Network Processing Forum Software Working Group

Network Processing Forum

NPF HA Service API
Implementation Agreement

July 6, 2004
Revision 1.0

Editor(s):

Ram Gopal. L, Nokia, ram.gopal@nokia.com

Santosh Balakrishnan, Intel , santosh.balakrishnan@intel.com

Copyright © 2002 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THIS DOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", “MAY", and "OPTIONAL" in the
remainder of this document are to be interpreted as described in the NPF Software API
Conventions Implementation Agreement revision 1.0.

For additional information contact:
The Network Processing Forum, 39355 California Street,
Suite 307, Fremont, CA 94538
+1 510 608-5990 phone 4 info@npforum.org

High Availability Task Group 1

Network Processing Forum Software Working Group

Table of Contents

1 REVISION HISTOMY ..ottt bttt n e 3
2 SCOPE ANA PUMPOSE ...ttt ettt ettt et et et e e e e se e s baeteaseesbeebeesaesaeeseeneenseenreens 4
3 NOIMALIVE RETEIBNCES. .. .cuei ettt sttt et e et e st e e nteeneeereenteeneenneans 5
4 Acronyms and ADDIEVIALIONScceciiiiiiicie et 6
I o N @ 1Y T VT TSR 8
B HA SEIVICE AP OVEIVIEW.....couiiiiiiiticiesie sttt sttt bbbt ne s e e e e 9
7 Availability Management FrameWOrKccooiiiiiiiniiinieieese s 10
7.1 NPF HA eXIENSION AP ..ottt bbb 10
7.2 Availability Management Framework APL.........cccooiiiiiiiiiiiicee e 14
7.3 Check poiNt SEIVICE APL.......ceiiie ettt re e 26
7.4 Event Service AP145
8 Appendix 59
8.1 Header file defiNitiONooveiiiie et nne e 59
AppendiXx A ACKNOWIEAGEMENTS.......ccveieiiiieeie et re e reenre e 72
Appendix B List of companies belonging to NPF during approval process...........ccccceeevereenne. 73

High Availability Task Group 2

Network Processing Forum Software Working Group

1 Revision History

Revision Date Reason for Changes

1.0 07/07/2004 | Created Rev 1.0 of the implementation agreement

High Availability Task Group

Network Processing Forum Software Working Group

2 Scope and Purpose

This document describes the API definition that will be used by applications that implements HA-SAPI
and HA-FAPI [1]. This document in intended for NPF SW HA [1] and HA application implementer.
This document identifies SA Forum API’s that are relevant for NPF HA implementation. We recommend
SA Forum AIS specification [2] for details of each API.

High Availability Task Group

Network Processing Forum Software Working Group

3 Normative References

The following documents contain provisions, which through reference in this text constitute provisions of
this specification. At the time of publication, the editions indicated were valid. All referenced documents
are subject to revision, and parties to agreements based on this specification are encouraged to investigate
the possibility of applying the most recent editions of the standards indicated below.

NPF.2003.404.07 NPF HA architecture model and framework.

SAI-AIS-A.01.01 Service Availability Forum Application Interface Specification.
NPF.2003.296 NPF HA use case and requirement.

Software APl Framework Implementation agreement, 1A, NPF, Version 1.0
NPF.2002.240.27 NPF Packet handler API.

NPF.2003.404.01 Proposal for High availability architecture model.

Software APl Framework Implementation agreement, 1A, NPF, Version 1.0,

N g~ wdE

High Availability Task Group 5

4

Network Processing Forum Software Working Group

Acronyms and Abbreviations

The following acronyms and abbreviations are used in this specification:

Card - Line card or control card is referred to a Card.

Resource - A resource is a logical or physical entity that is managed by HA middleware.
Resource may be either HA aware or Non-HA aware. Resource registers with a HA middleware
using a component Name.

HA aware Resource - A HA aware resource is a resource that uses HA middleware APIs and
implements functions that need to be invoked by the HA middleware and reports its states and
availability information to the other HA aware resources through the HA middleware. Resources
cooperate among themselves and provide periodic status to the HA middleware in the form of
events. The HA Task Group restricts HA-aware resources to software applications that run on the
line and control cards.

There may be situations, for example, when an HA aware resource first registers with the HA
middleware and then forks several child processes (or child resources). In this situation, only the
parent process is registered with the HA middleware — i.e. the HA middleware manages the
parent process only. . Child processes that need HA services should explicitly register with the
HA middleware either under the same component name as parent or may use different component
name.

Non HA aware Resource - Resources that neither register nor use the HA middleware functions
and services are classified as non-HA aware resources. A non-HA middleware resource is one
that does not provide redundancy. The HA middleware running on line and control card can only
perform basic operations like Start and Stop on these resources. The required level of
management and monitoring of these resources depends upon the underlying operating system
and defining such requirements is beyond the scope of this task group.

Resource pool - A resource pool is a collection of one or more processes that are registered
under the same component name. Resource pool can either reside within a single card or be
distributed across several cards.

A line card or control card is considered as a single unit. One or more applications running under
a control or line card may use HA middleware and its services. For example, two control units,
say CE1 and CE2, might be running two HA aware applications, say BGP routing daemon and
OSPF routing daemon. Each of these HA applications is uniquely identified under a CE and the
redundancy is considered across CEs. For instance, CE1 may be in active state and CE2 may be
in standby (or hot standby) state. Also, HA resources should be same in both the CEs.

HA Server (HAS) - Each line card or control card runs an instance of HAS. An HAS s a server
that implements the HA API. An HA Server running in line or control cards discovers each other,
periodically synchronizes their states and provides a notion of HA middleware to the applications.

HA-API - The HA framework provides a set of HA APIs to build highly available systems that
provide continuous service. It consists of two sets of APIs namely Availability Management
Function API(AMF) and Service API (SE). Each HA resource must implement HA AMF API
and SE API’s.

HA-FAPI - FAPI implementation that can invoke the HA Service or HA application
management API is called HA-FAPI.

HA-SAPI - SAPI implementation that can invoke HA Service or HA application management
APl is called HA-SAPI.

API - Applications Programming Interface
CE - Control Element also referred as control card
FAPI - NPF Functional API

High Availability Task Group 6

Network Processing Forum Software Working Group

FE - Forwarding Element also referred as line card
HA - High Availability

NE - Network Element

NP - Network Processor

NPE - Network Processing Element

NPF - Network Processing Forum

NPU - Network Processing Unit (same as NPE)
SAPI - NPF Service API

FAPI - NPF Functional API

ForCES - Forwarding and Control Element Separation
HAS - HA Server

HA-SAPI - HA aware SAPI

HA-FAPI - HA aware FAPI

RHAS - Root HA Server

BHAS - Backup HA Server

HAS SET-ID - Unique HA set identifier

HA-1D - Unique identifier for HAS within a HA SET

High Availability Task Group

Network Processing Forum Software Working Group

5 HA Overview

Highly available systems are designed to protect against network and operational failures. This is usually
achieved via redundancy within each network element. Also, network elements are moving from a
monolithic software entity to a more distributed function. The high availability functionality should
support this distributed architecture. To support high availability in telephony networks, redundancy was
built into each network element. However network elements such as routers have evolved from a
monolithic software piece to a distributed software and hardware entity. Network elements may have to
maintain per-user or aggregate states to satisfy the service requirements of emerging real-time services.
Hence, network elements need to provide high-availability features such as fail-over, load-balancing, state
replication and resource redundancy in order to avoid disruption in service. This implies that network
elements should support high availability features such as fail-over, load-balancing, state replication etc.

This document describes the HA API definition that will be used by HA aware applications that
implements HA-SAPI and HA-FAPI. It maps SA Forum API to NPF HA architecture and describes data
structure and required data types required to implement the APIs. Finally this document provides
implementation guidelines to incorporate HA Service on to existing NPF SW APIs.

High Availability Task Group 8

Network Processing Forum Software Working Group

6 HA Service API Overview

Registered HA applications are managed by the NPF HA middleware. Figure 1 describes various HA API
interfaces. Interface labeled 1 and 2 are internal to HA implementation and are not visible for outside
applications. HA application interacts with HA middleware by invoking HA API’s. HA API’s are labeled
as 3 and 3’ and are open interfaces. Depending upon the type of NPF SW implementation either the
application or the NPF SW APl implementation may interact with HA middleware by invoking
appropriate HA API functions. HA API includes both Availability management function APl (AMF) and
Service APl. AMF API provides the following services to HA aware applications:

o Registration and deregistration
e Health monitoring

¢ Availability Management

e Resource pool Management

e Error reporting

The above set of functions are supported by SA Forum APIs in addition to these NPF HA defines
additional API that are needed for HA management.

Each NPF HA middleware [1] must implement Event Service and Checkpoint Service. These two
services are collectively called as HA Service API. Not all application are required to use the HA Service
API. Depending upon the nature of the application one or both or neither of the HA Service may be used
by the application. But each application is expected to register and deregister with each HA Service
explicitly. Each HA service is independent of each other but they are dependent on AMF API.

HA Middleware

Availability
@‘ Management <& --»| §
- —
© o
Server E & =
£ & S
g z =| §
=2] o0 2
E v < -
’ ‘ Checkpoint > Y < g gl B
- wl =
Server % o G |z =
£ £ 2| <
o =
L s T
-+ [F
S <
= v
o
<

A
\ 4

Event @
> - —p
\Server ﬂ
I N
Internal Interface HA API
(not open)

Figure 1 NPF HA middleware and HA application interaction

High Availability Task Group 9

Network Processing Forum Software Working Group

7 Availability Management Framework

The API described in this section only covers interaction and interface required needed between HA
aware application and the HA middleware. NPF HA middleware must provide implementation for all
these APIs. HA application can invoke these API any given point of time.

7.1 NPF HA extension API
HA-SAPI or HA-FAPI may be implemented as one of the following ways:

e NPF SW API are linked to application either as static or dynamic library
o NPF SW API are integrated as with application (with source code)

o Application may be using one or more HA-SAPI or HA-FAPI libraries (either static or dynamic)

e Application may be using the NPF SW API functions, which are part of the device driver chain
(these are specific to certain implementation).

Irrespective of the above cases, each application needs to pass its context to the HA middleware. If the
NPF SW API implementation is being shared by several processes [5]then each application needs to be

explicitly initialized by the HA middleware and the NPF SW API implementation should not mix the HA

context.

High Availability Task Group

10

Network Processing Forum Software Working Group

Application (B)
Application (A)

T \

| S
=
; 0| @y
|
o < @ NPF SW API NPF SW API
G| < Implementation (A) Implementation (B)
o |T
£ |
=|z| O
T| |q----mmmmmm e
| T !
= @

Figure 2 HA application registration and operation sequence

Figure 2 illustrates two HA application namely application A and application B wants to use HA service.
Both these application invokes NPF SW API (either HA-FAPI or HA-SAPI or both). For purpose of
simplicity we have mentioned as NPF SW API. Application A invokes two NPF SW API may one from
vendor “A” and another from vendor “B”. Application B invokes vendor “B” NPF SW APIs. Assume
that both NPF SW APIs implementation keep states and needs to synchronize with standby system (not
shown in the diagram), it will use checkpoint service. Since the NPF SW APl implementation “B” is
invoked by both Application A and B, the HA middleware should maintain and manages these states
separately. For this purpose each application needs to pass its context during the initial phase of the
library initialization (message 1 and 3 from application A and B respectively in Figure 2). It should also
be possible for an application to request the HA aware SAPI or FAPI implementation not to perform any
HA functions or selectively perform only certain functions. Each SAPI and FAPI must maintain these
application specific HA context register on behalf of application. Since application A uses two NPF SW
implementation HA middleware will get twice the HA registration message from each NPF SW
implementation. Since the registration is for the same application context under it component instance
(process ID) it is considered as re-registration and it is perfectly legal.

Following are the list of NPF HA extension API that needs to be supported by HA SAPI and HA-FAPI.

NPF_error_t NPF_XXX_HAInit(...);

/* Initialize the HA context for FAPI or SAPI. This needs to provided by each HA aware SAPI
and FAPI */

High Availability Task Group 11

Network Processing Forum Software Working Group

NPF_error_t NPF_XXX_HADeregister(...);
/* De register HA application from the ~ HA environment */

API Data types:
typedef NPF_char8_t NPF_HA_Component_Name_t;
typedef NPF_char8 t NPF_HA_Role;
typedef NPF_int32_t NPF_HA_Correlator t;
typedef NPF_int32 t NPF_HA Instance_Id;

7.1.1 Application initialization for HA Service

Syntax:

NPF_error_t NPF_HAInit (
NPF_IN NPF_HA_Component_Name *component_Name;
NPF_IN NPF_HA Role role,
NPF_IN NPF_HA Correlator_t correlator,
NPF_IN NPF_HA Instance Id instance_lId,
NPF_IN NPF_boolean_t mode,

);

Description of function

NPF SW implementation uses checkpoint of event service on behalf of HA application. In order to
differentiate different HA applications states, it is required that HA-SAPI and HA-FAPI need to
create unique checkpoint name and generate appropriate events. HA application passes HA
component name and associated instance information to the HA-SAPI and HA-FAPI.

Input parameters:

Input Description

*component_Name NULL terminated character string.

Unique name of the component. This needs to be
standardized for uniform naming.

For example:
<ServiceName:Protocol:Imp.Specific>

Service Name can be routing, Mobility, QoS, Security,
Management etc.

Protocol can be IPv4, IPv6 or MPLS etc.

For example typical routing application that are running
in control plane may BGP, OSPF, and RIP etc.

To name a BGP server running in a control plane.
Routing_BGPv4
For OSPF running in control plane

High Availability Task Group

Network Processing Forum Software Working Group

Routing_OSPFv3 etc

role This basically defines the propagation model and failure
operation and this is implementation specific. For details
how to interpret this field refer implementation
guidelines. This field data is transparent to HA-SAPI

and HA-FAPI.

instance_Id 32-bity unique run-time identification for the
application. It is mainly used to identify multiple
instances

correlator 32-bit unique identification for the application in case if

it wants to perform state synchronization from the
previous HA session.

mode If this value is TRUE then the HA application wants to
run in HA mode and HA-SAPI and HA-FAPI should
invoke HA service API calls when needed.

If this value is FALSE then the HA application is
running in non-HA mode and HA-SAPI or HA-FAPI
should not invoke or perform HA function for this
application.

Return Code:
e NPF_NO_ERROR: The registration is successful

o NPF_DUPLICATE_INSTANCE: If the HA middleware is configured to run on single
instance and if correlator, component_Name and instance are different. Then the HA
middleware will generate this error.

7.1.2 De Registration application HA context from HA middleware

Syntax:
void NPF_HADeregister(
NPF_IN NPF_HA_Component_Name *component_Name;
NPF_IN NPF_HA Correlator_t correlator,
NPF_IN NPF_HA Instance_lId instance_lId,
);
Description:

This function is invoked by the application informing the HA-SAPI or HA-FAPI to perform
deregistration process from the HA service functions. The HA-SAPI and HA-FAPI flush the internal
states if any.

Input parameters:

High Availability Task Group 13

Network Processing Forum Software Working Group

Input Description

*component_Name NULL terminated character string.

Unique name of the component. This needs to be
standardized for uniform naming.

For example:
<ServiceName:Protocol:Imp.Specific>

Service Name can be routing, Mobility, QoS, Security,
Management etc.

Protocol can be IPv4, IPv6 or MPLS etc.

For example typical routing application that are running
in control plane may BGP, OSPF, and RIP etc.

To name a BGP server running in a control plane.
Routing_ BGPv4

For OSPF running in control plane
Routing_OSPFv3 etc

instance_Id 32-bity unique run-time identification for the application.
It is mainly used to identify multiple instances

correlator 32-bit unique identification for the application in case if it
wants to perform state synchronization from the previous
HA session.

Return Codes:
e None

7.2 Availability Management Framework API

HA middleware implements following functions as part of availability management framework.
e Registration and deRegistration
e Health Monitoring
¢ Availability Management
e Protection group management
e Error Reporting

HA aware application must implement call back function for health monitoring, library life cycle
management, Protection group and switch over operation.

High Availability Task Group

14

In

Caslfatl)lzjcks @ @ @

Network Processing Forum Software Working Group

omponent
Terminate
Call Back
Function

Health Check
Call Back
Function

Readiness State
Set Call Back
Function

rotection Group
Track Call Back
Functions

Call Back
Response
aAmfResponse

Initialize
Application

NPF HA Middleware

Figure 3 Call back functions for HA middleware management

Figure 3 describes the list call back functions that needs to be implemented by each HA aware process.

HA application initializes with the HA middleware. This is the first operation that needs be done
by any HA aware resource and is described in Figure 3, message 1. During the library
initialization, the HA application installs various callbacks for resource management.

Periodically HA middleware invokes Health check call back functions as described in Figure 3
message 2. HA application generates a response via saAmfResponse() functions.

When a service unit is available to provide service (that is when a card is inserted onto chassis or
the machine is booted up). The HA middleware kicks in processes and starts HA application
automatically during boot up process or it can be manually started by operator. When a
component is started, the HA middleware assigns the state of the service unit (card) to the HA
process. The possible states of card are in-service, out-of-service, stopped. HA middleware at
any given time invokes the Readiness state call back function and asking the HA application to
changes its readiness state as described Figure 3 message 3. The HA application after making the
state transition responds via saAmfResponse() function.

If HA aware application wants to keep track of the changes to the list of component that are
belonging to a given service instance. HA management keeps track of the changes and informs
the HA application via protection group track call back function as described in Figure 3 message
5. Though its useful ness is very limited and it’s optional to implement this function.

High Availability Task Group 15

Network Processing Forum Software Working Group

e Components can be terminated at any given time by the HA middleware by invoking the
component terminate call back function as described in Figure 3 message 4. Note component
termination simply deregisters the component from HA middleware, HA application needs to be
perform additional clean up functions to disassociate completely from the HA middleware.

e All the callback function respond to the HA middleware queries by invoking the saAMFresponse
function. Each call back function contain an invocation reference which will be passed back
along with the response to the HA middleware. This is illustrated in message 6 in Figure 3.

The following are the lists of SA Forum API are be applicable to NPF HA environment. For detailed
description of functions and the parameters refer SA Forum AIS specification [2].

7.2.1 Library Lifecycle

All AMF library lifecycle API will be invoked by HA application.

Syntax:

SaErrorT saAmfinitialize(
SaAmrfHandleT *amiHandle,
const SaAmfCallbacksT *amfCallbacks,
const SaVersionT *version

);

Parameters

amfHandle - [out] A pointer to the handle designating this particular initialization of the
Availability Management Framework.

amfCalibacks - [in] If amfCalbacks is set to NULL, no callback is registered;
otherwise, it is a pointer to a SaAmfCallbacksT structure. Only non-NULL callback
functions in this structure will be registered.

version - [in] Version of the Availability Management Framework implementation
being used by the invoking process.

Description:

This is the first API call that HA aware application must make to HA middleware. HA application
initializes various callbacks which will be invoked by HA middleware.

The following are the minimum call back functions that are required in NPF HA environment.

typedef struct {
SaAmfHealthcheckCallbackT

saAmfHealthcheckCallback; //Required

High Availability Task Group 16

Network Processing Forum Software Working Group

SaAmfReadinessStateSetCallbackT
saAmfReadinessStateSetCallback; // Required
SaAmfComponentTerminateCallbackT
saAmfComponentTerminateCallback; // Required
SaAmfCSISetCallbackT

saAmfCSISetCallback; //Required
SaAmfCSIRemoveCallbackT
saAmfCSIRemoveCallback; /IRequired

SaAmfProtectionGroupTrackCallbackT
saAmfProtectionGroupTrackCallback; /[Optional
SaAmfExternalComponentRestartCallbackT
saAmfExternal ComponentRestartCallback; //Set to NULL
SaAmfExternal ComponentControlCallbackT
saAmfExternal ComponentControlCallback; //Set to NULL
SaAmfPendingOperationConfirmCallbackT
saAmfPendingOperationConfirmCallback; //Set to NULL
} SaAmfCallbacksT,;

7.2.2 Calling back Sequence
Syntax:

SaErrorT saAmfDispatch(
const SaAmfHandleT *amfHandle,
SaDispatchFlagsT dispatchFlags

)
Parameters
amiHandie - [in] A pointer to the handle, obtained through the saAmiinitialize() func-

tion, designating this particular initialization of the Availability Management Frame-
WOTK.

dispatchFiags - [in] Flags that specify the callback execution behavior of the saAm-
fDispatch() function, which have the values SA_DISPATCH_ONE,
SA_DISPATCH_ALL or SA_DISPATCH_BLOCKING

Description:

HA application can specify the semantics for call back whether the HA middleware can perform
blocking call (SA_DISPATCH_BLOCKING) or dispatch all (SA_DISPATCH_ALL) call back at
once or dispatch one (SA_DISPATCH_ONE) call back at a time.

We recommend SA_DISPATCH_ONE to be used if the HA aware is a single threaded process, and if
the use of SA_DISPATCH_BLOCKING can be used if the HA aware process is performs one
operations at a time. This is totally application specific.

High Availability Task Group 17

Network Processing Forum Software Working Group

7.2.3 De-registering the HA application from HA middleware
Syntax:

SaErrorT saAmfFinalize(
const SaAmfHandieT *amiHandle

)

Parameters

amfHandle - [in] A pointer to the handie, obtained through the saAmfinitialize() func-
tion, designating this particular initialization of the Availability Management Frame-
WOrK.

Description:

This function will be invoked by the HA application to de register completely from the HA
middleware. This function call releases all the resources from the HA middleware.

7.2.4 Component registration

Syntax:

SaErrorT saAmfComponentRegister(
const SaAmfHandieT *amfHandle,
const SaNameT *compName,
const SaNameT *proxyCompName

).

Parameters

amfHandle - [in] A pointer to the handle, obtained through the saAmfinitialize() func-
tion, designating this particular initialization of the Availability Management Frame-
work. The Availability Management Framework must maintain the list of components
registered via each such handle.

compiame - [in] A pointer to the name of the component to be registered.
ProxyCompName is set to NULL in NPF HA environment.

Description:

After initializing the callback functions, the HA application needs to perform component registration
with the HA middleware. Component name is unique and is used to identify the HA resource (in our
NPF HA it is referred to application process). In NPF we don’t have the notion of proxy component

and hence its value is set to NULL.

7.2.5 Component Deregistration

Syntax:

High Availability Task Group 18

Network Processing Forum Software Working Group

SaErrorT saAmfComponentUnregister(
const SaAmfHandieT *amfHandle,
const SaNameT *compName,
const SaNameT *proxyComphName

2

Parameters

amfHandle - [in] A pointer to the handle, obtained through the sadmiinitialize() func-
tion, designating this particular initialization of the Availability Management Frame-
work.

comphame - [in] A pointer to the name of the component to be unregistered.
proxyCompName is set to NULL in NPF HA environment.

Description:

Component can deregister at any given time by invoking this API function. After de registering the
component the HA aware application should not process any network packets. HA aware application
can perform any number component registration and deregistration any number of times. If a
component is deregistered, then the HA middleware can perform switch over operation if continuous
service needs to be provided for that component.

7.2.6 Health check request

Syntax:

typedef void (*SaAmfHeaithcheckCalibackT){
SalnvocationT invocation,
const SaNameT *compName,
SaAmfHealthcheckT checkType

);

Parameters

invoecation - [in] The particular invocation of this callback function. The invoked
process retums invocation when it responds to the Availability Management
Framework by invoking the saAmfResponse() function.
comphame - [in] A pointer to the name of the component that must undergo the par-
ticular healthcheck.

checkype - [In] | he type of the healthcheck 1 be executed.

In NPF the checkType simple liveness is recommended. The Value of checktype is set to
SA_AMF_HEARTBEAT =1. Other checktypes are beyond the current scope of HA middleware.

High Availability Task Group 19

Network Processing Forum Software Working Group

Description:

HA middleware invokes the health check call back functions and asking the HA application to
respond to with its internal state. HA application must respond to this request by invoking
saAmfResponse() function with appropriate invocation value.

7.2.7 Get Component status

Syntax:

SaEmrorT saAmiReadinessStateGel|
const SaNameT *compName,
SaAmfReadinessStateT *readinessState
).
Parameters

compName - [in] A pointer to the name of the component for which the readiness
state is being reported.

readinessState - [out] A pointer to the readiness state of the component, identified by
compName, that is returned by the Availability Management Framework. The readi-

ness state Is out-of-service, in-service or stopping
Description:

It there are dependency between two HA aware control plane applications, one HA application after
registering with the HA middleware can make queries to the HA framework to get to know the status
of the other HA aware application by specifying the component name. The HA middleware will
report the readiness status of the other application. This API can be used to determine and control the
behavior of application process. Usage of this API is application dependent.

High Availability Task Group 20

Network Processing Forum Software Working Group

7.2.8 Change the Readiness state of the Application
Syntax:

typedef void (*SaAmfReadinessStateSetCallbackT)(
SalnvocationT invocation,
const SalNameT *compName,
SaAmrReadinessState T readiness Siafe

);

Parameters

invocation - [in] This parameter desingates a particular invocation of this callback
function. The invoked process retumns invocation when it responds to the Availability
Management Framework using the saAmfResponse() function.

compName - [in] A pointer to the name of the component whose readiness state the
Availability Management Framework is setting.

readinessSiate - [in] The readiness state of the component, identified by compName,
that is being set by the Availability Management Framework.

Description:

At any given time HA middleware request the HA aware application to change its readiness states.

This transition may be due to operator changing the service unit (card) state to either out-of-service or

stopped.

7.2.9 Terminate a HA component

Syntax:
typedef void {(*SaAmfComponentTerminateCallbackT)(
SalnvocationT invocation,
const SaNameT *comphame
);
Parameters

invocation - [in] This parameter designates a particular invocation of the particular
callback. The invoked process returns invocation when it responds to the Availability
Management Framework using the saAmiResponse() function.

comphame - [in] A pointer to the name of the component to be terminated.

Description:

HA middleware sends termination command to HA application and requesting it to close all the
operation and disassociate the component from the HA middleware.

High Availability Task Group

21

Network Processing Forum Software Working Group

7.2.10 Component termination response to HA Middleware

Syntax:

SaErrorT saAmiStoppingComplete(
SalnvocationT invocation,
SaErrorT error

I

Parameters

invocation - [in] The invocation parameter that the Availability Management Frame-
work was given when it asked the component to enter the stopping state using saAm-
fReadinessState SetCallbacky).

error- [in] The component returns the status of the completion of stopping, which has
one of the following values:

SA_OK - The component successfully completed the stopping state.

SA_ERR_FAILED OPERATION - The component failed to complete stopping.
Some of the actions required during stopping might not have been performed.

Description:

This is a response generated by HA application to provide its termination status to the HA
middleware. When the HA middleware wants to terminate a HA application (see section 7.2.9) it
invokes the HA application terminate call back function. HA application performs clean up
operations and will not service any request and sends the termination command via this function. In
NPF we have each HA application process to be associated with the component name, terminating the
component should stop packet processing and the HA aware application should release all resource. It
should not terminate the process.

High Availability Task Group 22

Network Processing Forum Software Working Group

7.2.11 Set HA state for a component

Syntax:

typedef void (*SaAmfCSISetCallbackT)(
SalnvocationT invocalion,
const SaNameT *compName,
const SaNameT *csiName,
SaAmfCSIFiagsT csiFlags,
SaAmfHAStateT “haState,
SaNameT *activeCompName,
SaAmfCSiTransitionDescriptorT transitionDescriptor

)

Parameters

invocation - [in] This parameter designates a particular invocation of the callback
function. The invoked process retumns invocation when it responds to the Availability
Management Framework using the saAmfResponse() function.

compiame - [in] A pointer to the name of the component to which a new component
service instance is added or for which the HA state of one or all supported component
service instances is changed.

csifame - [in] A pointer to the name of a new component service instance to be sup-
ported by the component or of an already supported component service instance
whose HA state is to be changed. If the state of all component service instances is to
be changed (if SA_AMF_CSI_ALL_INSTANCES is set in csiFlags), csiName is not
meaningful and is set to NULL.

csiFlags - [in] A value of the SaAmfCSIChoiceT flags type which indicates whether
the HA state change must be applied to a new component service instance or to all
component service instances currently supported by the component. If no flags are
set, the HA state change applies to a component service instance already supported
by the component.

haState - [in] The new HA state to be assumed by the component service instance,
identified by csiName, or by all component service instances already supported by
the component (if SA_AMF_CSI|_ALL_INSTANCES is set in csiFlags).

activeCompName - [in] A pointer to the name of the component that currently has the
active state or had the active state for this component service instance previously.
The semantics attached to this parameter varies with the particular HA state being
assigned.

transitionDescription - [in] This parameter is meaningful only when haState is set to
SA_AMF_ACTIVE, in which case it indicates whether or not the component service
instance for active CompName went through quiescing, as defined by the SaAmfCSI-

TransitionDescriptorT

High Availability Task Group 23

Network Processing Forum Software Working Group

Description:

HA states can be classified into two-stage operation. HA aware application first needs to be in-service
(meaning that it can be invoked and is executing) but that does not convey whether it can process
packet or do normal application functions. In order to control that behavior when the HA application
is in-service it can be either be active or standby or quiesced. HA middleware will reflect the state of
service unit (card) for HA resources contained in that service unit (card). In NPF component name
and component instance name is same, we manage one HA application process at a time.

Following are the parameters in NPF HA environment.

o compName, activeCompName and CSIName all refers to same name. In NPF we are
providing 1:1 redundancy model. Each component needs to register explicitly with the HA
middleware.

e csiFlag should be set to SA_ AMF_CSI_ALL_INSTANCES
e haState can be either ACTIVE,STANBY, QUIESCED
e transitionDescription not used in NPF set to NULL.

7.2.12 Get HA State of a component

Syntax:

SaErrorT saAmifHA StateGet|
const SaNameT *compName,
const SalameT *csiName,
SaAmrHAStateT *haState

);

Parameters

comphame - [in] A pointer to the name of the component for which the information is
requested.

csiName - [in] A poitner to the name of the component service instance for which the
information is requested.

haState - [out] A pointer to the HA state of the component service instance, identified
by csiName, that the Availlability Management Framework is assigning to the compo-
nent, identified by compName. The HA state is active, standby or quiesced, as
defined by the SaAmfHAStateT enumeration type.

Description:

If a HA application wants to know about the status of itself or other HA aware component running
under HA middleware. It can invoke this function to get the status of the other component. For
example, if one HA aware component wants to know the status of the other HA aware component, we
recommend that first that say HA aware application A needs to determine whether the HA aware
application B’s readiness and then only it should invoke this call.

High Availability Task Group 24

Network Processing Forum Software Working Group

7.2.13 Confirming HA state before performing fail-over or shutdown
operation.

Syntax:
typeder void (*SaAmiPendingOperationConfirmCallbackT)(

const SalnvocationT invocation,
const SalNameT *compiName,
SaAmfPendingOperationFlagsT pendingOperationFlags
)
Parameters

invocation - [in] This parameter designates a particular invocation of this callback
function. The invoked process retums invocation when it responds to the Availability

Management Framework using the saAmfResponse() function.
comphName - [in] A pointer to the name of the component to which this requested is

directed.
pendingOperationFiags - [in] The operations for which confirmation is requested. This

parameter is of the type SaAmPendingOperationFlagsT

which nas the values 5A_AME_SWIH CHOVER OFEKATNON and
SA_AMF_SHUTDOWN_OPERATION or both.

Description:

HA aware application may be processing packets and heavily loaded. Before performing shutdown or
switch over operation, the HA middleware request the HA aware application and asking whether it
can now perform those function or it should defer later. This is mainly to achieve graceful shutdown
and enable seamless load transfer during the fail or shutdown operation. The HA aware application

sends its response via saAmfResponse function.

7.2.14 Cancel pending operation

Syntax:

typedef void (*SaAmfPendingOperationExpiredCalibackT)(

const SaNameT *compName,
SaAmfPendingOperationFiagsT pendingOperationFlags

)
Parameters
compMame - [in] A pointer to the name of the component on which the pending

operation(s) confirmation is being cancelled.
pendingOperationFiags - [in] The operation(s) that have been cancelled.

High Availability Task Group

25

Network Processing Forum Software Working Group

Description:

HA middleware can inform the HA application to cancel any pending request that it had previously
invoked via pending operation confirm call back (see section 7.2.13).

7.2.15 HA application response to HA middleware queries.

Syntax:

SaFrrorT saAmfResponse(
SalnvocationT invocation,
SaErrorT error

)

Parameters

invacation - [im] This parameter associates an invocation of this response function
with a particular invocation of a callback function by the Availability Management
Framework.

grror- [in] The response of the process to the associated callback. It returns SA_OKif

the associated callback is successiully executed by the process. Otherwise, it returns
an appropriate error as described in the corresponding callback.

Description:

HA middleware queries HA application via callbacks. The HA application reacts to the call back and
provide response via this function. The main reason to have indirect response is that call back can be
made either blocking or non-blocking. HA application needs to copy the invocation value which was
supplied during the callback invocation by HA middleware in this function.

7.3 Check point Service API

HA application can optionally use HA Checkpoint Service API. But HA middleware must implement
Checkpoint service as part of HA implementation. Checkpoint service provides following functions:

o Checkpoint implementation stores the critical data either in the main memory or in the secondary
store. For performance reasons usually checkpoint store is in main memory. It replicates the
content in more than one places, in order to protect the data against card failures.

o If an HA application crashes the Checkpoint service provides mechanism to resynchronize the
state of the application from the previous session. Note such use of synchronization is time and
application dependent. It may happen that such resynchronization may be stale data and use of
such feature is totally application dependent.

High Availability Task Group 26

Network Processing Forum Software Working Group

7.3.1 Usage Model and HA implementation guidelines

e HA application (process) can use several checkpoints to save the state of the process. Each
checkpoint is identified by a unique name in a HA middleware. HA middleware treats those
checkpoint as opaque data store. It is totally up to the implementation to interpret the content,
and also when to checkpoint the data or replicate the data.

e Multiple processes can open the same checkpoint and writes to the same checkpoint. It is the
responsibility of the process to cooperate among them when they use the checkpoint store.
For example, if two telnet servers have forked several processes and they would like to
checkpoint some data under a same name. In this scenario, the either they can write to the
same memory (over write) or append to the existing checkpoint data. Another example is that
two HA aware resources (two processes running in control card) performs some IPC and
saves state under the same checkpoint name.

o When an HA aware resources deletes the checkpoint the content is deleted and resources are
deleted. But when more than one HA resources opened the same checkpoint, the HA
middleware implementation must keep track of the reference count mechanism and it should
delete the checkpoint only when the last process has deleted the checkpoint.

e Checkpoint store has some retention time, in order to avoid memory overrun. When HA
process terminates, the HA middleware must hold the checkpoint store for some duration of
time. After the checkpoint retention timer is expired, the HA middleware should perform
cleanup operation.

o HA aware resource would like to perform partial updates rather than full update to whole
checkpoint store. To enable this operation, the checkpoint store can be subdivided in to
sections. Section is portions of the checkpoint store allocated to HA aware resources. HA
resources needs to create sections, and can reference each section under a unique name. HA
aware resource needs to specify the number of section, section size and other parameter
during the initialization. Each section have different lifetime and is different from checkpoint
lifetime.

o Checkpoint store management is part of HA middleware management and is transparent to
the HA application. In NPF it is recommended that checkpoint store be managed with the
card where the local resource are using it. This will reduce the inter card communication
between the checkpoint store and the actual HA resource running in the card. Checkpoint can
store many copies of the same data the storage and retrieval of information and how many
copies depends upon the type of HA application and architecture. At least we recommend that
active card can have one checkpoint store and standby card to have another checkpoint store.

o Operations on checkpoint, for example two application can write to the same checkpoint and
the order of write needs to be cooperatively ensure by the application if its required (see use
of Event Service) or by the HA middleware implementation. It is up to the HA
implementation and is implementation specific.

High Availability Task Group 27

Network Processing Forum Software Working Group

o HA implementation must support synchronous write and asynchronous write to checkpoint
store. When a application writes using the synchronous write call, the checkpoint makes
copies of the same data to all the replicas and then return to the HA application. Where as in
asynchronous call, the checkpoint store immediately return to the application and at later
time, the checkpoint implementation updates those information to the replicas.

e Though the checkpoint application service depends upon the cluster service of HA forum. We
are dealing with checkpoint across CE and FE systems hence we narrow the scope of cluster
to service group, which are running similar applications.

7.3.2 Checkpoint Library initialization

Syntax:

saCkptinitialize()

Prototype

SaErrorT SaCkptinitialize]
SaCkptHandleT “ckptHandie,
const SaCkptCallbacksT *callbacks,
const SaVersionT *version

)
Parameters

ckptHandle - [out] A pointer to the handle designating this particular initialization of
the Checkpoint Service that is to be returned by the Checkpoint Service.

callbacks - [in] A pointer to a SaCheckpointCalibacksT structure. If callbacks is set to
MULL, no callbacks will be registered. Otherwise, callbacks designates a SaCkptCall-
backsT structure; only non-NULL callback functions in this structure will be regis-
tered.

version - [in] A pointer to the version of the Checkpoint Service that the process is
using.

Description:

Each HA aware resource needs to initialize the checkpoint library in order to make use of the
checkpoint service. In NPF either if HA-SAPI or HA-FAPI manages state information, then it will
invoke this call and will installs appropriate callback functions. If both HA aware resource and HA-
SAPI or HA-FAPI are required to use the checkpoint, then HA aware resource should initialize the
library. HA implementation must return a unique handle each time when this checkpoint service is
being initialized.

High Availability Task Group 28

Network Processing Forum Software Working Group

7.3.3 Installing dispatch mechanism
Syntax:

SaErrorT saCkptDispatch(
const SaCkptHandleT *ckptHandle,
SaDispatchFlagsT dispatchFlags

)
Parameters

chkptHandle - [in] A pointer to the handle, obtained through the saChptinitiaiize() func-
tion, designating this particular initialization of the Checkpoint Service.

dispatchFiags - [in] Flags that specify the callback execution behavior of the saCkpt-
Dispatch() function, which have the values SA_DISPATGH_ONE,

SA_DISPATCH_ALL or SA_DISPATCH_BLOCKING,

Description:

This function needs to be invoked by the HA aware resource in order to inform the type of dispatch.
HA middleware may invoke one call back at a time, or it will dispatch all the pending activities in
one call back or it will in invoke the callback in blocking mode. This is implementation dependent,
we expect that at least SA_DISPATCH_BLOCKING needs to be supported in all HA middleware
implementation.

7.3.4 Detaching the HA aware resource from Checkpoint Service
Syntax:

SaErrorT saCkptFinalize(
const SaCkptHandleT *ckptHandie

)

Parameters

ckptHandle - [in] A pointer to the handle, obtained through the saCkptinitiaiize() func-
tion, designating this particular initialization of the Checkpoint Service.

Description

This function closes the association, represented by ckptHandie, between the pro-
cess and the Checkpoint Service. It frees up resources. If any checkpoint is still open
with this particular handle, the invocation of this function fails.

After saCkptFinalize() is invoked, the selection object is no longer valid.

High Availability Task Group 29

Network Processing Forum Software Working Group

7.3.5 Opening a checkpoint store (Sync and Async open)

Syntax:

saCkptCheckpointOpen() and saCkptCheckpointOpenAsync()

Prototype
SaErrorT saCkptCheckpointOpen(
const SaNameT *ckeckpointName,
const SaCkptCheckpointCreationAttributesT “checkpointCreationAttributes,
SaCkptCheckpointOpenFiagsT checkpointOpenFiags,
SaTimeT timeout,
SaCkptCheckpointHandie T *checkpointHandle

SaErrorT saCkptCheckpointOpenAsync(
const SaCkptHandleT *chkptHandie,
SalnvocationT invocation,
const SaNameT *ckeckpointhName,
const SaCkptCheckpointCreationAttributesT *checkpointCreationAttributes,
SaCkptCheckpointOpenFlagsT checkpointOpenFlags

)
Parameters

ckptHanale - [in]A pointer to the handle, obtained through the saCkptinitialize() func-
tion, designating this particular initialization of the Checkpoint Service.

invocation - [in] A parameter designates a particular invocation of the response call-
back.

ckeckpointhame - [in] A pointer to the name of the checkpoint that identifies a check-
point globally in a cluster.

checkpointCreationAttributes - [In] A pointer to the creation attributes of a checkpoint.

These aftributes are relevant only when a checkpoint is created. It is an error to open

a checkpoint with creation attributes different from the ones used at creation time. If

the intent is only to open a checkpoint, these attributes shall be set to NULL. Other-

wise, if the intent is to create a new checkpoint, the SaCkptCheckpointCreationAt-
tributesT structure shall contain the attributes for the checkpoint

checkpointOpenFiags - [in] The value of this parameter is constructed by a bitwise
OR of the flags defined by the SaCkptCheckpointOpenFlagsT type

timeout - [in] The saCkptCheckpointOpen() invocation is considered to have failed if it

does not complete by the time specified. A checkpoint replica may still be created.
checkpointHandle - [out] A pointer to the checkpoint handle, stored in the address

space of the invoking process, that is used to access the checkpoint in subsequent

invocations of the functions of the Checkpoint Service API. In the case of
saCkptCheckpointOpenAsyncy), this handle is returned in the corresponding call-
back.

High Availability Task Group

30

Network Processing Forum Software Working Group

Description

The saCkptCheckpointOpeny() or saCkptGheckpointOpenAsync() function creates a
new checkpoint or opens an existing checkpoint.

An invocation of saCkptGheckpointOpeny) is blocking. A new checkpoint handle is
returned upon completion. A checkpoint can be opened multiple times for reading
and or writing in the same or different processes.

When a checkpoint replica is created as a result of this invocation, the following is
guaranteed:

. If the checkpoint has been created with the synchronization flag
SA_CKPT_CHECKPOINT_S5YNC, then the checkpoint replica must be identi-
cal to the other checkpoint replicas.

. Otherwise, the data in the checkpeint replica are synchronized using the data
in the active checkpoint replica.

When a checkpoint is opened using the saCkptCheckpointOpen() or saCkptCheck-
pointOpenAsync() function, some combination of these flags are bitwise ORed
together to provide the value of the creationFlags field of the checkpointCreationAt-
tributes parameter.

In the asynchronous case, completion of the saCkptCheckpointOpenAsync() function
is signaled by the associated saCkptCheckpointOpenCallback() function. The pro-
cess supplies the value of invocation when it invokes the saCkptCheckpointOpenA-
sync() function and the Checkpoint Service gives that value of invocation back to the
application when it invokes the corresponding saCkptCheckpointOpenCallback()
function. The invocation parameter is a mechanism that enables the process to deter-
mine which call triggered which callback.

7.3.6 Checkpoint Open Call back

Syntax:

High Availability Task Group

Network Processing Forum Software Working Group

typedef void (*SaCkptCheckpointOpenCalibackT)(
SalnvocafionT invocation,
const SaCkptCheckpointHandle T *checkpointHandle,
SaErrorT error

);
Parameters

invocation - [im] This parameter was supplied by a process in the corresponding invo-
cation of the saCkptCheckpointOpenAsync() function and is used by the Checkpoint
Service in this callback. This invocation parameter allows the process to match the
invocation of that function with this callback.

checkpointHandle - [in] A pointer to the handle, obtained through the saCkplinitial-
ize() function, designating this particular initialization of the Checkpoint Service.

etrar - [in] The error returned if the saCkptCheckpointOpenAsyne() function was not
successful. The error codes that can be returned are as follows:
« SA_OK - The function completed successfully.
SA _ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
SA_ERR_INIT - The function saCkptinitialize() has not been invoked yet or the
function saCkptFinalize() has already been invoked.

. SA_ERR_TIMEOQOUT - An implementation-dependent timeout occurred or the
timeout defined by the timeout parameter occurred before the call could com-
plete. It is unspecified whether or not the call succeeded.

SA_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may try again.
SA_ERR_INVALID_PARAM - A parameter is not correctly set.

« SA ERR_NO MEMORY - Either the local library or a process that is providing
the service is out of memory, and cannot provide the service.

SA_ERR_ACCESS - The checkpoint exists but the permissions specified by
the checkpointOpenFiags parameter are denied.

« SA ERR_NOT_EXIST - The creationAtiributes parameter is NULL and the
checkpoint does not exist.

. SA_ERR_EXIST - The checkpoint already exists and the creationAffributes
are different from the ones used at creation time.

SA_ERR_BAD_FLAGS - The checkpointOpenFiags parameter is invalid.

Description

The Checkpoint Service invokes this callback function when the invocation of
saCkptCheckpointOpenAsync() is completed. If successful, the reference to the
opened/created checkpoint is returned in checkpointHandle, otherwise, an error is
returned in the emor parameter.

High Availability Task Group

32

Network Processing Forum Software Working Group

7.3.7 Close the checkpoint

Syntax:
SaErrorT saCkptCheckpointClose(
const SaCkptCheckpointHandle T *checkpointHandle
).
Parameters

checkpointHandle - [in] A pointer to a handle that designates the checkpoint to close.
Description

The function saCkptCheckpointClose() frees the resources allocated by the previous
invocation of saCkptCheckpointOpen() or saCkptCheckpointOpenAsyncy). After this
invocation, the use of the handle ckeckpointHandle is no longer valid.

After the invocation of the saCkptCheckpointClose() function completes, if no process
has the checkpoint open any longer, the following will occur:

« The checkpoint is deleted immediately if its deletion was pending as a result of a
saCkptCheckpointUniink() function, or
The checkpoint will be deleted when the retention duration expires if no process
opens it in the meantime.

When a process (process) terminates, all of its opened checkpoints are closed.

HA-SPI or HA-FAPI which is being used by multiple HA aware resource should perform clean up
operation, when the HA application invokes the HA extension API to deregister from the service.

High Availability Task Group

33

Network Processing Forum Software Working Group

7.3.8 Set checkpoint retention time

Syntax:
SaErrorT saCkptCheckpointRetentionDurationSet(
const SaCkptCheckpointHandieT *checkpointHandle,
SaTimeT retentionDuration

);

Parameaters

checkpointHandle - [in] A pointer to the checkpoint whose retention time is being set.

retentionDuratfon - [in] The value of the retention duration to be set. The checkpoint is
retained (not deleted) for the retention duration.

Description

The function saCkptCheckpointRetentionDurationSet() sets the retention duration of
the checkpoint, designated by checkpointHandle, to refentionDuralfion. After no more
processes have the checkpoint open and if the checkpoint is not opened by any pro-
cess for the retention duration, the Checkpoint Service automatically deletes the
checkpoint.

High Availability Task Group

34

Network Processing Forum Software Working Group

7.3.9 Set active checkpoint to active replica
Syntax:

SaEmorT saCkptActiveCheckpointSet(
const SaCkptCheckpointHandieT *checkpointHandle

).
Parameters

checkpointHandle - [in] A pointer to a handle that designates a checkpoint.

Description

This function is useful only for checkpoints that have been created with the
SA_CKPT_WR_ACTIVE_REPLICA or SA_CKPT_WR_ACTIVE_REPLICA_WEAK
attribute, and opened with the SA_CKPT_CHECKPOINT_COLOCATED flag.

After an invocation of this function, the local checkpoint replica will become the active
checkpoint replica:

All write operations - saCkptCheckpointWrite() and saCkptSectionOvenwrite() -
update the local checkpoint replica synchronously and update the other check-
point replicas asynchronously

All read operations - saCkptCheckpointRead() - are performed using this local
checkpoint replica.

High Availability Task Group

35

Network Processing Forum Software Working Group

7.3.10 Get the checkpoint status

Syntax:

SaErrorT saCkptCheckpointStatusGet(
const SaCkptCheckpointHandieT “checkpointHandle,
SaCkptCheckpointSiatusT “checkpointStatus

).

Parameters

checkpointHandle - [in] A pointer to a handle of the checkpoint whose status is to be
returned

checkpointStatus -[out] A pointer to a SaGkptCheckpointStatusT structure

Description

This function retrieves the checkpointStatus of the checkpoint designated by check-
pointHandle.

7.3.11 Create checkpoint section

Syntax:
SaErrorT saCkptSectionCreate(
const SaCkptCheckpointHandieT *checkpointHandle,
SaCkptSectionCreationAftributesT *sectionCreationAttributes,
const void *initialData,
Salint32T initialDataSize

)
Parametears

checkpointHandle - [in] A pointer to the handle of the checkpoint that is to hold the
section. The checkpoint handle checkpointHandle must be obtained by a previous

invocation of the saCkptCheckpointOpen() function with the
SA_CKPT_CHECKPOINT WRITE flag set.

sectionCreationAttributes - [in] A pointer to a structure SaCkptSectionCreationAt-
tributesT that contains the infout field section/d and the

initialData - [in] A location in the address space of the invoking process that contains
the initial data of the section to be created.

inftialDataSize - [in] The size of the initial data of the section to be created. Initial size
can be at most maxSectionSize, as specified by the checkpoint creation attributes in
saCkptCheckpointOpen).

High Availability Task Group

Network Processing Forum Software Working Group

Description

This function creates a new section. Unlike a checkpoint, a section does not need to
be opened for access. The section shall be deleted by the Checkpoint Service when
its expiration time is reached. If a checkpoint is created to have only one section, itis
not necessary to create that section. The default section is idenfified by the special
identifier SA_CKPT_DEFAULT_SECTION_ID. If the

SA CKPFT_WR_ALL REPLICAS property is set, the section is created in all of the
checkpoint replicas when the invocation returns; otherwise, the section has been cre-
ated at least in the active checkpoint replica when the invocation returns and will be
created asynchronously in the other checkpoint replicas.

7.3.12 Delete a checkpoint section
Syntax:

SaErrorT saCkptSectionDelete(
const SaCkptCheckpointHandleT *checkpointHandle,
const SaCkptSectionldT *sectionid

)
Parametears

checkpointHandle - [in] A pointer to the handle to the checkpoint obtained by a previ-
ous invocation of the saCkptCheckpointOpen() function with the
SA_CKPT_CHECKPOINT_WRITE flag set.

secfionld - [in] A pointer to the idenfifier of the section that is to be deleted.

Description

This function deletes a section. Ifthe SA_CKPT_WR_ALL REPLICAS property is
set, the section has been deleted in all of the checkpoint replicas when the invocation
returns; otherwise, the section has been deleted at least in the active checkpoint rep-
lica when the invocation returns. The default section, identified by
SA_CKPT_DEFAULT_SECTION_ID, cannot be deleted by invoking the saCkptSec-
tionDefete() function.

High Availability Task Group

Network Processing Forum Software Working Group

7.3.13 Set Checkpoint expiration time
Syntax:

SaErrorT saCkptSectionExpirationTimeSet(
const SaCkptCheckpointHandieT *checkpointHandle,
const SaCkptSectionldT* sectionid,
SaTimeT expirationTime

)
Parameters

checkpointHandle - [in] A pointer to the handle of the checkpoint containing the sec-
tion for which the expiration time is to be set.

sectionld - [in] A pointer to the identifier of the section for which the expiration time is
to be set.

expirationTime - [in] The expiration time that is to be set for the section. The expira-
tion time is an absolute time that defines the time at which the Checkpoint Service will
delete the section automatically. If expirationTime has the special value
SA_TIME_END, the Checkpoint Service never deletes the section automatically.

Description

This function sets the expiration time of the section, identified by sectionid, within the
checkpoint with handle checkpointHandie. The expiration time of the default section,
identified by SA_CKFT_DEFAULT _SECTION_ID, is unlimited and cannot be
changed.

High Availability Task Group

38

Network Processing Forum Software Working Group

7.3.14 Iterator initialization of checkpoint

Syntax:

SaErrorT saCkptSectionlteratorinitialize(
const SaCkptCheckpointHandleT *checkpointHandle,
SaCkptSectionsChosenT sectionsChosen,
SaTimeT expirationTime,
SaCkptSectionlterator T *sectionlterator
)
Parameters

checkpointHandle - [in] A peinter to the checkpoint handle previously returned by
saCkptCheckpoimtOpen() or saCkptCheckpointOpenAsync().

secfionsChosen - [in] A predicate, defined by the SaCkptSectionsChosenT structure
in Section 7.3.3.5, that describes the sections that are to be chosen during iteration.

expirationTime - [in] An absolute time used by seclionsChosen, as described above.
This field is not used when sectionsChosen is SA_CKPT_SECTIONS _FOREVER,
SA_CKPT_SECTIONS _CORRUPTED or SA_CKPT_SECTIONS_ANY.

secfionlterator - [out] An iterator for stepping through the sections in the checkpoint
designated by checkpointHandle, and stored in the address space of the invoking
process.

Description

This function allocates and initializes the sectioniterator for stepping through the sec-
tions in a checkpoint designated by checkpointHandle. The iterator only iterates
through sections that match the criteria specified in sectionsChosen. The iterator
keeps track of the current position while iterating through sections. It is given as an
input argument to the function saCkptSectioniteratoriexi().

High Availability Task Group

Network Processing Forum Software Working Group

7.3.15 Return next section using iteration

Syntax:

SaErrorT saCkptSectioniteratorNext(
SaCkptSectioniteraforT *sectioniterator,
SaCkptSectionDescriptorT *sectionDescriptor

);

Parameters

sectionlterator - [infout] A pointer to the iterator for stepping through the sections in
the checkpeint, obtained from an invocation of saCkptSectionlteratorinitialize().

sectionDescriptor - [out] A pointer to a SaCkptSectionDescriptorT structure,

Description

This function iterates over an internal table of sections, using an iterator defined using
saCkptSectioniteratorinitialize(). When the function returns, sectionDescriptor is set
to the descriptor of a section, and the iterator is updated. A subseguent invocation of
saCkptSectioniferatorMext() returns another section. When there are no more sec-
tions to return, an error is returned.

Every section created before the invocation of the saCkptSectionlteratorinitializef)
function and not deleted before the invocation of saCkptSectioniteratorFinalize() shall
be returned exactly once by this invocation. Mo other guarantees are made: sections
that are created after an iterator is initialized, or deleted before an iterator is closed,
may or may not be returned by an invocation of this function.

7.3.16 Clear Iterator resources attached to a checkpoint

Syntax:
SaErrorT saCkptSectioniteratorFinalize(
SaCkptSectioniteratorT *sectioniterator
).
Parameters

sectionlterator - [in] A pointer to a structure obtained from an invocation of the
saCkptSectioniteratorinitialize() function.

Description

This function frees resources allocated for iteration.

High Availability Task Group

40

Network Processing Forum Software Working Group

7.3.17 Write to checkpoint data store

Syntax:

SaErrorT saCkptCheckpointWiite(
const SaCkptCheckpointHandie T *checkpointHandle,
const SaCkptiOVectorElementT *ioVector,
Sallint32T numberOrElements,
Sallint32T *erroneousVectorindex

)
Parameters

checkpointHand'e - [in] A pointer to a handle to the checkpoint that is to be written.
The checkpoint handle checkpointHandie must be obtained by a previous invocation
of the saCkptGheckpointOpen() function with the SA_CKPT_CHECKPOINT WRITE
flag set.

ioVector - [in] A pointer to a vector with elements joVector[0], ... ioVector{numberO-
fElements - 1]. Each element is of the type SaCkptlOVectorElementT, defined in Sec-
tion 7.3.4.1, which contains the following fields: sectionid, dataBuffer, dataSize,
dataBuffer, dataOifset and readSize. If sectionid is equal to

SA CKPT _DEFAULT _SECTION_ID, then the default section is written. The dafasize
is at most maxSectionSize as specified in the creation attributes of the checkpoint.
The readSize is not used by the saCkptCheckpointWrite() function.

numberOfElements - [in] Size of the ioVector.

erroneousVectorindex - [ouf] A pointer to an index, stored in the caller's address
space, of the first iovector element that makes the invocation fail. If the index is set to
NULL or if the invocation succeeds, the field remains unchanged.

Description

This function writes data from the memory regions specified by ioVector into a check-
point:

If this checkpoint has been created with the SA_ CKPT_WR_ALL REPLICAS
property, all of the checkpoint replicas have been updated when the invocation
returns. If the invocation does not complete or returns with an error, nothing
has been written at all.

If the checkpoint has been created with the
SA_CKPT_WR_ACTIVE_REPLICA property, the active checkpoint replica has
been updated when the invocation returns. Other checkpoint replicas are
updated asynchronously. If the invocation does not complete or returns with an
error, nothing has been written at all.

. If the checkpoint been created with the
SA_CKPT_WR_ACTIVE_REPLICA WEAK property, the active checkpoint
replica has been updated when the invocation retums. Other checkpoint repli-
cas are updated asynchronously. If the invocation returns with an error, noth-
ing has been written at all. However, if the invocation does not complete, the
operation may be partially completed and some sections may be corrupted in
the active checkpoint replica.

High Availability Task Group

41

Network Processing Forum Software Working Group

If one or more HA process is trying to write to the checkpoint we expect those application to
cooperatively synchronize themselves and use the checkpoint in order to ensure proper sequence of
write operation.

7.3.18 Overwrite checkpoint region
Syntax:

SaFErrorT saCkptSectionOverwrite(
const SaCkptCheckpointHandie T *checkpointHandle,
const SaCkptSectionldT *section/d,
Sallint8T "dataBuffer,
SaSizeT dataSize

);
Parameters

checkpointHandle - [in] A pointer to the handle that designates the checkpoint that is
written. The checkpoint handle checkpointHanale must be obfained by a previous
saCkptCheckpointOpen() invocation with the SA_CKPT_CHECKPOINT _WRITE flag
set.

sectionld - [in] A pointer to an identifier for the section that is to be overwritten. If this
pointer points to SA_CKPT_DEFAULT_SECTION_ID, the default section is updated.

dataBuffer - [in] A pointer to a buffer that contains the data to be written.

dataSize - [in] The size in bytes of the data to be written, which becomes the new size
for this section.

Description

This function is similar to saCkptCheckpointWrite() except that it overwrites only a
single section. As a result of this invocation, the previous data and size of the section
will change. This function may be invoked even if there was no prior invocation of
saCkptCheckpointWrite().

High Availability Task Group

Network Processing Forum Software Working Group

7.3.19 Read checkpoint store

Syntax:

SaErrorT saCkptCheckpointRead|
const SaCkptCheckpointHandle T *checkpointHandle,
SaCkptiOVectorElementT *ioVector,
Sallint32T humberOrElements,
Salint32T *erroneousVectorindex

Parametars

checkpointHandle - [in] A pointer to the handle to the checkpoint that is to be read.
ioVector - [infouf] A pointer to a vector that contains elements joVector{0], ..., ioVec-

torfnumberOrfEiements - 1]. Each element is of the type saCkpt/OVectorElementT,

sectionld - [in] The identifier of the section to be written or read.

dataBuifer - [infout] A pointer to a buffer containing the data to be written or

read. If dataBurffer is NULl_, the value of datasize provided b‘f the invoker is

ignored and the buffer must be deallocated by the invoker.

- dataSize - [in] Size of the data to be written to, or read from, the buffer

dataBuifer. The size is at most maxSectionSize as specified in the creation
attributes of the checkpoint.

- dataOffset - [in] Offset in the section that marks the start of the data that is to
be written or read.

. readSize - [out] Used by saCkptCheckpointRead() to record the number of
bytes of data that have been read; otherwise, this field is not used.
numberOfEiements - [in] The size of the joVector.

erroneousVectorindex - [out] A pointer to an index, in the caller's address space, of
the first vector element that causes the invocation to fail. If the invocation succeeds,
then erroneousVectorindex is NULL and should be ignored.

Description

This function copies data from a checkpoint replica into the vector specified by foVec-
tor. Some of the buffers provided to the invocation may have been modified if the
invocation does not succeed.

High Availability Task Group

43

Network Processing Forum Software Working Group

7.3.20 Synchronize checkpoint

Syntax:
SaErrorT saCkptCheckpointSynchronize(

const SaCkptCheckpointHandieT *ckeckpointHandie,
SaTimeT timeout

SaEmrorT saCkptCheckpointSynchronizeAsync(

const SaCkptHandleT *ckptHandie,

SalnvocationT invocation,

const SaCkptCheckpointHandleT *checkpointHandle
)
Parameters

ckptHandle - [in] A pointer to the handle, obtained through the saCkptinitiaiize() func-
tion, designating this particular initialization of the Checkpoint Service.

invocation - [in] This parameter designates a particular invocation of the response
callback.

checkpointHandle -[in] A pointer to the handle of the checkpoint that is to be synchro-
nized.

timeout - [in] The synchronous version shall terminate if the time it takes exceeds tim-
eout. However, the propagation of the checkpoint data to other checkpoint replicas
might continue even if this error is returned.

Description

The saCkptCheckpaintSynchronize() and saCkptCheckpointSynchronizeAsync()
function ensures that all previous operations applied on the active checkpoint replica
are propagated to other checkpoint replicas. Such operations are saCkptCheckpoint-
Wiite(), saCkptSectionOverwrite(), saCkptSectionCreate() and saCkptSectionDe-
lete().

These invocations are useful only for checkpoints created with the synchronization
values SA_CKPT _WR_ACTIVE_REPLICA or
SA CKPT_WR_ACTIVE_REPLICA_ WEAK.

Only those processes that have the checkpoint open in
SA CKPT_CHECKPOINT _WRITE mode may invoke this function.

After successful completion of this function, all checkpoint replicas should be identi-
cal.

For the saCkptCheckpointSynchronize() function, when the timeout expires, there is
no guarantee whether or not the checkpoint replicas have been synchronized.

For the saCkptCheckpointSynchronizeAsync() function, completion of the function is
signaled by the associated saCkptCheckpointSynchronizeCaliback() function. The
invoking process sets the invocation parameter and the Checkpoint Service uses the
value of invocation in the invocation of the callback function.

High Availability Task Group

44

Network Processing Forum Software Working Group

7.3.21 Checkpoint synchronize call back function

Syntax:

typedef void (*SaCkptCheckpointSynchronizeCallbackT)(

)

SalnvocationT invocation,
SaErrorT error

Parameters

invocation - [in] This parameter is supplied by a process in the corresponding invoca-
tion of the saCkptCheckpointSynchronize() function and is used by the Checkpoint
Service in this callback. This invocation parameter allows the process to match the
invocation of that function with this callback.

error - [in] The error returned if the saCkptCheckpointSynchronize() function was not
successful. The error codes that can be returned are as follows:

SA_OK - The function completed successfully.

SA_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_ERR_INIT - The function saCkpéinitialize() has not been invoked yet, or
the function saCkptFinalize() has already been invoked.

SA_ERR_TIMEOUT - An implementation-dependent timeout occurred or the
timeout defined by the timeout parameter occurred before the call could com-
plete_ It is unspecified whether or not the call succeeded.

SA_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may try again.
SA_ERR_INVALID PARAM - A parameter is not correctly set.

SA_ERR_NO_MEMORY - Either the local library or a processb that is provid-
ing the service is out of memory, and cannot provide the service.

SA_ERR_BAD HAMDLE - One or both of the handles ckptHandle or ckeck-
pointHandie is not valid.

SA_ERR_ACCESS - The checkpoint has not been opened for write mode.

Description

The Checkpoint Service invokes this callback when saCkptCheckpointSynchro-
nizeAsyne() is completed. The result of the function is returned in the error parameter.

7.4 Event Service API

If HA applications or HA-SAPI or HA-FAPI needs to communicate across cards (that is between standby
and active) they can use HA Event Service API. The main purpose is to exchange HA application specific
state transition or other HA application specific events to group of HA resources that are belonging to

same service group or managed under same HA middleware.

High Availability Task Group

Network Processing Forum Software Working Group

7.4.1 Usage Model

This is a optional service and depending upon the nature of application either HA aware application
or HA-SAPI or HA-FAPI may use this. Each HA implementation must implement this.

= HA application that wishes to send or receive events needs to subscribe the HA event service.

= Multiple subscribers can subscribe to same event and HA event service implementation will
post appropriate event when some one publish an events. HA implementation supports
several logical channels for posting events and each channel can be categorized as

O Dest effort delivery
o0 at most delivery service
o Event priority
o Event completeness
0 Retention time and persistence
= HA Event service depends on AMF implementation in NPF environment.

7.4.2 Initialize Event Service

Syntax:
SaErrorT saEvtinitialize(
SaEvtHandleT “eviHandle,
const SaEvitCallbacksT *callbacks,
const SaVersionT *version

(];.
Parameters

eviHandle - [out] A pointer to the handle for this initialization of the Event Service.

callbacks - [in] A pointer to the callbacks structure that contains the callback functions
of the invoking process that the Event Service may invoke.

version - [in] A pointer to the version of the Event Service that the invoking process is
using.

Description

The saEvtinitialize() function initializes the Event Service for the invoking process. A
user of the Event Service must invoke this function before it invokes any other func-
tion of the Event Service API. Each initialization returns a different callback handle
that the process can use to communicate with that library instance.

Each HA aware resource needs to initialize the Event service library in order to make use of the event
service. If HA-SAPI or HA-FAPI wants to subscribe or publish events, then it will invoke this call

High Availability Task Group 46

Network Processing Forum Software Working Group

and will install appropriate callback functions. If both HA aware resource and HA-SAPI or HA-FAPI
is required to use the event service, then HA aware resource should initialize the library. HA
implementation must return a unique handle each time when this checkpoint service is being
initialized.

7.4.3 Installing event dispatch mechanism
Syntax:

SaErrorT sakvtDispatch(
const SaEvtHandleT "eviHandle,
SalispatchFlagsT dispatchFlags

)
Parameters

eviHandle - [in] A pointer to the handle, obtained through the saEvtinitialize() func-
tion, designating this particular initialization of the Event Service.

dispatchFlags - [in] Flags that specify the callback execution behavior of the the saE-
vtDispatch() function, which have the values SA_DISPATCH_ONE,
SA_DISPATCH_ALL or SA_DISPATCH_BLOCKING, as defined in Section 3.3.8.

Description

The saEvtDispatch{) function invokes, in the context of the calling thread, one or all of
the pending callbacks for the handle eviHandlie.

High Availability Task Group 47

Network Processing Forum Software Working Group

7.4.4 Open an Event Channel

Syntax:

SaErrorT saEviChannelOpen(
const SaEvtHandleT *eviHandle,
const SaNameT "channelName,
SaEvtChannelOpenfHagsT channelOpenflags,
SaEvtChannelHandle T *channelHandle

(]J.
Parameters

evtHandle - [in] A pointer to the handle, obtained through the saEvtinitialize() func-
tion, designating this particular initialization of the Event Service.

channelName - [in] A pointer to the name of the event channel, which globally identi-
fies an event channel in a cluster. If the name is already in use within the cluster, the
error SA_ERR_EXIST will be returned.

channelOpenflags - [in] The requested access modes of the event channel. The
value of this parameter is obtained by a bitwise OR of the
SA_EVT_CHANMNEL_PUBLISHER, SA_EVT _CHANNEL_SUBSCRIBER and

SA _EVT _CHANNEL_CREATE flags defined by SaEvtChannelOpenFlagsT in Sec-
tion 8.3.3. If SA_EVT_CHANNEL_PUBLISHER is set, the process may use the
returned event channel handle with saEvtEventPublish{). If

SA_EVT _CHANNEL_SUBSCRIBER is set, the process may use the returned event
channel handle with saEvtEventSubscribe(). If SA_EVT _CHANNEL _CREATE is set,
the Event Service creates an event channel if one does not already exist.

channelHandle - [infout] A pointer to the handle of the event channel, provided by the
invoking process in the address space of the process. If the event channel is opened
successfully, the Event Service stores, in channelHandle, the handle that the process
uses to access the channel in subsequent invocations of the functions of the Event
Service AP

High Availability Task Group 48

Network Processing Forum Software Working Group

Description

The saEvtChannelOpen() function creates a new event channel or open an existing
channel. The saEviChannelOpen() function is a blocking operation and returns a new
event channel handle.

An event channel may be opened multiple times by the same or different processes
for publishing, and subscribing to, events. If a process opens an event channel multi-
ple times it is possible to receive the same event multiple times. However, a process
shall never receive an event more than once on a particular event channel handle.

If a process opens a channel twice and an event is matched on both open channels,
the Event Service performs two callbacks -- one for each opened channel.

7.4.5 Close event channel

Syntax:

SaErrorT saBEviChannelClose(
SabEvtChannelHandleT "channelHandle

);
Parameters
channelHandle - [in] A pointer to the handle of the event channel to close.
Description

The sabEvtChannelClose() function closes an event channel and frees resources allo-
cated for that event channel in the invoking process. If the event channel is not refer-
enced by any process and does not hold any events with non-zero retention time, the

Event Service automatically deletés the eveni channel

High Availability Task Group

Network Processing Forum Software Working Group

7.4.6 Set attribute for Events

Syntax:
SaErrorT saEvtEventAttributesSet(
const SaEviEventHandleT "eventHandle,
const SaEviEventPatternArrayT *patternArmray,
Salint8T priority,
SaTimeT retentionTime,
const SaMameT "publisherName

)
Parameters
eventHandle - [in] A pointer to the handle of the event whose attributes are to be set.

patternArray - In] A pointer to a structure that contains the array of patterns to be
placed into the event pattern array and the number of such patterns.

priority - [in] The priority of the event.
retentionTime - [In] The duration for which the event will be retained.
publisherMame - [in] A pointer to the name of the publisher of the event.

Description

This function may be used fo assign writeable event attributes. It takes as arguments
an event handle eventHandle and the attribute to be set in the event structure of the
event with that handle. Note: The only attributes that a process can set are the patter-
nArray, priority, retentionTime and publisherName attributes.

High Availability Task Group

Network Processing Forum Software Working Group

7.4.7 Get Event attributes

Syntax:

SaErrorT saEviEventAttributesGet(
const SaEvtChannelHandleT *channelHandle,
const SaEviEventHandleT *eventHandle,
SaEviEventPatternArrayT “pattemArray,
SaUint8T "priority,
SaTimeT “retentionTime,
SaMNameT “publisherName,
SaClmNodeldT *publisherModeld,
SaTimeT "publishTime,
SaEvtEventldT "eventld

);
Parameters

channelHandle - [in] A pointer to the handle of the event channel on which the event
data is to be received. This parameter is an event channel handle returned from a
previous call to the saEviChannelOpen() function.

eventHandie - [in] A pointer to the handle of the event whose attributes are to be
retrieved.

patternArray - [infout] A pointer to a structure that contains the array of patterns to be
retrieved from the event pattern array and the number of such patterns. A process
that invokes this function provides the patternArray, and the Event Service inserts the
patterns into the successive entries of the patternArray, starting with the first entry

and continuing until the patterns are exhausted. The number of patterns that the
Event Service insers into the pafternArray 1s the minimum of the number of patterns
for the event and the pafternsNumber value of the in value of patternArray, supplied
by the process. If there are more patterns than patternshumber, the Event Service
does not insert those additional patterns. The patttemnsiNumber value of the out value
of patternArmray, supplied by the Event Service, can be less than, equal fo, or greater
than the value of patternsNumber, supplied by the process.

priority - [out] A pointer to the priority of the event.

retentionTime - [out] A pointer to the duration for which the publisher will retain the
event.

publisherMame - [out] A pointer to the name of the publisher of the event.

High Availability Task Group

51

Network Processing Forum Software Working Group

publisherNodeld- [out] A pointer to the identifier of the card from which the events was published.

publishTime - [out] A pointer to the time at which the publisher published the event.

eventld - [out] A pointer to an identifier of the event.

Description

This function takes as parameters an event handle eventHandle and the attributes of
the event with that handle. The function retrieves the value of the attributes for the
event and stores them at the address provided for the out parameters.

It Is the responsibility of the invoking process to allocate memory for the out parame-
ters before it invokes this function. The Event Service assigns the out values into that
memaory. For each of the out, or infout, parameters, If the invoking process provides a
MULL reference, the Availability Management Framework does not return the out
value.

Similarly, it is the responsibility of the invoking process to allocate memory for the pat-
ternArray.

High Availability Task Group

52

Network Processing Forum Software Working Group

7.4.8 Get Event Data

Syntax:

SaErrorT saEviEventDataGet(
const SabEviEventHandle T *eventHandle,

void *eventData,
SaSizeT "eventDataSize

)
Parameters

eventHandle - [in] A pointer to the handle to the event previously delivered by saE-
viEventDeliverCaliback().

eventData - [infout] A pointer to a buffer provided by the process in which the Event
Service stores the data associated with the delivered event.

eventDataSize - [infout] The in value of eventDataSize is the size of the eventData
buffer provided by the invoking process. The Event Service must not write more than
eventDataSize bytes into the eventData buffer. The out value of eventDataSize is the
size of the eventData of the event, which may be less than, equal to, or greater than
the in value of eventDataSize. Note: An eventData buffer of size
SA_EVT _DATA _MAX_LEN bytes or more will always be able to contain the largest
possible event data associated with an event.

Description

The saEviEventDataGet() function allows a process to retrieve the data associated
with an event previously delivered by saEviEventDeliverCallback().

High Availability Task Group

Network Processing Forum Software Working Group

7.4.9 Event Delivery call back
Syntax:

typedef void(*SaEviEventDeliverCallbackT)(
const SaEvitChannelHandleT *channelHandle,
SabvtSubscriptionldT subscriptionld,
const SaEvitEventHandle T *eventHandle,
const SaSizeT eventDataSize

)

Parameters

channelHandle - [in] A pointer to the handle to the event channel on which the event
has been received.

subscriptionld - [in] An identifier that a process supplied in an saEviEventSubscribe()
invocation that enables it to determine which subscription resulted in the delivery of
the event.

eventHandie - [in] A pointer to the handle to the event that is allocated by the Event
Service before it invokes this callback. The Event Service must not deallocate the

memaory space for the handle before the process invokes the saEviEventfree() func-
tion.

eventDataSize - [In] The size of the data associated with the event.

High Availability Task Group 54

Network Processing Forum Software Working Group

7.4.10 Publish an event

Syntax:
SaErrorT saEviEventPublish{

const SaEvtChannelHandleT *channelHandle,
const SaEvitEventHandle T "eventHandle,
const void “eventData,

SasSizeT eventDataSize

)

Parameters

channelHandle - [in] A pointer to the handle of the event channel on which to publish
the event. This event channel handle was returned previously by a call to saEviChan-
nelOpen(). The invoking process must have opened the channel with

SA EVT CHANNEL PUBLISHER set, i.e, in publisher mode.

High Availability Task Group

55

Network Processing Forum Software Working Group

eventHandle - [in] A pointer to the handle of the event that is to be published. The
event must have been allocated by saEvtEventAllocate() and the patterns must have
been set by saEviEvenPatternArraySet().

eventData - [in] A pointer to a buffer that contains additional event information for the
event being published. This parameter is set to NULL if no additional information is
associated with the event. The process may deallocate the memory for eventData
when saEviEventPublish() returns.

eventDataSize - [in] The number of bytes in the buffer pointed to by eventData. Set-
ting eventDataSize greater than SA_EVENT _DATA_MAX_SIZE resulis in only the
first SA_EVENT _DATA_MAX_SIZE characters being published.

Description

The saEvtEventFPublish() function publishes an event on the channel designated by
channelHandle. The event to be published consists of a standard set of atiributes (the
event header) and an optional data part.

Before an event can be published, the publisher process must invoke the sak-
viEventPatternArraySet() function to set the event patterns. The event is delivered to
subscribers whose subscription filter matches the event patterns.

When the Event Service publishes an event, it automatically sets the following read-
only event attributes:

. Event attribute time

« Event publisher identifier

« Event publisher node identifier
. Event identifier

In addition to the event attributes, a process can supply values for the eventData and
eventDataSize parameters for publication as part of the event. The data portion of the
event may be at most SA_EVT_DATA_MAX_LEN bytes in length.

The process may assume that the invocation of saEviEventPublish() copies all perti-
nent parameters, including the memory associated with the eventHandle and event-
Data parameters, to its own local memory. However, the invocation does not
automatically deallocate memory associated with the eventHandle and eventData
parameters. It is the responsibility of the invoking process to deallocate the memory
for those parameters after saEviEventPublish() returns.

High Availability Task Group

56

Network Processing Forum Software Working Group

7.4.11 Subscribe to an Event

Syntax:

SaErrorT saEviEventSubscribe(
const SaEvtChannelHandleT *channelHandle,

const SaEviEventFilterAmrayT *filters,
SaEvtSubscriptionldT subscriptionld

(]‘:.
Parameters

channelHandle - [in] A pointer to the handle of the event channel on which the pro-
cess Is subscribing fo receive events. The event channel handle is returmed from a
previous invocation of the saEviChannelOpen() function.

filters - [in] A pointer to a SaEviEventFilterArray T structure that defines filter patterns
to use to filter events received on the event channel. The process may deallocate the
memaory for the filters when saEvtEventSubscribe() returns.

subscriptionld - [in] An identifier that uniquely identifies a specific subscription on an
event channel and that is used as a parameter of saEviEventDeliverCallback().

Description

The saEviEventSubscribe() function enables a process to subscribe for events on an
event channel by registering one or more filters on that event channel. The process
must have opened the event channel, designated by channelHandle, with the

SA EVT CHANNEL SUBSCRIBER flag set for an invocation of this function to be

successful.

The memory associated with the filters is not deallocated by the saEviEventSub-
scribe() function_ It is the responsibility of the invoking process to deallocate the
memory when the saEviEventSubscribe() function returns.

For a given subscription, the filters parameter cannot be modified. To change the fil-
ters parameter without losing events, a process must establish a new subscription
with the new filters parameter. After the new subscription is established, the old sub-
scription can be removed by invoking the saEviEventUnsubscribe() function.

High Availability Task Group

Network Processing Forum Software Working Group

7.4.12 Unsubscribe to an event

Syntax:

SaErrorT saEviEventUnsubscribe(
const SaEvtChannelHandleT *channelHandle,
SaEvtSubscriptionld T subscriptionid

);

Parameters

channelHandle - [in] A pointer to the event channel for which the subscriber is
requesting the Event Service to delete the subscription.

subscriptionld -[in] The identifier of the subscription that the subscriber is requesting
the Event Service to delete.

Description

The saEvitEventUnsubscribe() function allows a process to stop receiving events for a
particular subscription on an event channel by removing the subscription. The sakE-
viEventUnsubscribe() operation is successful if the subscriptionld parameter matches
a previously registered subscription. Pending events that no longer match any sub-
scription, because the saEviEventUnsubscribe() operation had been invoked, are
purged. a process that wishes to modify a subscription without losing any events
must establish the new subscription before remaoving the existing subscription.

High Availability Task Group

58

Network Processing Forum Software Working Group

8 Appendix

8.1 Header file definition

8.1.1 NPF Extension API

/*
This header file defines typedefs, constants and
functions of the NPF High availability extension API

This assumes that the definitions common to all NPF APIs
are available in a separate manner (a different header
file, etc.)

*
*
*
*
*
*

*/

#ifndef _ NPF_HA API_H_
#define __NPF_HA_API_H_

#ifdef _ cplusplus
extern "C" {
#endif

typedef NPF_char8_t NPF_HA_ Component_Name_t; /*Holds the name of the
HA component */

typedef NPF_char8_t NPF_HA Role; /*Defines the HA role and mode*/

typedef NPF_iInt32_t NPF_HA Correlator_t; /*Correlates application
instance */

typedef NPF_iInt32_t NPF_HA Instance_ld; /*identifies HA instance */

/***

* HA Extension APl FUNCTION CALLS *
***/
NPF_error_t NPF_HAInit (

NPF_IN NPF_HA_ Component_Name *component_Name;

NPF_IN NPF_HA Role role,

NPF_IN NPF_HA Correlator_t correlator,

NPF_IN NPF_HA Instance Id instance_ld,

NPF_IN NPF_boolean_t mode,

);

void NPF_HADeregister(
NPF_IN NPF_HA_Component_Name *component_Name;
NPF_IN NPF_HA Correlator_t correlator,
NPF_IN NPF_HA Instance_Id 1instance_ Id,

)

#ifdef _ cplusplus

b
#endi

High Availability Task Group 59

Network Processing Forum Software Working Group

#endif /* __NPF_HA_API_H_ */

8.1.2 SAForum API

/*

This header file is based on AIS document SAI-AIS-A.01.01
This include prototypes that are required and needs to be
supported in NPF-SW-HA environment.

/*
In order to compile, all opaque types that appear as <...>
the spec have been defined as OPAQUE TYPE (which is an
integer) .

typedef OPAQUE TYPE SalnvocationT;

typedef OPAQUE TYPE SaSizeT;

typedef OPAQUE TYPE SaOffsetT;

typedef OPAQUE TYPE SaSelectionObjectT;
typedef OPAQUE TYPE SaAmfHandleT;

typedef OPAQUE TYPE SaCkptHandleT;

typedef OPAQUE TYPE SaCkptCheckpointHandleT;
typedef OPAQUE TYPE SaCkptSectionIteratorT;
typedef OPAQUE TYPE SaEvtHandleT;

typedef OPAQUE TYPE SaEvtEventHandleT;
typedef OPAQUE TYPE SaEvtChannelHandleT;

*/

#define OPAQUE TYPE int

typedef OPAQUE TYPE SalInvocationT;
typedef OPAQUE TYPE SaSizeT;

typedef OPAQUE TYPE SaOffsetT;

typedef OPAQUE TYPE SaSelectionObjectT;

typedef enum {
SA FALSE = O,
SA TRUE = 1

} SaBoolT;

typedef char SaInt8T;
typedef short SaIntleT;
typedef long SaInt32T;
typedef long long SaInte4T;
typedef unsigned char Sauint8T;
typedef unsigned short SaUintl6eT;
typedef unsigned long SaUint32T;
typedef unsigned long long Sauint64T;
typedef SaInte4T SaTimeT;

#define SA MAX NAME LENGTH 256

typedef struct {

SaUintl16T length;

unsigned char value[SA MAX NAME LENGTH] ;
} SaNameT;

/*

NPF specific: We need to have our own versioning in order to
distinguish from normal SAForum complaint implementation

High Availability Task Group

Network Processing Forum Software Working Group

*/

typedef struct {
char releaseCode;
unsigned char major;
unsigned char minor;

} SavVersionT;

#define SA TRACK CURRENT 0xO01
#define SA TRACK CHANGES 0x02
#define SA TRACK CHANGES ONLY 0x04

typedef enum

SA DISPATCH_ONE 1,

SA DISPATCH ALL 2,

SA DISPATCH BLOCKING = 3
} SaDispatchFlagsT;

typedef enum {
SA OK = 1,
SA ERR LIBRARY = 2,
SA_ERR_VERSION = 3,
SA_ERR_INIT = 4,
SA_ERR_TIMEOUT = 5,
SA_ERR_TRY AGAIN = 6,
SA_ERR_INVALID PARAM = 7,
SA_ERR _NO_MEMORY = 8,
SA ERR_BAD HANDLE = 9,
SA_ERR BUSY = 10,
SA ERR ACCESS = 11,
SA_ERR_NOT EXIST = 12,
SA_ERR NAME_TOO LONG = 13,
SA_ERR EXIST = 14,
SA_ERR_NO SPACE = 15,
SA ERR_INTERRUPT =16, /* Not supported
SA ERR SYSTEM = 17,
SA_ERR_NAME NOT FOUND = 18,
SA_ERR_NO_RESOURCES = 19,
SA ERR NOT SUPPORTED = 20,
SA_ERR_BAD OPERATION = 21,
SA ERR_FAILED_ OPERATION = 22,
SA ERR MESSAGE ERROR = 23,
SA_ERR_NO MESSAGE = 24,
SA_ERR QUEUE_FULL = 25,
SA_ERR QUEUE_NOT AVAILABLE = 26,
SA_ERR_BAD CHECKPOINT = 27,
SA_ERR_BAD FLAGS = 28

} SaErrorT;

/*
* AMF related data types
*/
typedef OPAQUE TYPE SaAmfHandleT;

typedef enum {

*/

SA AMF HEARTBEAT = 1, /* Recommended value in NPF */
SA_AMF HEALTHCHECK LEVEL1l = 2, /*Not used in NPF */
SA AMF_HEALTHCHECK LEVEL2 = 3, /* Not used in NPF */
SA AMF HEALTHCHECK LEVEL3 = 4 /* Not used in NPF */

} SaAmfHealthcheckT;

typedef enum {
SA AMF OUT OF SERVICE = 1,
SA_AMF_IN SERVICE = 2,
SA AMF STOPPING = 3

} SaAmfReadinessStateT;

High Availability Task Group

61

Network Processing Forum Software Working Group

typedef enum {

SA AMF ACTIVE = 1,

SA AMF_STANDBY = 2,

SA_AMF_QUIESCED = 3 /* We need to add one more type
STOPPED in NPF */
} SaAmfHAStateT;

/* NPF: We need not support all redundancy model, its
application and implemenation dependent */

typedef enum
SA AMF COMPONENT CAPABILITY X ACTIVE AND Y STANDBY=
SA AMF COMPONENT CAPABILITY X ACTIVE OR X STANDBY
SA AMF_COMPONENT CAPABILITY 1 ACTIVE OR_Y STANDBY
SA AMF_COMPONENT_ CAPABILITY 1 ACTIVE OR 1 STANDBY =
SA AMF COMPONENT CAPABILITY X ACTIVE =
SA AMF COMPONENT CAPABILITY 1 ACTIVE =
SA AMF_COMPONENT CAPABILITY NO_STATE

} SaAmfComponentCapabilityModelT;

o
A wWN R

I
7

g o Ul

/*

In NPF each resource is referred in HA environment under a
component name. Component Service Instance and Component Name
refers are same in NPF.

*/
#define SA AMF CSI ADD NEW INSTANCE 0X1
#define SA AMF CSI_ALIL_INSTANCES 0X2

typedef SaUint32T SaAmfCSIFlagsT;

#define SA AMF SWITCHOVER OPERATION 0X1
#define SA AMF SHUTDOWN OPERATION 0X2
typedef SaUint32T SaAmfPendingOperationFlagsT;

typedef struct {
SaNameT compName;
SaAmfReadinessStateT readinessState;
SaAmfHAStateT haState;

} SaAmfProtectionGroupMemberT;

typedef enum {
SA AMF PROTECTION GROUP NO CHANGE = 1,
SA AMF PROTECTION GROUP_ADDED = 2,
SA AMF_PROTECTION_GROUP_REMOVED = 3,
SA AMF PROTECTION GROUP STATE CHANGE = 4
} SaAmfProtectionGroupChangesT;

typedef struct {
SaAmfProtectionGroupMemberT member;
SaAmfProtectionGroupChangesT change;
} SaAmfProtectionGroupNotificationT;

typedef enum
SA AMF COMMUNICATION ALARM TYPE = 1,
SA AMF QUALITY OF SERVICE ALARM TYPE = 2,
SA AMF PROCESSING ERROR _ALARM TYPE = 3,
SA AMF EQUIPMENT ALARM TYPE = 4,
SA AMF_ ENVIRONMENTAL ALARM TYPE = 5

} SaAmfErrorReportTypeT;

typedef enum
SA AMF_APPLICATION_SUBSYSTEM FAILURE = 1,

High Availability Task Group

Network Processing Forum Software Working Group

SA_AMF_BANDWIDTH REDUCED = 2,
SA_AMF_CALL_ESTABLISHMENT ERROR = 3,
SA_AMF_COMMUNICATION PROTOCOL_ERROR = 4,
SA_AMF_COMMUNICATION SUBSYSTEM FAILURE = 5,
SA_AMF_CONFIGURATION ERROR = 6,

SA_AMF_CONGESTION = 7, /* Not used in NPF */
SA_AMF_CORRUPT DATA = 8,

SA AMF_CPU CYCLES LIMIT EXCEEDED = 9,/* Not used in NPF */

SA AMF_ EQUIPMENT MALFUNCTION = 10,
SA_AMF_FILE_ERROR = 11,
SA_AMF_IO DEVICE ERROR = 12,
SA_AMF_LAN ERROR, SA AMF OUT OF MEMORY = 13,
SA AMF_ PERFORMANCE DEGRADED = 14,
SA AMF PROCESSOR PROBLEM = 15, /* Not used in NPF */
SA_ AMF_RECEIVE_FAILURE = 16,
SA AMF_REMOTE_NODE TRANSMISSION ERROR = 17,
SA_AMF_RESOURCE_AT_OR _NEARING CAPACITY = 18,
SA_ AMF_RESPONSE_TIME EXCESSIVE = 19,
SA AMF_RETRANSMISSION RATE EXCESSIVE = 20,
SA AMF SOFTWARE ERROR = 21,
SA AMF_ SOFTWARE PROGRAM ABNORMALLY TERMINATED = 22,
SA AMF_SOFTWARE PROGRAM_ ERROR = 23,
SA AMF STORAGE CAPACITY PROBLEM = 24,
SA_AMF_TIMING PROBLEM = 25,
SA AMF_UNDERLYING_RESOURCE UNAVAILABLE = 26,
SA AMF INTERNAL ERROR = 27,
SA_AMF_NO SERVICE_ ERROR = 28,
SA AMF_SOFTWARE LIBRARY ERROR = 29

} SaAmfProbableCauseT;

typedef enum
SA AMF CLEARED = 1,
SA AMF NO_ IMPACT = 2,
SA AMF_INDETERMINATE = 3,
SA AMF CRITICAL = 4,
SA AMF MAJOR = 5,
SA AMF_WEDGED_COMPONENT FATILURE = 6,
SA AMF COMPONENT TERMINATED FAILURE= 7,
SA AMF NODE FAILURE = 8,
SA_AMF MINOR = 9,
SA AMF WARNING = 10
} SaAmfErrorImpactAndSeverityT;

typedef enum {
SA AMF NO RECOMMENDATION = 1,
SA AMF_ INTERNALLY RECOVERED = 2,
SA AMF COMPONENT RESTART = 3,
SA AMF COMPONENT FAILOVER = 4,
SA AMF_NODE_SWITCHOVER 5,
SA_AMF NODE FAILOVER =
SA AMF NODE_ FAILFAST =
SA AMF_CLUSTER_RESET =
} SaAmfRecommendedRecoveryT;

7
I

0 JO0

#define SA AMF OPAQUE BUFFER_SIZE MAX 256

typedef struct
char *buffer;
SaSizeT size;

} SaAmfErrorBufferT;

typedef struct {
SaAmfErrorBufferT *specificProblem;
SaAmfErrorBufferT *additionalText;
SaAmfErrorBufferT *additionalInformation;
} SaAmfAdditionalDataT;

High Availability Task Group

63

Network Processing Forum Software Working Group

typedef struct {
SaAmfErrorReportTypeT errorReportType;
SaAmfProbableCauseT probableCause;
SaAmfErrorImpactAndSeverityT errorImpactAndSeverity;
SaAmfRecommendedRecoveryT recommendedRecovery;

} SaAmfErrorDescriptorT;

typedef wvoid

(*SaAmfHealthcheckCallbackT) (SaInvocationT invocation,
const SaNameT *compName,
SaAmfHealthcheckT checkType) ;

typedef void

(*SaAmfReadinessStateSetCallbackT) (SaInvocationT invocation,
const SaNameT *compName,
SaAmfReadinessStateT

readinessState) ;

typedef void
(*SaAmfComponentTerminateCallbackT) (SaInvocationT invocation,
const SaNameT *compName) ;

typedef wvoid
(*SaAmfCSISetCallbackT) (SaInvocationT invocation,

const SaNameT *compName,

const SaNameT *csiName, /* compName
csiName in NPF */

SaAmfCSIFlagsT csiFlags,

SaAmfHAStateT *haState,

SaNameT *activeCompName,

/* compName = activeCompName in NPF */

SaAmfCSITransitionDescriptorT

transitionDescriptor); /* Not used in NPF set to NULL */

typedef wvoid
(*SaAmfCSIRemoveCallbackT) (SaInvocationT invocation,
const SaNameT *compName,
const SaNameT *csiName,
const SaAmfCSIFlagsT *csiFlags) ;

typedef wvoid

(*SaAmfProtectionGroupTrackCallbackT)
(const SaNameT *csiName,
SaAmfProtectionGroupNotificationT *notificationBuffer,
SaUint32T numberOfItems,
SaUint32T numberOfMembers,
SaErrorT error) ;

typedef void

(*SaAmfPendingOperationConfirmCallbackT)
(const SaInvocationT invocation,
const SaNameT *compName,
SaAmfPendingOperationFlagsT pendingOperationFlags) ;

typedef struct
SaAmfHealthcheckCallbackT
saAmfHealthcheckCallback;
SaAmfReadinessStateSetCallbackT
saAmfReadinessStateSetCallback;
SaAmfComponentTerminateCallbackT
saAmfComponentTerminateCallback;
SaAmfCSISetCallbackT
saAmfCSISetCallback;

High Availability Task Group

64

Network Processing Forum Software Working Group

SaAmfCSIRemoveCallbackT
saAmfCSIRemoveCallback;
SaAmfProtectionGroupTrackCallbackT
saAmfProtectionGroupTrackCallback;
SaAmfPendingOperationConfirmCallbackT
saAmfPendingOperationConfirmCallback;
} SaAmfCallbacksT;

SaErrorT
SaAmfInitialize
(SaAmfHandleT *amfHandle,
const SaAmfCallbacksT *amfCallbacks,
const SaVersgsionT *version) ;

SaErrorT
saBAmfSelectionObjectGet (const SaAmfHandleT *amfHandle,
SaSelectionObjectT *selectionObject) ;
SaErrorT
saAmfDispatch (const SaAmfHandleT *amfHandle,
SaDispatchFlagsT dispatchFlags) ;

SaErrorT
saAmfFinalize (const SaAmfHandleT *amfHandle) ;
SaErrorT

saAmfComponentRegister (const SaAmfHandleT *amfHandle,
const SaNameT *compName,
const SaNameT *proxyCompName) ;

SaErrorT
saAmfComponentUnregister (const SaAmfHandleT *amfHandle,
const SaNameT *compName,
const SaNameT *proxyCompName) ;

SaErrorT
saAmfCompNameGet (const SaAmfHandleT *amfHandle, SaNameT
*compName) ;

SaErrorT
saAmfReadinessStateGet (const SaNameT *compName,
SaAmfReadinessStateT *readinessState) ;

SaErrorT
saAmfStoppingComplete (SaInvocationT invocation, SaErrorT
error) ;

SaErrorT
saAmfHAStateGet (const SaNameT *compName,
const SaNameT *csiName,
SaAmfHAStateT *haState) ;

SaErrorT
saAmfErrorReport (const SaNameT *reportingComponent,
const SaNameT *erroneousComponent,
SaTimeT errorDetectionTime,
const SaAmfErrorDescriptorT *errorDescriptor,
const SaAmfAdditionalDataT *additionalData) ;

SaErrorT
saAmfErrorCancelAll (const SaNameT *compName) ;

SaErrorT
saAmfComponentCapabilityModelGet (const SaNameT *compName,
SaAmfComponentCapabilityModelT

*componentCapabilityModel) ;

High Availability Task Group 65

Network Processing Forum Software Working Group

SaErrorT
saAmfPendingOperationGet (const SaNameT *compName,
SaAmfPendingOperationFlagsT *pendingOperationFlags) ;

SaErrorT
saAmfResponse (SaInvocationT invocation, SaErrorT error) ;

/* checkpoint HA Service data types and prototype */

typedef OPAQUE TYPE SaCkptHandleT;
typedef OPAQUE TYPE SaCkptCheckpointHandleT;
typedef OPAQUE TYPE SaCkptSectionIteratorT;

#define SA CKPT WR ALL_ REPLICAS 0X1
#define SA CKPT WR_ACTIVE REPLICA 0X2
#define SA CKPT WR_ACTIVE REPLICA WEAK 0X4

typedef SaUint32T SaCkptCheckpointCreationFlagsT;

typedef struct {
SaCkptCheckpointCreationFlagsT creationFlags;
SaSizeT checkpointSize;
SaTimeT retentionDuration;
SaUint32T maxSections;
SaSizeT maxSectionSize;
SaUint32T maxSectionIdSize;
} SaCkptCheckpointCreationAttributesT;

#define SA CKPT_ CHECKPOINT_ READ 0X1
#define SA CKPT CHECKPOINT WRITE 0X2
#define SA CKPT CHECKPOINT COLOCATED 0X4
typedef SaUint32T SaCkptCheckpointOpenFlagsT;

#define SA CKPT DEFAULT SECTION ID NULL, O
#define SA CKPT_ GENERATED SECTION ID {NULL, 0

typedef struct
SaUint8T *id;
SaUint32T idLen;

} SaCkptSectionIdT;

typedef struct {
SaCkptSectionIdT *sectionId;
SaTimeT expirationTime;

} SaCkptSectionCreationAttributesT;

typedef enum
SA CKPT SECTION VALID = 1,
SA_CKPT SECTION CORRUPTED = 2
} SaCkptSectionStateT;

typedef struct
SaCkptSectionIdT sectionId;
SaTimeT expirationTime;
SaSizeT sectionSize;
SaCkptSectionStateT sectionState;
SaTimeT lastUpdate;

} SaCkptSectionDescriptorT;

typedef enum {
SA_CKPT SECTIONS FOREVER = 1,
SA CKPT_SECTIONS LEQ EXPIRATION TIME = 2
SA CKPT SECTIONS GEQ EXPIRATION TIME =
SA_ CKPT_SECTIONS CORRUPTED = 4,
SA CKPT_SECTIONS ANY = 5

|
w

High Availability Task Group

Network Processing Forum Software Working Group

} SaCkptSectionsChosenT;

typedef struct
SaCkptSectionIdT sectionId;
void *dataBuffer;
SaSizeT dataSize;
SaOffsetT dataOffset;
SaSizeT readSize;

} SaCkptIOVectorElementT;

typedef struct
SaCkptCheckpointCreationAttributesT

checkpointCreationAttributes;
SaUint32T numberOfSections;
SaUint32T memoryUsed;

} SaCkptCheckpointStatusT;

typedef void

(*SaCkptCheckpointOpenCallbackT) (SaInvocationT invocation,
const SaCkptCheckpointHandleT

*checkpointHandle,

SaErrorT error) ;

typedef void
(*SaCkptCheckpointSynchronizeCallbackT)
(SaInvocationT invocation, SaErrorT error) ;

typedef struct
SaCkptCheckpointOpenCallbackT saCkptCheckpointOpenCallback;
SaCkptCheckpointSynchronizeCallbackT
saCkptCheckpointSynchronizeCallback;
} SaCkptCallbacksT;

SaErrorT
SaCkptInitialize
(SaCkptHandleT *ckptHandle,
const SaCkptCallbacksT *callbacks,
const SaVersgsionT *version) ;

SaErrorT
saCkptSelectionObjectGet (const SaCkptHandleT *ckptHandle,
SaSelectionObjectT *selectionObject) ;

SaErrorT
saCkptDispatch(const SaCkptHandleT *ckptHandle,
SaDispatchFlagsT dispatchFlags) ;

SaErrorT
saCkptFinalize (const SaCkptHandleT *ckptHandle) ;

SaErrorT
saCkptCheckpointOpen (const SaNameT *ckeckpointName,
const SaCkptCheckpointCreationAttributesT
*checkpointCreationAttributes,
SaCkptCheckpointOpenFlagsT checkpointOpenFlags,
SaTimeT timeout,
SaCkptCheckpointHandleT *checkpointHandle) ;

High Availability Task Group 67

Network Processing Forum Software Working Group

SaErrorT
saCkptCheckpointOpenAsync (const SaCkptHandleT *ckptHandle,
SaInvocationT invocation,
const SaNameT *ckeckpointName,
const SaCkptCheckpointCreationAttributesT
*checkpointCreationAttributes,
SaCkptCheckpointOpenFlagsT checkpointOpenFlags) ;

SaErrorT
saCkptCheckpointClose (const SaCkptCheckpointHandleT
*checkpointHandle) ;

SaErrorT
saCkptCheckpointRetentionDurationSet (const
SaCkptCheckpointHandleT *checkpointHandle,
SaTimeT retentionDuration) ;

SaErrorT
saCkptActiveCheckpointSet (const SaCkptCheckpointHandleT
*checkpointHandle) ;

SaErrorT
SaCkptCheckpointStatusGet
(const SaCkptCheckpointHandleT *checkpointHandle,
SaCkptCheckpointStatusT *checkpointStatus) ;

SaErrorT
SaCkptSectionCreate
(const SaCkptCheckpointHandleT *checkpointHandle,
SaCkptSectionCreationAttributesT *sectionCreationAttributes,
const void *initialData,
SaUint32T initialDataSize) ;

SaErrorT
SaCkptSectionDelete
(const SaCkptCheckpointHandleT *checkpointHandle,
const SaCkptSectionIdT *sectionId) ;

SaErrorT
SaCkptSectionExpirationTimeSet
(const SaCkptCheckpointHandleT *checkpointHandle,
const SaCkptSectionIdT* sectionId,
SaTimeT expirationTime) ;

SaErrorT
SaCkptSectionIteratorInitialize
(const SaCkptCheckpointHandleT *checkpointHandle,
SaCkptSectionsChosenT sectionsChosen,
SaTimeT expirationTime,
SaCkptSectionIteratorT *sectionlterator) ;

SaErrorT
SaCkptSectionIteratorNext
(SaCkptSectionIteratorT *sectionlterator,
SaCkptSectionDescriptorT *sectionDescriptor) ;

SaErrorT
SaCkptSectionIteratorFinalize
(SaCkptSectionIteratorT *sectionlIterator) ;

SaErrorT
SaCkptCheckpointWrite
(const SaCkptCheckpointHandleT *checkpointHandle,
const SaCkptIOVectorElementT *ioVector,
SaUint32T numberOfElements,
SaUint32T *erroneousVectorIndex) ;

High Availability Task Group

68

Network Processing Forum Software Working Group

SaErrorT
SaCkptSectionOverwrite
(const SaCkptCheckpointHandleT *checkpointHandle,
const SaCkptSectionIdT *sectionId,
SaUint8T *dataBuffer,
SaSizeT dataSize) ;

SaErrorT
SaCkptCheckpointRead
(const SaCkptCheckpointHandleT *checkpointHandle,
SaCkptIOVectorElementT *ioVector,
SaUint32T numberOfElements,
SaUint32T *erroneousVectorIndex) ;

SaErrorT
SaCkptCheckpointSynchronize
(const SaCkptCheckpointHandleT *ckeckpointHandle,
SaTimeT timeout) ;

SaErrorT
SaCkptCheckpointSynchronizeAsync
(const SaCkptHandleT *ckptHandle,
SaInvocationT invocation,
const SaCkptCheckpointHandleT *checkpointHandle) ;

/* Event Service API data types and prototypes */

typedef OPAQUE TYPE SaEvtHandleT;
typedef OPAQUE TYPE SaEvtEventHandleT;
typedef OPAQUE TYPE SaEvtChannelHandleT;
typedef SaUint32T SaEvtSubscriptionIdT;

typedef void

(*SaEvtEventDeliverCallbackT)

(const SaEvtChannelHandleT *channelHandle,
SaEvtSubscriptionIdT subscriptionId,

const SaEvtEventHandleT *eventHandle,
const SaSizeT eventDataSize) ;

typedef struct({
const SaEvtEventDeliverCallbackT saEvtEventDeliverCallback;
} SaEvtCallbacksT;

#define SA EVT CHANNEL PUBLISHER 0X1
#define SA EVT CHANNEL SUBSCRIBER 0X2
#define SA EVT CHANNEL CREATE 0X4
typedef SaUint8T SaEvtChannelOpenFlagsT;

typedef struct {
SaUint8T *pattern;
SaSizeT patternSize;
} SaEvtEventPatternT;

#define SA EVT HIGHEST PRIORITY 0
#define SA EVT LOWEST PRIORITY 3

#define SA EVT LOST EVENT "SA EVT LOST EVENT PATTERN"

typedef struct ({
SaEvtEventPatternT *patterns;
SaSizeT patternsNumber;

} SaEvtEventPatternArrayT;

High Availability Task Group 69

Network Processing Forum Software Working Group

typedef SaUint8T SaEvtEventPriorityT;
typedef SaUint32T SaEvtEventIdT;

typedef enum
SA _EVT PREFIX FILTER = 1,
SA_EVT SUFFIX FILTER = 2,
SA_EVT EXACT FILTER = 3
SA_EVT PASS ALL FILTER
} SaEvtEventFilterTypeT;

4

typedef struct
SaEvtEventFilterTypeT filterType;
SaEvtEventPatternT filter;

} SaEvtEventFilterT;

typedef struct {
SaEvtEventFilterT *filters;
SaSizeT filtersNumber;

} SaEvtEventFilterArrayT;

SaErrorT
SaEvtInitialize
(SaEvtHandleT *evtHandle, const SaEvtCallbacksT *callbacks,
const SaVersionT *version) ;

SaErrorT
saEvtSelectionObjectGet (const SaEvtHandleT *evtHandle,
SaSelectionObjectT *selectionObject) ;

SaErrorT
SaEvtDispatch
(const SaEvtHandleT *evtHandle,
SaDispatchFlagsT dispatchFlags) ;

SaErrorT
saEvtFinalize (SaEvtHandleT *evtHandle) ;

SaErrorT
saEvtChannelOpen (const SaEvtHandleT *evtHandle,
const SaNameT *channelName,
SaEvtChannelOpenFlagsT channelOpenFlags,
SaEvtChannelHandleT *channelHandle) ;

SaErrorT
saEvtChannelClose (SaEvtChannelHandleT *channelHandle) ;

SaErrorT
SaEvtEventAttributesSet
(const SaEvtEventHandleT *eventHandle,
const SaEvtEventPatternArrayT *patternArray,
SauUuint8T priority,
SaTimeT retentionTime,
const SaNameT *publisherName) ;

SaErrorT
SaEvtEventAttributesGet
(const SaEvtChannelHandleT *channelHandle,
const SaEvtEventHandleT *eventHandle,
SaEvtEventPatternArrayT *patternArray,
SaUuint8T *priority,
SaTimeT *retentionTime,
SaNameT *publisherName,
SaClmNodeIdT *publisherNodeld,
SaTimeT *publishTime,
SaEvtEventIdT *eventId) ;

High Availability Task Group

Network Processing Forum Software Working Group

SaErrorT
saEvtEventDataGet (const SaEvtEventHandleT *eventHandle,
void *eventData,
SaSizeT *eventDataSize) ;

SaErrorT
saEvtEventPublish (const SaEvtChannelHandleT *channelHandle,
const SaEvtEventHandleT *eventHandle,
const void *eventData,
SaSizeT eventDataSize) ;

SaErrorT
saEvtEventSubscribe (const SaEvtChannelHandleT *channelHandle,
const SaEvtEventFilterArrayT *filters,
SaEvtSubscriptionIdT subscriptionId) ;

SaErrorT
saEvtEventUnsubscribe (const SaEvtChannelHandleT *channelHandle,
SaEvtSubscriptionIdT subscriptionId) ;

SaErrorT
SaEvtEventRetentionTimeClear
(const SaEvtChannelHandleT *channelHandle,
const SaEvtEventHandleT *eventHandle) ;

High Availability Task Group 71

Network Processing Forum Software Working Group

APPENDIX A ACKNOWLEDGEMENTS

Working Group Chair: Vinoj Kumar
Task Group Chair: Ram Gopal. L

The following individuals are acknowledged for their participation to High Availability task
group teleconferences, plenary meetings, mailing list, and/or for their NPF contributions used for
the development of this Implementation Agreement. This list may not be all-inclusive since
only names supplied by member companies for inclusion here will be listed. The NPF wishes to
thank all active participants to this Implementation Agreement, whether listed here or not.

The list is in alphabetical order of last names:
Bachmutsky Alex(Nokia)
Balakrishnan Santosh (Intel)
Damon Pilippe (IBM)

Keany Berny(Intel)

Keisu Torbjorn (Ericsson)
Kumar Vinoj(Agere)

Lewing Van (PMC-Sierra)
Muralidhar Rajeev (Intel)
Papp William (Nokia)
Renwick John (Agere)

Sam (Intel)

Sridhar T(FutureSoft)

Stone Alan (Intel)

Vandalore Bobby (Nokia)
Vedvyas Shanbhogue (Intel)

Verma Sanjeev(Nokia)

High Availability Task Group 72

Network Processing Forum Software Working Group

APPENDIX B LIST OF COMPANIES BELONGING TO NPF DURING APPROVAL

PROCESS
Agere Systems FutureSoft Nokia
Cypress Semiconductor Intel PMC Sierra
Ericsson IP Infusion Sun Microsystems
ETRI Kawasaki LSI Xilinx

High Availability Task Group

73

