Image of Dynamic Elements
Some functions will be designed to return a data set whose size is not known to the caller. If the set
represents the state of a dynamic entity, i.e. one that can change state at any time, it SHOULD be returned
in a way that guarantees that the caller receives a complete and self-consistent image of the data as it was
at some instant in time while the call was being processed.

6.7 Support for Local Parameters/Avoidance of Complex Locking
Applications MUST be allowed to pass parameters that are contained in local variables. That is, an
application should be able to pass in a pointer to a local variable in cases where it needs to provide a
string or other array via an NPF API. Similarly, it is important to not require resources to be locked across
several invocations of functions. Thus, for all normal parameter passing, it is incumbent on the callee to
make a copy of any array or pointer handles before returning from a function call. This is the default
behavior; any exceptions MUST be explicitly documented. In general, APIs must protect themselves
against dangling handles and lingering memory allocations for structures that are no longer in use.
It is noted that there may be APIs where the amount of data expected to be transferred across it is high
enough that a forced copy will cause a performance hit. In such scenarios it is acceptable to use a buffer
handling semantic that reduces copies at the cost of delaying release of a buffer beyond the duration of a
function call. This is further addressed in the Packet Handler API.

6.8 API Signature Guidelines
Strong typing SHOULD be used in defining APIs. The following subsections set forth guidelines for
defining different kinds of APIs.

Network Processing Forum Software Work Group

 Foundations Task Group 16

6.8.1 Multi-Field Inputs
For APIs that are reasonably expected to accept a related set of information all at the same time, a struct
SHOULD be used to carry that information, particularly in cases where multiple instances of the

information are expected. Figure 7 shows an example of what such an API might look like.

6.8.2 Multi-Field Queries
When querying for information such as a set of related counters for an interface, the function doing so
SHOULD use a well defined structure for the information, accepting a handle indicating the device being
queried and providing an out parameter with a pointer to a structure that contains the counters in question,

with a return parameter indicating whether the handle type matches the type of the call. This optimizes for
having a simple, well-defined approach for querying multiple counters while minimizing the number of
function calls required. It is noted that this approach can result in more counters being retrieved than is
strictly needed, however, this is considered acceptable given that the overall cost of such a function call is
very low compared to issues such as overhead for accessing an NPE. For those queries where a very large
collection of related items may be retrieved, API writers SHOULD partition the items into subsets, and
then define functions for retrieving each of the subsets.

6.8.3 Control Interfaces
Functions used to deliver configuration information for interfaces and other devices are expected to
typically require the ability to manipulate a single setting without having to reset the entire configuration
of a device. As such, control interfaces SHOULD typically be written to manipulate a single characteristic
of a controlled device. In order to facilitate re-use and avoid function proliferation, functions SHOULD
be made generic for individual functions across a range of controlled interface types where possible.
Thus, figure 3 is an example of how the Foo attribute could be set on a wide variety of interface types
without requiring multiple SetFooFor{FooInterface|BarInterface|BazInterface}()
functions.

6.9 Packet Buffer Handling
Guidelines and semantics for packet buffer ownership and handling are described in the Packet Handler
API document.

NPF_error_t NPF_EntryAdd(NPF_IN NPF_tableHandle_t myTableHandle,
 NPF_IN NPF_entry_t routes[],
 NPF_IN NPF_ushort16_t entryCount);

Figure 1 Example strongly typed API accepting an array of related items

NPF_error_t NPF_StatsQuery(NPF_IN NPF_device_t myDeviceHandle,
 NPF_OUT NPF_counters_t *counters);

Figure 2 Example strongly typed API returning a set of related items

NPF_error_t NPF_FooSet(NPF_IN NPF_device_t myDeviceHandle,
 NPF_IN NPF_foo_t fooValue);

Figure 3 Generic Control Interface Example

Network Processing Forum Software Work Group

 Foundations Task Group 17

7 Function Invocation Model, Events and Completion
Callbacks

7.1 API Completion Callbacks
The function invocation model for NPF APIs is based on asynchronous callbacks, where there is a single
callback for each function call. The comple tion of work associated with an API function call is not
indicated by the return of the call, but by the invocation of a separate completion callback function by the
callee to the caller. This allows more flexibility in that the caller is not blocked wait ing for the result.
This enables more parallelism to be achieved, while still allowing synchronous behavior to be easily
layered on top of the asynchronous callbacks if desired.
Note that in some cases, the work can be completed before the original call returns. In those cases, the
completion callback may be called before the original call returns, whether on the same thread or a
different worker thread, which is implementation dependent. In a typical multi-threaded environment, the
work performed on behalf of an asynchronous request is done by a separate worker thread. This thread,
unless synchronized with the original call, may complete its work before or after the original call
completes. Rather than constrain the implementation to synchronize or perform its work on the original
call thread, no guarantee is made for when the completion callbacks can be called. In addition, because
an application must design for true asynchronous completion callbacks due to this lack of guarantee, it is
not useful to allow some implementations to optionally return and indicate that a completion callback is
unnecessary. However, an implementation is free to perform completion callbacks on the original call

threads if the work can be performed immediately and to reduce context switches.
Some error conditions may result in a return without invocation of the completion callback. This is
further described in the Error Handling section.

1. Registration

� may go to NPE
� several times

NPF API

2. Use the APIs

3. Deregistration

register()

api_call()

deregi ster()

user_callback()

cb_handle

cb_handle

user_context
correlator
out_data

cb_handle
correlator
in_data

user_context
*user_callback()

user provider

N times

1. Registration

� may go to NPE
� several times

NPF API

2. Use the APIs

3. Deregistration

register()

api_call()

deregister()

user_callback()

cb_handle

cb_handle

user_context
correlator
out_data

cb_handle
correlator
in_data

user_context
*user_callback()

user provider

N times

Figure 4 NPF Callback Usage Sequence

Network Processing Forum Software Work Group

 Foundations Task Group 18

Completion callbacks for API functions are grouped into separate categories. The application will
register a completion callback function for each of the categories of completion callbacks that are of
interest. A completion callback handle is provided to the application upon successful registration. The
application provides this completion callback handle when using API calls for that type. The application
may register and de-register completion callbacks at initialization and shutdown respectively, or as
needed during the execution of the application.

The application provides two types of application context information. A NPF_userContext_t is
provided at callback registration time. In addition, a NPF_correlator_t is provided at API function
call time. When the completion callback is called for a particular call, the application will receive the
callback type, and both the NPF_userContext_t and the NPF_correlator_t contexts, as well as
result information. This information allows the application to associate the completion callback calls with
the original function calls. The callback type MAY indicate a specific type within a category.
The application can also provide an error reporting level with the API function call to indicate interest in
receiving the completion callback (e.g. call back only if an error occurs, always call back, never call
back). While an API implementation SHOULD provide best effort to deliver callbacks, delivery of
callbacks is not guaranteed. Thus it is the application’s responsibility to protect itself against duplicated or
lost callbacks.
Figure 4 shows the basic model and usage of NPF asynchronous APIs as defined in this document.
Below are examples of the registration, de-registration and completion callback functions, where Xxxx
will represent a category for the callback and callbackType will represent a specific type in a category.
Xxxx and callbackType will be replaced with category and type definitions as defined by each API. Also
included is a convention for API function parameters that are required for callback support. Note: the
registration, de-registration and completion callback functions are synchronous.

7.1.1 NPF_XxxxRegister
This function allows the application to register a completion callback function for the related callback
category, and to associate a unique callback handle as well as application context.
Signature: NPF_error_t NPF_XxxxRegister(NPF_IN NPF_userContext_t,
 NPF_IN NPF_XxxxCallbackFunc_t,
 NPF_OUT NPF_callbackHandle_t *)
Parameters In: NPF_userContext_t

NPF_xxxxCallbackFunc_t
Parameters Out: NPF_callbackHandle_t

Return Values: NPF_NO_ERROR
NPF_E_BAD_CALLBACK_FUNCTION
NPF_E_CALLBACK_ALREADY_REGISTERED
NPF_E_UNKNOWN

7.1.2 NPF_XxxxDeregister
This function allows the application to de-register the callback function that is associated with this
callback handle.

Signature: NPF_error_t
 NPF_XxxxDeregister(NPF_IN NPF_callbackHandle_t)

Network Processing Forum Software Work Group

 Foundations Task Group 19

Parameters In: NPF_callbackHandle_t

Parameters Out: None

Return Values: NPF_NO_ERROR
NPF_E_BAD_CALLBACK_HANDLE
NPF_E_UNKNOWN

The callback routine might be called after the deregistration function has been invoked, but the API
implementation SHALL guarantee that the callback function is not called after the deregister function has
returned.

7.1.3 NPF_XxxxCallback_FUNC
This is the function template for function completion callbacks. These callbacks are asynchronously
invoked in response to NPF API calls.
The context and correlator parameters come from the callback function registration function and the
original function call, respectively. The callback data is a structure that contains result information about
the original function call.
typedef void (*NPF_xxxxCallBackFunc_t)(NPF_IN NPF_userContext_t,
 NPF_IN NPF_correlator_t,
 NPF_IN NPF_xxxxCallbackData_t)

7.1.4 Callback Data Structure
This section defines the data structure used to deliver result information in the context of a callback. The
comment text below explains the parameters and structures and their usage.

typedef NPF_uint32_t NPF_xxxxErrorType_t; /* Error code (NPF_XXXX_E_YYYY) */

/*
 * An asynchronous response contains an error/success code,
 * other optional information that correlates the response
 * to an element in a request array, and in some cases a
 * function-specific structure embedded in a union. One or
 * more of these is passed to the callback function as an
 * array within the NPF_xxxxCallbackData_t structure (below).
 */
typedef struct { /* Asynchronous Response Structure */
 NPF_xxxxErrorType_t error; /* Error code for this response */
 union { /* Function-specific structures: */
 NPF_uint32_t unused; /* Default */
 NPF_xxxxHandle_t xxxxHandle; /* Handle from NPF_XxxxTableCreate*/
 } u;
} NPF_xxxxAsyncResponse_t;

/*
 * The callback function receives the following structure containing
 * one or more asynchronous responses from a single function call.
 * There are several possibilities:
 * 1. The called function does a single request
 * - numCallbackResp = 1, and the resp array has just one element.
 * - allOK = TRUE if the request completed without error
* and the only return value is the response code.
 * - if allOK = FALSE, the "resp" structure has the error code.
 * 2. the called function supports an array of requests
 * a. All completed successfully, at the same time
 * - allOK = TRUE, n_resp = 0.

Network Processing Forum Software Work Group

 Foundations Task Group 20

 * b. Some completed, but not all, or there are values besides
 * the response code to return:
 * - allOK = FALSE, n_resp = the number completed
 * - the "resp" array will contain one element for
 * each completed request, with the error code
 * in the NPF_XxxxAsyncResponse_t structure, along
 * with any other information needed to identify
 * which request element the response belongs to.
 * - Callback function invocations are repeated in
 * this fashion until all requests are complete.
 * Responses are not repeated for request elements
 * already indicated as complete in earlier callback
 * function invocations.
 */
typedef struct {
 NPF_xxxxCallbackType_t type; /* Identifies the function called */
 NPF_boolean_t allOK; /* TRUE if all requests completed OK*/
 NPF_uint32_t numCallbackResp;/* Number of responses in array */
 NPF_xxxxAsyncResponse_t resp; /* Array of response structures */
} NPF_xxxxCallbackData_t;

Some NPF APIs may support a form of batched request that lets an application pass a variable -length
array of "request elements" to the API implementation. Examples: the IPv4 route add function can take
an array of prefix/length parameters; the Interface Create API takes an array of interface specifications,
and creates many with a single call.

The callback mechanisms should be defined similarly for these APIs. Points they will have in common:

1. The implementation generates one "response element" for each "request element". A
response element contains a status code and something that identifies the request element to
which it belongs. Examples of identifiers: prefix/length values (for route add and route
delete); next hop index (for next hop entry add and delete); IP address and interface (for
resolution table entry add and delete).

2. The implementation MAY pass an array of response elements to the callback function at
any time after the API function is called. For any API function call, the total number of
response elements passed to the callback function should be exactly the same as the number
of request elements passed to the API function. There should be exactly one status code
returned for each request element.

3. How many response elements are passed each time the implementation invokes the
callback function? How many invocations of the callback function is the implementation
allowed to make in order to return all the response elements for a single API function call?
These are for the implementor to decide. The minimum number of callback invocations is
one (unless the errorReporting parameter causes responses to be suppressed); the maximum
is the number of request elements passed in the API function call.

4. An NP Forum API module, such as the IPv4 Unicast Forwarding API or the Interface
Management API, MAY support the "AllOK" option, defined as follows:

a. The structure defined by the API to be passed to the callback function contains a variable
called "AllOK", with values of TRUE and FALSE.

b. IF the API implementation passes the complete list of response elements in a single

Network Processing Forum Software Work Group

 Foundations Task Group 21

invocation of the callback function, and IF the status code for every response element is "no
error", the implementation SHALL return AllOK = TRUE and omit the array of response
elements (i.e. pass back an array length of zero).

c. If, at the time of callback invocation, a response element for any of the request elements
indicates an error or is missing, the implementation SHALL return AllOK = FALSE and
pass an array of response elements that includes responses for all request elements for
which the completion status is known.

7.1.4.1 Callback Type and Error Fields
These members of the callback data structure defined above are associated with the original function call
that caused the callback to be made. They are used to determine which member type of the union is
present.
Within each API family a specific enumeration SHALL be defined for the callback type and error type
fields that are described above. The callback type field shall correspond on a 1:1 basis with the original
function calls that invoke callbacks. The error field values may be standard across a set of functions
within an API family or specific to a particular function.

7.1.4.2 Guidelines for definition of callback union structures
Callback union structures defined for specific APIs may need to include additional data as part of the
structures included in the union. Since the data will be present as part of a union, large data may seriously
affect memory requirements for these structures as unions allocate the amount of memory needed for the
largest member of the union irrespective of the actual member type in use. In such cases, a pointer to the
data may be a better choice to define as a member of one of the structures that make up the union.
Vendors can define their own callback structure types by adding proprietary fields within the union to
provide additional data. These are not be defined by NPF.

7.1.5 API Function Signature Requirements
API function calls use three parameters to support asynchronous completion callbacks. Each API
function will correspond to a defined callback category. NPF_callbackHandle_t is provided to the
application upon registration. NPF_correlator_t is an application context.
NPF_errorReporting_t indicates whether the application wishes to receive a completion callback
or not, or only upon errors. NPF_errorReporting_t is an enumeration containing
NPF_REPORT_ALL, NPF_REPORT_NONE, and NPF_REPORT_ERRORS.
Signature: NPF_error_t NPF_Xxxx<api function name> (
 NPF_IN NPF_callbackHandle_t,
 NPF_IN NPF_correlator_t,
 NPF_IN NPF_errorReporting_t,
 <…other function parameters…>)
Required Parameters In: NPF_callbackHandle_t

NPF_correlator_t
NPF_errorReporting_t

Required Parameters Out: None

7.1.5.1 Error Reporting and Callbacks
The NPF_errorReporting_t enumeration defines three values: NPF_REPORT_ALL,
NPF_REPORT_NONE, and NPF_REPORT_ERRORS. When invoking a function with an asynchronous
callback in the NPF APIs one of these values MUST be passed in. These values cause the following
behavior on the part of a compliant implementation:

Network Processing Forum Software Work Group

 Foundations Task Group 22

• NPF_REPORT_ALL will cause all function calls associated with an asynchronous callback to
result in a callback, whether the function succeeded or not. The only exception to this is function
calls that immediately return an error code instead of NPF_NO_ERROR.

• NPF_REPORT_NONE causes function calls associated with asynchronous callbacks to never
result in a callback. This value is useful when the results of a function call do not matter.

• NPF_REPORT_ERRORS causes function calls associated with asynchronous callbacks to only
callback to an application when an error occurs as part of the execution of the call. Note that
function calls that immediately return an error code will not later result in a callback.

Certain types of function calls (e.g. statistics queries) are nonsensical when used with
NPF_REPORT_NONE or NPF_REPORT_ERRORS. Such functions MUST immediately return an error
code when invoked with these values and MUST be clearly documented as such.

7.1.6 Reentrancy
The NPF APIs consist of two categories of invocations:

1) Synchronous APIs (e.g. various register, deregister APIs) and asynchronous APIs (e.g. APIs for
manipulating the various tables on the forwarding plane).

2) Completion callbacks and event notifications
All the synchronous and asynchronous APIs SHOULD be reentrant. For example, it should be possible to
invoke an API to add routes a second time before the first invocation returns. Another example of a
reentrant API is the packet handler send packet API. Similarly, it should be possible to invoke a
registration API repeatedly without having to wait for the first invocation to return. All completion
callbacks and event notifications should be reentrant, e.g. the application should be able to handle a
second interface down event arrival while the first is still being processed by the application.

7.2 Event notification
Any applications interested in events occurring on the network processor may register for notification of
these events. The events may or may not be related to invocation of NPF API calls, and may include
indications of such occurrences as a link going down, or an IP address changing. Events are organized in
separate categories and an application can register for individual events, or for a particular category of
interest.
A handle is provided to the application upon successful registration. The application provides this handle
when unregistering for the events. The application may register and de-register for events at initialization
and shutdown respectively, or as needed during the execution of the application.

The application provides context information, of type NPF_userContext_t, at event registration
time. The NPF_correlator_t used with API function calls is unnecessary in the event notification
model, as no invocations are made that can be correlated. When the event notification is made for a
particular event, the application will receive the event information, and the NPF_userContext_t
context information.

Below are templates of registration, de-registration, and event call functions, where Xxxx will represent a
category or a specific event in a category. Xxxx will be replaced with category and event definitions
and structures as defined by each API. Note: the registration, de-registration and event call functions are
synchronous.

7.2.1 NPF_XxxxEventRegister
This function allows the application to register a function for the event or event category, and associate a
handle with the registration. Registration accomplishes two things: It registers the event notification
function (the “handler”) to the API, and also enables event notifications. Note that the implementation
may begin to invoke the event handler before returning from the registration function.

Network Processing Forum Software Work Group

 Foundations Task Group 23

Signature: NPF_error_t NPF_XxxxEventRegister(
 NPF_IN NPF_userContext_t,
 NPF_IN NPF_xxxxEventCallFunc_t,
 NPF_OUT NPF_callHandle_t *)
Parameters In: NPF_userContext_t

NPF_xxxxEventCallFunc_t

Parameters Out: NPF_callHandle_t *

Return Values: NPF_NO_ERROR
NPF_E_BAD_CALLBACK_FUNCTION
NPF_E_CALLBACK_ALREADY_REGISTERED
NPF_E_UNKNOWN

7.2.2 NPF_XxxxEventDeregister
This function allows the application to de-register the event notification function that is associated with
this callback handle.
Signature: NPF_error_t NPF_EventDeregister(NPF_IN NPF_callHandle_t)
Parameters In: NPF_callHandle_t

Parameters Out: None

Return Values: NPF_NO_ERROR
NPF_E_BAD_CALLBACK_HANDLE
NPF_E_UNKNOWN

The event routine might be called after the deregistration function has been invoked, but the API
implementation SHALL guarantee that the event function is not called after the deregister function has
returned.

7.2.3 NPF_xxxxEventCallFunc_t
This is the event notification function format. Xxxx indicates either a category of events, or a particular
event. This function is invoked when the related event happens. NPF_userContext_t is the original
value provided by the application during event registration. NPF_xxxxEventData_t contains an
event type indicator and a union of event types provided by a particular API specification.
NPF_xxxxEventArray_t is a structure that contains an array of NPF_xxxxEventData_t
structures, accompanied by a scalar describing the array length.
Definition: typedef void (*NPF_xxxxEventCallFunc_t)(NPF_IN NPF_userContext_t,
 NPF_IN NPF_xxxxEventArray_t)
Definition: typedef struct{
 NPF_uint16 numEventData; /* number of structures */
 NPF_xxxxEventData_t *eventData;
 } NPF_xxxxEventArray_t;

Definition: typedef struct NPF_xxxxEventData {
 NPF_xxxxEvent_t eventType;
 union {
 eventDataType1_t c;
 eventDataType2_t d;
 <...>
 } u;
 } NPF_xxxxEventData_t;

Network Processing Forum Software Work Group

 Foundations Task Group 24

7.2.3.1 NPF_xxxxEvent_t
The type NPF_xxxxEvent_t is used to indicate the type of the structures returned in the union of event
structures. The definition of this type is specific to each xxxx API family and MUST be an enumeration
of event types supported by that family.
Each API family SHALL define its own event type, e.g.:
typedef enum
 NPF_IPv4Event { NPF_IPV4_ROUTE_TABLE_MISS = 0,
 NPF_IPV4_NHR_UNREACHABLE = 1} NPF_IPv4Event_t;

7.2.3.2 Guidelines for definition of event structures
Event structures defined for specific APIs may need to include additional data as part of the structure.
Since the data will be present as part of a union, large data may seriously affect memory requirements for
these structures. In such cases, a pointer to the data may be a better choice to define as a member of the
structure.
Vendors MAY define their own event structure types by adding proprietary fields within the union for
additional data.

7.2.3.3 Example of event structures
Example of individual event structures:
typedef struct NPF_pscData {
 NPF_portID_t portid;
 NPF_portStatus_t status;
 } NPF_pscData_t;

typedef struct NPF_pspData {
 NPF_portID_t portid;
 NPF_uint64_t speed;
 } NPF_pspData_t;
Example of category event structures:
typedef struct NPF_itfData {
 NPF_itfEvent_t eventType;
 union {
 struct NPF_pscData_t;
 <...>
 struct NPF_pspData_t;
 } u;
 } NPF_itfData_t;

7.2.4 Event Notification Example
void NPF_InterfaceEventCallFunc(NPF_IN NPF_userContext_t context,

 NPF_IN NPF_itfDataList_t data)
{
 switch (data.eventType) {
 case NPF_EVENT_PORT_STATUS_CHANGE:
 break;
 case NPF_EVENT_PORT_SPEED:
 break;
 default:
 }
}
int main() {
 NPF_callHandle_t callHandle;
 NPF_error_t retval;

Network Processing Forum Software Work Group

 Foundations Task Group 25

NPF_itfEventCallFunc_t eventCallFunc =
 & NPF_InterfaceEventCallFunc;

 retval = NPF_ITF_EventRegister((void*)getpid(),
 eventCallFunc, &callHandle);
 ...
 retval = NPF_ITF_EventDeregister(callHandle);
}

Network Processing Forum Software Work Group

 Foundations Task Group 26

8 Error Handling
This section describes how error conditions are indicated to clients of the NPF APIs.

8.1 Synchronous Error Returns
Error codes SHALL be returned synchronously from synchronous API invocations (such as callback
registration) and from asynchronous API invocations where errors are detected before a completion
callback is required. This may include error conditions such as invalid parameters or processing errors
which occur in the context of the call or which prevent an asynchronous completion callback. Return
values for API invocations shall be of type NPF_error_t.

8.2 Error Code Values
Valid error code values will be partitioned into ranges of values, with each API defining a corresponding
range. See Appendix A. NPF.h for more information.

API Family Error Code Range
Foundations
(Common to all APIs)

0-99

IPv4 100-199
Interfaces 200-299

 Table 6 Assigned Error Code Ranges

8.2.1 NPF_NO_ERROR
This value MUST be returned when a function was successfully invoked. This value is also used in
completion callbacks (see section 6) where it MUST be the only value used to signify success.

8.2.2 NPF_E_UNKNOWN
An unknown error occurred in the implementation such that there is no error code defined that is more
appropriate or informative.

8.2.3 NPF_E_BAD_CALLBACK_HANDLE
A function was invoked with a callback handle that did not correspond to a valid NPF callback handle as
returned by a registration function, or a callback handle was registered with a registration function
belonging to a different API than the function call where the handle was passed in.

8.2.4 NPF_E_BAD_CALLBACK_FUNCTION
A callback registration was invoked with a function pointer parameter that was invalid.

8.2.5 NPF_E_CALLBACK_ALREADY_REGISTERED
A callback or event registration was invoked with a pair composed of a function pointer and a user
context which was previously used for an identical registration.

Network Processing Forum Software Work Group

 Foundations Task Group 27

9 Compliance and Extensibility
In order to utilize the benefits of a common interface, a client application must be able to rely on the
support of the interface by a conforming implementation. However, it is unreasonable to expect that an
interface, once specified, will never change. Furthermore, some vendors may wish to provide their own
useful extensions to the interfaces. The term "core" will be used to describe the common interfaces. The
term "extended" will be used to describe additional or proprietary interfaces.

9.1 NPF-Defined Optional Functions and Data Structures
Certain NPF APIs MAY be defined to contain optional methods and/or data structures. Implementation of
NPF APIs do not need to implement optional methods and data structures in order to be NPF compliant,
but upon implementing all or a portion of the optional methods and data structures, all related optional
methods and data structures required for proper functioning of the implementation must be implemented.
Example : If an optional method A assumes optional method B and optional data structure C for proper
function, then if method A is implemented, method B and data structure C MUST be implemented.
The dependency among optional methods and data structures, if any, MUST be clearly documented in the
API specification.

9.2 Revising NPF-Defined APIs
9.2.1 Version Number Assignment
NPF APIs can be seen as a collection of APIs where each API is defined by a TG. Since each APIs may
evolve in difference paces, they each have their own versions. NPF APIs will also have a version number
as a whole. (Mainly for vendors to express that they are NPF API 1.1 compliant rather than saying that
they are IPv4 1.2 Interfaces 1.3 Packet Handler 1.0 Diffserv 1.0 compliant.) The versioning of APIs
MUST adhere to the following rules:

• Major version number will be shared among all NPF APIs. Major version numbering will be
controlled by the Foundations TG with consensus from the entire WG.

• Minor version number for each API will be assigned by each TG defining the API.
• Minor version number for NPF APIs as a whole will be assigned by the Foundations TG.
• When major version number changes, all NPF APIs' major version number will change

accordingly (even if there is no change to the spec.).
A version of NPF APIs as a whole will be defined as a collection of versions of each separate APIs. Such
version will be defined by the Foundations TG with consensus from the entire WG.

Example : NPF API version 1.1 can be defined as:
 Foundations version 1.0
 IPv4 version 1.2
 Interfaces version 1.3
 Packet Handler version 1.1
 FAPI 1.0
 Diffserv 1.0

9.2.2 Version Number Checking
An implementation of an NPF API must define a macro with the following signature to express the
version of API that it supports:
#define NPF_<MODULE>_<MAJOR VERSION>_<MINOR_VERSION>_COMPLIANT

Network Processing Forum Software Work Group

 Foundations Task Group 28

The macro can be used to check the version of API that an implementation supports at compilation time.
It also can be used to do selective compilation.
An implementation can support multiple version of the same API if there is no conflict between them.
Example :
#define NPF_IPV4_1_2_COMPLIANT
#define NPF_IPV4_1_3_COMPLIANT
#define NPF_IPV4_1_4_COMPLIANT
means that the implementation supports IPv4 1.2, 1.3 and 1.4 spec. It also suggests that there has been an
alteration between 1.1 and 1.2 that broke backward compatibility.
Note : See 3.8.1 for definition of <MODULE>

9.2.3 Revising Method and Data Structure
When revising an API, occasionally new parameters may need to be added to a function, data structure
need to be changed, or new semantics may be applied to an existing function. In order to maximize
backward compatibility and to avoid confusion, the following rules must be followed when revising an
API.

• Addition of a completely new function or data structure is always allowed.
• Changing parameters of an existing function within a same major version is prohibited except for

bug fixes. When parameters need to be changed, a different function name must be used.
• Changing semantic or behavior of an existing function within a same major version is prohibited

except for bug fixes. When semantic or behavior need to be changed, a different function name
must be used.

• Changing return value of an existing function within a same major version is prohibited except
for bug fixes. When return value need to be changed, a different function name must be used.

• Addition of new return value to an existing function is allowed, but should be avoided if possible
since it may break backward compatibility.

• Changing existing data structure within a same major version is prohibited except for adding
members to a union, adding members to the tale of a structure, or for bug fixes. Changing data
structure may break backward compatibility.

• Changing type definition within a same major version is prohibited except for bug fixes. When a
new type is needed, a new type should be defined.

• Changing value assignment to a constant is allowed.
• Changing contents of an enumeration is allowed.
• All changes listed above that are permitted without incrementing the major revision number

require incrementing the minor revision number.
There are no restrictions in terms of changes when a major version number changes.

9.3 Vendor proprietary extensions
Vendors that implement the NPF APIs are allowed to a certain extent to modify the NPF API definition
and its behavior and still claim conformance. The type of modification that a vendor can perform over
NPF APIs are strictly limited to the following.

• Addition of a completely new proprietary function or data structure is always allowed.
• Changing parameters of an existing function within a same major version is prohibited. When

parameters need to be changed, a different function name must be used.
• Changing semantic or behavior of an existing function is prohibited. When semantic or behavior

need to be changed, a different function name must be used.
• Changing return value of an existing function is prohibited except for bug fixes. When return

value need to be changed, a different function name must be used.

Network Processing Forum Software Work Group

 Foundations Task Group 29

• Addition of new return value to an existing function is allowed, but should be avoided if possible
since it may break backward compatibility.

• Changing existing data structure is prohibited except for adding members to a union, adding
members to the end of a structure, or for bug fixes. Changing data structure may break backward
compatibility.

• Changing value assignment to a constant SHOULD NOT be done.

Network Processing Forum Software Work Group

 Foundations Task Group 30

10 Design and Implementation Guidelines
The NPF Software API working group is primarily concerned with specifying a set of interoperable APIs.
As such, vendors have complete control over the internal design and implementation of software
implementing these APIs. This section provides some informative guidelines for implementation. This
section of this document is NOT considered normative.

10.1 Modularity
A module is a collection of data and the routines that act on the data. A module might also be a collection
of routines that provides a cohesive set of services even if no common data is involved. A module in C is
a source file. One goal of a module is to hide information. In general, it is suggested that modules
implementing the NPF APIs reveal as little as possible about their inner workings.

10.2 Multicast Invocations
In some architectures, a single services API function invocation can result in repeated calls to multiple
forwarding elements to accomplish the result. For example, in a system with multiple network processors
and a single FIB, a FIB update must be sent to all NPs. If not all NPs are successfully updated, does the
request succeed or fail? How are the complex results of success and failure reported to the application?
The Software API Framework describes two API levels:

• Services API, whose purpose is to support applications while concealing details of the underlying
system architecture;

• Functional API (FAPI), which addresses the specific functions of individual network processing
elements.

Considering the example above: if the Services API must hide the fact of multiple NPs, an application call

to update a FIB must result in a single indication of success or failure, just as if there were only one
underlying forwarding process to be notified of the update. The FAPI, likewise, addresses individual
elements; so the FAPI-level request to update the Classification Element should also result in a single
indication of success or failure.
This means that the coordination of multiple forwarding elements in a complex architecture is the
function of software (“middleware”) residing below the Services API and above the FAPI. In no case

Figure 5 Multicast Invocation

Network Processing Forum Software Work Group

 Foundations Task Group 31

shall any NP Forum API definition specify that requests are distributed to multiple elements with the
possibility of multiple callbacks with differing results.
In the FIB example, middleware underlying the Services API must invoke the FAPI once to update each
forwarding element. It SHOULD return success if the Services API request was valid and executable. If
any of the individual FAPI calls fails, therefore, the failure should be a result of some incapacity of the
system, not a problem with the nature of the request The incapacity should result in an asynchronous
notification to the application (through Services API Event Notification) of a failure of some part of the
system, such as an interface going down. The middleware should increment error counters and generate
event logs for diagnosis of the problem, as well as generate an event notification as described in this
document.

10.3 Compatibility
Within a particular major version number, NPF APIs are only required to be compatible at the source
code level and not at the binary code level.

Network Processing Forum Software Work Group

 Foundations Task Group 32

11 References
[1] “American National Standards Institute (ANSI), Standard for the C Language”, ANSI X3.159-1989.
[2] Bradner, Scott, “Key Words for Use in RFCs to Indicate Requirement Levels”, IETF RFC 2119,

Harvard University, March 1997.

Network Processing Forum Software Work Group

 Foundations Task Group 33

Appendix A. NPF.h
/* This header file defines typedefs, constants, and functions*/
/* that apply to all NPF Software Working group APIs. */
#ifndef __NPF_H__
#define __NPF_H__

#ifdef __cplusplus
extern "C" {
#endif

#define NPF_IN
#define NPF_OUT
#define NPF_IN_OUT

/* This section defines base NPF types and will differ from */
/* platform to platform. The type shown here are based on */
/* Linux 6.2 on an x86. */
typedef char NPF_char8_t;
typedef unsigned char NPF_uchar8_t;
typedef char NPF_int8_t;
typedef short NPF_int16_t;
typedef int NPF_int32_t;
typedef long long int NPF_int64_t;
typedef unsigned char NPF_uint8_t;
typedef unsigned short NPF_uint16_t;
typedef unsigned int NPF_uint32_t;
typedef unsigned long long int NPF_uint64_t;
typedef float NPF_float32_t;
typedef long double NPF_float64_t;

/* This section defines constructed NPF types and is */
/* identical for all implementations of the NPF APIs. */
typedef NPF_uint32_t NPF_error_t;
typedef NPF_uint32_t NPF_callbackHandle_t;
typedef NPF_uint32_t NPF_correlator_t;
typedef NPF_uint32_t NPF_userContext_t;
typedef enum
 NPF_boolean {NPF_FALSE = 0, NPF_TRUE = 1} NPF_boolean_t;

typedef NPF_uint32_t NPF_IPv4Address_t;
typedef NPF_uchar8_t NPF_MAC_Address_t[6];

typedef enum
 NPF_errorReporting { NPF_REPORT_ALL = 1,
 NPF_REPORT_NONE = 2,
 NPF_REPORT_ERRORS = 3 } NPF_errorReporting_t;

#define NPF_NO_ERROR 0

#define NPF_FOUNDATIONS_BASE_ERR 1
#define NPF_FOUNDATIONS_MAX_ERR (NPF_FOUNDATIONS_BASE_ERR + 98)
#define NPF_E_UNKNOWN NPF_FOUNDATIONS_BASE_ERR
#define NPF_E_BAD_CALLBACK_HANDLE (NPF_FOUNDATIONS_BASE_ERR + 1)
#define NPF_E_BAD_CALLBACK_FUNCTION (NPF_FOUNDATIONS_BASE_ERR + 2)

Network Processing Forum Software Work Group

 Foundations Task Group 34

#define NPF_IPV4_BASE_ERR (NPF_FOUNDATIONS_MAX_ERR + 1)
#define NPF_IPV4_MAX_ERR (NPF_IPV4_BASE_ERR + 99)

#define NPF_INTERFACES_BASE_ERR (NPF_IPV4_MAX_ERR + 1)
#define NPF_INTERFACES_MAX_ERR (NPF_INTERFACES_BASE_ERR + 99)

#ifdef __cplusplus
}
#endif

#endif /* __NPF_H__ */

