
Network Processing Forum Software Working Group

 High Availability Task Group 1

NPF HA Service API
 Implementation Agreement

July 6, 2004
Revision 1.0

Editor(s):
Ram Gopal. L, Nokia, ram.gopal@nokia.com

Santosh Balakrishnan, Intel , santosh.balakrishnan@intel.com

Copyright © 2002 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THIS DOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", “MAY", and "OPTIONAL" in the
remainder of this document are to be interpreted as described in the NPF Software API
Conventions Implementation Agreement revision 1.0.

For additional information contact:
The Network Processing Forum, 39355 California Street,

Suite 307, Fremont, CA 94538
+1 510 608-5990 phone info@npforum.org

Network Processing Forum Software Working Group

 High Availability Task Group 2

Table of Contents
1 Revision History ... 3
2 Scope and Purpose .. 4
3 Normative References... 5
4 Acronyms and Abbreviations ... 6
5 HA Overview.. 8
6 HA Service API Overview.. 9
7 Availability Management Framework .. 10

7.1 NPF HA extension API... 10
7.2 Availability Management Framework API... 14
7.3 Check point Service API... 26
7.4 Event Service API 45

8 Appendix 59
8.1 Header file definition .. 59

Appendix A Acknowledgements... 72
Appendix B List of companies belonging to NPF during approval process 73

Network Processing Forum Software Working Group

 High Availability Task Group 3

1 Revision History
Revision Date Reason for Changes

1.0 07/07/2004 Created Rev 1.0 of the implementation agreement

Network Processing Forum Software Working Group

 High Availability Task Group 4

2 Scope and Purpose
This document describes the API definition that will be used by applications that implements HA-SAPI
and HA-FAPI [1]. This document in intended for NPF SW HA [1] and HA application implementer.
This document identifies SA Forum API’s that are relevant for NPF HA implementation. We recommend
SA Forum AIS specification [2] for details of each API.

Network Processing Forum Software Working Group

 High Availability Task Group 5

3 Normative References
The following documents contain provisions, which through reference in this text constitute provisions of
this specification. At the time of publication, the editions indicated were valid. All referenced documents
are subject to revision, and parties to agreements based on this specification are encouraged to investigate
the possibility of applying the most recent editions of the standards indicated below.

1. NPF.2003.404.07 NPF HA architecture model and framework.
2. SAI-AIS-A.01.01 Service Availability Forum Application Interface Specification.
3. NPF.2003.296 NPF HA use case and requirement.
4. Software API Framework Implementation agreement, IA, NPF, Version 1.0
5. NPF.2002.240.27 NPF Packet handler API.
6. NPF.2003.404.01 Proposal for High availability architecture model.
7. Software API Framework Implementation agreement, IA, NPF, Version 1.0,

Network Processing Forum Software Working Group

 High Availability Task Group 6

4 Acronyms and Abbreviations
The following acronyms and abbreviations are used in this specification:

• Card - Line card or control card is referred to a Card.
• Resource - A resource is a logical or physical entity that is managed by HA middleware.

Resource may be either HA aware or Non-HA aware. Resource registers with a HA middleware
using a component Name.

• HA aware Resource - A HA aware resource is a resource that uses HA middleware APIs and
implements functions that need to be invoked by the HA middleware and reports its states and
availability information to the other HA aware resources through the HA middleware. Resources
cooperate among themselves and provide periodic status to the HA middleware in the form of
events. The HA Task Group restricts HA-aware resources to software applications that run on the
line and control cards.
There may be situations, for example, when an HA aware resource first registers with the HA
middleware and then forks several child processes (or child resources). In this situation, only the
parent process is registered with the HA middleware – i.e. the HA middleware manages the
parent process only. . Child processes that need HA services should explicitly register with the
HA middleware either under the same component name as parent or may use different component
name.

• Non HA aware Resource - Resources that neither register nor use the HA middleware functions
and services are classified as non-HA aware resources. A non-HA middleware resource is one
that does not provide redundancy. The HA middleware running on line and control card can only
perform basic operations like Start and Stop on these resources. The required level of
management and monitoring of these resources depends upon the underlying operating system
and defining such requirements is beyond the scope of this task group.

• Resource pool - A resource pool is a collection of one or more processes that are registered
under the same component name. Resource pool can either reside within a single card or be
distributed across several cards.
A line card or control card is considered as a single unit. One or more applications running under
a control or line card may use HA middleware and its services. For example, two control units,
say CE1 and CE2, might be running two HA aware applications, say BGP routing daemon and
OSPF routing daemon. Each of these HA applications is uniquely identified under a CE and the
redundancy is considered across CEs. For instance, CE1 may be in active state and CE2 may be
in standby (or hot standby) state. Also, HA resources should be same in both the CEs.

• HA Server (HAS) - Each line card or control card runs an instance of HAS. An HAS is a server
that implements the HA API. An HA Server running in line or control cards discovers each other,
periodically synchronizes their states and provides a notion of HA middleware to the applications.

• HA-API - The HA framework provides a set of HA APIs to build highly available systems that
provide continuous service. It consists of two sets of APIs namely Availability Management
Function API(AMF) and Service API (SE). Each HA resource must implement HA AMF API
and SE API’s.

• HA-FAPI - FAPI implementation that can invoke the HA Service or HA application
management API is called HA-FAPI.

• HA-SAPI - SAPI implementation that can invoke HA Service or HA application management
API is called HA-SAPI.

• API - Applications Programming Interface
• CE - Control Element also referred as control card
• FAPI - NPF Functional API

Network Processing Forum Software Working Group

 High Availability Task Group 7

• FE - Forwarding Element also referred as line card
• HA - High Availability
• NE - Network Element
• NP - Network Processor
• NPE - Network Processing Element
• NPF - Network Processing Forum
• NPU - Network Processing Unit (same as NPE)
• SAPI - NPF Service API
• FAPI - NPF Functional API
• ForCES - Forwarding and Control Element Separation
• HAS - HA Server
• HA-SAPI - HA aware SAPI
• HA-FAPI - HA aware FAPI
• RHAS - Root HA Server
• BHAS - Backup HA Server
• HAS SET-ID - Unique HA set identifier
• HA-ID - Unique identifier for HAS within a HA SET

Network Processing Forum Software Working Group

 High Availability Task Group 8

5 HA Overview
Highly available systems are designed to protect against network and operational failures. This is usually
achieved via redundancy within each network element. Also, network elements are moving from a
monolithic software entity to a more distributed function. The high availability functionality should
support this distributed architecture. To support high availability in telephony networks, redundancy was
built into each network element. However network elements such as routers have evolved from a
monolithic software piece to a distributed software and hardware entity. Network elements may have to
maintain per-user or aggregate states to satisfy the service requirements of emerging real-time services.
Hence, network elements need to provide high-availability features such as fail-over, load-balancing, state
replication and resource redundancy in order to avoid disruption in service. This implies that network
elements should support high availability features such as fail-over, load-balancing, state replication etc.

This document describes the HA API definition that will be used by HA aware applications that
implements HA-SAPI and HA-FAPI. It maps SA Forum API to NPF HA architecture and describes data
structure and required data types required to implement the APIs. Finally this document provides
implementation guidelines to incorporate HA Service on to existing NPF SW APIs.

Network Processing Forum Software Working Group

 High Availability Task Group 9

6 HA Service API Overview
Registered HA applications are managed by the NPF HA middleware. Figure 1 describes various HA API
interfaces. Interface labeled 1 and 2 are internal to HA implementation and are not visible for outside
applications. HA application interacts with HA middleware by invoking HA API’s. HA API’s are labeled
as 3 and 3’ and are open interfaces. Depending upon the type of NPF SW implementation either the
application or the NPF SW API implementation may interact with HA middleware by invoking
appropriate HA API functions. HA API includes both Availability management function API (AMF) and
Service API. AMF API provides the following services to HA aware applications:

• Registration and deregistration
• Health monitoring
• Availability Management
• Resource pool Management
• Error reporting

The above set of functions are supported by SA Forum APIs in addition to these NPF HA defines
additional API that are needed for HA management.

Each NPF HA middleware [1] must implement Event Service and Checkpoint Service. These two
services are collectively called as HA Service API. Not all application are required to use the HA Service
API. Depending upon the nature of the application one or both or neither of the HA Service may be used
by the application. But each application is expected to register and deregister with each HA Service
explicitly. Each HA service is independent of each other but they are dependent on AMF API.

Availability

Management

Server

Checkpoint

Server

Event

Server Ap
pl

ic
at

io
n

In
te

rf
ac

e
Im

pl
em

en
ta

ti
on

SA
 F

or
um

/N
PF

 H
A

Se
rv

ic
e

AP
I

Data

Store

N
PF

 F
AP

I/S
AP

I
HA Middleware

1

2

3

H
A

Ap
pl

ic
at

io
n

3’

HA APIInternal Interface
(not open)

Figure 1 NPF HA middleware and HA application interaction

Network Processing Forum Software Working Group

 High Availability Task Group 10

7 Availability Management Framework
The API described in this section only covers interaction and interface required needed between HA
aware application and the HA middleware. NPF HA middleware must provide implementation for all
these APIs. HA application can invoke these API any given point of time.

7.1 NPF HA extension API

HA-SAPI or HA-FAPI may be implemented as one of the following ways:

• NPF SW API are linked to application either as static or dynamic library
• NPF SW API are integrated as with application (with source code)
• Application may be using one or more HA-SAPI or HA-FAPI libraries (either static or dynamic)
• Application may be using the NPF SW API functions, which are part of the device driver chain

(these are specific to certain implementation).

Irrespective of the above cases, each application needs to pass its context to the HA middleware. If the
NPF SW API implementation is being shared by several processes [5]then each application needs to be
explicitly initialized by the HA middleware and the NPF SW API implementation should not mix the HA
context.

Network Processing Forum Software Working Group

 High Availability Task Group 11

NPF SW API
Implementation (A)

NPF SW API
Implementation (B)

Application (A)
Application (B)

N
PF

 H
A

AP
I

N
PF

 H
A

Im
pl

em
en

ta
tio

n 1 2

2’

2”

3 4

4’

1
2

Figure 2 HA application registration and operation sequence

Figure 2 illustrates two HA application namely application A and application B wants to use HA service.
Both these application invokes NPF SW API (either HA-FAPI or HA-SAPI or both). For purpose of
simplicity we have mentioned as NPF SW API. Application A invokes two NPF SW API may one from
vendor “A” and another from vendor “B”. Application B invokes vendor “B” NPF SW APIs. Assume
that both NPF SW APIs implementation keep states and needs to synchronize with standby system (not
shown in the diagram), it will use checkpoint service. Since the NPF SW API implementation “B” is
invoked by both Application A and B, the HA middleware should maintain and manages these states
separately. For this purpose each application needs to pass its context during the initial phase of the
library initialization (message 1 and 3 from application A and B respectively in Figure 2). It should also
be possible for an application to request the HA aware SAPI or FAPI implementation not to perform any
HA functions or selectively perform only certain functions. Each SAPI and FAPI must maintain these
application specific HA context register on behalf of application. Since application A uses two NPF SW
implementation HA middleware will get twice the HA registration message from each NPF SW
implementation. Since the registration is for the same application context under it component instance
(process ID) it is considered as re-registration and it is perfectly legal.

Following are the list of NPF HA extension API that needs to be supported by HA SAPI and HA-FAPI.

NPF_error_t NPF_XXX_HAInit(…);

/* Initialize the HA context for FAPI or SAPI. This needs to provided by each HA aware SAPI
and FAPI */

Network Processing Forum Software Working Group

 High Availability Task Group 12

NPF_error_t NPF_XXX_HADeregister(…);
/* De register HA application from the HA environment */

API Data types:

typedef NPF_char8_t NPF_HA_Component_Name_t;
typedef NPF_char8_t NPF_HA_Role;
typedef NPF_int32_t NPF_HA_Correlator_t;
typedef NPF_int32_t NPF_HA_Instance_Id;

7.1.1 Application initialization for HA Service

Syntax:
NPF_error_t NPF_HAInit (
 NPF_IN NPF_HA_Component_Name *component_Name;
 NPF_IN NPF_HA_Role role,
 NPF_IN NPF_HA_Correlator_t correlator,
 NPF_IN NPF_HA_Instance_Id instance_Id,
 NPF_IN NPF_boolean_t mode,
);

Description of function
NPF SW implementation uses checkpoint of event service on behalf of HA application. In order to
differentiate different HA applications states, it is required that HA-SAPI and HA-FAPI need to
create unique checkpoint name and generate appropriate events. HA application passes HA
component name and associated instance information to the HA-SAPI and HA-FAPI.

Input parameters:

Input Description

*component_Name NULL terminated character string.
Unique name of the component. This needs to be
standardized for uniform naming.
For example:
<ServiceName:Protocol:Imp.Specific>

Service Name can be routing, Mobility, QoS, Security,
Management etc.
Protocol can be IPv4, IPv6 or MPLS etc.
For example typical routing application that are running
in control plane may BGP, OSPF, and RIP etc.
To name a BGP server running in a control plane.
Routing_BGPv4
For OSPF running in control plane

Network Processing Forum Software Working Group

 High Availability Task Group 13

Routing_OSPFv3 etc

role This basically defines the propagation model and failure
operation and this is implementation specific. For details
how to interpret this field refer implementation
guidelines. This field data is transparent to HA-SAPI
and HA-FAPI.

instance_Id 32-bity unique run-time identification for the
application. It is mainly used to identify multiple
instances

correlator 32-bit unique identification for the application in case if
it wants to perform state synchronization from the
previous HA session.

mode If this value is TRUE then the HA application wants to
run in HA mode and HA-SAPI and HA-FAPI should
invoke HA service API calls when needed.
If this value is FALSE then the HA application is
running in non-HA mode and HA-SAPI or HA-FAPI
should not invoke or perform HA function for this
application.

Return Code:

• NPF_NO_ERROR: The registration is successful
• NPF_DUPLICATE_INSTANCE: If the HA middleware is configured to run on single

instance and if correlator, component_Name and instance are different. Then the HA
middleware will generate this error.

7.1.2 De Registration application HA context from HA middleware

Syntax:

void NPF_HADeregister(
 NPF_IN NPF_HA_Component_Name *component_Name;
 NPF_IN NPF_HA_Correlator_t correlator,
 NPF_IN NPF_HA_Instance_Id instance_Id,
);

Description:

This function is invoked by the application informing the HA-SAPI or HA-FAPI to perform
deregistration process from the HA service functions. The HA-SAPI and HA-FAPI flush the internal
states if any.

Input parameters:

Network Processing Forum Software Working Group

 High Availability Task Group 14

Input Description

*component_Name NULL terminated character string.
Unique name of the component. This needs to be
standardized for uniform naming.
For example:
<ServiceName:Protocol:Imp.Specific>

Service Name can be routing, Mobility, QoS, Security,
Management etc.
Protocol can be IPv4, IPv6 or MPLS etc.
For example typical routing application that are running
in control plane may BGP, OSPF, and RIP etc.
To name a BGP server running in a control plane.
Routing_BGPv4
For OSPF running in control plane
Routing_OSPFv3 etc

instance_Id 32-bity unique run-time identification for the application.
It is mainly used to identify multiple instances

correlator 32-bit unique identification for the application in case if it
wants to perform state synchronization from the previous
HA session.

Return Codes:

• None

7.2 Availability Management Framework API

HA middleware implements following functions as part of availability management framework.

• Registration and deRegistration
• Health Monitoring
• Availability Management
• Protection group management
• Error Reporting

HA aware application must implement call back function for health monitoring, library life cycle
management, Protection group and switch over operation.

Network Processing Forum Software Working Group

 High Availability Task Group 15

NPF HA Middleware

Initialize
Application

Health Check
Call Back
Function

Readiness State
Set Call Back

Function

Component
Terminate
Call Back
Function

Protection Group
Track Call Back

Functions

2 3 4

1

5Installs
Call backs

Call Back
Response

saAmfResponse()

6

Figure 3 Call back functions for HA middleware management

Figure 3 describes the list call back functions that needs to be implemented by each HA aware process.

• HA application initializes with the HA middleware. This is the first operation that needs be done
by any HA aware resource and is described in Figure 3, message 1. During the library
initialization, the HA application installs various callbacks for resource management.

• Periodically HA middleware invokes Health check call back functions as described in Figure 3

message 2. HA application generates a response via saAmfResponse() functions.

• When a service unit is available to provide service (that is when a card is inserted onto chassis or
the machine is booted up). The HA middleware kicks in processes and starts HA application
automatically during boot up process or it can be manually started by operator. When a
component is started, the HA middleware assigns the state of the service unit (card) to the HA
process. The possible states of card are in-service, out-of-service, stopped. HA middleware at
any given time invokes the Readiness state call back function and asking the HA application to
changes its readiness state as described Figure 3 message 3. The HA application after making the
state transition responds via saAmfResponse() function.

• If HA aware application wants to keep track of the changes to the list of component that are

belonging to a given service instance. HA management keeps track of the changes and informs
the HA application via protection group track call back function as described in Figure 3 message
5. Though its useful ness is very limited and it’s optional to implement this function.

Network Processing Forum Software Working Group

 High Availability Task Group 16

• Components can be terminated at any given time by the HA middleware by invoking the

component terminate call back function as described in Figure 3 message 4. Note component
termination simply deregisters the component from HA middleware, HA application needs to be
perform additional clean up functions to disassociate completely from the HA middleware.

• All the callback function respond to the HA middleware queries by invoking the saAMFresponse

function. Each call back function contain an invocation reference which will be passed back
along with the response to the HA middleware. This is illustrated in message 6 in Figure 3.

The following are the lists of SA Forum API are be applicable to NPF HA environment. For detailed
description of functions and the parameters refer SA Forum AIS specification [2].

7.2.1 Library Lifecycle

All AMF library lifecycle API will be invoked by HA application.

Syntax:

Description:

This is the first API call that HA aware application must make to HA middleware. HA application
initializes various callbacks which will be invoked by HA middleware.

The following are the minimum call back functions that are required in NPF HA environment.

typedef struct {
 SaAmfHealthcheckCallbackT
 saAmfHealthcheckCallback; //Required

Network Processing Forum Software Working Group

 High Availability Task Group 17

 SaAmfReadinessStateSetCallbackT
 saAmfReadinessStateSetCallback; // Required
 SaAmfComponentTerminateCallbackT
 saAmfComponentTerminateCallback; // Required
 SaAmfCSISetCallbackT
 saAmfCSISetCallback; //Required
 SaAmfCSIRemoveCallbackT
 saAmfCSIRemoveCallback; //Required
 SaAmfProtectionGroupTrackCallbackT
 saAmfProtectionGroupTrackCallback; //Optional
 SaAmfExternalComponentRestartCallbackT
 saAmfExternalComponentRestartCallback; //Set to NULL
 SaAmfExternalComponentControlCallbackT
 saAmfExternalComponentControlCallback; //Set to NULL
 SaAmfPendingOperationConfirmCallbackT
 saAmfPendingOperationConfirmCallback; //Set to NULL
} SaAmfCallbacksT;

7.2.2 Calling back Sequence

Syntax:

Description:
HA application can specify the semantics for call back whether the HA middleware can perform
blocking call (SA_DISPATCH_BLOCKING) or dispatch all (SA_DISPATCH_ALL) call back at
once or dispatch one (SA_DISPATCH_ONE) call back at a time.
We recommend SA_DISPATCH_ONE to be used if the HA aware is a single threaded process, and if
the use of SA_DISPATCH_BLOCKING can be used if the HA aware process is performs one
operations at a time. This is totally application specific.

Network Processing Forum Software Working Group

 High Availability Task Group 18

7.2.3 De-registering the HA application from HA middleware

Syntax:

Description:
This function will be invoked by the HA application to de register completely from the HA
middleware. This function call releases all the resources from the HA middleware.

7.2.4 Component registration

Syntax:

ProxyCompName is set to NULL in NPF HA environment.

Description:
After initializing the callback functions, the HA application needs to perform component registration
with the HA middleware. Component name is unique and is used to identify the HA resource (in our
NPF HA it is referred to application process). In NPF we don’t have the notion of proxy component
and hence its value is set to NULL.

7.2.5 Component Deregistration

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 19

 proxyCompName is set to NULL in NPF HA environment.

Description:
Component can deregister at any given time by invoking this API function. After de registering the
component the HA aware application should not process any network packets. HA aware application
can perform any number component registration and deregistration any number of times. If a
component is deregistered, then the HA middleware can perform switch over operation if continuous
service needs to be provided for that component.

7.2.6 Health check request

Syntax:

In NPF the checkType simple liveness is recommended. The Value of checktype is set to
SA_AMF_HEARTBEAT =1. Other checktypes are beyond the current scope of HA middleware.

Network Processing Forum Software Working Group

 High Availability Task Group 20

Description:
HA middleware invokes the health check call back functions and asking the HA application to
respond to with its internal state. HA application must respond to this request by invoking
saAmfResponse() function with appropriate invocation value.

7.2.7 Get Component status

Syntax:

Description:

It there are dependency between two HA aware control plane applications, one HA application after
registering with the HA middleware can make queries to the HA framework to get to know the status
of the other HA aware application by specifying the component name. The HA middleware will
report the readiness status of the other application. This API can be used to determine and control the
behavior of application process. Usage of this API is application dependent.

Network Processing Forum Software Working Group

 High Availability Task Group 21

7.2.8 Change the Readiness state of the Application

Syntax:

Description:

At any given time HA middleware request the HA aware application to change its readiness states.
This transition may be due to operator changing the service unit (card) state to either out-of-service or
stopped.

7.2.9 Terminate a HA component

Syntax:

Description:

HA middleware sends termination command to HA application and requesting it to close all the
operation and disassociate the component from the HA middleware.

Network Processing Forum Software Working Group

 High Availability Task Group 22

7.2.10 Component termination response to HA Middleware

Syntax:

Description:

This is a response generated by HA application to provide its termination status to the HA
middleware. When the HA middleware wants to terminate a HA application (see section 7.2.9) it
invokes the HA application terminate call back function. HA application performs clean up
operations and will not service any request and sends the termination command via this function. In
NPF we have each HA application process to be associated with the component name, terminating the
component should stop packet processing and the HA aware application should release all resource. It
should not terminate the process.

Network Processing Forum Software Working Group

 High Availability Task Group 23

7.2.11 Set HA state for a component

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 24

Description:
HA states can be classified into two-stage operation. HA aware application first needs to be in-service
(meaning that it can be invoked and is executing) but that does not convey whether it can process
packet or do normal application functions. In order to control that behavior when the HA application
is in-service it can be either be active or standby or quiesced. HA middleware will reflect the state of
service unit (card) for HA resources contained in that service unit (card). In NPF component name
and component instance name is same, we manage one HA application process at a time.

Following are the parameters in NPF HA environment.

• compName, activeCompName and CSIName all refers to same name. In NPF we are
providing 1:1 redundancy model. Each component needs to register explicitly with the HA
middleware.

• csiFlag should be set to SA_AMF_CSI_ALL_INSTANCES
• haState can be either ACTIVE,STANBY, QUIESCED
• transitionDescription not used in NPF set to NULL.

7.2.12 Get HA State of a component

Syntax:

Description:

If a HA application wants to know about the status of itself or other HA aware component running
under HA middleware. It can invoke this function to get the status of the other component. For
example, if one HA aware component wants to know the status of the other HA aware component, we
recommend that first that say HA aware application A needs to determine whether the HA aware
application B’s readiness and then only it should invoke this call.

Network Processing Forum Software Working Group

 High Availability Task Group 25

7.2.13 Confirming HA state before performing fail-over or shutdown
operation.

Syntax:

Description:

HA aware application may be processing packets and heavily loaded. Before performing shutdown or
switch over operation, the HA middleware request the HA aware application and asking whether it
can now perform those function or it should defer later. This is mainly to achieve graceful shutdown
and enable seamless load transfer during the fail or shutdown operation. The HA aware application
sends its response via saAmfResponse function.

7.2.14 Cancel pending operation

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 26

Description:

HA middleware can inform the HA application to cancel any pending request that it had previously
invoked via pending operation confirm call back (see section 7.2.13).

7.2.15 HA application response to HA middleware queries.

Syntax:

Description:
HA middleware queries HA application via callbacks. The HA application reacts to the call back and
provide response via this function. The main reason to have indirect response is that call back can be
made either blocking or non-blocking. HA application needs to copy the invocation value which was
supplied during the callback invocation by HA middleware in this function.

7.3 Check point Service API

HA application can optionally use HA Checkpoint Service API. But HA middleware must implement
Checkpoint service as part of HA implementation. Checkpoint service provides following functions:

• Checkpoint implementation stores the critical data either in the main memory or in the secondary
store. For performance reasons usually checkpoint store is in main memory. It replicates the
content in more than one places, in order to protect the data against card failures.

• If an HA application crashes the Checkpoint service provides mechanism to resynchronize the
state of the application from the previous session. Note such use of synchronization is time and
application dependent. It may happen that such resynchronization may be stale data and use of
such feature is totally application dependent.

Network Processing Forum Software Working Group

 High Availability Task Group 27

7.3.1 Usage Model and HA implementation guidelines

• HA application (process) can use several checkpoints to save the state of the process. Each
checkpoint is identified by a unique name in a HA middleware. HA middleware treats those
checkpoint as opaque data store. It is totally up to the implementation to interpret the content,
and also when to checkpoint the data or replicate the data.

• Multiple processes can open the same checkpoint and writes to the same checkpoint. It is the

responsibility of the process to cooperate among them when they use the checkpoint store.
For example, if two telnet servers have forked several processes and they would like to
checkpoint some data under a same name. In this scenario, the either they can write to the
same memory (over write) or append to the existing checkpoint data. Another example is that
two HA aware resources (two processes running in control card) performs some IPC and
saves state under the same checkpoint name.

• When an HA aware resources deletes the checkpoint the content is deleted and resources are

deleted. But when more than one HA resources opened the same checkpoint, the HA
middleware implementation must keep track of the reference count mechanism and it should
delete the checkpoint only when the last process has deleted the checkpoint.

• Checkpoint store has some retention time, in order to avoid memory overrun. When HA

process terminates, the HA middleware must hold the checkpoint store for some duration of
time. After the checkpoint retention timer is expired, the HA middleware should perform
cleanup operation.

• HA aware resource would like to perform partial updates rather than full update to whole

checkpoint store. To enable this operation, the checkpoint store can be subdivided in to
sections. Section is portions of the checkpoint store allocated to HA aware resources. HA
resources needs to create sections, and can reference each section under a unique name. HA
aware resource needs to specify the number of section, section size and other parameter
during the initialization. Each section have different lifetime and is different from checkpoint
lifetime.

• Checkpoint store management is part of HA middleware management and is transparent to

the HA application. In NPF it is recommended that checkpoint store be managed with the
card where the local resource are using it. This will reduce the inter card communication
between the checkpoint store and the actual HA resource running in the card. Checkpoint can
store many copies of the same data the storage and retrieval of information and how many
copies depends upon the type of HA application and architecture. At least we recommend that
active card can have one checkpoint store and standby card to have another checkpoint store.

• Operations on checkpoint, for example two application can write to the same checkpoint and

the order of write needs to be cooperatively ensure by the application if its required (see use
of Event Service) or by the HA middleware implementation. It is up to the HA
implementation and is implementation specific.

Network Processing Forum Software Working Group

 High Availability Task Group 28

• HA implementation must support synchronous write and asynchronous write to checkpoint
store. When a application writes using the synchronous write call, the checkpoint makes
copies of the same data to all the replicas and then return to the HA application. Where as in
asynchronous call, the checkpoint store immediately return to the application and at later
time, the checkpoint implementation updates those information to the replicas.

• Though the checkpoint application service depends upon the cluster service of HA forum. We

are dealing with checkpoint across CE and FE systems hence we narrow the scope of cluster
to service group, which are running similar applications.

7.3.2 Checkpoint Library initialization

Syntax:

Description:
Each HA aware resource needs to initialize the checkpoint library in order to make use of the
checkpoint service. In NPF either if HA-SAPI or HA-FAPI manages state information, then it will
invoke this call and will installs appropriate callback functions. If both HA aware resource and HA-
SAPI or HA-FAPI are required to use the checkpoint, then HA aware resource should initialize the
library. HA implementation must return a unique handle each time when this checkpoint service is
being initialized.

Network Processing Forum Software Working Group

 High Availability Task Group 29

7.3.3 Installing dispatch mechanism

Syntax:

Description:
This function needs to be invoked by the HA aware resource in order to inform the type of dispatch.
HA middleware may invoke one call back at a time, or it will dispatch all the pending activities in
one call back or it will in invoke the callback in blocking mode. This is implementation dependent,
we expect that at least SA_DISPATCH_BLOCKING needs to be supported in all HA middleware
implementation.

7.3.4 Detaching the HA aware resource from Checkpoint Service

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 30

7.3.5 Opening a checkpoint store (Sync and Async open)

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 31

7.3.6 Checkpoint Open Call back

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 32

Network Processing Forum Software Working Group

 High Availability Task Group 33

7.3.7 Close the checkpoint

Syntax:

HA-SPI or HA-FAPI which is being used by multiple HA aware resource should perform clean up
operation, when the HA application invokes the HA extension API to deregister from the service.

Network Processing Forum Software Working Group

 High Availability Task Group 34

7.3.8 Set checkpoint retention time

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 35

7.3.9 Set active checkpoint to active replica

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 36

7.3.10 Get the checkpoint status

Syntax:

7.3.11 Create checkpoint section

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 37

7.3.12 Delete a checkpoint section

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 38

7.3.13 Set Checkpoint expiration time

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 39

7.3.14 Iterator initialization of checkpoint

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 40

7.3.15 Return next section using iteration

Syntax:

7.3.16 Clear Iterator resources attached to a checkpoint

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 41

7.3.17 Write to checkpoint data store
Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 42

If one or more HA process is trying to write to the checkpoint we expect those application to
cooperatively synchronize themselves and use the checkpoint in order to ensure proper sequence of
write operation.

7.3.18 Overwrite checkpoint region

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 43

7.3.19 Read checkpoint store

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 44

7.3.20 Synchronize checkpoint

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 45

7.3.21 Checkpoint synchronize call back function

Syntax:

7.4 Event Service API

If HA applications or HA-SAPI or HA-FAPI needs to communicate across cards (that is between standby
and active) they can use HA Event Service API. The main purpose is to exchange HA application specific
state transition or other HA application specific events to group of HA resources that are belonging to
same service group or managed under same HA middleware.

Network Processing Forum Software Working Group

 High Availability Task Group 46

7.4.1 Usage Model

This is a optional service and depending upon the nature of application either HA aware application
or HA-SAPI or HA-FAPI may use this. Each HA implementation must implement this.

� HA application that wishes to send or receive events needs to subscribe the HA event service.
� Multiple subscribers can subscribe to same event and HA event service implementation will

post appropriate event when some one publish an events. HA implementation supports
several logical channels for posting events and each channel can be categorized as

o best effort delivery
o at most delivery service
o Event priority
o Event completeness
o Retention time and persistence

� HA Event service depends on AMF implementation in NPF environment.

7.4.2 Initialize Event Service

Syntax:

Each HA aware resource needs to initialize the Event service library in order to make use of the event
service. If HA-SAPI or HA-FAPI wants to subscribe or publish events, then it will invoke this call

Network Processing Forum Software Working Group

 High Availability Task Group 47

and will install appropriate callback functions. If both HA aware resource and HA-SAPI or HA-FAPI
is required to use the event service, then HA aware resource should initialize the library. HA
implementation must return a unique handle each time when this checkpoint service is being
initialized.

7.4.3 Installing event dispatch mechanism
Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 48

7.4.4 Open an Event Channel

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 49

7.4.5 Close event channel

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 50

7.4.6 Set attribute for Events

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 51

7.4.7 Get Event attributes

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 52

publisherNodeId- [out] A pointer to the identifier of the card from which the events was published.

Network Processing Forum Software Working Group

 High Availability Task Group 53

7.4.8 Get Event Data

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 54

7.4.9 Event Delivery call back

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 55

7.4.10 Publish an event

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 56

Network Processing Forum Software Working Group

 High Availability Task Group 57

7.4.11 Subscribe to an Event

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 58

7.4.12 Unsubscribe to an event

Syntax:

Network Processing Forum Software Working Group

 High Availability Task Group 59

8 Appendix
8.1 Header file definition

8.1.1 NPF Extension API

/*
 * This header file defines typedefs, constants and
 * functions of the NPF High availability extension API
 *
 * This assumes that the definitions common to all NPF APIs
 * are available in a separate manner (a different header
 * file, etc.)
 */

#ifndef __NPF_HA_API_H_
#define __NPF_HA_API_H_

#ifdef __cplusplus
extern "C" {
#endif

typedef NPF_char8_t NPF_HA_Component_Name_t; /*Holds the name of the
HA component */

typedef NPF_char8_t NPF_HA_Role; /*Defines the HA role and mode*/

typedef NPF_int32_t NPF_HA_Correlator_t; /*Correlates application
instance */

typedef NPF_int32_t NPF_HA_Instance_Id; /*identifies HA instance */

/***
 * HA Extension API FUNCTION CALLS *
 ***/
NPF_error_t NPF_HAInit (

NPF_IN NPF_HA_Component_Name *component_Name;
NPF_IN NPF_HA_Role role,
NPF_IN NPF_HA_Correlator_t correlator,
NPF_IN NPF_HA_Instance_Id instance_Id,
NPF_IN NPF_boolean_t mode,

);

void NPF_HADeregister(
 NPF_IN NPF_HA_Component_Name *component_Name;
 NPF_IN NPF_HA_Correlator_t correlator,
 NPF_IN NPF_HA_Instance_Id instance_Id,
);

#ifdef __cplusplus
}
#endif

Network Processing Forum Software Working Group

 High Availability Task Group 60

#endif /* __NPF_HA_API_H_ */

8.1.2 SAForum API

/*
This header file is based on AIS document SAI-AIS-A.01.01
This include prototypes that are required and needs to be
supported in NPF-SW-HA environment.

/*
 In order to compile, all opaque types that appear as <...> in
 the spec have been defined as OPAQUE_TYPE (which is an
integer).

typedef OPAQUE_TYPE SaInvocationT;
typedef OPAQUE_TYPE SaSizeT;
typedef OPAQUE_TYPE SaOffsetT;
typedef OPAQUE_TYPE SaSelectionObjectT;
typedef OPAQUE_TYPE SaAmfHandleT;
typedef OPAQUE_TYPE SaCkptHandleT;
typedef OPAQUE_TYPE SaCkptCheckpointHandleT;
typedef OPAQUE_TYPE SaCkptSectionIteratorT;
typedef OPAQUE_TYPE SaEvtHandleT;
typedef OPAQUE_TYPE SaEvtEventHandleT;
typedef OPAQUE_TYPE SaEvtChannelHandleT;

*/

#define OPAQUE_TYPE int

typedef OPAQUE_TYPE SaInvocationT;
typedef OPAQUE_TYPE SaSizeT;
typedef OPAQUE_TYPE SaOffsetT;
typedef OPAQUE_TYPE SaSelectionObjectT;

typedef enum {
 SA_FALSE = 0,
 SA_TRUE = 1
} SaBoolT;

typedef char SaInt8T;
typedef short SaInt16T;
typedef long SaInt32T;
typedef long long SaInt64T;
typedef unsigned char SaUint8T;
typedef unsigned short SaUint16T;
typedef unsigned long SaUint32T;
typedef unsigned long long SaUint64T;
typedef SaInt64T SaTimeT;

#define SA_MAX_NAME_LENGTH 256

typedef struct {
 SaUint16T length;
 unsigned char value[SA_MAX_NAME_LENGTH];
} SaNameT;

/*

NPF specific: We need to have our own versioning in order to
distinguish from normal SAForum complaint implementation

Network Processing Forum Software Working Group

 High Availability Task Group 61

*/
typedef struct {
 char releaseCode;
 unsigned char major;
 unsigned char minor;
} SaVersionT;

#define SA_TRACK_CURRENT 0x01
#define SA_TRACK_CHANGES 0x02
#define SA_TRACK_CHANGES_ONLY 0x04

typedef enum {
 SA_DISPATCH_ONE = 1,
 SA_DISPATCH_ALL = 2,
 SA_DISPATCH_BLOCKING = 3
} SaDispatchFlagsT;

typedef enum {
 SA_OK = 1,
 SA_ERR_LIBRARY = 2,
 SA_ERR_VERSION = 3,
 SA_ERR_INIT = 4,
 SA_ERR_TIMEOUT = 5,
 SA_ERR_TRY_AGAIN = 6,
 SA_ERR_INVALID_PARAM = 7,
 SA_ERR_NO_MEMORY = 8,
 SA_ERR_BAD_HANDLE = 9,
 SA_ERR_BUSY = 10,
 SA_ERR_ACCESS = 11,
 SA_ERR_NOT_EXIST = 12,
 SA_ERR_NAME_TOO_LONG = 13,
 SA_ERR_EXIST = 14,
 SA_ERR_NO_SPACE = 15,
 SA_ERR_INTERRUPT =16, /* Not supported */
 SA_ERR_SYSTEM = 17,
 SA_ERR_NAME_NOT_FOUND = 18,
 SA_ERR_NO_RESOURCES = 19,
 SA_ERR_NOT_SUPPORTED = 20,
 SA_ERR_BAD_OPERATION = 21,
 SA_ERR_FAILED_OPERATION = 22,
 SA_ERR_MESSAGE_ERROR = 23,
 SA_ERR_NO_MESSAGE = 24,
 SA_ERR_QUEUE_FULL = 25,
 SA_ERR_QUEUE_NOT_AVAILABLE = 26,
 SA_ERR_BAD_CHECKPOINT = 27,
 SA_ERR_BAD_FLAGS = 28
} SaErrorT;

/*
 * AMF related data types
*/

typedef OPAQUE_TYPE SaAmfHandleT;

typedef enum {
 SA_AMF_HEARTBEAT = 1, /* Recommended value in NPF */
 SA_AMF_HEALTHCHECK_LEVEL1 = 2, /*Not used in NPF */
 SA_AMF_HEALTHCHECK_LEVEL2 = 3, /* Not used in NPF */
 SA_AMF_HEALTHCHECK_LEVEL3 = 4 /* Not used in NPF */
} SaAmfHealthcheckT;

typedef enum {
 SA_AMF_OUT_OF_SERVICE = 1,
 SA_AMF_IN_SERVICE = 2,
 SA_AMF_STOPPING = 3
} SaAmfReadinessStateT;

Network Processing Forum Software Working Group

 High Availability Task Group 62

typedef enum {
 SA_AMF_ACTIVE = 1,
 SA_AMF_STANDBY = 2,
 SA_AMF_QUIESCED = 3 /* We need to add one more type
STOPPED in NPF */
} SaAmfHAStateT;

/* NPF: We need not support all redundancy model, its
application and implemenation dependent */

typedef enum {
 SA_AMF_COMPONENT_CAPABILITY_X_ACTIVE_AND_Y_STANDBY= 1,
 SA_AMF_COMPONENT_CAPABILITY_X_ACTIVE_OR_X_STANDBY = 2,
 SA_AMF_COMPONENT_CAPABILITY_1_ACTIVE_OR_Y_STANDBY = 3,
 SA_AMF_COMPONENT_CAPABILITY_1_ACTIVE_OR_1_STANDBY = 4,
 SA_AMF_COMPONENT_CAPABILITY_X_ACTIVE = 5,
 SA_AMF_COMPONENT_CAPABILITY_1_ACTIVE = 6,
 SA_AMF_COMPONENT_CAPABILITY_NO_STATE = 7
} SaAmfComponentCapabilityModelT;

/*

In NPF each resource is referred in HA environment under a
component name. Component Service Instance and Component Name
refers are same in NPF.

*/
#define SA_AMF_CSI_ADD_NEW_INSTANCE 0X1
#define SA_AMF_CSI_ALL_INSTANCES 0X2

typedef SaUint32T SaAmfCSIFlagsT;

#define SA_AMF_SWITCHOVER_OPERATION 0X1
#define SA_AMF_SHUTDOWN_OPERATION 0X2
typedef SaUint32T SaAmfPendingOperationFlagsT;

typedef struct {
 SaNameT compName;
 SaAmfReadinessStateT readinessState;
 SaAmfHAStateT haState;
} SaAmfProtectionGroupMemberT;

typedef enum {
 SA_AMF_PROTECTION_GROUP_NO_CHANGE = 1,
 SA_AMF_PROTECTION_GROUP_ADDED = 2,
 SA_AMF_PROTECTION_GROUP_REMOVED = 3,
 SA_AMF_PROTECTION_GROUP_STATE_CHANGE = 4
} SaAmfProtectionGroupChangesT;

typedef struct {
 SaAmfProtectionGroupMemberT member;
 SaAmfProtectionGroupChangesT change;
} SaAmfProtectionGroupNotificationT;

typedef enum {
 SA_AMF_COMMUNICATION_ALARM_TYPE = 1,
 SA_AMF_QUALITY_OF_SERVICE_ALARM_TYPE = 2,
 SA_AMF_PROCESSING_ERROR_ALARM_TYPE = 3,
 SA_AMF_EQUIPMENT_ALARM_TYPE = 4,
 SA_AMF_ENVIRONMENTAL_ALARM_TYPE = 5
} SaAmfErrorReportTypeT;

typedef enum {
 SA_AMF_APPLICATION_SUBSYSTEM_FAILURE = 1,

Network Processing Forum Software Working Group

 High Availability Task Group 63

 SA_AMF_BANDWIDTH_REDUCED = 2,
 SA_AMF_CALL_ESTABLISHMENT_ERROR = 3,
 SA_AMF_COMMUNICATION_PROTOCOL_ERROR = 4,
 SA_AMF_COMMUNICATION_SUBSYSTEM_FAILURE = 5,
 SA_AMF_CONFIGURATION_ERROR = 6,
 SA_AMF_CONGESTION = 7, /* Not used in NPF */
 SA_AMF_CORRUPT_DATA = 8,
 SA_AMF_CPU_CYCLES_LIMIT_EXCEEDED = 9,/* Not used in NPF */
 SA_AMF_EQUIPMENT_MALFUNCTION = 10,
 SA_AMF_FILE_ERROR = 11,
 SA_AMF_IO_DEVICE_ERROR = 12,
 SA_AMF_LAN_ERROR, SA_AMF_OUT_OF_MEMORY = 13,
 SA_AMF_PERFORMANCE_DEGRADED = 14,
 SA_AMF_PROCESSOR_PROBLEM = 15, /* Not used in NPF */
 SA_AMF_RECEIVE_FAILURE = 16,
 SA_AMF_REMOTE_NODE_TRANSMISSION_ERROR = 17,
 SA_AMF_RESOURCE_AT_OR_NEARING_CAPACITY = 18,
 SA_AMF_RESPONSE_TIME_EXCESSIVE = 19,
 SA_AMF_RETRANSMISSION_RATE_EXCESSIVE = 20,
 SA_AMF_SOFTWARE_ERROR = 21,
 SA_AMF_SOFTWARE_PROGRAM_ABNORMALLY_TERMINATED = 22,
 SA_AMF_SOFTWARE_PROGRAM_ERROR = 23,
 SA_AMF_STORAGE_CAPACITY_PROBLEM = 24,
 SA_AMF_TIMING_PROBLEM = 25,
 SA_AMF_UNDERLYING_RESOURCE_UNAVAILABLE = 26,
 SA_AMF_INTERNAL_ERROR = 27,
 SA_AMF_NO_SERVICE_ERROR = 28,
 SA_AMF_SOFTWARE_LIBRARY_ERROR = 29
} SaAmfProbableCauseT;

typedef enum {
 SA_AMF_CLEARED = 1,
 SA_AMF_NO_IMPACT = 2,
 SA_AMF_INDETERMINATE = 3,
 SA_AMF_CRITICAL = 4,
 SA_AMF_MAJOR = 5,
 SA_AMF_WEDGED_COMPONENT_FAILURE = 6,
 SA_AMF_COMPONENT_TERMINATED_FAILURE= 7,
 SA_AMF_NODE_FAILURE = 8,
 SA_AMF_MINOR = 9,
 SA_AMF_WARNING = 10
} SaAmfErrorImpactAndSeverityT;

typedef enum {
 SA_AMF_NO_RECOMMENDATION = 1,
 SA_AMF_INTERNALLY_RECOVERED = 2,
 SA_AMF_COMPONENT_RESTART = 3,
 SA_AMF_COMPONENT_FAILOVER = 4,
 SA_AMF_NODE_SWITCHOVER = 5,
 SA_AMF_NODE_FAILOVER = 6,
 SA_AMF_NODE_FAILFAST = 7,
 SA_AMF_CLUSTER_RESET = 8
} SaAmfRecommendedRecoveryT;

#define SA_AMF_OPAQUE_BUFFER_SIZE_MAX 256

typedef struct {
 char *buffer;
 SaSizeT size;
} SaAmfErrorBufferT;

typedef struct {
 SaAmfErrorBufferT *specificProblem;
 SaAmfErrorBufferT *additionalText;
 SaAmfErrorBufferT *additionalInformation;
} SaAmfAdditionalDataT;

Network Processing Forum Software Working Group

 High Availability Task Group 64

typedef struct {
 SaAmfErrorReportTypeT errorReportType;
 SaAmfProbableCauseT probableCause;
 SaAmfErrorImpactAndSeverityT errorImpactAndSeverity;
 SaAmfRecommendedRecoveryT recommendedRecovery;
} SaAmfErrorDescriptorT;

typedef void
(*SaAmfHealthcheckCallbackT)(SaInvocationT invocation,
 const SaNameT *compName,
 SaAmfHealthcheckT checkType);

typedef void
(*SaAmfReadinessStateSetCallbackT)(SaInvocationT invocation,
 const SaNameT *compName,
 SaAmfReadinessStateT
readinessState);

typedef void
(*SaAmfComponentTerminateCallbackT)(SaInvocationT invocation,
 const SaNameT *compName);

typedef void
(*SaAmfCSISetCallbackT)(SaInvocationT invocation,
 const SaNameT *compName,
 const SaNameT *csiName, /* compName =
csiName in NPF */
 SaAmfCSIFlagsT csiFlags,
 SaAmfHAStateT *haState,
 SaNameT *activeCompName,
 /* compName = activeCompName in NPF */
 SaAmfCSITransitionDescriptorT
transitionDescriptor); /* Not used in NPF set to NULL */

typedef void
(*SaAmfCSIRemoveCallbackT)(SaInvocationT invocation,
 const SaNameT *compName,
 const SaNameT *csiName,
 const SaAmfCSIFlagsT *csiFlags);

typedef void
(*SaAmfProtectionGroupTrackCallbackT)
 (const SaNameT *csiName,
 SaAmfProtectionGroupNotificationT *notificationBuffer,
 SaUint32T numberOfItems,
 SaUint32T numberOfMembers,
 SaErrorT error);

typedef void
(*SaAmfPendingOperationConfirmCallbackT)
 (const SaInvocationT invocation,
 const SaNameT *compName,
 SaAmfPendingOperationFlagsT pendingOperationFlags);

typedef struct {
 SaAmfHealthcheckCallbackT
 saAmfHealthcheckCallback;
 SaAmfReadinessStateSetCallbackT
 saAmfReadinessStateSetCallback;
 SaAmfComponentTerminateCallbackT
 saAmfComponentTerminateCallback;
 SaAmfCSISetCallbackT
 saAmfCSISetCallback;

Network Processing Forum Software Working Group

 High Availability Task Group 65

 SaAmfCSIRemoveCallbackT
 saAmfCSIRemoveCallback;
 SaAmfProtectionGroupTrackCallbackT
 saAmfProtectionGroupTrackCallback;
 SaAmfPendingOperationConfirmCallbackT
 saAmfPendingOperationConfirmCallback;
} SaAmfCallbacksT;

 SaErrorT
SaAmfInitialize
(SaAmfHandleT *amfHandle,
 const SaAmfCallbacksT *amfCallbacks,
 const SaVersionT *version);

 SaErrorT
saAmfSelectionObjectGet(const SaAmfHandleT *amfHandle,
 SaSelectionObjectT *selectionObject);
 SaErrorT
saAmfDispatch(const SaAmfHandleT *amfHandle,
 SaDispatchFlagsT dispatchFlags);

 SaErrorT
saAmfFinalize(const SaAmfHandleT *amfHandle);
 SaErrorT

saAmfComponentRegister(const SaAmfHandleT *amfHandle,
 const SaNameT *compName,
 const SaNameT *proxyCompName);

 SaErrorT
saAmfComponentUnregister(const SaAmfHandleT *amfHandle,
 const SaNameT *compName,
 const SaNameT *proxyCompName);

 SaErrorT
saAmfCompNameGet(const SaAmfHandleT *amfHandle, SaNameT
*compName);

 SaErrorT
saAmfReadinessStateGet(const SaNameT *compName,
 SaAmfReadinessStateT *readinessState);

 SaErrorT
saAmfStoppingComplete(SaInvocationT invocation, SaErrorT
error);

 SaErrorT
saAmfHAStateGet(const SaNameT *compName,
 const SaNameT *csiName,
 SaAmfHAStateT *haState);

 SaErrorT
saAmfErrorReport(const SaNameT *reportingComponent,
 const SaNameT *erroneousComponent,
 SaTimeT errorDetectionTime,
 const SaAmfErrorDescriptorT *errorDescriptor,
 const SaAmfAdditionalDataT *additionalData);

 SaErrorT
saAmfErrorCancelAll(const SaNameT *compName);

 SaErrorT
saAmfComponentCapabilityModelGet(const SaNameT *compName,
 SaAmfComponentCapabilityModelT

*componentCapabilityModel);

Network Processing Forum Software Working Group

 High Availability Task Group 66

 SaErrorT
saAmfPendingOperationGet(const SaNameT *compName,
 SaAmfPendingOperationFlagsT *pendingOperationFlags);

 SaErrorT
saAmfResponse(SaInvocationT invocation, SaErrorT error);

/* checkpoint HA Service data types and prototype */

typedef OPAQUE_TYPE SaCkptHandleT;
typedef OPAQUE_TYPE SaCkptCheckpointHandleT;
typedef OPAQUE_TYPE SaCkptSectionIteratorT;

#define SA_CKPT_WR_ALL_REPLICAS 0X1
#define SA_CKPT_WR_ACTIVE_REPLICA 0X2
#define SA_CKPT_WR_ACTIVE_REPLICA_WEAK 0X4

typedef SaUint32T SaCkptCheckpointCreationFlagsT;

typedef struct {
 SaCkptCheckpointCreationFlagsT creationFlags;
 SaSizeT checkpointSize;
 SaTimeT retentionDuration;
 SaUint32T maxSections;
 SaSizeT maxSectionSize;
 SaUint32T maxSectionIdSize;
} SaCkptCheckpointCreationAttributesT;

#define SA_CKPT_CHECKPOINT_READ 0X1
#define SA_CKPT_CHECKPOINT_WRITE 0X2
#define SA_CKPT_CHECKPOINT_COLOCATED 0X4
typedef SaUint32T SaCkptCheckpointOpenFlagsT;

#define SA_CKPT_DEFAULT_SECTION_ID {NULL, 0}
#define SA_CKPT_GENERATED_SECTION_ID {NULL, 0}

typedef struct {
 SaUint8T *id;
 SaUint32T idLen;
} SaCkptSectionIdT;

typedef struct {
 SaCkptSectionIdT *sectionId;
 SaTimeT expirationTime;
} SaCkptSectionCreationAttributesT;

typedef enum {
 SA_CKPT_SECTION_VALID = 1,
 SA_CKPT_SECTION_CORRUPTED = 2
} SaCkptSectionStateT;

typedef struct {
 SaCkptSectionIdT sectionId;
 SaTimeT expirationTime;
 SaSizeT sectionSize;
 SaCkptSectionStateT sectionState;
 SaTimeT lastUpdate;
} SaCkptSectionDescriptorT;

typedef enum {
 SA_CKPT_SECTIONS_FOREVER = 1,
 SA_CKPT_SECTIONS_LEQ_EXPIRATION_TIME = 2,
 SA_CKPT_SECTIONS_GEQ_EXPIRATION_TIME = 3,
 SA_CKPT_SECTIONS_CORRUPTED = 4,
 SA_CKPT_SECTIONS_ANY = 5

Network Processing Forum Software Working Group

 High Availability Task Group 67

} SaCkptSectionsChosenT;

typedef struct {
 SaCkptSectionIdT sectionId;
 void *dataBuffer;
 SaSizeT dataSize;
 SaOffsetT dataOffset;
 SaSizeT readSize;
} SaCkptIOVectorElementT;

typedef struct {
 SaCkptCheckpointCreationAttributesT
checkpointCreationAttributes;
 SaUint32T numberOfSections;
 SaUint32T memoryUsed;
} SaCkptCheckpointStatusT;

typedef void
(*SaCkptCheckpointOpenCallbackT)(SaInvocationT invocation,
const SaCkptCheckpointHandleT
*checkpointHandle,
SaErrorT error);

typedef void
(*SaCkptCheckpointSynchronizeCallbackT)
(SaInvocationT invocation, SaErrorT error);

typedef struct {
 SaCkptCheckpointOpenCallbackT saCkptCheckpointOpenCallback;
 SaCkptCheckpointSynchronizeCallbackT
saCkptCheckpointSynchronizeCallback;
} SaCkptCallbacksT;

 SaErrorT
SaCkptInitialize
(SaCkptHandleT *ckptHandle,
 const SaCkptCallbacksT *callbacks,
 const SaVersionT *version);

 SaErrorT
saCkptSelectionObjectGet(const SaCkptHandleT *ckptHandle,
 SaSelectionObjectT *selectionObject);

 SaErrorT
saCkptDispatch(const SaCkptHandleT *ckptHandle,
 SaDispatchFlagsT dispatchFlags);

 SaErrorT
saCkptFinalize(const SaCkptHandleT *ckptHandle);

 SaErrorT
saCkptCheckpointOpen(const SaNameT *ckeckpointName,
const SaCkptCheckpointCreationAttributesT
*checkpointCreationAttributes,
SaCkptCheckpointOpenFlagsT checkpointOpenFlags,
SaTimeT timeout,
SaCkptCheckpointHandleT *checkpointHandle);

Network Processing Forum Software Working Group

 High Availability Task Group 68

 SaErrorT
saCkptCheckpointOpenAsync(const SaCkptHandleT *ckptHandle,
SaInvocationT invocation,
const SaNameT *ckeckpointName,
const SaCkptCheckpointCreationAttributesT
*checkpointCreationAttributes,
SaCkptCheckpointOpenFlagsT checkpointOpenFlags);

 SaErrorT
saCkptCheckpointClose(const SaCkptCheckpointHandleT
*checkpointHandle);

 SaErrorT
saCkptCheckpointRetentionDurationSet(const
SaCkptCheckpointHandleT *checkpointHandle,
SaTimeT retentionDuration);

 SaErrorT
saCkptActiveCheckpointSet(const SaCkptCheckpointHandleT
*checkpointHandle);

 SaErrorT
SaCkptCheckpointStatusGet
(const SaCkptCheckpointHandleT *checkpointHandle,
SaCkptCheckpointStatusT *checkpointStatus);

 SaErrorT
SaCkptSectionCreate
(const SaCkptCheckpointHandleT *checkpointHandle,
SaCkptSectionCreationAttributesT *sectionCreationAttributes,
const void *initialData,
SaUint32T initialDataSize);

 SaErrorT
SaCkptSectionDelete
(const SaCkptCheckpointHandleT *checkpointHandle,
const SaCkptSectionIdT *sectionId);

 SaErrorT
SaCkptSectionExpirationTimeSet
(const SaCkptCheckpointHandleT *checkpointHandle,
const SaCkptSectionIdT* sectionId,
SaTimeT expirationTime);

 SaErrorT
SaCkptSectionIteratorInitialize
(const SaCkptCheckpointHandleT *checkpointHandle,
SaCkptSectionsChosenT sectionsChosen,
SaTimeT expirationTime,
SaCkptSectionIteratorT *sectionIterator);

 SaErrorT
SaCkptSectionIteratorNext
(SaCkptSectionIteratorT *sectionIterator,
 SaCkptSectionDescriptorT *sectionDescriptor);

 SaErrorT
SaCkptSectionIteratorFinalize
(SaCkptSectionIteratorT *sectionIterator);

 SaErrorT
SaCkptCheckpointWrite
(const SaCkptCheckpointHandleT *checkpointHandle,
const SaCkptIOVectorElementT *ioVector,
SaUint32T numberOfElements,
SaUint32T *erroneousVectorIndex);

Network Processing Forum Software Working Group

 High Availability Task Group 69

 SaErrorT
SaCkptSectionOverwrite
(const SaCkptCheckpointHandleT *checkpointHandle,
const SaCkptSectionIdT *sectionId,
SaUint8T *dataBuffer,
SaSizeT dataSize);

 SaErrorT
SaCkptCheckpointRead
(const SaCkptCheckpointHandleT *checkpointHandle,
SaCkptIOVectorElementT *ioVector,
SaUint32T numberOfElements,
SaUint32T *erroneousVectorIndex);

 SaErrorT
SaCkptCheckpointSynchronize
(const SaCkptCheckpointHandleT *ckeckpointHandle,
SaTimeT timeout);

 SaErrorT
SaCkptCheckpointSynchronizeAsync
(const SaCkptHandleT *ckptHandle,
SaInvocationT invocation,
const SaCkptCheckpointHandleT *checkpointHandle);

/* Event Service API data types and prototypes */

typedef OPAQUE_TYPE SaEvtHandleT;
typedef OPAQUE_TYPE SaEvtEventHandleT;
typedef OPAQUE_TYPE SaEvtChannelHandleT;
typedef SaUint32T SaEvtSubscriptionIdT;

typedef void
(*SaEvtEventDeliverCallbackT)
(const SaEvtChannelHandleT *channelHandle,
SaEvtSubscriptionIdT subscriptionId,
const SaEvtEventHandleT *eventHandle,
const SaSizeT eventDataSize);

typedef struct{
 const SaEvtEventDeliverCallbackT saEvtEventDeliverCallback;
} SaEvtCallbacksT;

#define SA_EVT_CHANNEL_PUBLISHER 0X1
#define SA_EVT_CHANNEL_SUBSCRIBER 0X2
#define SA_EVT_CHANNEL_CREATE 0X4
typedef SaUint8T SaEvtChannelOpenFlagsT;

typedef struct {
 SaUint8T *pattern;
 SaSizeT patternSize;
} SaEvtEventPatternT;

#define SA_EVT_HIGHEST_PRIORITY 0
#define SA_EVT_LOWEST_PRIORITY 3

#define SA_EVT_LOST_EVENT "SA_EVT_LOST_EVENT_PATTERN"

typedef struct {
 SaEvtEventPatternT *patterns;
 SaSizeT patternsNumber;
} SaEvtEventPatternArrayT;

Network Processing Forum Software Working Group

 High Availability Task Group 70

typedef SaUint8T SaEvtEventPriorityT;
typedef SaUint32T SaEvtEventIdT;

typedef enum {
 SA_EVT_PREFIX_FILTER = 1,
 SA_EVT_SUFFIX_FILTER = 2,
 SA_EVT_EXACT_FILTER = 3,
 SA_EVT_PASS_ALL_FILTER = 4
} SaEvtEventFilterTypeT;

typedef struct {
 SaEvtEventFilterTypeT filterType;
 SaEvtEventPatternT filter;
} SaEvtEventFilterT;

typedef struct {
 SaEvtEventFilterT *filters;
 SaSizeT filtersNumber;
} SaEvtEventFilterArrayT;

 SaErrorT
SaEvtInitialize
(SaEvtHandleT *evtHandle, const SaEvtCallbacksT *callbacks,
 const SaVersionT *version);

 SaErrorT
saEvtSelectionObjectGet(const SaEvtHandleT *evtHandle,
 SaSelectionObjectT *selectionObject);

 SaErrorT
SaEvtDispatch
(const SaEvtHandleT *evtHandle,
SaDispatchFlagsT dispatchFlags);

 SaErrorT
saEvtFinalize(SaEvtHandleT *evtHandle);

 SaErrorT
saEvtChannelOpen(const SaEvtHandleT *evtHandle,
const SaNameT *channelName,
SaEvtChannelOpenFlagsT channelOpenFlags,
SaEvtChannelHandleT *channelHandle);

 SaErrorT
saEvtChannelClose(SaEvtChannelHandleT *channelHandle);

 SaErrorT
SaEvtEventAttributesSet
(const SaEvtEventHandleT *eventHandle,
 const SaEvtEventPatternArrayT *patternArray,
 SaUint8T priority,
 SaTimeT retentionTime,
 const SaNameT *publisherName);

 SaErrorT
SaEvtEventAttributesGet
(const SaEvtChannelHandleT *channelHandle,
const SaEvtEventHandleT *eventHandle,
SaEvtEventPatternArrayT *patternArray,
SaUint8T *priority,
SaTimeT *retentionTime,
SaNameT *publisherName,
SaClmNodeIdT *publisherNodeId,
SaTimeT *publishTime,
SaEvtEventIdT *eventId);

Network Processing Forum Software Working Group

 High Availability Task Group 71

 SaErrorT
saEvtEventDataGet(const SaEvtEventHandleT *eventHandle,
 void *eventData,
 SaSizeT *eventDataSize);

 SaErrorT
saEvtEventPublish(const SaEvtChannelHandleT *channelHandle,
 const SaEvtEventHandleT *eventHandle,
 const void *eventData,
 SaSizeT eventDataSize);

 SaErrorT
saEvtEventSubscribe(const SaEvtChannelHandleT *channelHandle,
 const SaEvtEventFilterArrayT *filters,
 SaEvtSubscriptionIdT subscriptionId);

 SaErrorT
saEvtEventUnsubscribe(const SaEvtChannelHandleT *channelHandle,
 SaEvtSubscriptionIdT subscriptionId);

 SaErrorT
SaEvtEventRetentionTimeClear
(const SaEvtChannelHandleT *channelHandle,
const SaEvtEventHandleT *eventHandle);

Network Processing Forum Software Working Group

 High Availability Task Group 72

APPENDIX A ACKNOWLEDGEMENTS

Working Group Chair: Vinoj Kumar

Task Group Chair: Ram Gopal. L

The following individuals are acknowledged for their participation to High Availability task
group teleconferences, plenary meetings, mailing list, and/or for their NPF contributions used for
the development of this Implementation Agreement. This list may not be all-inclusive since
only names supplied by member companies for inclusion here will be listed. The NPF wishes to
thank all active participants to this Implementation Agreement, whether listed here or not.

The list is in alphabetical order of last names:

Bachmutsky Alex(Nokia)

Balakrishnan Santosh (Intel)

Damon Pilippe (IBM)

Keany Berny(Intel)

Keisu Torbjorn (Ericsson)

Kumar Vinoj(Agere)

Lewing Van (PMC-Sierra)

Muralidhar Rajeev (Intel)

Papp William (Nokia)

Renwick John (Agere)

Sam (Intel)

Sridhar T(FutureSoft)

Stone Alan (Intel)

Vandalore Bobby (Nokia)

Vedvyas Shanbhogue (Intel)

Verma Sanjeev(Nokia)

Network Processing Forum Software Working Group

 High Availability Task Group 73

APPENDIX B LIST OF COMPANIES BELONGING TO NPF DURING APPROVAL
PROCESS

Agere Systems FutureSoft Nokia

Cypress Semiconductor Intel PMC Sierra

Ericsson IP Infusion Sun Microsystems

ETRI Kawasaki LSI Xilinx

