Network Processing Forum Software Work Group

Network Processing Forum

Software API Conventions
Implementation Agreement

Revision 1.0

Editor (s):
David M. Putzolu, Intel Corporation, david.putzolu@intel.com

Copyright © 2002 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in itsimplementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consentsto the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THISDOCUMENT AND THE INFORMATION CONTAINED HEREIN ISPROVIDED ON AN "AS|S"' BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THISDOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMSALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

FoundationsTask Group 1

Network Processing Forum Software Work Group

Table of Contents

R R Y ES To g I [(] YA S POSPPSR 4
FZ2 1 0110 L8 o o o TSP 5
2.1 Definitions of Normative and INfOrMELIVE...........ccerieeieriierieeeseeseeee e see e e 5
2.2 Requirements Language Key WOIAScoveeeieeiieiie ettt enne s 5
2.3 Guidance in the use of theSe IMPEratiVES.coceeiiriirieieee e 6
3 SPECITICAION LANGUAJE........eiueruerieeieiesie st ste sttt sttt se et sb ettt b et e s b e besb e s e e ene s 7
4 NaMING CONVENLIONSooiuiiieiiesieeiiesee st esteeee e e steseesseeseeseesseessesseesseessesseesseensesseessesssesseessens 8
4.1 USe Of t(NENPF _ PIrEfiX c.ueiiiiciie ettt enre e 8
4.2 CONSLANES......eeiiueietieeteesteeete et et s bt et e e s bt e eate e sbe e sabe e sbeesabeeabeesateeabeeasbeeaseesateenbeesnneenseesanaenns 8
A3 VATADIES ... et 8
s V7 o= N\ =TSSR 8
I o U1 o g I N\ =0 1 PRSI 8
4.6 ENUMENEEA VEIUBScoiiieieeieeie ettt sttt ne e e sae e e sneesneennenneensens 8
A7 ADDIEVIGLIONS.ccuiiieiiiie ettt sttt et e b b ne e eneas 8
4.8 Function, Type, and Variable Name Lengths ..o 9
4.9 NPF Function Name COMPOSITION.........coiiiriririnieieie et sse s 9
SR B T = Y/ 0= TSP PRSPPI 11
R o= S Lol D= = Rl Y o= PSSP 11
5.2 COMMON DA TYPES ...coveeierieesieeie ettt sr e r e s sn e neenn e e s 11
5.3 Rulesfor Construction Of New Data TYPES......cccveiereerieseesieesesee e esee e sse e e e eneesns 11
I o= = 01 (S =SS] o [USRS 13
6.1 SCAB ATQUIMENTS.....cuiiieieiiieiet ettt sttt e et et b e bt e e e et e benbeebeseeeneennennas 13
6.2 AITAY ATGUIMENIES.eitieeirieesieeeesseeste e sse sttt sse s b e e nesseesbeesesseesneenesaeesbeebe e s e sneennennnenees 13
6.3 RESOUICE HANUIES........couiiiieiiiie ettt b e ne e 13
X VL= 0o @ Y g £ o o PSP 13
6.5 NPF_IN/NPF_OUT/NPF_IN_OUT Parameters.........cccovverieeereeieesiereseesiessessessesseeeenes 13
6.6 Coherent State Image of DynamicC Elements...........ccccvvveieeie e 15
6.7 Support for Local Parameters/Avoidance of Complex LocKing........ccoevevveveeiiieeiieeinenne 15
6.8 APl SIgNAIUre GUIGEIINES.......cooviiiiteree e 15
6.9 Packet Buffer Handling.........cccooviieieeie e 16
7 Function Invocation Model, Events and Completion Callbacks..........cccoevveieiceiieieceenen, 17
7.1 APl Completion CallDACKSccoiiiiiiieeeeeee s 17
A Y 0| 0N o= o) o 22
ST = (o gl = F= o | o TS 26
8.1 SynchronOUS EITOr REIUMNScoiiiiiiieie ettt 26
8.2 EITOr COUE VAUES........ceivieieeie sttt sttt e ste et sreenseeneeaneenseenennns 26
9 Compliance and EXENSIDIITYcccueiiiieiice e 27
9.1 NPF-Defined Optiona Functions and Data StrUCLUIES..........cccevvieeieecieecee e 27
9.2 ReViSING NPF-DEfiNEO APIS.......oooiiiiiiereeieeee e 27
9.3 Vendor proprietary EXIENSIONS.cccueieeriereereeseeeeseesee e sseesaesseesseesesseesseesesseesseeneesses 28
10 Design and Implementation GUIEIINES..........ccvcueieeieeieceece e 30
1O 1 MOTUIBITEY. ..ttt e bbbt e e bbb e nreeneenn e 30
10.2 MUITICASE INVOCELIONSecueeveeieeiiesieeieseesieeeesseesseeseesseesseenaesseesseessesseesseessesseesseensesseessens 30
10.3 COMPALIDIHTITY vt s e s e b e e ee e e sreennesneennens 31
I s 1 = 000 R SRPRRR 32

FoundationsTask Group 2

Network Processing Forum Software Work Group

N 0= 0 DG AN NN = o o S 33

Table of Figures

Figure 1 Example strongly typed APl accepting an array of related itemscceceverieneenens 16
Figure 2 Example strongly typed API returning a set of related items..........cccoeeveievencneneenee, 16
Figure 3 Generic Control Interface EXamPle........coveieiieie i 16
Figure 4 NPF Callback USAgE SEOUENCEeeiiieiieciie ettt et et e s 17
Figure 5 MUItiCaSt INVOCALTON.ocueriieeeieiesiesee ettt 30
Table of Tables

Table 1 Abbreviation EXAMPIES.........ccooiiiieiieecec ettt sneenne s 9
Table 2 Feature EXaMPIESoiiieie et st e et s e e re e st e e nreeennas 10
Table 3VErD eXAMPIES ... s 10
Table 4 BaSiC NPF Dala TYPES.cieiiriieieieriesie sttt sttt st nn e st st see s enes 11
Table 5 Derived NPF Dala TYPES.....ccovciieieieesie e see st ste et e e e st e e e e sneete e e saeesesneesneenneans 11
Table 6 Assigned Error Code RANGES..........oieeriiriirieneeie ettt st 26

FoundationsTask Group 3

Network Processing Forum Software Work Group

1 Revision History

Revision Date Reason for Changes

1.0 09/13/2002 | Created Rev 1.0 of the implementation agreement by taking the
Software Conventions (npf2001.098.28) and making minor editorial
corrections.

FoundationsTask Group

Network Processing Forum Software Work Group

2 Introduction

The Network Processor Forum Software APl Working group is defining a variety of APIsfor the
purposes of exposing the functionality of network processors. In order to ensure that the APIs are
uniform and consistent in behavior, look, and fedl, this document defines a set of conventions that MUST
be followed by al NPF Software WG API specifications. This document will also define the
interoperability goas of the Software API specifications with other NPF and industry specifications.

2.1 Definitions of Normative and Informative

This document defines the following terms for usage here and el sewhere in the Software APl Working
Group until such time as they have been defined by the NPF operating procedures.

Normative: That portion of a specification that specifies what is required for an implementation to be
considered conformant; the mandatory portion of a specification. Note: Specifications may describe non-
mandatory (optional) features. Because optional features must satisfy the specification to be considered
conformant, their descriptions contain normative text.

Normative information for NPF Software WG specifications SHALL only appear in the main text of
documents and MUST NOT appear in annexes or appendices.

Informative: Portions of a specification document that are included as examples, ancillary information,
or that in other ways contribute to common understanding of the specification, but do not specify
anything required of an implementation to be considered conformant.

Note that informative information MAY be included in either the main text of NPF Software WG
documents or in appendices.

2.2 Requirements Language Key Words
In order to enable clear and concise specifications it is necessary to have a uniform set of terminology
when describing specifications. This document defines a set of terms that MUST be used in all Software
APl Working Group documents that define any sort of specification or requirement for the behavior of the
software of a network processor.
Authors MUST incorporate this phrase near the beginning of their document:
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to ke interpreted as described in the NPF Software APl Conventions
Implementation Agreement revision 1.0.
These key words are defined as follows and MUST be capitalized whenever used in a manner intended to
specify a behavior or requirement:

1. MUST Thisword, or the terms "REQUIRED" or "SHALL", mean that the definition is an
absolute requirement of the specification.

2. MUST NOT This phrase, or the phrase "SHALL NOT", mean that the definition is an absolute
prohibition of the specification.

3. SHOULD Thisword, or the adjective "/RECOMMENDED", mean that there may exist valid
reasons in particular circumstances to ignore a particular item, but the full implications must be
understood and carefully weighed before choosing a different course.

4. SHOULD NOT This phrase, or the phrase "NOT RECOMMENDED" mean that there may exist
valid reasonsin particular circumstances when the particular behavior is acceptable or even
useful, but the full implications should be understood and the case carefully weighed before
implementing any behavior described with this label.

FoundationsTask Group 5

Network Processing Forum Software Work Group

5. MAY Thisword, or the adjective "OPTIONAL", means that an item istruly optional. One
vendor may choose to include the item because a particular marketplace requires it or because the
vendor feels that it enhances the product while another vendor may omit the sameitem. An
implementation that does not include a particular option MUST be prepared to interoperate with
another implementation which does include the option, though perhaps with reduced
functionality. In the same vein an implementation that does include a particular option MUST be
prepared to interoperate with another implementation that does not include the option (except, of
course, for the feature the option provides.)

These definitions are an almost verbatim copy of the IETF Best Current Practices Document #14 [2]
authored by Scott Bradner. Small changes have been made in order to better align the definitions with
NPF Software Working Group needs.

2.3 Guidance in the use of these Imperatives

Imperatives of the type defined in this memo must be used with care and sparingly. In particular, they
must only be used where it is actually required for interoperation or to limit behavior that has potential for
causing harm (e.g., system crashes). For example, they must not be used to try to impose a particular
method on implementors where the method is not required for interoperability.

FoundationsTask Group 6

Network Processing Forum Software Work Group

3 Specification Language

The interface specification language normatively used to define APIsin the Software WG SHALL be C
asfound in the ANSI C89 Specification [1]. In addition to expressing the APIsin C, informative
addendums to the specification SHOULD be made that define an IDL-based representation of the APIs.
In defining the APIs, the conventions for constructing APIs listed in the remainder of this document
SHALL befollowed. These conventions SHOULD be written so as to facilitate a mapping of the APIsto
IDL.

FoundationsTask Group

Network Processing Forum Software Work Group

4 Naming Conventions

This section will define a set of conventions for naming al parameters, functions, etc., such that their type
is easily recognizable across specifications.

4.1 Use of the NPF_ prefix

The NPF_ prefix MUST be used with functions, constants, types, and parameters that are defined by the
NPF. Conversaly, the NPF_ prefix MUST NOT be used with functions that are not defined by the NPF.

Any implementation of the NPF APIs that uses the prefix NPF__ in away that is not found in an NPF
specification is considered non-compliant.

4.2 Constants

Constants MUST contain only capitd letters. Words are separated with underscores and SHOULD
include scope prefixes:

#def i ne NPF_MAX_SCORE 10

4.3 Variables

Variable names MUST use mixed upper and lower case. The first letter of the first word in avariable
name MUST NOT be capitalized unlessit is an acronym. All other words in a variable name MUST start
with a capital letter. If the previous word or acronym endsin a capital |etter then an underscore MUST be

inserted: NPF_days| nWeek, NPF_MPLS Entry
Some guidelines are:
Avoid numerdsin names. 2-Z, 1-I, 0-O.

Never use capitalization to differentiate names.
Homonyms make discussing variables confusing: rap-wrap.

4.4 Type Names

Type names follow the same naming rules as variables with the additiona rule that they MUST append a
_ttothe end of atype name. This applies to basic types, enumerations, function pointers, and structures.
Example: NPF_count er _t, NPF_soneEnuneration_t, NPF_sonmeStruct _t.

45 Function Names

Each word in afunction name MUST start with a capital Ietter. If the previous word ends in a capita
letter then an underscore MUST beinserted: NPF_Ent r yAdd(); NPF_A Functi on()

4.6 Enumerated Values

Enumeration values follow the convention defined in section 4.4 with the addendum that each
enumeration value MUST have an explicit numerical value associated with it and enumeration value
names MUST contain only capital |etters. Enumerations SHOULD be used instead of #defines to achieve

strong typing.
typedef enum{ NPF_SATURDAY = 1, NPF_SUNDAY = 2} NPF_best Days _t;

4.7 Abbreviations

Variable names should fully describe the entity the variable represents. When naming variables, state in
words what the variable represents and try to create a concise but not cryptic abbreviation. A good

FoundationsTask Group 8

Network Processing Forum Software Work Group

mnemonic name generaly speaks to the problem rather than the solution. A good name tends to express
the ‘what’ more than the “how’.

Industry-standard abbreviations SHOULD be used where possible and the following guidelines followed:

Don't abbreviate by removing just one letter from aword, use July not Jul

Always use the same abbreviation for the same concept, if using Num do not use No.
Make them pronouncesable.

Use a thesaurus to help resolve conflicts.

Al'l oc Allocate

AvVY Average

cB Callback

Max Maximum

M Minimum

Mux Multiplexed

Rx Receive

Sync Synchronization

Tx Transmit

Xe Cross-connect.
Table 1 Abbreviation Examples

4.8 Function, Type, and Variable Name Lengths

All NPF defined functions shall observe the ANSI C89 standard [1] for uniquely discriminating function
names by being unique in the first 31 characters of the name.

4.9 NPF Function Name Composition

Function names SHALL be composed of attributes in big-to-small order, ending in averb that
characterizes its operation, for example

NPF_<Mbdul e><Feat ur e><Ver b> = NPF_I Pv4Uni cast Al ar mGet ()

Components and features MAY be followed by subcomponents and sub-features whenever applicable.
Consecutive duplicate attributes SHOULD be combined (e.g., NPF_I Pv4Uni cast | ni t isthe device
initialization function, not NPF_I Pv4Uni cast I nitlnit).

4.9.1 NPF Module
NPF_<Mbdul e><Feat ur e><Ver b> = NPF_I| Pv4Uni cast Al ar nGet ()
The names of functions, type definitions, and constants affiliated with a component type SHOULD

specify the component name immediately after the NPF_ prefix. For example,
NPF_I Pv4Uni cast Al arntGet () .

49.2 NPF Features
NPF_<Mbdul e><Feat ur e><Ver b> = NPF_Devi ceAl ar nzet ()

Feature provides the identifier for what is to be controlled by this function. Many of these names will be
component specific. APIs SHOULD use the following list of terms where possible for describing
features.

Pr ov

Provision or configure the component

FoundationsTask Group 9

Network Processing Forum Software Work Group

St at us

Status of the component

Al arm

Alarm

Al ar nPer si st

Alarm persistency

Al'l oc To allocate memory for data structures

Children Identify children

Parents Identify parents

Versi on To get the API version of a component
Table 2 Feature examples

4.9.3 NPF Verbs

NPF_<Mbdul e><Feat ur e><Ver b> = NPF_Devi ceAl ar ntet ()

The function verb identifies the action being performed on the feature of a component.

Function verbs often come in pairs such as add/remove and begin/end. Verbs MAY also be concatenated,

for example to get all the enabled elements of a module NPF_Mbdul eFeat ur eEnabl edGet ()

d ear Reset latched status indications
Conv Convert (e.g., to/from interrupt id)
Cet Get information
Set Set information
Start Start a one-shot or periodic operation
Next Get the next item
Create Initialize/Create
Destr oy Finalize/Destroy
Rei ni t Reinitialize/Recreate
Al'l oc Allocate resources
Free Free resources
Enabl e Enable a component
Di sabl e Disable a component
Table 3 Verb examples

FoundationsTask Group

10

Network Processing Forum Software Work Group

5 Data Types

In this section, common data types will be defined, as well as guidelinesto follow in definition of more
complex types.

5.1 Basic Data Types

This section lists the of basic data types that MUST be used in NPF APIs. When APIs are approved the
associated Data Types MUST also be approved.
Rules of data types:

Data structures packing and endianness is generally considered beyond the scope of this

document as source code compatibility can be achieved without awvareness of either one. Certain
types (e.g. for IP Addresses) MAY have a specified endianness but most types shall not.

Basic Data Types Notes

NPF_bool ean_t An enumeration of NPF_TRUE and NPF_FAL SE.

NPF_char 8_t An eight bit wide character format.

NPF_uchar 8_t An eight bit wide unsigned character format suitable for passing

arrays of bytes.

NPF_int16_t A sixteen bit signed integer format.

NPF_i nt 32_t A thirty-two bit signed integer format.

NPF_i nt 64_t A sixty-four bit signed integer format.

NPF_ui nt 16_t A sixteen bit unsigned integer format.

NPF_ui nt 32_t A thirty-two bit unsigned integer format.

NPF_ui nt 64_t A sixty-four bit unsigned integer format.

NPF_fl oat32_t A thirty-two bit signed floating point format.

NPF_f | oat 64_t A sixty-four bit signed floating point format.
Table 4 Basic NPF Data Types

5.2 Common Data Types

This section lists a set of basic data types that are common throughout the NPF APIs. These data types are
built upon the basic data types defined above.

Common Data Types Notes

NPF_error _t A 32-bit wide numerical error code value.

NPF_cal | backHandl e_t A handle used to identify a callback function.

NPF_cal | backType_t A per-API family enumeration used to discriminate callback types.

NPF_correl ator _t An opaque 32-bit wide value that API users use to contain opaque
per-function invocation data that is returned during callbacks.

NPF_user Cont ext _t An opaque 32-bit wide value that API users use to contain opaque
per-callback function invocation data that is returned during
callbacks.

NPF_event _t A per-API family enumeration used to discriminate event types.

NPF_errorReporting_t An enumeration used to indicate the degree of error reporting
desired from callback functions when registering for them.

Table 5 Derived NPF Data Types

5.3 Rules for Construction of New Data Types
Construction of new data types SHOULD follow the following guidelines:

FoundationsTask Group 11

Network Processing Forum Software Work Group

All data types defined by official NPF specifications MUST use the NPF_ prefix as described in
section 4.1.

All NPF constructed data types MUST be constructed out of types defined in sections 5.1, 5.2, or
structures built using these basic types.

Data types that will be passed by value should be of reasonable size. Reasonable sizeisa
necessarily vague term as it takes into account multiple factors, including but not limited to the
frequency atype will be used, the size of the members of the type (if a struct), and the expected
environment (e.g. aFAPI leve cdl vs. ahigher level API call).

When passing larger amounts of data, or passing a Sizable amount of data very frequently, it is
recommended that a pointer be passed rather than passing the data itself on the stack.

FoundationsTask Group 12

Network Processing Forum Software Work Group

6 Parameter Passing

This section describes conventions used in passing parameters to APl functions. This includes
classification of parameters types for ordering in the function definitions, options for when to pass
parameters by value or by reference, as well as standard behavior for treatment of in, out and in-out types
of parameters. Memory allocation and release are described where applicable.

6.1 Scalar Arguments
Scalar arguments SHOULD be passed by value only; not by pointer.

6.2 Array Arguments

Array arguments SHOULD be accompanied by scalar argument(s) that indicate the dimension(s) of the
array. The scaar argument(s) MAY be omitted when the array size is known and fixed.

6.3 Resource Handles

Many API functions will use “handles’ to reference structures resident in the memory of the caller or the
calee, but not both. Use of handles in NPF Software API specifications SHOULD adhere to the
following guidelines:

The API definition should assume that only the entity that generated the handle knows what the
actual content of the handle value is.

The API definition should put no assumption on the handle vaue. Especially the handle value
should not be assumed that they are globally unique. (Handle is only required to be unique within
the entity and the context in which the handle is generated.)

The APl must be designed so that any necessary resources associated with the handle be allocated
by the entity that generated the handle.

The API must be designed so that the removal of handle be done by the entity that has generated
the handle, which enables the entity to de-allocate any resources related to the handle.

6.4 Memory Ownership

Memories that are used to hold values that are passed around as parameters are initidly "owned" by the
side (caller or callee of afunction) that allocated them. An owner of amemory is responsible for de-
allocating the memory when the memory is no longer being used.

In general, passing parameters through NPF defined functions will not change the ownership of the
memory that is passed as parameters. For example, if acaller of an NPF defined function allocated a
memory and passed a pointer to the memory as a parameter to the function, the memory ownership and
the responsibility to de-allocate the memory remain with the caller.

This is the default behavior, and any NPF defined functions that involve changes to memory ownership
MUST clearly state it in the function definition.

6.5 NPF_IN/NPF_OUT/NPF_IN_OUT Parameters

In order to better document the function of each parameter in NPF defined APIs, a set of null macros
named NPF_| N, NPF_QUT, and NPF_| N_OQUT SHALL be used with al NPF APIs. These macros
MUST beincluded in front of each parameter of an NPF specified function so as to guide the API client
in usage. These macros are associated with a specific memory management and ownership scheme for
parameters. The following subsections describe these schemes.

FoundationsTask Group 13

Network Processing Forum Software Work Group

Note: In the following table, rowswith “ Design” keyword describes the API design guideline,
and rows with “ Impl” keyword describes implementation guideline for such API.

6.5.1 NPF_IN Scheme

Parameter | Guideline | Guideline

Type Type

Scalar Design Scalar NPF_I N parameter must be passed by value.

Impl. The value must be assigned by the caller.

Compound | Design Compound type NPF_I N parameter can be passed either by value or by
pointer. Guideline for API designers on whether value passing or pointer
passing should be used, is set by the "Parameter Passing" section of the
SwWAPI Software Convention document.

When passed by pointer, "const" modifier should be used to protect the value
of the parameter from being modified by the callee.
Impl. The caller must assign the value of the parameter.

When pointer passing is used, the passed pointer must be pointing to a valid
buffer at the point of method invocation. Callee must not change the value of
the parameter (the buffer), or the implementation will be considerer NPF API
incompliant.

6.5.2 NPF_OUT Scheme

Parameter
Type

Guideline
Type

Guideline

Scalar

Design

Scalar NPF_QOUT parameter must be passed by a pointer.

Impl.

The pointer must be pointing to a valid buffer at the point of method
invocation.

The content of the buffer, if any, pointed by the pointer, will be ignored by
the callee. (The buffer does not need to be initialized.)

The callee will set the value to the buffer, which the pointer is pointing to.

Compound

Pattern 1

Design | Compound type NPF_QUT parameter must be passed by pointer.

Impl The pointer must be pointing to a valid buffer at the point of
method invocation.

The content of the buffer, if any, pointed by the pointer, will be
ignored by the callee (The buffer does not need to be initialized.)
The callee will set the value to the buffer, which the pointer is
pointing to.

Pattern 2

Design | Compound type NPF_QOUT parameter must be passed as a

pointer(2) to a pointer(1).

Impl. The pointer(2) must be pointing to a valid buffer for pointer(1), at
the point of method invocation,

The pointer (1) does not need to be pointing anywhere, and its
value will be ignored by the callee.

The callee will set the pointer(1) to point to a valid buffer that
contains the value of the NPF_QOUT parameter.

The caller must not change the value of the NPF_QOUT parameter

(the buffer that the pointer(1) is pointing to).

Pattern 2 for NPF_OUT parameters MUST NOT be used.
6.5.3 NPF_IN_OUT Scheme

Parameter | Guideline | Guideline
Type Type
Scalar Design Scalar NPF_I N_OUT parameter must be passed by a pointer.

FoundationsTask Group 14

Network Processing Forum Software Work Group

Impl. The pointer must be pointing to a valid buffer at the point of method
invocation.

The caller must set a valid input value to the buffer, which will then be
overridden by the callee with an output value

Compound | Pattern 1 Design | Compound type NPF_I N_OUT parameter must be passed by
pointer.

Impl The pointer must be pointing to a valid buffer at the point of
method invocation.

The caller must set a valid input value to the buffer, which will
then be overridden by the callee with an output value.

Pattern 2 Design | Compound type NPF_I N_OUT parameter must be passed as a
pointer(2) to a pointer(1).

Impl. The pointer(2) must be pointing to a valid buffer for pointer(1), at

the point of method invocation,

The pointer (1) must be pointing to a valid buffer, which contains a

valid value as an input parameter, at the point of method

invocation.

The callee can either do the following

- Set the pointer(1) to point to a valid buffer that contains the
output value of the parameter. In which case the caller must
not modify the value of the buffer that the pointer(1) is
pointing to.

- Set the output value to the buffer that the pointer(1) is pointing
to. In which case, the callee will overwrite the values set by
the caller. The caller is free to modify the buffer that pointer(1)
is pointing to, after the method is completed.

Pattern 2 for NPF_I N_OUT parameters MUST NOT be used.

6.6 Coherent State Image of Dynamic Elements

Some functions will be designed to return a data set whose size is not known to the caller. If the set
represents the state of a dynamic entity, i.e. one that can change state at any time, it SHOULD be returned
in away that guarantees that the caller receives a complete and self-consistent image of the data as it was
at some instant in time while the call was being processed.

6.7 Support for Local Parameters/Avoidance of Complex Locking

Applications MUST be allowed to pass parameters that are contained in local variables. That is, an
application should be able to passin a pointer to alocal variable in cases where it needs to provide a
string or other array viaan NPF API. Similarly, it isimportant to not require resources to be locked across
severa invocations of functions. Thus, for al normal parameter passing, it is incumbent on the callee to
make a copy of any array or pointer handles before returning from afunction cal. This is the default
behavior; any exceptions MUST be explicitly documented. In genera, APIs must protect themselves
againgt dangling handles and lingering memory allocations for structures that are no longer in use.

It is noted that there may be APIs where the amount of data expected to be transferred acrossit is high
enough that a forced copy will cause a performance hit. In such scenariosit is acceptable to use a buffer
handling semantic that reduces copies at the cost of delaying release of a buffer beyond the duration of a
function call. Thisis further addressed in the Packet Handler API.

6.8 API Signature Guidelines

Strong typing SHOULD be used in defining APIs. The following subsections set forth guidelines for
defining different kinds of APIs.

FoundationsTask Group 15

Network Processing Forum Software Work Group

6.8.1 Multi-Field Inputs

For APIsthat are reasonably expected to accept arelated set of information al at the same time, a struct
SHOULD be used to carry that information, particularly in cases where multiple instances of the

NPF_error_t NPF_EntryAdd(NPF_I N NPF_t abl eHandl e_t my Tabl eHandl e,
NPF_IN NPF_entry_t routes[],
NPF_I N NPF_ushort 16_t ent ryCount) ;

Figure 1 Example strongly typed API accepting an array of related items

information are expected. Figure 7 shows an example of what such an API might look like.

6.8.2 Multi-Field Queries

When querying for information such as a set of related counters for an interface, the function doing so
SHOULD use awell defined structure for the information, accepting a handle indicating the device being
queried and providing an out parameter with a pointer to a structure that contains the counters in question,

NPF_error_t NPF_StatsQuery(NPF_IN NPF_device_t myDevi ceHandl e,
NPF_OUT NPF_counters_t *counters);

Figure 2 Example strongly typed API returning a set of related items

with areturn parameter indicating whether the handle type matches the type of the call. This optimizes for
having a simple, well-defined approach for querying multiple counters while minimizing the number of
function cals required. It is noted that this approach can result in more counters being retrieved than is
srictly needed, however, thisis considered acceptable given that the overall cost of such afunction cal is
very low compared to issues such as overhead for accessing an NPE. For those queries where a very large
collection of related items may be retrieved, APl writers SHOULD partition the items into subsets, and
then define functions for retrieving each of the subsets.

6.8.3 Control Interfaces

Functions used to deliver configuration information for interfaces and other devices are expected to
typically require the ability to manipulate a single setting without having to reset the entire configuration
of adevice. As such, control interfaces SHOULD typically be written to manipulate a single characteristic
of acontrolled device. In order to facilitate re-use and avoid function proliferation, functions SHOULD
be made generic for individual functions across arange of controlled interface types where possible.
Thus, figure 3 is an example of how the Foo attribute could be set on awide variety of interface types
without requiring multiple Set FooFor { Fool nt er f ace| Bar | nt er f ace| Bazl nterface} ()
functions.

NPF_error_t NPF_FooSet (NPF_I N NPF_device_t my Devi ceHandl e,
NPF_I'N NPF_foo_t f ooVal ue);

Figure 3 Generic Control Interface Example

6.9 Packet Buffer Handling

Guiddlines and semantics for packet buffer ownership and handling are described in the Packet Handler
API document.

FoundationsTask Group 16

Network Processing Forum Software Work Group

7 Function Invocation Model, Events and Completion
Callbacks

7.1 APl Completion Callbacks

The function invocation model for NPF APIsis based on asynchronous callbacks, where thereis asingle
calback for each function call. The completion of work associated with an API function call is not
indicated by the return of the cal, but by the invocation of a separate completion callback function by the
caleeto the caler. Thisalows more flexibility in that the caller is not blocked waiting for the result.
This enables more parallelism to be achieved, while still alowing synchronous behavior to be easily
layered on top of the asynchronous callbacks if desired.

Note that in some cases, the work can be completed before the original call returns. In those cases, the
completion callback may be called before the original call returns, whether on the same thread or a
different worker thread, which is implementation dependent. In atypica multi-threaded environment, the
work performed on behalf of an asynchronous request is done by a separate worker thread. This thread,
unless synchronized with the original call, may complete its work before or after the origina call
completes. Rather than constrain the implementation to synchronize or perform its work on the origina
call thread, no guarantee is made for when the completion callbacks can be called. In addition, because
an application must design for true asynchronous completion callbacks due to thislack of guarantee, it is
not useful to allow some implementations to optionaly return and indicate that a completion callback is
unnecessary. However, an implementation is free to perform completion callbacks on the origina call

user NPF AP provider
I |
register()
1. Registration fj:;;fﬁZﬁiZ‘ck(,
>
-_ cb_handle
api_call()

cb_handle
correlator WM~
in_data ey

2. Use the APIs *several times//' >

user_callback()
user_context
correlator
— out_data

N times

deregister()

cb_handle\‘

3. Deregistration [

Figure 4 NPF Callback Usage Sequence

threads if the work can be performed immediately and to reduce context switches.

Some error conditions may result in areturn without invocation of the completion callback. Thisis
further described in the Error Handling section.

FoundationsTask Group 17

Network Processing Forum Software Work Group

Completion callbacks for API functions are grouped into separate categories. The application will
register a completion callback function for each of the categories of completion callbacks that are of
interest. A completion callback handle is provided to the application upon successful registration. The
application provides this completion callback handle when using API calsfor that type. The application
may register and de-register completion callbacks at initiaization and shutdown respectively, or as
needed during the execution of the application.

The application provides two types of application context information. A NPF_user Cont ext _t is
provided at callback registration time. In addition, aNPF_cor r el at or _t isprovided a API function
cdl time. When the completion callback is called for a particular call, the application will receive the
callback type, and both the NPF_user Cont ext _t andthe NPF_correl at or _t contexts, aswell as
result information. This information allows the application to associate the completion callback calls with
the original function calls. The callback type MAY indicate a specific type within a category.

The application can also provide an error reporting level with the API function call to indicate interest in
receiving the completion callback (e.g. call back only if an error occurs, always call back, never cal

back). While an APl implementation SHOULD provide best effort to deliver callbacks, delivery of
callbacks is not guaranteed. Thusit is the application’s responsibility to protect itself against duplicated or
lost callbacks.

Figure 4 shows the basic model and usage of NPF asynchronous APIs as defined in this document.

Below are examples of the registration, de-registration and completion callback functions, where Xxxx
will represent a category for the callback and callbackType will represent a specific type in a category.
Xxxx and callbackType will be replaced with category and type definitions as defined by each API. Also
included is a convention for API function parameters that are required for callback support. Note: the
registration, de-registration and completion callback functions are synchronous.

7.1.1 NPF_XxxxRegister
This function allows the application to register acompletion calback function for the related callback
category, and to associate a unique callback handle as well as application context.

Signature: NPF_error _t NPF_XxxxRegi ster (NPF_I N NPF_user Context _t,
NPF_I N NPF_XxxxCal | backFunc_t,
NPF_OUT NPF_cal | backHandl e_t *)
Parameters In: NPF_user Cont ext _t
NPF_xxxxCal | backFunc_t

Parameters Out: NPF_cal | backHandl e_t

Return Values: NPF_NO_ERROR

NPF_E_BAD_CALLBACK_FUNCTI ON

NPF_E_CALLBACK_ALREADY_REG STERED

NPF_E_UNKNOWN
7.1.2 NPF_XxxxDer egister
Thisfunction alows the application to de-register the callback function that is associated with this
callback handle.
Signature: NPF_error _t

NPF_XxxxDer egi ster (NPF_I N NPF_cal | backHandl e_t)

FoundationsTask Group 18

Network Processing Forum Software Work Group

Parameters In: NPF_cal | backHandl e_t
Parameters Out: None

Return Values: NPF_NO_ERROR
NPF_E_BAD_CALLBACK_HANDLE
NPF_E_UNKNOWN

The callback routine might be called after the deregistration function has been invoked, but the API
implementation SHALL guarantee that the callback function is not called after the deregister function has
returned.

7.1.3 NPF_XxxxCallback FUNC

This is the function template for function completion callbacks. These callbacks are asynchronoudy
invoked in response to NPF API calls.

The context and correlator parameters come from the callback function registration function and the
original function call, respectively. The callback datais a structure that contains result information about
the original function call.

typedef void (*NPF_xxxxCal |l BackFunc_t)(NPF_I N NPF_user Context t,

NPF_IN NPF_correl ator _t,
NPF_I N NPF_xxxxCal | backDat a_t)

7.1.4 Callback Data Structure

This section defines the data structure used to deliver result information in the context of a callback. The
comment text below explains the parameters and structures and their usage.

typedef NPF_uint32 t NPF_xxxxErrorType t; /* Error code (NPF_XXXX_E _YYYY) */

/
An asynchronous response contains an error/success code,
ot her optional information that correlates the response
to an elenent in a request array, and in sone cases a
function-specific structure enbedded in a union. One or
nore of these is passed to the callback function as an
array within the NPF_xxxxCal | backData_t structure (bel ow).

R I I

~

typedef struct { /* Asynchronous Response Structure */
NPF_xxxxErrorType_t error; /* Error code for this response */
uni on { /* Function-specific structures: */
NPF_ui nt 32_t unused; /* Default */
NPF_xxxxHandl e_t xxxxHandl e; /* Handl e from NPF_XxxxTabl eCr eat e*/
Pou
} NPF_xxxxAsyncResponse_t;

/-k
* The cal |l back function receives the follow ng structure containing
* one or more asynchronous responses froma single function call
* There are several possibilities:
* 1. The called function does a single request
* - nuntCal | backResp = 1, and the resp array has just one el enment.
* - allOK = TRUE if the request conpleted w thout error
* and the only return value is the response code.
- if all OK = FALSE, the "resp" structure has the error code.
2. the called function supports an array of requests
a. Al conpleted successfully, at the same tine
- allOK = TRUE, n_resp = 0.

* ok F X

FoundationsTask Group 19

% kX X X Xk X X X X

*

*/

Network Processing Forum Software Work Group

Some conpleted, but not all, or there are val ues besides
the response code to return
- all OK = FALSE, n_resp = the nunber conpl eted
- the "resp" array will contain one el enment for
each conpleted request, with the error code
in the NPF_XxxxAsyncResponse_ t structure, along
with any other information needed to identify
whi ch request el enent the response bel ongs to.
- Call back function invocations are repeated in
this fashion until all requests are conplete.
Responses are not repeated for request elenents
al ready indicated as complete in earlier callback
function invocations.

typedef struct {

NPF_xxxxCal | backType_t type; /* ldentifies the function called */
NPF_bool ean_t al | OK; /* TRUE if all requests conpleted OK*/
NPF_ui nt 32_t nunCal | backResp;/* Nunber of responses in array */
NPF_xxxxAsyncResponse_t resp; /* Array of response structures */

} NPF_xxxxCal | backData_t ;

Some NPF APIs may support aform of batched request that lets an application pass a variable-length
array of "request elements’ to the APl implementation. Examples: the IPv4 route add function can take
an array of prefix/length parameters, the Interface Create API takes an array of interface specifications,
and creates many with asingle call.

The callback mechanisms should be defined similarly for these APIs. Points they will have in common:

1

4.

The implementation generates one "response element” for each "request element”. A
response element contains a status code and something that identifies the request element to
which it belongs. Examples of identifiers: prefix/length values (for route add and route
delete); next hop index (for next hop entry add and delete); |P address and interface (for
resolution table entry add and delete).

The implementation MAY pass an array of response elements to the callback function at
any time after the API function is called. For any API function call, the total number of
response elements passed to the callback function should be exactly the same as the number
of request elements passed to the API function. There should be exactly one status code
returned for each request el ement.

How many response elements are passed each time the implementation invokes the
callback function? How many invocations of the callback function is the implementation
allowed to make in order to return al the response elements for asingle API function call?
These are for the implementor to decide. The minimum number of callback invocationsis
one (unless the errorReporting parameter causes responses to be suppressed); the maximum
is the number of request elements passed in the API function call.

An NP Forum APl module, such as the IPv4 Unicast Forwarding API or the Interface
Management API, MAY support the "AIIOK" option, defined as follows:

a. The structure defined by the API to be passed to the callback function contains a variable
caled "AllIOK", with values of TRUE and FALSE.

b. IF the API implementation passes the complete list of response elementsin asingle

FoundationsTask Group 20

Network Processing Forum Software Work Group

invocation of the callback function, and IF the status code for every response element is'"no
error”, the implementation SHALL return AIIOK = TRUE and omit the array of response
elements (i.e. pass back an array length of zero).

c. If, a the time of callback invocation, a response element for any of the request e ements
indicates an error or is missing, the implementation SHALL return AIIOK = FALSE and
pass an array of response elements that includes responses for al request el ements for
which the completion status is known.

7.1.4.1 Cadlback Type and Error Fields
These members of the callback data structure defined above are associated with the original function call

that caused the callback to be made. They are used to determine which member type of the union is
present.

Within each API family a specific enumeration SHALL be defined for the callback type and error type
fields that are described above. The calback type field shall correspond on a 1:1 basis with the original
function calls that invoke callbacks. The error field values may be standard across a set of functions
within an API family or specific to a particular function.

7.1.4.2 Guiddines for definition of callback union structures

Callback union structures defined for specific APIs may need to include additional data as part of the
structures included in the union. Since the data will be present as part of a union, large data may serioudy
affect memory requirements for these structures as unions all ocate the amount of memory needed for the
largest member of the union irrespective of the actual member typein use. In such cases, a pointer to the
data may be a better choice to define as a member of one of the structures that make up the union.

Vendors can define their own callback structure types by adding proprietary fields within the union to
provide additional data. These are not be defined by NPF.

7.1.5 API Function Signature Requirements
API function calls use three parameters to support asynchronous completion calbacks. Each AP
function will correspond to a defined callback category. NPF_cal | backHandl e_t isprovided to the
application upon registration. NPF_cor r el at or _t isan gpplication context.
NPF_er ror Reporti ng_t indicates whether the application wishes to receive a completion callback
or not, or only upon errors. NPF_er r or Reporti ng_t isanenumeration containing
NPF_REPORT_ALL, NPF_REPORT_NONE, and NPF_REPORT_ERRCRS.
Signature: NPF_error_t NPF_Xxxx<api function nane> (

NPF_I N NPF_cal | backHandl e_t,

NPF_I N NPF_correl ator _t,

NPF_I N NPF_errorReporting_t,

<..other function paranmeters..>)
Required Parameters In: NPF_cal | backHandl e_t

NPF_correl ator _t
NPF_error Reporting t

Required Parameters Out: None

7.1.5.1 Error Reporting and Callbacks

The NPF_err or Reporti ng_t enumeration defines three values. NPF_REPORT _ALL,
NPF_REPORT _NONE, and NPF_ REPORT _ERRORS. When invoking a function with an asynchronous
callback in the NPF APIs one of these values MUST be passed in. These vaues cause the following
behavior on the part of a compliant implementation:

FoundationsTask Group 21

Network Processing Forum Software Work Group

NPF_REPORT_ALL will cause dl function calls associated with an asynchronous callback to
result in a callback, whether the function succeeded or not. The only exception to thisis function
callsthat immediately return an error code instead of NPF_NO_ERRCR

NPF_REPORT _NONE causes function calls associated with asynchronous callbacks to never
result in a callback. This value is useful when the results of a function call do not matter.
NPF_REPORT _ERRORS causes function calls associated with asynchronous callbacks to only
callback to an application when an error occurs as part of the execution of the call. Note that
function cals that immediately return an error code will not later result in a callback.

Certain types of function cals (e.g. statistics queries) are nonsensica when used with

NPF_REPORT _NONE or NPF_REPCORT_ _ERRORS. Such functions MUST immediately return an error
code when invoked with these values and MUST be clearly documented as such.

7.1.6 Reentrancy
The NPF APIs consist of two categories of invocations:

1) Synchronous APIs (e.g. various register, deregister APIs) and asynchronous APIs (e.g. APIs for

manipulating the various tables on the forwarding plane).

2) Completion callbacks and event notifications
All the synchronous and asynchronous APIs SHOULD be reentrant. For example, it should be possible to
invoke an API to add routes a second time before the first invocation returns. Another example of a
reentrant API is the packet handler send packet API. Similarly, it should be possible to invoke a
registration API repeatedly without having to wait for the first invocation to return. All completion
callbacks and event notifications should be reentrant, e.g. the application should be able to handle a
second interface down event arrival while thefirst is till being processed by the application.

7.2 Event notification

Any applications interested in events occurring on the network processor may register for notification of
these events. The events may or may not be related to invocation of NPF API calls, and may include
indications of such occurrences as alink going down, or an |P address changing. Events are organized in
Separate categories and an application can register for individual events, or for a particular category of
interest.

A handle is provided to the application upon successful registration. The application provides this handle
when unregistering for the events. The application may register and de-register for events at initialization
and shutdown respectively, or as needed during the execution of the application.

The application provides context information, of type NPF_user Cont ext _t , at event registration
time. TheNPF_correl at or _t used with API function calls is unnecessary in the event notification
model, as no invocations are made that can be correlated. When the event notification is made for a

particular event, the application will receive the event information, and the NPF_user Cont ext _t
context information.

Below are templates of registration, de-registration, and event call functions, where Xxxx will represent a
category or a specific event in acategory. Xxxx will be replaced with category and event definitions
and structures as defined by each API. Note: the registration, de-registration and event call functions are
synchronous.

7.21 NPF_XxxxEventRegister

Thisfunction allows the application to register a function for the event or event category, and associate a
handle with the registration. Registration accomplishes two things: It registers the event notification
function (the “handler”) to the API, and also enables event notifications. Note that the implementation
may begin to invoke the event handler before returning from the registration function.

FoundationsTask Group 22

Network Processing Forum Software Work Group

Signature: NPF_error_t NPF_XxxxEvent Regi st er (
NPF_I N NPF_user Cont ext _t,
NPF_I N NPF_xxxxEvent Cal | Func_t,
NPF_QUT NPF_cal | Handl e_t *)
Parameters In: NPF_user Cont ext _t
NPF_xxxxEvent Cal | Func_t

Parameters Out: NPF_cal | Handl e_t *

Return Values: NPF_NO_ERROR
NPF_E_BAD_CALLBACK_FUNCTI ON
NPF_E_CALLBACK ALREADY_ REG STERED
NPF_E_UNKNOWN

7.2.2 NPF_XxxxEventDeregister

Thisfunction allows the application to de-register the event notification function that is associated with
this callback handle.

Signature: NPF_error_t NPF_EventDeregi ster(NPF_IN NPF_call Handle_t)
Parameters In: NPF_cal | Handl e_t
Parameters Out: None

Return Values: NPF_NO_ERROR
NPF_E_BAD_CALLBACK_HANDLE
NPF_E_UNKNOWN

The event routine might be called after the deregistration function has been invoked, but the API
implementation SHALL guarantee that the event function is not called after the deregister function has
returned.

7.2.3 NPF_xxxxEventCallFunc _t
This is the event natification function format. Xxxx indicates either a category of events, or a particular
event. Thisfunction isinvoked when the related event happens. NPF_user Cont ext _t istheorigina

value provided by the application during event registration. NPF_xxxxEvent Dat a_t containsan
event type indicator and a union of event types provided by a particular APl specification.

NPF_xxxxEvent Array_t isastructure that contains an array of NPF_xxxxEvent Dat a_t
structures, accompanied by a scalar describing the array length.

Definition: typedef void (*NPF_xxxxEvent Call Func_t) (NPF_I N NPF_user Cont ext _t,
NPF_I N NPF_xxxxEvent Array_t)
Definition: typedef struct{
NPF_ui nt 16 nunmEvent Data; /* nunber of structures */
NPF_xxxxEvent Dat a_t *event Dat a;
} NPF_xxxxEventArray t;

Definition: typedef struct NPF_xxxxEventData {
NPF_xxxxEvent _t event Type;
uni on {

event Dat aTypel_t c;
event Dat aType2_t d;
<...>
Pous
} NPF_xxxxEvent Data_t;

FoundationsTask Group 23

Network Processing Forum Software Work Group

7.2.3.1 NPF_xxxxEvent_t

The type NPF_xxxxEvent _t isused to indicate the type of the structures returned in the union of event
structures. The definition of this type is specific to each xxxx APl family and MUST be an enumeration
of event types supported by that family.

Each AP family SHALL define its own event type, e.g.:

typedef enum
NPF_I Pv4Event { NPF_| PV4A_ROUTE_TABLE_M SS = 0,
NPF_I PVA_NHR_UNREACHABLE = 1} NPF_I| Pv4Event _t;

7.2.3.2 Guidelines for definition of event structures

Event structures defined for specific APIs may need to include additional data as part of the structure.
Since the data will be present as part of a union, large data may serioudy affect memory requirements for
these structures. 1n such cases, a pointer to the data may be a better choice to define as amember of the
structure.

Vendors MAY define their own event structure types by adding proprietary fields within the union for
additional data.

7.2.3.3 Example of event structures
Example of individual event structures:

typedef struct NPF_pscData {
NPF_portID_t porti d;
NPF_port Status_t st at us;
} NPF_pscData_t;

typedef struct NPF_pspData {
NPF_port1D_t portid;
NPF_ui nt 64 _t speed;
} NPF_pspData_t;

Example of category event structures.

typedef struct NPF_itfData {
NPF_i tfEvent _t event Type;

uni on {
struct NPF_pscData_t;
<...>
struct NPF_pspData_t;
Pou

} NPF_itfData_t;

7.2.4 Event Naotification Example

voi d NPF_I nterfaceEvent Cal | Func(NPF_I N NPF_user Cont ext _t cont ext,
NPF_I N NPF_itfDataList_t data)
{
switch (data.eventType) {
case NPF_EVENT_ PORT_STATUS CHANGE:
br eak;
case NPF_EVENT_PORT_SPEED:
br eak;
defaul t:
}
}
int main() {
NPF_cal | Handl e_t cal | Handl e;
NPF_error_t retval;

FoundationsTask Group 24

Network Processing Forum Software Work Group

NPF_i t f Event Cal | Func_t event Cal | Func =

retval

retval

& NPF_I nt erfaceEvent Cal | Func;
= NPF_I TF_Event Regi st er ((voi d*) get pi d(),
event Cal | Func, &cal |l Handl e);

= NPF_I TF_Event Der egi st er (cal | Handl €) ;

FoundationsTask Group

25

Network Processing Forum Software Work Group

8 Error Handling

This section describes how error conditions are indicated to clients of the NPF APIs.

8.1 Synchronous Error Returns

Error codes SHALL be returned synchronoudly from synchronous API invocations (such as callback
registration) and from asynchronous API invocations where errors are detected before a completion
callback isrequired. This may include error conditions such as invalid parameters or processing errors
which occur in the context of the call or which prevent an asynchronous completion callback. Return

vauesfor API invocations shall be of type NPF_error _t.

8.2 Error Code Values

Valid error code values will be partitioned into ranges of values, with each API defining a corresponding
range. See Appendix A. NPF.hfor more information.

API Family Error Code Range
Foundations 0-99

(Common to all APIs)

IPv4 100-199

Interfaces 200-299

Table 6 Assigned Error Code Ranges

8.21 NPF_NO_ERROR

This value MUST be returned when a function was successfully invoked. This value is aso used in
completion callbacks (see section 6) where it MUST be the only vaue used to signify success.

8.22 NPF_E_UNKNOWN

An unknown error occurred in the implementation such that there is no error code defined that is more
appropriate or informative.

8.23 NPF_E BAD _CALLBACK_HANDLE

A function was invoked with a callback handle that did not correspond to a valid NPF callback handle as
returned by a registration function, or a callback handle was registered with a registration function
belonging to a different API than the function call where the handle was passed in.

8.24 NPF_E BAD CALLBACK_FUNCTION
A callback registration was invoked with afunction pointer parameter that was invalid.

825 NPF_E_CALLBACK_ALREADY_REGISTERED

A calback or event registration was invoked with a @ir composed of a function pointer and a user
context which was previously used for an identical registration.

FoundationsTask Group 26

Network Processing Forum Software Work Group

9 Compliance and Extensibility

In order to utilize the benefits of a common interface, a client application must be able to rely on the
support of the interface by a conforming implementation. However, it is unreasonable to expect that an
interface, once specified, will never change. Furthermore, some vendors may wish to provide their own
useful extensions to the interfaces. The term "core" will be used to describe the common interfaces. The
term "extended” will be used to describe additiona or proprietary interfaces.

9.1 NPF-Defined Optional Functions and Data Structures

Certain NPF APIsMAY be defined to contain optional methods and/or data structures. Implementation of
NPF APls do not need to implement optional methods and data structures in order to be NPF compliant,
but upon implementing all or a portion of the optional methods and data structures, al related optiona
methods and data structures required for proper functioning of the implementation must be implemented.
Example: If an optional method A assumes optional method B and optional data structure C for proper
function, then if method A isimplemented, method B and data structure C MUST be implemented.

The dependency among optional methods and data structures, if any, MUST be clearly documented in the
API specification.

9.2 Revising NPF-Defined APIs

9.21 Version Number Assignment
NPF APIs can be seen as a collection of APIswhere each APl isdefined by a TG. Since each APIs may
evolve in difference paces, they each have their own versions. NPF APIswill also have a version number
asawhole. (Mainly for vendors to express that they are NPF API 1.1 compliant rather than saying that
they are IPv4 1.2 Interfaces 1.3 Packet Handler 1.0 Diffserv 1.0 compliant.) The versioning of APIs
MUST adhere to the following rules:
- Maor verson number will be shared among all NPF APIs. Mgor version numbering will be

controlled by the Foundations TG with consensus from the entire WG.

Minor version number for each APl will be assigned by each TG defining the API.

Minor version number for NPF APIs as awhole will be assigned by the Foundations TG.

When magjor version number changes, al NPF APIS maor version number will change

accordingly (even if there is no change to the spec.).

A version of NPF APIs as awhole will be defined as a collection of versions of each separate APIs. Such
version will be defined by the Foundations TG with consensus from the entire WG.

Example : NPF AP version 1.1 can be defined as:
Foundations version 1.0
IPv4 version 1.2
Interfaces version 1.3
Packet Handler version 1.1
FAPI 1.0
Diffserv 1.0

9.2.2 Verson Number Checking

An implementation of an NPF APl must define a macro with the following signature to express the
version of API that it supports:
#def i ne NPF_<MODULE>_<MAJOR VERSI ON>_<M NOR_VERSI ON>_COVPLI ANT

FoundationsTask Group 27

Network Processing Forum Software Work Group

The macro can be used to check the version of API that an implementation supports at compilation time.
It also can be used to do sdlective compilation.

An implementation can support multiple version of the same API if there is no conflict between them.
Example :

#define NPF_IPV4_1_2_COWPLI ANT

#define NPF_IPV4_1_3_COWPLI ANT

#define NPF_IPV4_1_4_COWVPLI ANT

means that the implementation supports IPv4 1.2, 1.3 and 1.4 spec. It also suggests that there has been an
alteration between 1.1 and 1.2 that broke backward compatibility.

Note : See 3.8.1 for definition of <MODULE>

9.2.3 RevisngMethod and Data Structure

When revising an API, occasiondly new parameters may need to be added to a function, data structure
need to be changed, or new semantics may be applied to an existing function. In order to maximize
backward compatibility and to avoid confusion, the following rules must be followed when revising an
API.

Addition of acompletely new function or data structure is always allowed.

Changing parameters of an existing function within a same magjor version is prohibited except for
bug fixes. When parameters need to be changed, a different function name must be used.
Changing semantic or behavior of an existing function within a same mgjor version is prohibited
except for bug fixes. When semantic or behavior need to be changed, a different function name
must be used.

Changing return value of an existing function within a same major version is prohibited except
for bug fixes. When return value need to be changed, a different function name must be used.
Addition of new return value to an existing function is alowed, but should be avoided if possible
since it may break backward compatibility.

Changing existing data structure within a same major version is prohibited except for adding
members to a union, adding members to the tale of a structure, or for bug fixes. Changing data
structure may break backward compatibility.

Changing type definition within a same major version is prohibited except for bug fixes. When a
new type is needed, a new type should be defined.

Changing value assignment to a constant is allowed.

Changing contents of an enumeration is allowed.

All changes listed above that are permitted without incrementing the major revision number
require incrementing the minor revision number.

There are no restrictions in terms of changes when amajor version number changes.

9.3 Vendor proprietary extensions
Vendors that implement the NPF APIs are allowed to a certain extent to modify the NPF API definition

and its behavior and still claim conformance. The type of modification that a vendor can perform over
NPF APlIs are strictly limited to the following.

Addition of acompletely new proprietary function or data structure is aways alowed.
Changing parameters of an existing function within a same major version is prohibited. When
parameters need to be changed, a different function name must be used.

Changing semantic or behavior of an existing function is prohibited. When semantic or behavior
need to be changed, a different function name must be used.

Changing return value of an existing function is prohibited except for bug fixes. When return
value need to be changed, a different function name must be used.

FoundationsTask Group 28

Network Processing Forum Software Work Group

Addition of new return value to an existing function is allowed, but should be avoided if possible
since it may break backward compatibility.

Changing existing data structure is prohibited except for adding members to a union, adding
members to the end of a structure, or for bug fixes. Changing data structure may break backward
compatibility.

Changing value assignment to a constant SHOULD NOT be done.

FoundationsTask Group 29

Network Processing Forum Software Work Group

10 Design and Implementation Guidelines

The NPF Software APl working group is primarily concerned with specifying a set of interoperable APIs.
As such, vendors have complete control over the internal design and implementation of software
implementing these APIs. This section provides some informative guidelines for implementation. This
section of this document is NOT considered normative.

10.1 Modularity

A module is a collection of data and the routines that act on the data. A module might also be a collection
of routines that provides a cohesive set of services even if no common dataisinvolved. A modulein Cis
asource file. One goa of amodule isto hide information. In general, it is suggested that modules
implementing the NPF APIs reveal as little as possible about their inner workings.

10.2 Multicast Invocations

In some architectures, a single services API function invocation can result in repeated calls to multiple
forwarding elements to accomplish the result. For example, in a system with multiple network processors
and asingle FIB, a FIB update must be sent to all NPs. If not all NPs are successfully updated, does the
request succeed or fail? How are the complex results of success and failure reported to the application?

The Software APl Framework describes two APl levels:
Services API, whose purpose is to support applications while concealing details of the underlying
system architecture;

Functional API (FAP!), which addresses the specific functions of individual network processing
elements.

Considering the example above: if the Services APl must hide the fact of multiple NPs, an application call

User APIs NPE1 NPE2
Imple/:npelr;a(ion

API Call

Return

Figure 5 Multicast Invocation

to update a FIB must result in asingle indication of success or failure, just asif there were only one
underlying forwarding process to be notified of the update. The FAPI, likewise, addresses individual
elements; so the FAPI-level request to update the Classification Element should also result in asingle
indication of success or failure.

This means that the coordination of multiple forwarding e ements in a complex architecture is the
function of software (“middieware’) residing below the Services API and above the FAPI. In no case

FoundationsTask Group 30

Network Processing Forum Software Work Group

shall any NP Forum API definition specify that requests are distributed to multiple e ements with the
possibility of multiple callbacks with differing results.

In the FIB example, middleware underlying the Services APl must invoke the FAPI once to update each
forwarding element. It SHOULD return success if the Services APl request was valid and executable. If
any of theindividual FAPI calsfails, therefore, the failure should be a result of some incapacity of the
system, not a problem with the nature of the request The incapacity should result in an asynchronous
notification to the application (through Services APl Event Notification) of afailure of some part of the
system, such as an interface going down. The middleware should increment error counters and generate
event logs for diagnosis of the problem, as well as generate an event notification as described in this
document.

10.3 Compatibility

Within a particular mgjor version number, NPF APIs are only required to be compatible at the source
code level and not at the binary code level.

FoundationsTask Group 31

Network Processing Forum Software Work Group

11 References

[1] “American Nationa Standards Institute (ANSI), Standard for the C Language”, ANSI X3.159-19809.

[2] Bradner, Scott, “Key Words for Use in RFCs to Indicate Requirement Levels’, IETF RFC 2119,
Harvard University, March 1997.

FoundationsTask Group

32

Network Processing Forum Software Work Group

Appendix A. NPF.h

/* This header file defines typedefs, constants, and functions*/
/* that apply to all NPF Software Working group APIs. */
#i fndef _ NPF_H _
#define _ NPF H _

#i fdef __cpl uspl us
extern "C" {
#endi f

#define NPF_IN
#def i ne NPF_OUT
#def i ne NPF_I N_OUT

/* This section defines base NPF types and will differ from */
/* platformto platform The type shown here are based on */
/* Linux 6.2 on an x86. */
typedef char NPF_char8_t;

t ypedef unsigned char NPF_uchar 8_t;

t ypedef char NPF_int8_t;

typedef short NPF_int16_t;

typedef int NPF_i nt 32_t;

typedef long long int NPF_i nt 64_t ;

t ypedef unsigned char NPF_ui nt8_t;

t ypedef unsigned short NPF_uint16_t;

t ypedef unsigned int NPF_ui nt 32_t;

t ypedef unsigned long |ong int NPF_ui nt 64 _t;

typedef fl oat NPF_fl oat32_t;

typedef |ong double NPF_fl oat64_t;

/* This section defines constructed NPF types and is */
/* identical for all inplenentations of the NPF APIs. */
typedef NPF_uint32_t NPF_error _t;

typedef NPF_uint32_t NPF_cal | backHandl e_t;

typedef NPF_uint32_t NPF_correl ator _t;

typedef NPF_uint32_t NPF_user Cont ext _t;

typedef enum
NPF_bool ean {NPF_FALSE = 0, NPF_TRUE = 1} NPF_bool ean_t;

typedef NPF_uint32_t NPF_I Pv4Address_t;
typedef NPF_uchar8_t NPF_MAC_Address_t[6];

typedef enum
NPF_error Reporting { NPF_REPORT_ALL
NPF_REPCRT_NONE
NPF_REPORT_ERRORS

1
2:
3

} NPF_errorReporting_t;
#defi ne NPF_NO ERROR 0

#def i ne NPF_FOUNDATI ONS_BASE_ERR 1

#def i ne NPF_FOUNDATI ONS_MAX_ERR (NPF_FOUNDATI ONS_BASE_ERR + 98)
#define NPF_E_UNKNOAN NPF_FOUNDATI ONS_BASE_ERR

#defi ne NPF_E_BAD_CALLBACK_HANDLE (NPF_FOUNDATI ONS_BASE_ERR + 1)
#define NPF_E_BAD_CALLBACK_FUNCTI ON (NPF_FOUNDATI ONS_BASE_ERR + 2)

FoundationsTask Group

33

Network Processing Forum Software Work Group

#define NPF_| Pv4_BASE_ERR (NPF_FOUNDATI ONS_MAX_ERR + 1)
#define NPF_I Pv4A_MAX_ERR (NPF_IPV4_BASE ERR + 99)

#def i ne NPF_I NTERFACES_BASE_ERR (NPF_I PV4_MAX_ERR + 1)
#def i ne NPF_I NTERFACES_MAX_ERR (NPF_I NTERFACES BASE_ERR + 99)

#i fdef __cpl uspl us
}
#endi f

#endif /* __NPF_H__ */

FoundationsTask Group

