
Network Processing Forum Software Work Group

Interface Management API
Implementation Agreement

(Core Function Set)

Revision 3.0

Editor: John Renwick, Agere Systems, jrenwick@agere.com

Copyright © 2002, 2003, 2004 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THIS DOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", “MAY", and "OPTIONAL" in the
remainder of this document are to be interpreted as described in the NPF Software API
Conventions Implementation Agreement revision 1.0.

For additional information contact:
The Network Processing Forum, 39355 California Street,

Suite 307, Fremont, CA 94538
+1 510 608-5990 phone info@npforum.org

 Interfaces Task Group 1

mailto:david.putzolu@intel.com

Network Processing Forum Software Work Group

Table of Contents

1 Revision History ... 4
2 Introduction... 5

2.1 ASSUMPTIONS AND EXTERNAL REQUIREMENTS ..6
2.2 SCOPE..7
2.3 DEPENDENCIES ..7
2.4 INTERFACE MANAGEMENT STRUCTURES...7

2.4.1 Common Interface Attributes...7
2.4.2 Common Interface Statistics ..8
2.4.3 Interface Relatedness...8
2.4.4 Interface Manager Application..8

3 Data Types .. 9
3.1 INTERFACE MANAGEMENT API TYPES..9

3.1.1 Interface Identifier ...9
3.1.2 Generic Interface Structure: NPF_IfGeneric_t ...9
3.1.3 Interface Handle: NPF_IfHandle_t ...10
3.1.4 Interface Type Code: NPF_IfType_t..10
3.1.5 Structure to Relate Two Interfaces: NPF_IfBinding_t...11
3.1.6 Interface Statistics: NPF_IfStatistics_t..11
3.1.7 Operational Status Code: NPF_IfOperStatus_t...11
3.1.8 Administrative Status Code: NPF_IfAdminStatus_t ..12
3.1.9 Forwarding Mode : NPF_IfFwdMode_t..12
3.1.10 Loopback Modes ...12
3.1.11 Interface Identity : NPF_IfIdentity_t...13
3.1.12 Interface Identity Array : NPF_IfIdentityArray_t ...13
3.1.13 Binding Update Information ...13
3.1.14 Address Update Information ...13

3.2 DATA STRUCTURES FOR COMPLETION CALLBACKS ..14
3.2.1 Completion Callback Type (NPF_IfCallbackType_t) ..14
3.2.2 Asynchronous Response Array Element: NPF_IfAsyncResponse_t...15
3.2.3 Callback Data Structure: NPF_IfCallbackData_t...16

3.3 ERROR CODES (NPF_IFERRORTYPE_T) ..17
3.4 DATA STRUCTURES FOR EVENT NOTIFICATIONS ...19

3.4.1 Event Types: NPF_IfEvent_t..19
3.4.2 Event Mask Structure...19
3.4.3 Core Event Mask Bit Assignments ...20
3.4.4 Event Notification Structure and Array: NPF_IfEventData_t and NPF_IfEventArray_t....................20

4 Functions... 22
4.1 COMPLETION CALLBACK...22

4.1.1 Completion Callback Function ..22
4.1.2 NPF_IfRegister: Completion Callback Registration Function..23
4.1.3 NPF_IfDeregister: Completion Callback Deregistration Function ..23

4.2 EVENT NOTIFICATION..24
4.2.1 Event Handler Function...24
4.2.2 NPF_IfEventRegister: Event Handler Registration Function ...25
4.2.3 NPF_IfEventDeregister: Event Handler Deregistration Function ..25

4.3 EVENT DEFINITION SIGNATURE...26
4.4 ORDER OF OPERATIONS...26
4.5 COMPLETION CALLBACKS AND ERROR RETURNS..26
4.6 INTERFACE MANAGEMENT API – GENERIC FUNCTIONS..27

4.6.1 NPF_IfCreate: Create an Interface ...27
4.6.2 NPF_IfDelete: Delete an Interface..28
4.6.3 NPF_IfBind: Bind Interfaces ...28

 Interfaces Task Group 2

Network Processing Forum Software Work Group

4.6.4 NPF_IfUnBind: Remove Interface Bindings..29
4.6.5 NPF_IfGenericStatsGet: Read Interface Statistics ..30
4.6.6 NPF_IfAttrSet: Set All Interface Attributes ...31
4.6.7 NPF_IfCreateAndSet: Create an Interface and Set All of its Attributes ..32
4.6.8 NPF_IfEnable: Enable an Interface ..33
4.6.9 NPF_IfDisable: Disable an Interface ..33
4.6.10 NPF_IfOperStatusGet: Return the Operational Status of an Interface ..34
4.6.11 NPF_IfMaxPDU_SizeSet: Set an Interface’s Maximum PDU Size ..35
4.6.12 NPF_IfAttrGet: Read Interface Attributes ..36
4.6.13 NPF_IfFwdEnable: Enable Forwarding on One or More Interfaces...36
4.6.14 NPF_IfFwdDisable: Disable Forwarding on One or More Interfaces...37
4.6.15 NPF_IfInternalLoopbackEnable: Enable Internal Loopback on One or More Interfaces38
4.6.16 NPF_IfInternalLoopbackDisable: Disable Internal Loopback on One or More Interfaces38
4.6.17 NPF_IfExternalLoopbackEnable: Enable External Loopback on One or More Interfaces............39
4.6.18 NPF_IfExternalLoopbackDisable: Disable External Loopback on One or More Interfaces40
4.6.19 NPF_IfHandleGet: Return the Handle Value For a Given Interface ...40
4.6.20 NPF_IfHandleGetAll: Return the Handles of All Interfaces...41

5 References... 43
6 API Capabilities .. 44

6.1 OPTIONAL SUPPORT OF SPECIFIC TYPES ...44
6.2 API FUNCTIONS...44
6.3 API EVENTS ..44

Appendix A Changes from Revision 2.0... 45
Appendix B Header File: npf_if_CORE.h .. 47
Appendix C Acknowledgements... 60

Table of Figures

Figure 1 - Layer 2 interface configurations ... 5
Figure 2 - Layer 2 and Layer 3 Interface Relationship .. 6
Figure 3 - L2-L3 mappings.. 6
Figure 4 - Link/L2/L3 relationship ... 6

 Interfaces Task Group 3

Network Processing Forum Software Work Group

1 Revision History

Revision Date Reason for Changes

3.0 11/22/2004 Created Rev 0.0 from the Interface Management IA version 2.0 by
removing all type-specific definitions, leaving the generic Interface
Management Core definitions and functions. Modified definitions
extensively to move generic features to the Core document and
make Interface Management header files independent. Many of
these changes are not backward-compatible with version 2.0.

 Interfaces Task Group 4

Network Processing Forum Software Work Group

2 Introduction
A network element, for instance a router, has one or more physical connection points, usually called links,
through which it is connected to other network elements. Packets are received over a link by the network
element for processing. A link usually has an associated Layer 2 (L2) protocol that is used to transfer
packets over the media of the link. A L2 protocol typically either implements and/or negotiates standards-
based link characteristics such as link speed, single or full duplex transmission mode, etc. PPP, Ethernet,
etc. are examples of layer 2 protocols commonly deployed in today’s networks. It is quite possible that
more than one L2 protocol can be running on a single link, e.g. PPP over Ethernet. Also, multiple L2
interfaces of the same type can be combined into a single logical L2 interface to create a trunk, as in
802.3ad link aggregation and other multilink techniques.
The figures below show some of the relationships that exist in today’s networks. Other configurations are
possible, including combining the forms below into more deeply nested hierarchies.

Link Layer 2
Interface

Link Layer 2
Interface

Link
Layer 2

Interface
e.g. Ethernet

Link
Layer 2

Interface
e.g. Ethernet

Layer 2
Interface

Layer 2
Interface
e.g. PPP

802.3ad Link Aggregation

PPP over Ethernet

Ethernet

Link

Layer 2
Interface
e.g. ATM

VCs

Layer 2
Interface
e.g. PPP

PPP over ATM

Figure 1 - Layer 2 interface configurations

One or more Layer 3 protocols, for instance IPv4, IPv6 or IPX, can be used on an L2 interface. An L3
interface captures the properties of the corresponding L3 protocol. For example, in case of IPv4, IP
address and prefix length are associated with the L3 interfaces.

 Interfaces Task Group 5

Network Processing Forum Software Work Group

Layer 2

Interface
e.g. Ethernet

Layer 3
Interface
e.g. IPv4

Figure 2 - Layer 2 and Layer 3 Interface Relationship

There is a many-to-many relationship between L2 and L3 interfaces. Thus, as shown by Figure 3,
multiple Layer 3 interfaces can be associated with a single L2 interface, and a single L3 interface can be
associated with multiple L2 interfaces.

Layer 2
Interface

e.g. Ethernet

Layer 3
Interface
e.g. IPv4

Layer 3
Interface
e.g. IPX

Layer 2
Interface

e.g. Ethernet

Layer 3
Interface
e.g. IPv4

Layer 2
Interface

e.g. Ethernet
Figure 3 - L2-L3 mappings

Figure 4 shows the overall relationships between links, L2 Interfaces and L3 Interfaces.

Link L2 Inteface L3 Inteface
1..n

1
1..n

0..n

1 1

Figure 4 - Link/L2/L3 relationship

The Interface Management API provides a uniform interface for configuring and managing the physical
and logical interfaces of which a network processor may need to be aware. For example, the API defined
in this document will cover aspects of interface management related to Layer 2 (Bridging), Layer 3 (IP),
media-specific management (Ethernet, ATM UNI, SONET, etc.), and so on.

2.1 Assumptions and External Requirements
1. Memory allocation and usage model for the API implementation will be as dictated by the NPF

Software Conventions Implementation Agreement.
2. The API does not determine any policy with respect to operations on interfaces or their events. It is

assumed that policy will be embodied in an Interface Manager module that is part of the application.
(See 2.4.4.)

 Interfaces Task Group 6

Network Processing Forum Software Work Group

2.2 Scope
The “interfaces” addressed by this API are those related to external network ports only. Other internal
interfaces defined by NP Forum, such as streaming and lookaside interfaces, are outside the scope of this
document.
This document describes only the “core” functionality of Interface Management; that is, definitions and
functions that apply to any interface, regardless of its type (such as LAN, POS, IPv4, etc.). Other IAs
exist to define APIs related to the specifics of each interface type.
Every implementation of Interface Management must support the required definitions and
functions of the Core document. Some implementations will support only a subset of the defined
types, and for such implementations only the required API features in the documents specific to
those types need be supported. There are type-specific documents such as IPv4 and IPv6 that
define support for multiple interface types. In those cases, a vendor can claim support for and
implement a subset of the definitions found in the appropriate type-specific document.

2.3 Dependencies
This document depends on the NPF Software Implementation Agreement – Software API Conventions,
Revision 2, for basic type definitions.

2.4 Interface Management Structures
We represent an interface with a hierarchy of structures. At the top level is a structure containing
attributes that can be set from the application, and are common to all interface types. Within that is a
union containing objects that are attributes of a specific type or family of interface types. This nested
structure contains only attributes that can be set on an interface. There are other structures for reading
interface attributes, such as statistics. See the individual structure descriptions below.

2.4.1 Common Interface Attributes
The common interface attribute structure contains the following, which the application can set on most
interfaces:

• Interface type code, which indicates which of several different type-specific groups of attributes
are being used: LAN, IPv4, ATM UNI, POS, and so on.

• Administrative Status (up or down): a global enable/disable control on the interface.
• Operational Status (up or down): whether or not the interface and/or its children are in working

condition.
• Interface Identifier: a nonzero integer value assigned by the application to each interface it

creates. No two interfaces may have the same ID. This number can be anything of the
application’s choosing; the value of ifIndex (see RFC 2863) is one possiblity.

• Maximum PDU size: the largest Protocol Data Unit (PDU) that can be transmitted. The actual
packet sent might be larger, due to headers being added by processes and hardware that might be
represented by parents of this interface.

• Forwarding Mode: for interface types that support forwarding of packets or cells, forwarding can
be enabled or disabled. Disabling forwarding does not prevent delivery of locally-addressed
packets.

• Loopback modes: for interfaces that support some kind of loopback for testing or diagnostic
purposes, there are common attributes and functions to control it.

 Interfaces Task Group 7

Network Processing Forum Software Work Group

2.4.2 Common Interface Statistics
These attributes have a structure of their own, and can be retrieved by an application, but not set. They
apply to all interface types. These counters correspond to counters defined in MIB-II (RFC 1213) and the
Interfaces Group MIB (RFC 2233).

• Counters (64 bits – wide enough “never”1 to wrap):
o Bytes received
o Input packets (unicast)
o Input packets (multicast)
o Input packets (broadcast)
o Input packets dropped
o Input errors
o Input packets of unknown protocol
o Bytes sent
o Output packets (unicast)
o Output packets (multicast)
o Output packets (broadcast)
o Output packets dropped
o Output errors

2.4.3 Interface Relatedness
The API includes a function (NPF_IfBind) that relates a pair of interfaces as parent and child. A parent
interface represents a lower layer than that of its children, with reference to the OSI model. For example,
layer 2 interfaces are naturally parents layer 3 interfaces. An interface can be at the same time a parent of
one interface and a child of another. The API places no restriction on:

• the number of levels of hierarchy
• the numer of child interfaces any can have
• the number of parent interfaces any can have
• the types of interfaces that can be bound together as parent and child.

This last point means, for instance, that binding a LAN interface as the child of an IPv4 interface is
permitted as far as the API specification is concerned, even though such a binding might make no sense in
the context of a given implementation (for another implementation, it might make perfect sense).
Implementations MAY place their own restrictions on the way interfaces of certain types can be related,
in what multiplicity, and to what depth of hierarchy.

2.4.4 Interface Manager Application
Because interfaces can be related, an application may require that an event on one interface causes a
related event to be registered on a related interface; or it may require that operations on related interfaces
be done in a certain way, or in a certain order. The API imposes a few necessary restrictions on the order
of operations (see section 4.4), but there are other matters of policy that belong to the application and are
outside the scope of the API to regulate. Where there are significant policy considerations, the client
application should include an Interface Manager module that brokers transactions or intercedes between
the Interface Management API and its clients, and ensures that the application’s requirements are
satisfied.

1 At OC768 sustained full speed, or 39813 megabits/second, a 64-bit byte counter will wrap in approximately 117
years.

 Interfaces Task Group 8

Network Processing Forum Software Work Group

3 Data Types
3.1 Interface Management API Types
3.1.1 Interface Identifier
The Interface Identifier is a nonzero integer value assigned by the application to each interface. No two
interfaces may have the same Interface ID value. The Interface ID performs at least two functions: it aids
in recovering from the event of a lost callback from an interface creation function, and it serves to identify
the interface in callbacks. The Interface Management API implementation must remember the Interface
ID value associated with each Interface Handle it creates. Any attempt by the application to create a new
Interface Handle using an Interface ID value already associated with an existing handle must result in an
error with the existing handle being returned to the application, and no new handle created. Callback
information from functions that create, modify, destroy or query interfaces must always include both the
Interface Handle and the Interface ID value for each interface referenced.

typedef NPF_uint32_t NPF_IfID_t; /* Interface Identifier */

3.1.2 Generic Interface Structure: NPF_IfGeneric_t
This structure contains the “generic” attributes of an interface – that is, the attributes that are
common to all interface types. It also may contain a pointer to a type-specific structure. As
such, this structure can carry all attributes of an interface (not including counter values). It is
used in functions that set interface attributes and query interface attributes.

The NPF_IfGeneric_t structure contains forward references to interface-type-specific structures
that are defined in other header files. These references are pointers contained in a union within
the NPF_IfGeneric_t structure. For each interface type, only one type-specific attribute
structure is defined. Each implementer will need to customize the union to include only pointers
as needed for the interface types supported.

/*
 * The Interface structure:
 */
typedef struct {

NPF_IfID_t ifID; /* Interface ID */
NPF_IfType_t type; /* Logical interface type */
NPF_uint64_t speed; /* Speed in Kbits/second */
NPF_uint32_t maxPDU; /* Max Protocol Data Unit Size */
NPF_IfOperStatus_t operStatus; /* Operational Status (read only)*/
NPF_IfAdminStatus_t adminStatus; /* Administrative up/down */
NPF_IfFwdMode_t fwdMode; /* Forwarding Mode */
NPF_IfInternalLoopbackMode_t intLoop; /* Internal loopback */
NPF_IfExternalLoopbackMode_t extLoop; /* External loopback */
NPF_uint32_t nChildren; /* Number of child interfaces */
NPF_uint32_t *childIDs; /* Array of child interface IDs */
NPF_uint32_t nParents; /* Number of parent interfaces */
NPF_uint32_t *parentIDs; /* Array of parent i/f IDs */
union { /* Type specific attributes (by if_type code) */

 /* **** CAUTION ****
 * ONLY POINTERS TO STRUCTURES MAY BE USED IN THIS UNION.

 Interfaces Task Group 9

Network Processing Forum Software Work Group

 * **** CAUTION **** */

 /* The implementer adds lines like the following,
 * depending on the interface types supported. In
 * this example, we have support for LAN and IPv4
 * interface types.

 */
 NPF_IfLAN_t *LAN_Attr; /* LAN interface attributes */
 NPF_IfIPv4_t *IPv4_Attr; /* IPv4 Interface attributes */

} u;
} NPF_IfGeneric_t;

The Operational Status variable is read-only. It reflects the mechanical and electrical status and software
readiness of this and underlying interfaces, and cannot be set by the application.

The arrays of parent and child interface IDs are read-only. NPF_IfBind() and NPF_IfUnBind() must
be used to create or modify interface bindings. These functions take interface handles as arguments.
When an application asks for interface settings using NPF_IfAttrGet(), the implementation maps the
handles to Interface IDs and returns the ID values in these arrays.

3.1.3 Interface Handle: NPF_IfHandle_t
/*
 * Interface handle
 */
typedef NPF_uint32_t NPF_IfHandle_t;

The following values are reserved and MUST not be assigned to any valid interface handle.

#define NPF_IF_HANDLE_NULL 0 /* NULL handle value */
#define NPF_IF_HANDLE_ALL 0xFFFFFFFF /* Represents all interfaces */

3.1.4 Interface Type Code: NPF_IfType_t
The interface type code identifies the type of interface in the NPF_IfGeneric_t structure and
other places. It is also used as a qualifier for various other type-specific codes defined in other
Implementation Agreements. The general convention is to define type-specific codes as follows:

#define NPF_XXX_CODE1 ((NPF_IF_TYPE_XXX<<16) + code)

where “XXX” is the name of the interface type, and “code” is a numeric value. This style will be
used in type-specific IAs to define function type codes and event type codes. Error codes
defined in type-specific documents will have values assigned similarly, but with a slight
difference, using a macro:

#define NPF_IF_E_XXX_CODE(code) (0x10000+(NPF_IF_TYPE_XXX<<8)+(code))

#define NPF_IF_E_<reason> NPF_IF_E_XXX_CODE(<nn>)

The following interface types were defined at the time of this writing. Others may be defined in
newer Interface Management Implementation Agreements; see the individual type-specific API
documents for the complete set.

#define NPF_IF_TYPE_RESV 0 /* Reserved value */

 Interfaces Task Group 10

Network Processing Forum Software Work Group

#define NPF_IF_TYPE_UNK 1 /* Unknown interface type */
#define NPF_IF_TYPE_LAN 2 /* LAN interface */
#define NPF_IF_TYPE_ATM 3 /* ATM interface */
#define NPF_IF_TYPE_POS 4 /* Packet over SONET */
#define NPF_IF_TYPE_IPV4 5 /* IPv4 logical interface */
#define NPF_IF_TYPE_IPV6 6 /* IPv6 logical interface */

typedef NPF_uint32_t NPF_IfType_t;

3.1.5 Structure to Relate Two Interfaces: NPF_IfBinding_t
/*
 * Structure to relate two interfaces
 */
typedef struct {
 NPF_IfHandle_t parent; /* Parent interface handle */
 NPF_IfHandle_t child; /* Child interface handle */
} NPF_IfBinding_t;

3.1.6 Interface Statistics: NPF_IfStatistics_t
/*
 * Statistics
 */
typedef struct {
 NPF_uint64_t bytesRx; /* Receive Bytes */
 NPF_uint64_t ucPackRx; /* Receive Unicast Packets */
 NPF_uint64_t mcPackRx; /* Receive Multicast Packets */
 NPF_uint64_t bcPackRx; /* Receive Broadcast Packets */
 NPF_uint32_t dropRx; /* Receive packets dropped */
 NPF_uint32_t errorRx; /* Receive errors */
 NPF_uint32_t protoRx; /* Receive unknown protocol */
 NPF_uint64_t bytesTx; /* Transmit bytes */
 NPF_uint64_t ucPackTx; /* Transmit Unicast Packets */
 NPF_uint64_t mcPackTx; /* Transmit Multicast Packets */
 NPF_uint64_t bcPackTx; /* Transmit Broadcast Packets */
 NPF_uint32_t dropTx; /* Transmit dropped packets */
 NPF_uint32_t errorTx; /* Transmit errors */
} NPF_IfStatistics_t;

3.1.7 Operational Status Code: NPF_IfOperStatus_t
NPF_IfOperStatus_t is meant to mirror the ifOperStatus object in the Interfaces Group MIB
(RFC 2863). Please refer to that document, section 3.1.13, for details on the meaning and
behavior of these states.

/*
 * Operational Status code
 */
typedef enum {
 NPF_IF_OPER_STATUS_UP = 1, /* Operationally UP */
 NPF_IF_OPER_STATUS_DOWN = 2, /* Operationally DOWN */
 NPF_IF_OPER_STATUS_TESTING = 3, /* Testing status */
 NPF_IF_OPER_STATUS_UNKNOWN = 4, /* Status unknown */

 Interfaces Task Group 11

Network Processing Forum Software Work Group

 NPF_IF_OPER_STATUS_DORMANT = 5, /* Dormant status */
 NPF_IF_OPER_STATUS_NOT_PRESENT = 6, /* Interface not present */
 NPF_IF_OPER_STATUS_LOWER_LAYER_DOWN = 7 /* Parent I/F down */
} NPF_IfOperStatus_t;

3.1.8 Administrative Status Code: NPF_IfAdminStatus_t
NPF_IfAdminStatus_t is meant to mirror the ifAdminStatus object in the Interfaces Group MIB
(RFC 2863). Please refer to that document, section 3.1.13, for details on the meaning and
behavior of these states.

/*
 * Administrative Status code
 */
typedef enum {
 NPF_IF_ADMIN_STATUS_UP = 1, /* Administratively UP */
 NPF_IF_ADMIN_STATUS_DOWN = 2, /* Administratively DOWN */
 NPF_IF_ADMIN_STATUS_TESTING = 3 /* Testing status */
} NPF_IfAdminStatus_t;

3.1.9 Forwarding Mode : NPF_IfFwdMode_t
Forwarding is a function defined for several interface types, including IPv4, IPv6, and LAN
interfaces. The Forwarding Mode variable has meaning on these interface types, but not on
those (such as POS) for which no forwarding function is defined.

/*
 * Forwarding mode code
 */
typedef enum {
 NPF_IF_FORWARDING_ENABLE = 1, /* Enable Forwarding */
 NPF_IF_FORWARDING_DISABLE = 2 /* Disable Forwarding */
} NPF_IfFwdMode_t;

3.1.10 Loopback Modes
Many interface types support a loopback function, either by hardware or software. External
Loopback means that packets received from outside are turned around and sent back to their
source. Internal loopback means that packets sent from the local system to a remote system,
instead of being sent to their destinations, are directed back to the local system.
Support of loopback in any particular interface type is optional. Since the primary use of
loopback is to help in isolating faults in the data path, implementations that support both internal
and external loopback SHOULD select an external loopback point closer to the external interface
than the internal loopback point, so as to minimize the likelihood of a single fault causing both
loopbacks to fail.

/*
 * Internal and External Loopback Modes
 */
typedef enum {
 NPF_IF_INTERNAL_LOOPBACK_ENABLE = 1, /* Enable loopback */
 NPF_IF_INTERNAL_LOOPBACK_DISABLE = 2, /* Disable loopback */

 Interfaces Task Group 12

Network Processing Forum Software Work Group

} NPF_IfInternalLoopbackMode_t;

typedef enum {
 NPF_IF_EXTERNAL_LOOPBACK_ENABLE = 1, /* Enable loopback */
 NPF_IF_EXTERNAL_LOOPBACK_DISABLE = 2, /* Disable loopback */
} NPF_IfExternalLoopbackMode_t;

3.1.11 Interface Identity : NPF_IfIdentity_t
This structure, and the Interface Identity Array following this one, are used for the response from
the NPF_IfHandleGetAll() function call.

/*
 * Interface Identity (ID and Handle)
 */
typedef struct {

NPF_IfID_t ifID;
NPF_IfHandle_t ifHandle;

} NPF_IfIdentity_t;

3.1.12 Interface Identity Array : NPF_IfIdentityArray_t
/*
 * Interface Identity Array
 */
typedef struct {
 NPF_uint32_t nCount;

NPF_IfIdentity_t *ifIdentityArray;
} NPF_IfIdentityArray_t;

3.1.13 Binding Update Information
/*
 * Binding change type
 */
typedef enum {
 IF_BIND_ADD = 0, /* add parent-child relationship */
 IF_BIND_DELETE = 1 /* delete parent-child relationship */
} NPF_IfBindAction_Type_t;

/*
 * Parent-child Interface relationship changes
 *
 */
typedef struct
{

NPF_IfBindAction_Type_t bindChangeType; /* delete or add relationship*/
NPF_IfBinding_t ifBind;

} NPF_IfBind_Update_t;

3.1.14 Address Update Information
These data structures support the event notifications triggered for L3 address changes.

/*
 * Action for address changes

 Interfaces Task Group 13

Network Processing Forum Software Work Group

 */
typedef enum {
 IF_ADDR_ADD = 0,
 IF_ADDR_DELETE = 1,
 IF_ADDR_MODIFY = 2
} NPF_IfAddrUpdate_Type_t;

/*
 * L2/L3 Address type
 */
typedef enum {
 IF_IPV4_ADDR = 1, /* modify primary IPv4 address */
 IF_IPV4_UCADDR = 2, /* Add, delete IPv4 unicast addresses */
 IF_IPV4_MCADDR = 3, /* Add, delete Multicast addresses */
 IF_IPV6_ADDR = 4, /* Add, delete IPv6 addresses */
 IF_MAC_ADDR = 5 /* Add, delete MAC addresses */
} NPF_IfL2L3Addr_Type_t;

/*
 * L2/L3 Address Changes
 */
typedef struct
{
 NPF_IfAddrUpdate_Type_t addrChangeType; /* add, delete or modify */
 NPF_IfL2L3Addr_Type_t addrType; /* Ipv4, Ipv6, MAC addr, etc. */

 NPF_uint32_t nAddrs
 union {
 NPF_IPv4Prefix_t *if_IPv4AddrArray;
 NPF_IPv6Prefix_t *if_IPv6AddrArray;
 NPF_IfMacAddress_t *macAddrArray;
 } newAddr;
} NPF_IfL2L3Addr_Update_t;

3.2 Data Structures for Completion Callbacks
3.2.1 Completion Callback Type (NPF_IfCallbackType_t)
These codes are used in asynchronous responses from API function calls. They tell the client
which function is giving the response. The codes defined here are only those for the core
functions defined in this document. Other API documents that define functions for specific
interface types will also define codes to be used as values of this typedef. Those documents will
qualify their codes using the applicable interface type (see 3.1.4) to ensure their callback type
codes are unique.

typedef NPF_uint32_t NPF_IfCallbackType_t;

/*
 * Completion Callback Types (generic set)
 */
#define NPF_IF_CREATE 1
#define NPF_IF_DELETE 2
#define NPF_IF_BIND 3
#define NPF_IF_UN_BIND 4

 Interfaces Task Group 14

Network Processing Forum Software Work Group

#define NPF_IF_STATS_GET 5
#define NPF_IF_ATTR_SET 6
#define NPF_IF_CREATE_AND_SET 7
#define NPF_IF_ENABLE 8
#define NPF_IF_DISABLE 9
#define NPF_IF_OPER_STATUS_GET 10
#define NPF_IF_MAX_PDU_SIZE_SET 11
#define NPF_IF_ATTR_GET 12
#define NPF_IF_FWD_ENABLE 13
#define NPF_IF_FWD_DISABLE 14
#define NPF_IF_INTERNAL_LOOPBACK_ENABLE 15
#define NPF_IF_INTERNAL_LOOPBACK_DISABLE 16
#define NPF_IF_EXTERNAL_LOOPBACK_ENABLE 17
#define NPF_IF_EXTERNAL_LOOPBACK_DISABLE 18
#define NPF_IF_HANDLE_GET 19
#define NPF_IF_HANDLE_GET_ALL 20

3.2.2 Asynchronous Response Array Element: NPF_IfAsyncResponse_t
/*
 * An asynchronous response contains an interface handle,
 * an error or success code, and in some cases a pointer to
 * a function-specific structure embedded in a union. One or
 * more of these is passed to the callback function as an array
 * within the NPF_IfCallbackData_t structure (below).
 */
typedef struct { /* Asynchronous Response Structure */
 NPF_IfHandle_t ifHandle; /* I/F handle for this response */
 NPF_IfID_t ifID; /* Interface ID */
 NPF_IfType_t ifType; /* Interface Type */
 NPF_IfErrorType_t error; /* Error code for this response */
 union { /* Function-specific response information: */

 /* **** CAUTION ****
 * EACH MEMBER OF THIS UNION MUST BE THE SAME SIZE,
 * EQUAL TO THE SIZE OF A POINTER VARIABLE.
 * **** CAUTION **** */

 /* For generic functions */
 NPF_uint32_t unused; /* Default */
 NPF_uint32_t arrayIndex; /* NPF_IfCreateAndSet index */
 NPF_IfStatistics_t *ifStats; /* NPF_IfGenericStatsGet() */
 NPF_IfOperStatus_t operStat; /* NPF_IfOperStatusGet() */
 NPF_IfHandle_t child; /* NPF_IfBind(), handle=parent*/
 NPF_IfGeneric_t *attrs; /* NPF_IfAttrGet() */
 NPF_IfIdentifyArray_t *idArray /* NPF_IfHandleGetAll() */

 /* For type-specific functions */

 /*
 * The implementer must add lines like the following,
 * as needed for the responses of functions supporting
 * the interface types included in the implementation.
 * In this example we have support for LAN and IPv4
 * interface types. Each member must be the same

 Interfaces Task Group 15

Network Processing Forum Software Work Group

 * size: the size of a pointer variable.
 */

 NPF_MAC_Address_t *MACaddr; /* NPF_IfLAN_SrcAddrGet() */
 NPF_IPv4Prefix_t *v4prefix; /* NPF_IPv4UC_AddrAdd(), */
 /* Set(),Delete() */
 NPF_IPv4Address_t *v4addr; /* NPF_IPv4McastAddrAdd(), */
 /* Set() */
 } u;

} NPF_IfAsyncResponse_t;

The following table summarizes the information returned by each function in this API, pointed to by the
“specific” variable in NPF_IfAsyncResponse_t.

Function Name Type Code Structure Returned
NPF_IfCreate NPF_IF_CREATE Unused (null pointer)

NPF_IfDelete NPF_IF_DELETE Unused (null pointer)

NPF_IfBind NPF_IF_BIND NPF_IfHandle_t (child)

NPF_IfUnBind NPF_IF_UN_BIND NPF_IfHandle_t (child)

NPF_IfGenericStatsGet NPF_IF_STATS_GET NPF_IfStatistics_t *

NPF_IfAttrSet NPF_IF_ATTR_SET Unused (null pointer)

NPF_IfCreateAndSet NPF_IF_CREATE_AND_SET NPF_uint32_t (arrayIndex)

NPF_IfEnable NPF_IF_ENABLE Unused (null pointer)

NPF_IfDisable NPF_IF_DISABLE Unused (null pointer)

NPF_IfOperStatusGet NPF_IF_OPER_STATUS_GET NPF_IfOperStatus_t

NPF_IfMaxPDU_SizeSet NPF_IF_MAX_PDU_SIZE_SET Unused (null pointer)

NPF_IfAttrGet NPF_IF_ATTR_GET NPF_IfGeneric_t *

NPF_IfFwdEnable NPF_IF_FWD_ENABLE Unused (null pointer)

NPF_IfFwdDisable NPF_IF_FWD_DISABLE Unused (null pointer)

NPF_IfInternalLoopbackEnable NPF_IF_INTERNAL_LOOPBACK_ENABLE Unused (null pointer)

NPF_IfInternalLoopbackDisable NPF_IF_INTERNAL_LOOPBACK_DISABLE Unused (null pointer)

NPF_IfExternalLoopbackEnable NPF_IF_EXTERNAL_LOOPBACK_ENABLE Unused (null pointer)

NPF_IfExternalLoopbackDisable NPF_IF_EXTERNAL_LOOPBACK_DISABLE Unused (null pointer)

NPF_IfHandleGet NPF_IF_HANDLE_GET Unused (null pointer)

NPF_IfHandleGetAll NPF_IF_HANDLE_GET_ALL NPF_IfIdentityArray *

3.2.3 Callback Data Structure: NPF_IfCallbackData_t
/*
 * The callback function receives the following structure containing
 * one or more asynchronous responses from a single function call.
 * There are several possibilities:
 * 1. The called function does a single request
 * - n_resp = 1, and the resp array has just one element.
 * - allOK = TRUE if the request completed without error.
 * and the only return value is the response code.
 * - if allOK = FALSE, the "resp" structure has the error code.
 * 2. The called function supports an array of requests
 * a. All completed successfully, at the same time, and the
 * only returned value is the response code:
 * - allOK = TRUE, n_resp = 0.
 * b. Some completed, but not all, or there are values besides

 Interfaces Task Group 16

Network Processing Forum Software Work Group

 * the response code to return:
 * - allOK = FALSE, n_resp = the number completed.
 * - the "resp" array will contain one element for
 * each completed request, with the error code
 * in the NPF_IfAsyncResponse_t structure, along
 * with any other information needed to identify
 * which request element the response belongs to.
 * - Callback function invocations are repeated in
 * this fashion until all requests are complete.
 * Responses are not repeated for request elements
 * already indicated as complete in earlier callback
 * function invocations.
 */
typedef struct {
 NPF_IfCallbackType_t type; /* Which function was called? */
 NPF_boolean_t allOK; /* TRUE if all completed OK */

NPF_uint32_t n_resp; /* Number of responses in array */
NPF_IfAsyncResponse_t *resp; /* Pointer to response structures*/

} NPF_IfCallbackData_t;

3.3 Error Codes (NPF_IfErrorType_t)
The codes defined here are generic Interface Management error codes that may apply to more
than one type of interface. Additional Interface Management error codes are defined as values of
the same (NPF_IfErrorType_t) typedef in the Interface Management Implementation
Agreements related to specific interface types. These documents shall qualify their error code
values using the applicable interface type code, as described in section 3.1.4, to guarantee the
uniqueness of all Interface Management error codes.
N.B.: this is a departure from the original Software Conventions document, which assigned a
range from 100 to 200 for all Interface Management error codes. Only the generic Interface
Management error codes will follow that convention. Error codes defined in type-specific
documents will have values assigned with an offset of 0x1tt00, where “tt” is the interface type
code:

#define NPF_IF_E_XXX_CODE(code) (0x10000+(NPF_IF_TYPE_XXX<<8)+(code))

#define NPF_IF_E_<reason> NPF_IF_E_XXX_CODE(<nn>)

/*
 * Error codes */

/* Callback/event reg. error */
/***
 * Note: The following code is deprecated. *
 * Use NPF_E_CALLBACK_ALREADY_REGISTERED instead. *
 ***/
#define NPF_IF_E_ALREADY_REGISTERED ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR)

/* Callback/event handle invalid */
/***
 * Note: The following code is deprecated. *
 * Use NPF_E_BAD_CALLBACK_HANDLE instead. *
 ***/

 Interfaces Task Group 17

Network Processing Forum Software Work Group

#define NPF_IF_E_BAD_CALLBACK_HANDLE ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+1)

/* Callback function is NULL */
/***
 * Note: The following code is deprecated. *
 * Use NPF_E_BAD_CALLBACK_FUNCTION instead. *
 ***/
#define NPF_IF_E_BAD_CALLBACK_FUNCTION ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+2)

/* Invalid parameter */
#define NPF_IF_E_INVALID_PARAM ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+3)

/* Invalid child i/f handle */
#define NPF_IF_E_INVALID_CHILD_HANDLE ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+4)

/* Invalid parent i/f handle */
#define NPF_IF_E_INVALID_PARENT_HANDLE ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+5)

/* Invalid interface handle */
#define NPF_IF_E_INVALID_HANDLE ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+6)

/* Invalid interface attribute */
#define NPF_IF_E_INVALID_ATTRIBUTE ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+7)

/* Error – interface not created */
#define NPF_IF_E_NOT_CREATED ((NPF_IfErrorType_t) NPF_INTERFACES_BASE_ERR+8)

/* Array length <= 0 or too big */
#define NPF_IF_E_BAD_ARRAY_LENGTH ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+9)

/* Invalid Interface Type */
#define NPF_IF_E_INVALID_IF_TYPE ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+10)

/* Invalid Administrative Status code */
#define NPF_IF_E_INVALID_ADMIN_STATUS ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+11)

/* Parent/child binding not found */
#define NPF_IF_E_NO_SUCH_BINDING ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+12)

/* Parent/child binding is circular */
#define NPF_IF_E_CIRCULAR_BINDING ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+13)

/* Invalid Maximum PDU Size parameter
#define NPF_IF_E_INVALID_MAX_PDU_SIZE ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+14)

/* Invalid layer 3 i/f handle */
#define NPF_IF_E_INVALID_L3_HANDLE ((NPF_IfErrorType_t)

 Interfaces Task Group 18

Network Processing Forum Software Work Group

NPF_INTERFACES_BASE_ERR+15)

/* Interface has no source addr. */
#define NPF_IF_E_NO_SRC_ADDRESS ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+16)

/* Forwarding is not defined for this interface type */
#define NPF_IF_E_FORWARDING_NOT_DEFINED ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+17)

/* Insufficient memory to complete the request */
#define NPF_IF_E_NOMEMORY ((NPF_IfErrorType_t) NPF_INTERFACES_BASE_ERR+18)

typedef NPF_uint32_t NPF_IfErrorType_t;

3.4 Data Structures for Event Notifications
Events defined here are the “generic” ones: those that can be valid for any interface type. Other
type-specific events may be defined in the documents related to particular interface types.

3.4.1 Event Types: NPF_IfEvent_t
Events defined here are the generic ones that may apply regardless of interface type. Additional
events may be defined in type-specific Interface Management Implementation agreements; in
these cases, they must qualify the event type codes using the interface type code, as described in
section 3.1.4, so their event codes will be unique.

/*
 * Event types
 */
#define NPF_IF_EV_UP 1 /* Interface went oper UP */
#define NPF_IF_EV_DOWN 2 /* Interface went oper DOWN */
#define NPF_IF_EV_COUNTER_DISCONTINUITY 3 /* Counter discontinuity occurred*/
#define NPF_IF_EV_CREATED 4 /* Interface was created */
#define NPF_IF_EV_DELETED 5 /* Interface was deleted */
#define NPF_IF_EV_BINDING_CHANGE 6 /* A parent-child binding changed*/
#define NPF_IF_EV_ADDRESS_CHANGE 7 /* L2 or L3 Address changed */
#define NPF_IF_EV_SPEED_CHANGE 8 /* Speed change */
#define NPF_IF_EV_FWD_CHANGE 9 /* Forwarding mode chg */

typedef NPF_uint32_t NPF_IfEvent_t;

3.4.2 Event Mask Structure
This structure is used when registering for events. It deviates from NPF Software Conventions,
which recommends using a single 32-bit word as an event-enable bit mask, because Interface
Management needs a way to allow a sufficient number of bits to be defined for each of an open-
ended number of interface types.
The convention here is that there is one event bit mask word for each interface type, and when
registering for events, the client can pass an array of masks that includes just the bit mask words
it needs for the interface types supported by the handler function. In the array, each mask is
accompanied by word containing the Interface Type code for the type of interface it represents.
Core events, defined in section 3.4.3, use an ifType code of zero. The event masks can appear in
the array in any order, and all types need not be represented. A mask value of zero selects no
events for the given interface type. A mask value of all one bits selects all events for the given

 Interfaces Task Group 19

Network Processing Forum Software Work Group

interface type. An empty array turns off all interface events notifications, but leaves the handler
registration intact and the event registration handle valid.

/*
 * Event bit mask specification
 * The client supplies an array of these, one for each
 * interface type, when registering for events on a given
 * set of interfaces. A “type” code of zero accompanies the
 * mask for Core events.
 */
typedef struct {
 NPF_IfType_t ifType; /* Type designator for this mask */
 NPF_uint32_t evMask; /* Event bit mask for this type */
} NPF_IfEvMaskSpec_t;

/*
 * Event bit mask array
 * Passed by the client to the event registration function.
 */
typedef struct {
 NPF_uint32_t nMasks; /* Number of masks in the array */
 NPF_IfEvMaskSpec_t *evMaskArray /* Pointer to array of masks */
} NPF_IfEvMaskArray_t;

3.4.3 Core Event Mask Bit Assignments
The following bit assignments for the NPF_eventMaskSpec_t parameter to the
NPF_IfEventRegister() function are for events defined in the Interface Management Core
document only. Additional event mask definitions can be defined in type-specific Interface
Management documents.

#define NPF_IF_EVMASK_UP (1<<0) /* Interface went oper UP */
#define NPF_IF_EVMASK_DOWN (1<<1) /* Interface went oper DOWN
*/
#define NPF_IF_EVMASK_COUNTER_DISCONTINUITY (1<<2) /* Counter
discontinuity occurred*/
#define NPF_IF_EVMASK_CREATED (1<<3) /* Interface was created */
#define NPF_IF_EVMASK_DELETED (1<<4) /* Interface was deleted */
#define NPF_IF_EVMASK_BINDING_CHANGE (1<<5) /* A parent-child binding
changed*/
#define NPF_IF_EVMASK_ADDRESS_CHANGE (1<<6) /* L2 or L3 Address changed
*/
#define NPF_IF_EVMASK_SPEED_CHANGE (1<<7) /* Speed change */
#define NPF_IF_EVMASK_FWD_CHANGE (1<<8) /* Forwarding mode chg */

#define NPF_IF_EVMASK_ALL 0xFFFFFFFF

3.4.4 Event Notification Structure and Array: NPF_IfEventData_t and
NPF_IfEventArray_t

The event notification structure contains the type of event, the handle and ID of the interface on
which the event occurred, its interface type, and an optional pointer to a structure with

 Interfaces Task Group 20

Network Processing Forum Software Work Group

information specific to the type of event. In the case of a binding change event, the interface
referred to by the handle, ID and type code in the first part of the structure is the parent interface.

/*
 * Event notification structure and array
 */
typedef struct NPF_IfEventData {
 NPF_IfEvent_t eventType; /* Event type */
 NPF_IfHandle_t ifHandle; /* Interface Handle */
 NPF_IfID_t ifID; /* Interface ID */
 NPF_IfType_t ifType; /* Interface Type */
 union {

 /* **** CAUTION ****
 * EACH MEMBER OF THIS UNION MUST BE THE SAME SIZE,
 * EQUAL TO THE SIZE OF A POINTER VARIABLE.
 * **** CAUTION **** */

 /* For generic functions */

 void * unused; /* Up/down, create/delete events */
 NPF_uint64_t *speed; /* new speed in Kbits/second */
 NPF_IfL2L3Addr_Update_t *L3addrUpdate; /* IP address updates */
 NPF_IfFwdMode_t *fwdMode; /* new forwarding mode */
 NPF_IfBind_Update_t *ifBindUpd; /* new Parent-Child binding*/

 /* For type-specific functions */

 /*
 * The implementer must add lines similar to the above,
 * as needed for the events generated by interface types
 * included in the implementation.
 */

 } u;
} NPF_IfEventData_t;

typedef struct {
 NPF_uint16_t n_data; /* Number of events in array */
 NPF_IfEventData_t *eventData; /* Array of event notifications */
} NPF_IfEventArray_t;

typedef NPF_uint32_t NPF_IfEventHandlerHandle_t;

 Interfaces Task Group 21

Network Processing Forum Software Work Group

4 Functions
The Interface management API will provide for setting the interface properties and reading statistics in
accordance with the Interface MIB, RFC 2863 [1] and other MIBs (although it makes no attempt to
support any MIB fully).

4.1 Completion Callback
4.1.1 Completion Callback Function
Syntax
typedef void (*NPF_IfCallbackFunc_t) (

NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_IfCallbackData_t ifCallbackData);

Description
The application registers this asynchronous response handling routine to the API implementation. The
callback function is implemented by the application, and is registered to the API implementation through
the NPF_IfRegister() function.
This function definition is shared by all Interface Management API Implementation Agreements,
including the type-specific ones.
The callback data structure contains an array of responses, so that callbacks for multiple interfaces or
ATM UNI Vccs referenced in a single API function call can be aggregated into fewer (perhaps just one)
callback function invocations. The application can expect to receive exactly the same number of
responses (callback array elements) as the multiplicity of the request, but the responses may be spread
over multiple callback function invocations. How the API implementation allocates responses to callback
invocations is up to the API implementor.
As an optimization: if the implementation is able to return success indications (NPF_NO_ERROR) for all
responses from a single request in a single invocation of the callback function, and there is no information
to return besides the success/failure code: instead of returning an array of responses, the implementation
SHALL return a simple code indicating that all requested actions completed without error. See section
3.2.3.
Input Parameters

• userContext: The context item that was supplied by the application when the completion
callback function was registered.

• correlator: The correlator item that was supplied by the application when the an API
function call was made. The correlator is used by the application mainly to distinguish between
multiple invocations of the same function.

ifCallbackData: A structure containing an array of response information related to the API function
call. Contains information that is common among all functions, as well as information specific to a
particular function. See NPF_IfCallbackData_t definition for detailsetails.

Output Parameters
None

Return Codes
None

 Interfaces Task Group 22

Network Processing Forum Software Work Group

4.1.2 NPF_IfRegister: Completion Callback Registration Function
Syntax

NPF_error_t NPF_IfRegister(
NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_IfCallbackFunc_t ifCallbackFunc,
NPF_OUT NPF_callbackHandle_t *ifCallbackHandle);

Description
This function is used by an application to register its completion callback function for receiving
asynchronous responses related to API function calls. The application may register multiple callback
functions using this function. The callback function is identified by the pair of userContext and
ifCallbackFunc, and for each individual pair, a unique ifCallbackHandle will be assigned for
future reference. Since the callback function is identified by both userContext and ifCallbackFunc,
duplicate registration of the same callback function with different userContext is allowed. Also, the
same userContext can be shared among different callback functions. Duplicate registration of the same
userContext and ifCallbackFunc pair has no effect, will output a handle that is already assigned to
the pair, and will return NPF_IF_E_ALREADY_REGISTERED.
This function definition is shared by all Interface Management API Implementation Agreements,
including the type-specific ones.

Note: NPF_IfRegister() is a synchronous function and has no completion callback associated with it.

Input Parameters
• userContext: A context item for uniquely identifying the context of the application registering

the completion callback function. The exact value will be provided back to the registered
completion callback function as its first parameter when it is called. Application can assign any
value to the userContext and the value is completely opaque to the API implementation.

• ifCallbackFunc: Pointer to the completion callback function to be registered.
Output Parameters

• ifCallbackHandle: A unique identifier assigned for the registered userContext and
ifCallbackFunc pair. This handle will be used by the application to specify which callback to
be called when invoking asynchronous API functions. It will also be used when de-registering
the userContext and ifCallbackFunc pair.

Return Codes
• NPF_NO_ERROR: The registration completed successfully.
• NPF_IF_E_BAD_CALLBACK_FUNCTION: ifCallbackFunc is NULL.
• NPF_IF_E_ALREADY_REGISTERED: No new registration was made since the userContext

and ifCallbackFunc pair was already registered.
Note: Whether or not this should be treated as an error is dependent on the application.

4.1.3 NPF_IfDeregister: Completion Callback Deregistration Function
Syntax

NPF_error_t NPF_IfDeregister(
NPF_IN NPF_callbackHandle_t ifCallbackHandle);

 Interfaces Task Group 23

Network Processing Forum Software Work Group

Description
This function is used by an application to de-register a pair of user context and callback function. After
the Deregister function returns, no more function calls can be made using the deregistered callback
handle.
This function definition is shared by all Interface Management API Implementation Agreements,
including the type-specific ones.

Input Parameters
• ifCallbackHandle: The unique identifier representing the pair of user context and callback

function to be de-registered.
Output Parameters
None

Return Codes
• NPF_NO_ERROR: The de-registration completed successfully.
• NPF_IF_E_BAD_CALLBACK_HANDLE: The API implementation does not recognize the callback

handle. There is no effect to the registered callback functions.

4.2 Event Notification
4.2.1 Event Handler Function
Syntax

typedef void (*NPF_IfEventHandlerFunc_t) (
NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_IfEventArray_t ifEventArray);

Description
This handler function is for the application to register an event handling routine to the API
implementation. One or more events can be notified to the application through a single invocation of this
event handler function. Information on each event is represented in an array in the ifEventArray
structure, where an application can traverse through the array and process each of the events. This event
handler function is intended to be implemented by the application, and be registered to the API
implementation through NPF_IfEventRegister() function.
This function definition is shared by all Interface Management API Implementation Agreements,
including the type-specific ones.

Note: This function may be called any time after NPF_IfEventRegister() is called for it.

Input Parameters
• userContext: The context item that was supplied by the application when the event handler

function was registered.
• ifEventArray: Data structure that contains an array of event information. See

NPF_IfEventArray_t definition for details.
Output Parameters
None

Return Codes
None

 Interfaces Task Group 24

Network Processing Forum Software Work Group

4.2.2 NPF_IfEventRegister: Event Handler Registration Function
Syntax

NPF_error_t NPF_IfEventRegister(
NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_IfEventHandlerFunc_t ifEventHandlerFunc,
NPF_IN NPF_IfEvMaskArray_t evMaskArray,
NPF_OUT NPF_IfEventHandlerHandle_t *ifEventHandlerHandle);

Description
This function is used by an application to register its event handler function for receiving asynchronous
event notifications from this API. Application may register multiple handler functions using this
function. The event handler function is identified by the pair of userContext and
ifEventHandlerFunc, and for each individual pair, a unique ifEventHandlerHandle will be
assigned for future reference. Since the event handler function is identified by both userContext and
ifEventHandlerFunc, duplicate registration of same event handler function with different
userContext is allowed. Also, same userContext can be shared among different event handler
functions. Duplicate registration of the same userContext and ifEventHandlerFunc pair has no
effect, and will output a handle that is already assigned to the pair, and will return
NPF_IF_E_ALREADY_REGISTERED.
This function definition is shared by all Interface Management API Implementation Agreements,
including the type-specific ones.

Notes: Besides registering a handler function, this call enables events. The handler function could be
called at any time following the invocation of IfEventRegister(). NPF_IfEventRegister() is a
synchronous function and has no completion callback associated with it.

Input Parameters
• userContext: A context item for uniquely identifying the context of the application registering

the event handler function. The exact value will be provided back to the registered event handler
function as its first parameter when it is called. Application can assign any value to the
userContext and the value is completely opaque to the API implementation.

• ifEventHandlerFunc: Pointer to the event handler function to be registered.
• evMaskArray: Mask array with a mask word for each requested interface type, and within each

mask, a bit set for each event to be enabled on this registration. See section 3.4.2 for
more information.

Output Parameters
• ifEventHandlerHandle: A unique identifier assigned for the registered userContext and

ifEventHandlerFunc pair. This handle will be used by the application de-registering the
userContext and ifEventHandlerFunc pair.

Return Codes
• NPF_NO_ERROR: The registration completed successfully.
• NPF_IF_E_BAD_CALLBACK_HANDLE: ifEventHandlerFunc is NULL or not recognized.
• NPF_IF_E_ALREADY_REGISTERED: No new registration was made since the userContext and

ifEventHandlerFunc pair was already registered.
Note: Whether or not this should be treated as an error is dependent on the application.

4.2.3 NPF_IfEventDeregister: Event Handler Deregistration Function
Syntax

NPF_error_t NPF_IfEventDeregister(

 Interfaces Task Group 25

Network Processing Forum Software Work Group

NPF_IN NPF_IfEventHandlerHandle_t ifEventHandlerHandle);

Description
This function is used by an application to de-register a pair of user context and event handler function.
This function definition is shared by all Interface Management API Implementation Agreements,
including the type-specific ones.
Input Parameters

• ifEventHandlerHandle: The unique identifier representing the pair of user context and event
handler function to be de-registered.

Output Parameters
None

Return Codes
• NPF_NO_ERROR: The de-registration completed successfully.
• NPF_E_BAD_CALLBACK_HANDLE: The API implementation does not recognize the event

handler handle. There is no effect to the registered event handler functions.

4.3 Event Definition Signature
NPF Interfaces can generate the following events:

• NPF_IF_UP indicates the interface’s OperUp status became FALSE
• NPF_IF_DOWN indicates the interface’s OperUp status became TRUE
• NPF_IF_COUNTER_DISCONTINUITY indicates a discontinuity occurred in one or more of the

statistics counters belonging to the interface. This event is intended to help a MIB
implementation support ifCounterDiscontinuityTime (RFC 2863 [1]).

4.4 Order of Operations
There are a few restrictions on the order of operations on interfaces:

1. NPF_IfCreate() or NPF_IfCreateAndSet() must precede any other operations on an
interface, because those functions assign the if_Handle value required by all other functions.

2. NPF_IfATM_VccSET() must precede any other operations on an ATM UNI Vcc.
3. There are no other restrictions, except as may be imposed by a particular implementation.

4.5 Completion Callbacks and Error Returns
Each of the functions defined in section 4.6 can return an immediate error, and each makes asynchronous
callbacks. The only error codes eligible for immediate return are those defined in “NPF Software API
Conventions Implementation Agreement”. They are:

• NPF_NO_ERROR: This value is returned when a function was successfully invoked.
• NPF_E_UNKNOWN: An unknown error occurred in the implementation such that there is no error

code defined that is more appropriate or informative.
• NPF_BAD_CALLBACK_HANDLE: A function was invoked with a callback handle that did not

correspond to a valid NPF callback handle as returned by a registration function, or a callback
handle was registered with a registration function belonging to a different API than the function
call where the handle was passed in.

• NPF_E_BAD_CALLBACK_FUNCTION: A callback registration was invoked with a function
pointer parameter that was invalid.

All other error codes must be returned in an asynchronous callback response. They are defined in section
4.6 with the definitions of the functions that return them.

 Interfaces Task Group 26

Network Processing Forum Software Work Group

4.6 Interface Management API – Generic Functions
This section will define functions for querying and modifying the interface properties and attributes.
Note: These functions follow a convention permitting multiple interface handles or ATM Vcc addresses
to be passed for action in a single function invocation. In each case there is an argument that indicates the
size of the array of interface handles or addresses. No limit on the size of such arrays is specified by this
agreement; however an implementation MAY impose a size limit of its own choosing. If an application
exceeds such limit, the implementation SHALL return the response code
NPF_IF_E_BAD_ARRAY_LENGTH synchronously.
Note: Functions designated as “optional,” when not implemented, SHALL return the error code
NPF_E_FUNCTION_NOT_SUPPORTED synchronously, per the recommendation of the NP Forum
Software Conventions Implementation Agreement.

4.6.1 NPF_IfCreate: Create an Interface
Syntax

NPF_error_t NPF_IfCreate(
NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,
NPF_IN NPF_uint32_t n_if,
NPF_IN NPF_IfType_t if_Type,
NPF_IN NPF_IfID_t *ifID);

Description
This function creates one or more interfaces of a given type, including “typeless” (type unknown).
Interfaces created by this function are in the Administratively Disabled (NPF_IF_ADMIN_STATUS_DOWN)
state by default. The newly created interfaces are all alike, and blank except for type. The callback
function will receive as many handles as NPF_IfCreate() could successfully create, and error codes for
the rest. The created interfaces are undifferentiated until you set some attributes in them using
NPF_IfAttrSet() or other functions.

Input Parameters
• if_cbHandle: the registered callback handle.
• if_cbCorrelator: the application’s context for this call.
• if_errorReporting: the desired callback.
• n_if: number of interfaces to create.
• if_Type: the interface type: NPF_IF_TYPE_LAN, NPF_IF_TYPE_IPv4, NPF_IF_TYPE_ATM,

NPF_IF_TYPE_POS, or NPF_IF_TYPE_UNK. All interfaces created by one function invocation
are of the same type.

• ifID: a pointer to an array of Interface ID values. The number of elements in the array is given
by n_if. The values must all be different from each other, and none may be the same as the ID
of an existing interface.

Output Parameters
None
Asynchronous Error Codes

• NPF_NO_ERROR: operation successful.

 Interfaces Task Group 27

Network Processing Forum Software Work Group

• NPF_E_RESOURCE_EXISTS: an interface with the same Interface ID value already exists; its
handle is returned in the callback, and no new interface is created.

• NPF_IF_E_INVALID_PARAM: operation failed, interface not created.
Asynchronous Response
A total of n_if asynchronous responses (NPF_IfAsyncResponse_t) will be passed to the callback
function, in one or more invocations. Each response contains the new interface handle or a possible error
code. The union in the callback response structure is unused.

4.6.2 NPF_IfDelete: Delete an Interface
Syntax

NPF_error_t NPF_IfDelete(
NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,
NPF_IN NPF_uint32_t n_handles,
NPF_IN NPF_IfHandle_t *if_HandleArray);

Description
This function deletes one or more interfaces. The handle may not be used after this call returns.
Input Parameters

• if_cbHandle: the registered callback handle.
• if_cbCorrelator: the application’s context for this call.
• if_errorReporting: the desired callback.
• n_handles: the number of interfaces to delete.
• if_HandleArray: pointer to an array of handles of the interfaces to be deleted.

Output Parameters
None
Asynchronous Error Codes

• NPF_NO_ERROR: Operation successful.
• NPF_IF_E_INVALID_PARAM: Interface not deleted.

Asynchronous Response
A total of n_handles asynchronous responses (NPF_IfAsyncResponse_t) will be passed to the
callback function, in one or more invocations. Each response contains the handle of the deleted interface,
or a possible error code. The union in the callback response structure is unused.

4.6.3 NPF_IfBind: Bind Interfaces
Syntax

NPF_error_t NPF_IfBind(
NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,
NPF_IN NPF_uint32_t nbinds,
NPF_IN NPF_IfBinding_t *if_bindArray);

 Interfaces Task Group 28

Network Processing Forum Software Work Group

Description
This function binds one or more pairs of interfaces in parent-child relationships. Each binding associates
two interfaces with each other, one as parent, and one as child. Multiple bindings can be made in a single
call. An interface can have multiple parents; it can also have multiple children. Such relationships are
indicated by multiple one-to-one binding entries, since a single many-to-one binding entry is not
supported. An interface can be at the same time the parent of one and the child of another. An
implementation SHOULD return an error if cycles occur (e.g. an interface is the child of one of its own
children: “I’m my own grandpa”). An implementation MAY limit how many associations an interface
can have, or restrict the depth of the hierarchy.
Bindings have the following characteristics:

• Adding a parent to an interface can mean that a particular protocol can be carried on the link
represented by the child.

• Setting a parent Administratively UP or DOWN controls the processing of the protocol
represented by the parent; for instance, setting an IPv4 interface down would cause all
incoming IPv4 packets received on any of that interface’s child interfaces to be discarded.

• Removing a binding does not result in either interface being deleted.
Input Parameters

• if_cbHandle: the registered callback handle.
• if_cbCorrelator: the application’s context for this call.
• if_errorReporting: the desired callback.
• nbinds: number of bindings in the array.
• if_bindArray: pointer to an array of interface handle parent/child bindings.

Output Parameters
None
Asynchronous Error Codes

• NPF_NO_ERROR: Operation successful.
• NPF_IF_E_INVALID_CHILD_HANDLE: Child Handle is null or invalid; no binding done.
• NPF_IF_E_INVALID_PARENT_HANDLE: Parent Handle is null or invalid; no binding done.
• NPF_IF_E_INVALID_PARAM: Binding failed. No binding done.
• NPF_IF_E_CIRCULAR_BINDING: An interface would exist more than once in its own

parent/child hierarchy. Binding failed; no binding done.
Asynchronous Response
A total of n_binds asynchronous responses (NPF_IfAsyncResponse_t) will be passed to the callback
function, in one or more invocations. Each response contains the parent interface handle and a possible
error code. The particular binding to which the response code pertains is identified in the callback by the
two handles: the parent handle is in the usual ifHandle position, and the child handle is in the union part
of the callback structure.

4.6.4 NPF_IfUnBind: Remove Interface Bindings
Syntax

NPF_error_t NPF_IfUnBind(
NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,

 Interfaces Task Group 29

Network Processing Forum Software Work Group

NPF_IN NPF_uint32_t nbinds,
NPF_IN NPF_IfBinding_t *if_bindArray);

Description
This function removes one or more interface parent-child relationships previously set by NPF_IfBind()
calls.
Input Parameters

• if_cbHandle: the registered callback handle.
• if_cbCorrelator: the application’s context for this call.
• if_errorReporting: the desired callback.
• nbinds: number of bindings in the array.
• if_bindArray: pointer to an array of interface handle parent/child bindings to be removed.

Output Parameters
None
Asynchronous Error Codes

• NPF_NO_ERROR: Operation successful.
• NPF_IF_E_NO_SUCH_BINDING: A specified binding could not be found.

Asynchronous Response
A total of n_binds asynchronous responses (NPF_IfAsyncResponse_t) will be passed to the callback
function, in one or more invocations. Each response contains the parent interface handle and a possible
error code. The particular binding to which the response code pertains is identified in the callback by the
two handles: the parent handle is in the usual ifHandle position, and the child handle is in the union part
of the callback structure.

4.6.5 NPF_IfGenericStatsGet: Read Interface Statistics
Syntax

NPF_error_t NPF_IfGenericStatsGet(
NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,
NPF_IN NPF_uint32_t n_handles,
NPF_IN NPF_IfHandle_t *if_HandleArray);

Description
This function returns, via a callback, a pointer to a generic interface statistics structure containing the
current counter values for one or more indicated interfaces.
Input Parameters

• if_cbHandle: the registered callback handle.
• if_cbCorrelator: the application’s context for this call.
• if_errorReporting: the desired callback.
• n_handles: the number of interfaces to get statistics for.
• if_HandleArray: pointer to an array of interface handles.

 Interfaces Task Group 30

Network Processing Forum Software Work Group

Output Parameters
None
Asynchronous Error Codes

• NPF_NO_ERROR: Operation successful.
• NPF_IF_E_INVALID_HANDLE: An if_Handle is null or invalid.

Asynchronous Response
A total of n_handles asynchronous responses (NPF_IfAsyncResponse_t) will be passed to the
callback function, in one or more invocations. Each response contains an interface handle or a possible
error code. If the error code indicates success, the union in the callback response structure contains a
pointer to the NPF_IfStatistics_t structure for that interface.

4.6.6 NPF_IfAttrSet: Set All Interface Attributes
Syntax

NPF_error_t NPF_IfAttrSet(
NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,
NPF_IN NPF_uint32_t n_handles,
NPF_IN NPF_IfHandle_t *if_HandleArray,
NPF_IN NPF_IfGeneric_t *if_StructArray);

Description
This function sets all the attributes of one or more interfaces, from the contents of an array of structures
passed by the caller, as defined in NPF_IfGeneric_t. Ownership of the structure memory remains with
the caller (the API implementation must copy all needed contents before returning). Any single attribute
can be set with its own function call; this function is included as a way to set multiple attributes
atomically and efficiently. Note: the number of NPF_IfGeneric_t structures and the number of
interface handles in the two arrays must be the same, equal to the n_handles argument. This function
sets a different set of attributes for each named interface. The Interface Handle value identifies the
interface to be modified; the Interface ID value in the NPF_IfGeneric_t structure is ignored.
Input Parameters

• if_cbHandle: the registered callback handle.
• if_cbCorrelator: the application’s context for this call.
• if_errorReporting: the desired callback.
• n_handles: the number of interfaces to set attributes for.
• if_HandleArray: pointer to an array of interface handles.
• if_StructArray: pointer to a structure or an array of structures containing the new interface

attributes.
Output Parameters
None
Asynchronous Error Codes

• NPF_NO_ERROR: Operation successful.
• NPF_IF_E_INVALID_ATTRIBUTE: An attribute (other than those mentioned below) was invalid.

 Interfaces Task Group 31

Network Processing Forum Software Work Group

Generic Interface Errors:
• NPF_IF_E_INVALID_HANDLE: if_Handle is null or invalid.
• NPF_IF_E_INVALID_IF_TYPE: Invalid or unsupported interface type code.
• NPF_IF_E_INVALID_ADMIN_STATUS: Invalid administrative status code.

Asynchronous Response
A total of n_handles asynchronous responses (NPF_IfAsyncResponse_t) will be passed to the
callback function, in one or more invocations. Each response contains an interface handle and a success
code or a possible error code for that interface. The union in the callback response structure is unused.

4.6.7 NPF_IfCreateAndSet: Create an Interface and Set All of its Attributes
Syntax

NPF_error_t NPF_IfCreateAndSet(
NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,
NPF_IN NPF_uint32_t n_if,
NPF_IN NPF_IfGeneric_t *if_StructArray);

Description
This function simultaneously creates and sets all the attributes of one or more interfaces, from the
contents of an array of structures passed by the caller (NPF_IfGeneric_t). Each interface is created
with a different set of attributes. Ownership of the structure memory remains with the caller (the API
implementation must copy all contents before returning). Each instance of the NPF_IfGeneric_t
structure must contain a different, nonzero Interface ID value, and none may be the same as that of an
existing interface.
Input Parameters

• if_cbHandle: the registered callback handle.
• if_cbCorrelator: the application’s context for this call.
• if_errorReporting: the desired callback.
• n_if: the number of interfaces to set attributes for.
• if_StructArray: pointer to an array of structures containing the new interface attributes.

Output Parameters
None
Asynchronous Error Codes

• NPF_NO_ERROR: Operation successful.
• NPF_E_RESOURCE_EXISTS: an interface with the same Interface ID value already exists; its

handle is returned in the callback, and no new interface is created.
• NPF_IF_E_INVALID_ATTRIBUTE: An attribute (other than those mentioned below) was invalid.

Generic Interface Errors:
• NPF_IF_E_INVALID_HANDLE : if_Handle is null or invalid.
• NPF_IF_E_INVALID_IF_TYPE: Invalid or unsupported interface type code.
• NPF_IF_E_INVALID_ADMIN_STATUS: Invalid administrative status code.

 Interfaces Task Group 32

Network Processing Forum Software Work Group

Asynchronous Response
A total of n_if asynchronous responses (NPF_IfAsyncResponse_t) will be passed to the callback
function, in one or more invocations. Each response contains the new interface handle and a success code
or a possible error code if an interface could not be created or any attributes could not be set. Responses
are linked to interface attributes in the following way: for each response, the union in the response
structure contains the corresponding index of the if_StructArray element that contained its attributes.
For example, the response for the first array element will include an Interface Handle and an
arrayIndex value of zero; the response for the tenth array element an arrayIndex of 9, and so on.

4.6.8 NPF_IfEnable: Enable an Interface
Syntax

NPF_error_t NPF_IfEnable(
NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,
NPF_IN NPF_uint32_t n_handles,
NPF_IN NPF_IfHandle_t *if_HandleArray);

Description
This function administratively enables one or more interfaces: if the interface is operationally ready, it can
now send and receive packets.
Input Parameters

• if_cbHandle: the registered callback handle.
• if_cbCorrelator: the application’s context for this call.
• if_errorReporting: the desired callback.
• n_handles: the number of interfaces to enable.
• if_HandleArray: pointer to an array of interface handles.

Output Parameters
None
Asynchronous Error Codes

• NPF_NO_ERROR: Operation successful.
• NPF_IF_E_INVALID_HANDLE: An if_Handle is null or invalid.

Asynchronous Response
A total of n_handles asynchronous responses (NPF_IfAsyncResponse_t) will be passed to the
callback function, in one or more invocations. Each response contains an interface handle and a success
code or a possible error code for that interface. The union in the callback response structure is unused.

4.6.9 NPF_IfDisable: Disable an Interface
Syntax

NPF_error_t NPF_IfDisable(
NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,
NPF_IN NPF_uint32_t n_handles,

 Interfaces Task Group 33

Network Processing Forum Software Work Group

NPF_IN NPF_IfHandle_t *if_HandleArray);

Description
This function disables one or more interfaces, administratively (but not operationally). Once disabled, it
can no longer send or receive packets.
Input Parameters

• if_cbHandle: the registered callback handle.
• if_cbCorrelator: the application’s context for this call.
• if_errorReporting: the desired callback.
• n_handles: the number of interfaces to disable.
• if_HandleArray: pointer to an array of interface handles.

Output Parameters
None
Asynchronous Error Codes

• NPF_NO_ERROR: Operation successful.
• NPF_IF_E_INVALID_HANDLE: an if_Handle is null or invalid.

Asynchronous Response
A total of n_handles asynchronous responses (NPF_IfAsyncResponse_t) will be passed to the
callback function, in one or more invocations. Each response contains an interface handle and a success
code or a possible error code for that interface. The union in the callback response structure is unused.

4.6.10 NPF_IfOperStatusGet: Return the Operational Status of an Interface
Syntax

NPF_error_t NPF_IfOperStatusGet(
NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,
NPF_IN NPF_uint32_t n_handles,
NPF_IN NPF_IfHandle_t *if_HandleArray);

Description
This function returns the operational status of one or more interfaces.
Input Parameters

• if_cbHandle: the registered callback handle.
• if_cbCorrelator: the application’s context for this call.
• if_errorReporting: the desired callback.
• n_handles: the number of interfaces to query.
• if_HandleArray: pointer to an array of interface handles.

Output Parameters
None
Asynchronous Error Codes

• NPF_NO_ERROR: Operation successful.

 Interfaces Task Group 34

Network Processing Forum Software Work Group

• NPF_IF_E_INVALID_HANDLE: An if_Handle is null or invalid.
Asynchronous Response
A total of n_handles asynchronous responses (NPF_IfAsyncResponse_t) will be passed to the
callback function, in one or more invocations. Each response contains an interface handle and a success
code or a possible error code for that interface. If the code indicates success, the union in the callback
response structure contains the operational status of the interface.

4.6.11 NPF_IfMaxPDU_SizeSet: Set an Interface’s Maximum PDU Size
Syntax

NPF_error_t NPF_IfMaxPDU_SizeSet(
NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,
NPF_IN NPF_uint32_t n_handles,
NPF_IN NPF_IfHandle_t *if_HandleArray,
NPF_IN NPF_uint16_t *maxPDU_Array);

Description
This function sets the Maximum PDU size of one or more interfaces. The if_HandleArray and
maxPDU_Array arrays must both contain the same number of entries, equal to the value of n_handles.
The maximum PDU size of each interface is set from a different element of the maxPDU array.

Note: for an IPv4 or IPv6 interface, maximum PDU size is also known as Maximum Transmission Unit
(MTU), meaning the largest IP datagram the interface can accommodate.

Input Parameters
• if_cbHandle: the registered callback handle.
• if_cbCorrelator: the application’s context for this call.
• if_errorReporting: the desired callback.
• n_handles: the number of interfaces to set the maximum PDU size for.
• if_HandleArray: the handle of each interface.
• maxPDU_Array: the corresponding maximum PDU size values to be set.

Output Parameters
None
Asynchronous Error Codes

• NPF_NO_ERROR: Operation successful.
• NPF_IF_E_INVALID_HANDLE: An if_Handle is null or invalid, or is not an IPv6 interface.
• NPF_IF_E_INVALID_MAX_PDU_SIZE: Maximum PDU size value is invalid.

Asynchronous Response
A total of n_handles asynchronous responses (NPF_IfAsyncResponse_t) will be passed to the
callback function, in one or more invocations. Each response contains an interface handle and a success
code or a possible error code for that interface. The union in the callback response structure is unused.

 Interfaces Task Group 35

Network Processing Forum Software Work Group

4.6.12 NPF_IfAttrGet: Read Interface Attributes
Syntax

NPF_error_t NPF_IfAttrGet(
NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,
NPF_IN NPF_uint32_t n_handles,
NPF_IN NPF_IfHandle_t *if_HandleArray);

Description
This function returns, via a callback, a pointer to a generic interface structure (NPF_IfGeneric_t)
containing the current attributes of one or more indicated interfaces. This is an optional function.
Input Parameters

• if_cbHandle: the registered callback handle.
• if_cbCorrelator: the application’s context for this call.
• if_errorReporting: the desired callback.
• n_handles: the number of interfaces to get attributes for.
• if_HandleArray: pointer to an array of interface handles.

Output Parameters
None
Asynchronous Error Codes

• NPF_NO_ERROR: Operation successful.
• NPF_IF_E_INVALID_HANDLE: An if_Handle is null or invalid.

Asynchronous Response
A total of n_handles asynchronous responses (NPF_IfAsyncResponse_t) will be passed to the
callback function, in one or more invocations. Each response contains an interface handle or a possible
error code. If the error code indicates success, the union in the callback response structure contains a
pointer to the NPF_IfGeneric_t structure for that interface.

4.6.13 NPF_IfFwdEnable: Enable Forwarding on One or More Interfaces
Syntax

NPF_error_t NPF_IfFwdEnable(
NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,
NPF_IN NPF_uint32_t n_handles,
NPF_IN NPF_IfHandle_t *if_HandleArray);

Description
This function enables forwarding on one or more interfaces, if a forwarding function is defined for the
specific interface type.
Input Parameters

• if_cbHandle: the registered callback handle.
• if_cbCorrelator: the application’s context for this call.

 Interfaces Task Group 36

Network Processing Forum Software Work Group

• if_errorReporting: the desired callback.
• n_handles: the number of interfaces on which to enable forwarding.
• if_HandleArray: pointer to an array of interface handles.

Output Parameters
None
Asynchronous Error Codes

• NPF_NO_ERROR: Operation successful.
• NPF_IF_E_INVALID_HANDLE: An interface handle is null or invalid, or not an IPv4 or IPv4

Tunnel interface.
• NPF_IF_E_FORWARDING_NOT_DEFINED: Forwarding is not a defined function for this interface

type.
Asynchronous Response
A total of n_handles asynchronous responses (NPF_IfAsyncResponse_t) will be passed to the
callback function, in one or more invocations. Each response contains an interface handle and a success
code or a possible error code for that interface. The union in the callback response structure is unused.

4.6.14 NPF_IfFwdDisable: Disable Forwarding on One or More Interfaces
Syntax

NPF_error_t NPF_IfFwdDisable(
NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,
NPF_IN NPF_uint32_t n_handles,
NPF_IN NPF_IfHandle_t *if_HandleArray);

Description
This function disables forwarding on one or more interfaces. When forwarding is disabled, the interface
can still send and receive datagrams as long as the interface is administratively UP and the underlying L2
interface (if any) is operationally and administratively UP. This function has no meaning for interface
types on which no forwarding function is defined.
Input Parameters

• if_cbHandle: the registered callback handle.
• if_cbCorrelator: the application’s context for this call.
• if_errorReporting: the desired callback.
• n_handles: the number of interfaces on which to disable IP forwarding.
• if_HandleArray: pointer to an array of IP or IPv4 Tunnel interface handles.

Output Parameters
None
Asynchronous Error Codes

• NPF_NO_ERROR: Operation successful.
• NPF_IF_E_INVALID_HANDLE: An interface handle is null or invalid, or not an IPv4 or IPv6

interface.

 Interfaces Task Group 37

Network Processing Forum Software Work Group

• NPF_IF_E_FORWARDING_NOT_DEFINED: Forwarding is not a defined function for this interface
type.

Asynchronous Response
A total of n_handles asynchronous responses (NPF_IfAsyncResponse_t) will be passed to the
callback function, in one or more invocations. Each response contains an interface handle and a success
code or a possible error code for that interface. The union in the callback response structure is unused.

4.6.15 NPF_IfInternalLoopbackEnable: Enable Internal Loopback on One or
More Interfaces

Syntax
NPF_error_t NPF_IfInternalLoopbackEnable(

NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,
NPF_IN NPF_uint32_t n_handles,
NPF_IN NPF_IfHandle_t *if_HandleArray);

Description
This function enables internal loopback on one or more interfaces, if a such a loopback function is
implemented for the specific interface type. When enabled, internal loopback causes packets sent from
the local system on this interface to be sent back to the local system instead of to their external
destinations.
Input Parameters

• if_cbHandle: the registered callback handle.
• if_cbCorrelator: the application’s context for this call.
• if_errorReporting: the desired callback.
• n_handles: the number of interfaces on which to enable loopback.
• if_HandleArray: pointer to an array of interface handles.

Output Parameters
None
Asynchronous Error Codes

• NPF_NO_ERROR: Operation successful.
• NPF_IF_E_INVALID_HANDLE: An interface handle is null or invalid.

Asynchronous Response
A total of n_handles asynchronous responses (NPF_IfAsyncResponse_t) will be passed to the
callback function, in one or more invocations. Each response contains an interface handle and a success
code or a possible error code for that interface. The union in the callback response structure is unused.

4.6.16 NPF_IfInternalLoopbackDisable: Disable Internal Loopback on One
or More Interfaces

Syntax
NPF_error_t NPF_IfInternalLoopbackDisable(

NPF_IN NPF_callbackHandle_t if_cbHandle,

 Interfaces Task Group 38

Network Processing Forum Software Work Group

NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,
NPF_IN NPF_uint32_t n_handles,
NPF_IN NPF_IfHandle_t *if_HandleArray);

Description
This function turns off internal loopback on one or more interfaces. This function has no meaning for
interface types on which no internal loopback function is defined.
Input Parameters

• if_cbHandle: the registered callback handle.
• if_cbCorrelator: the application’s context for this call.
• if_errorReporting: the desired callback.
• n_handles: the number of interfaces on which to disable loopback.
• if_HandleArray: pointer to an array of interface handles.

Output Parameters
None
Asynchronous Error Codes

• NPF_NO_ERROR: Operation successful.
• NPF_IF_E_INVALID_HANDLE: An interface handle is null or invalid.

Asynchronous Response
A total of n_handles asynchronous responses (NPF_IfAsyncResponse_t) will be passed to the
callback function, in one or more invocations. Each response contains an interface handle and a success
code or a possible error code for that interface. The union in the callback response structure is unused.

4.6.17 NPF_IfExternalLoopbackEnable: Enable External Loopback on One
or More Interfaces

Syntax
NPF_error_t NPF_IfExternalLoopbackEnable(

NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,
NPF_IN NPF_uint32_t n_handles,
NPF_IN NPF_IfHandle_t *if_HandleArray);

Description
This function enables external loopback on one or more interfaces, if a such a loopback function is
implemented for the specific interface type. When enabled, external loopback causes packets sent from
an external system to this interface to be sent back out the external link.
Input Parameters

• if_cbHandle: the registered callback handle.
• if_cbCorrelator: the application’s context for this call.
• if_errorReporting: the desired callback.
• n_handles: the number of interfaces on which to enable loopback.
• if_HandleArray: pointer to an array of interface handles.

 Interfaces Task Group 39

Network Processing Forum Software Work Group

Output Parameters
None
Asynchronous Error Codes

• NPF_NO_ERROR: Operation successful.
• NPF_IF_E_INVALID_HANDLE: An interface handle is null or invalid.

Asynchronous Response
A total of n_handles asynchronous responses (NPF_IfAsyncResponse_t) will be passed to the
callback function, in one or more invocations. Each response contains an interface handle and a success
code or a possible error code for that interface. The union in the callback response structure is unused.

4.6.18 NPF_IfExternalLoopbackDisable: Disable External Loopback on One
or More Interfaces

Syntax
NPF_error_t NPF_IfExternalLoopbackDisable(

NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,
NPF_IN NPF_uint32_t n_handles,
NPF_IN NPF_IfHandle_t *if_HandleArray);

Description
This function turns off external loopback on one or more interfaces. This function has no meaning for
interface types on which no external loopback function is defined.
Input Parameters

• if_cbHandle: the registered callback handle.
• if_cbCorrelator: the application’s context for this call.
• if_errorReporting: the desired callback.
• n_handles: the number of interfaces on which to disable loopback.
• if_HandleArray: pointer to an array of interface handles.

Output Parameters
None
Asynchronous Error Codes

• NPF_NO_ERROR: Operation successful.
• NPF_IF_E_INVALID_HANDLE: An interface handle is null or invalid.

Asynchronous Response
A total of n_handles asynchronous responses (NPF_IfAsyncResponse_t) will be passed to the
callback function, in one or more invocations. Each response contains an interface handle and a success
code or a possible error code for that interface. The union in the callback response structure is unused.

4.6.19 NPF_IfHandleGet: Return the Handle Value For a Given Interface
Syntax

NPF_error_t NPF_IfHandleGet (

 Interfaces Task Group 40

Network Processing Forum Software Work Group

NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting,
NPF_IN NPF_uint32_t n_if,
NPF_IN NPF_IfID_t *ifIDArray);

Description
This function returns the handle value for one or more interfaces, given their Interface ID values.
This is an optional function.

Input Parameters

• cbHandle: the registered callback handle.
• cbCorrelator: the application’s context for this call.
• errorReporting: the desired level of feedback
• n_if: number of interface IDs in the array
• ifIDArray: pointer to an array of interface IDs.

Output Parameters
None

Asynchronous Error Codes

• NPF_NO_ERROR: The operation was successful.
• NPF_IF_E_NOMEMORY: The system was unable to allocate sufficient memory to complete

this operation.
• NPF_IF_E_INVALID_PARAM: There is no handle associated with the given interface ID.

Asynchronous response
A callback of type NPF_IF_HANDLE_GET is generated in response to this function call. For each
intrface ID given in the request, the NPF_IfAsyncResponse_t structure contains the error code
(if any), the given ID value, and the returned handle. The union within the
NPF_IfAsyncResponse_t structure is not used.

4.6.20 NPF_IfHandleGetAll: Return the Handles of All Interfaces
Syntax

NPF_error_t NPF_IfIdentity_GetAll (
NPF_IN NPF_callbackHandle_t if_cbHandle,
NPF_IN NPF_correlator_t if_cbCorrelator,
NPF_IN NPF_errorReporting_t if_errorReporting);

Description
This function returns an array containing the IDs and Interface Handles of all existing interfaces.
This is an optional function.

 Interfaces Task Group 41

Network Processing Forum Software Work Group

Input Parameters

• cbHandle: the registered callback handle.
• cbCorrelator: the application’s context for this call.
• errorReporting: the desired level of feedback.

Output Parameters
None

Asynchronous Error Codes

• NPF_NO_ERROR: The operation was successful.
• NPF_IF_E_NOMEMORY: The system was unable to allocate sufficient memory to complete

this operation.
Asynchronous response
A callback of type NPF_IF_HANDLE_GET_ALL is generated in response to this function call. The
union within the NPF_IfAsyncResponse_t structure points to an NPF_IfIdentityArray_t
structure, which in turn points to an array of NPF_Identity_t structures containing the Interface
IDs and handles of all existing interfaces.

 Interfaces Task Group 42

Network Processing Forum Software Work Group

5 References
1 McCloughrie, K., Kastenholtz, F., “The Interfaces Group MIB”, Internet Engineering Task Force

RFC 2863, June 2000.

2 NP Forum – Software API Conventions Implementation Agreement Revision 2.0.

 Interfaces Task Group 43

Network Processing Forum Software Work Group

6 API Capabilities
This section defines the capabilities of the Interface Management API.

It summarizes the defined APIs and Events and defines the mandatory and optional features.

6.1 Optional support of specific types
The support of any specific type of interface is optional in an implementation. An implementation MAY
support exclusively one type of interface, and still claim compliance to the NP Forum Interface
Management API.

6.2 API Functions
Function Name Required?
NPF_IfRegister() Yes
NPF_IfDeregister() Yes
NPF_IfEventRegister() Yes
NPF_IfEventDeregister() Yes
NPF_IfCreate() Yes
NPF_IfDelete() Yes
NPF_IfBind() Yes
NPF_IfUnBind() Yes
NPF_IfGenericStatsGet() Yes
NPF_IfAttrSet() Yes
NPF_IfCreateAndSet() Yes
NPF_IfEnable() Yes
NPF_IfDisable() Yes
NPF_IfOperStatusGet() Yes
NPF_IfMaxPDU_SizeSet() Yes
NPF_IfAttrGet No
NPF_IfFwdEnable() Only if interface type supports forwarding
NPF_IfwdDisable() Only if interface type supports forwarding
NPF_IfInternalLoopbackEnable Only if interface supports internal loopback
NPF_IfInternalLoopbackDisable Only if interface supports internal loopback
NPF_IfExternalLoopbackEnable Only if interface supports external loopback
NPF_IfExternalLoopbackDisable Only if interface supports external loopback
NPF_IfHandleGet() No
NPF_IfHandleGetAll() No

6.3 API Events
Event Name Required?
NPF_IF_UP Yes
NPF_IF_DOWN Yes
NPF_IF_COUNTER_DISCONTINUITY Yes
NPF_IF_EV_CREATED Yes
NPF_IF_EV_DELETED Yes
NPF_IF_EV_BINDING_CHANGE Yes
NPF_IF_EV_ADDRESS_CHANGE Yes
NPF_IF_EV_SPEED_CHANGE Yes
NPF_IF_EV_FWD_CHANGE Yes

 Interfaces Task Group 44

Network Processing Forum Software Work Group

APPENDIX A CHANGES FROM REVISION 2.0
The major change in Revision 3.0 of the Interface Management API was to split the Revision 2.0
document into several documents: an Interface Management Core document that defined all the
generic parts of the Interface Management API, and for each particular interface type or related
group of interface types, a type-specific document that adds API definitions specific to that type
or group.

The original document was split in this way to accomplish two things:

1. to create some independence of the documents, so that changes specific to a single
interface type, which we found occur very frequently, need not result in constant
revisions to a single document; and

2. to make it easier for vendors and customers to understand what is required when an
implementation claims support for specific interface types.

Interface Management is still considered to be a single API, although its definitions are now
spread across multiple documents. No type-specific document stands alone; they all depend on
definitions found in the Core document:
• NPF_IfGeneric_t structure
• Callback handler and registration functions
• Event handler and registration functions
• Inteface create, delete, query, and other generic function definitions.

Splitting the document could not be done in a completely backward-compatible way. This
appendix lists the changes that will require work by implementers to migrate from version 2.0 to
version 3.0 of the Implementation Agreement. The changes are as follows:

• Modular header files:

The monolithic header file of Revision 2.0 was split into npf_if_core.h, npf_if_lan.h,
npf_if_ipv4.h, npf_if_ipv6.h, and npf_if_pos.h. API implementations should supply
the core header file and type-specific header files for all supported types; clients need only
include npf_if_core.h and any additional header files needed for the types they use.

• Embedded structures changed to pointers:
The NPFf_IfGeneric_t, npf_IfAsyncResponse_t, and npf_IfEventData_t structures
each contained a union of type-specific structures. These embedded structures have been
changed to pointers, so that new types could be defined without changing the size of the
parent structure.

• Common variables with type-specific value assignments:
NPF_IfType_t, NPF_IfCallbackType_t, and NPF_IfEvent_t were changed from enum data
types to NPF_uint32_t, with values assigned using #define statements. (This allows the
code assignments to be spread across the Interface Management document set, and new
codes to be added later without having to touch the typedef statement for the variable.)
NPF_IfErrorType_t was already defined in this way, but now its value assignments are
scattered as well. The code values for all these variables are no longer squential integers;
values assigned in the Core document start from 1 and go sequentially. Values defined in
type-specific document start from 1 plus an offset of the interface type code left shifted by

 Interfaces Task Group 45

Network Processing Forum Software Work Group

either 8 or 16 bits, depending on the variable. Type-specific error codes now are assigned in
the range from 0x10101 through 0x1ffff, so as to avoid conflict with codes assigned by other
APIs.

• Replacement of some type-specific functions with generic ones:
– NPF_IfIPv4MTU_Set() and NPF_IfIPv6MTU_Set() functions have been replaced by a
generic NPF_IfMaxPDU_SizeSet(). There is now a generic Max PDU Size attribute that
means the same as MTU, and replaces it for IP interfaces.
– The IP forwarding enable/disable functions, NPF_IfIPv[4|6]_FwdEnable() and
NPF_IfIPv[4|6]_FwdDisable(), have been replaced by NPF_IfFwdEnable() and
NPF_IfFwdDisable() generic functions, which can be use with any interface type that
supports forwarding operations (such as LAN or ATM as well as L3 types).

 Interfaces Task Group 46

Network Processing Forum Software Work Group

APPENDIX B HEADER FILE: NPF_IF_CORE.H

/*
 * This header file defines typedefs, constants, and functions
 * that apply to the NPF Core Interface Management API.
 */
#ifndef __NPF_IF_CORE_H__
#define __NPF_IF_CORE_H__

#ifdef __cplusplus
extern "C" {
#endif

/*
 * Interface Management depends on some types that are defined
 * in other header files because they are shared by other APIs.
 */
#ifndef NPF_MAC_Address_t /* Should be defined in a common .h file */
typedef NPF_uchar8_t NPF_MAC_Address_t[6];
#endif

#ifndef NPF_IPv4Address_t /* Should be defined in a common .h file */
typedef NPF_uint32_t NPF_IPv4Address_t;
#endif

#ifndef NPF_IPv4Prefix_t /* Should be defined in a common .h file */
typedef struct NPF_IPv4Prefix {
 NPF_IPv4Address_t IPv4Addr; /* IPv4 address */
 NPF_uint8_t IPv4NetPlen; /* Prefix length in bits (1-32) */
} NPF_IPv4Prefix_t;
#endif

#ifndef NPF_IPv6Address_t /* Should be defined in a common .h file */
typedef struct {
 union {
 NPF_uchar8_t b[16];
 NPF_uint32_t w[4];
 } u;
} NPF_IPv6Address_t;
#endif

#ifndef NPF_IPv6Prefix_t /* Should be defined in a common .h file */
/*
 * IPv6 address prefix structure
 */
typedef struct NPF_IPv6Prefix {
 NPF_IPv6Address_t IPv6Addr; /* IPv6 address */
 NPF_uint8_t IPv6Plen; /* Prefix length in bits (1-128) */
} NPF_IPv6Prefix_t;
#endif

#ifndef NPF_IfHandle_t /* Should be defined in a common .h file */

 Interfaces Task Group 47

Network Processing Forum Software Work Group

/*
 * Interface handle
 */
typedef NPF_uint32_t NPF_IfHandle_t;
#endif

/*
 * Interface Management Definitions
 */
typedef NPF_uint32_t NPF_IfID_t; /* Interface Identifier */

typedef NPF_uint32_t NPF_IfType_t;
#define NPF_IF_TYPE_UNK 1 /* Interface type unknown */

/*
 * Structure to relate two interfaces
 */
typedef struct {
 NPF_IfHandle_t parent; /* Parent interface handle */
 NPF_IfHandle_t child; /* Child interface handle */
} NPF_IfBinding_t;

/*
 * Statistics
 */
typedef struct {
 NPF_uint64_t bytesRx; /* Receive Bytes */
 NPF_uint64_t ucPackRx; /* Receive Unicast Packets */
 NPF_uint64_t mcPackRx; /* Receive Multicast Packets */
 NPF_uint64_t bcPackRx; /* Receive Broadcast packets */
 NPF_uint64_t dropRx; /* Receive packets dropped */
 NPF_uint64_t errorRx; /* Receive errors */
 NPF_uint64_t protoRx; /* Receive unknown protocol */
 NPF_uint64_t bytesTx; /* Transmit bytes */
 NPF_uint64_t ucPackTx; /* Transmit Unicast Packets */
 NPF_uint64_t mcPackTx; /* Transmit Multicast Packets */
 NPF_uint64_t bcPackTx; /* Transmit Broadcast Packets */
 NPF_uint64_t dropTx; /* Transmit dropped packets */
 NPF_uint64_t errorTx; /* Transmit errors */
} NPF_IfStatistics_t;

/*
 * Operational Status code
 */
typedef enum {
 NPF_IF_OPER_STATUS_UP = 1, /* Operationally UP */
 NPF_IF_OPER_STATUS_DOWN = 2, /* Operationally DOWN */
 NPF_IF_OPER_STATUS_TESTING = 3, /* Testing status */
 NPF_IF_OPER_STATUS_UNKNOWN = 4, /* Status unknown */
 NPF_IF_OPER_STATUS_DORMANT = 5, /* Dormant status */
 NPF_IF_OPER_STATUS_NOT_PRESENT = 6, /* Interface not present */
 NPF_IF_OPER_STATUS_LOWER_LAYER_DOWN = 7 /* Parent I/F down */
} NPF_IfOperStatus_t;

/*
 * Administrative Status code

 Interfaces Task Group 48

Network Processing Forum Software Work Group

 */
typedef enum {
 NPF_IF_ADMIN_STATUS_UP = 1, /* Administratively UP */
 NPF_IF_ADMIN_STATUS_DOWN = 2, /* Administratively DOWN */
 NPF_IF_ADMIN_STATUS_TESTING = 3 /* Testing status */
} NPF_IfAdminStatus_t;

/*
 * Forwarding mode code
 */
typedef enum {
 NPF_IF_FORWARDING_ENABLE = 1, /* Enable Forwarding */
 NPF_IF_FORWARDING_DISABLE = 2 /* Disable Forwarding */
} NPF_IfFwdMode_t;

/*
 * Internal and External Loopback Modes
 */
typedef enum {
 NPF_IF_INTERNAL_LOOPBACK_ENABLE = 1, /* Enable loopback */
 NPF_IF_INTERNAL_LOOPBACK_DISABLE = 2, /* Disable loopback */
} NPF_IfInternalLoopbackMode_t;

typedef enum {
 NPF_IF_EXTERNAL_LOOPBACK_ENABLE = 1, /* Enable loopback */
 NPF_IF_EXTERNAL_LOOPBACK_DISABLE = 2, /* Disable loopback */
} NPF_IfExternalLoopbackMode_t;

/*
 * Interface Identity (ID and Handle)
 */
typedef struct {

NPF_IfID_t ifID;
NPF_IfHandle_t ifHandle;

} NPF_IfIdentity_t;

/*
 * Interface Identity Array
 */
typedef struct {
 NPF_uint32_t nCount;

NPF_IfIdentity_t *ifIdentityArray;
} NPF_IfIdentityArray_t;

/*
 * The Interface structure:
 */

/*
 * The implementer adds lines like the following, depending
 * on the interface types supported. In this example, we have
 * support for LAN and IPv4 interface types.
 */
typedef struct NPF_IfLAN NPF_IfLAN_t;
typedef struct NPF_IfIPv4 NPF_IfIPv4_t;

typedef struct {

 Interfaces Task Group 49

Network Processing Forum Software Work Group

 NPF_IfID_t ifID; /* Interface ID */
 NPF_IfType_t type; /* Logical interface type */

NPF_uint64_t speed; /* Speed in Kbits/second */
NPF_uint32_t maxPDU; /* Max Protocol Data Unit Size */
NPF_IfOperStatus_t operStatus; /* Operational Status (read only)*/
NPF_IfAdminStatus_t adminStatus; /* Administrative up/down */
NPF_IfFwdMode_t fwdMode; /* Forwarding Mode */
NPF_IfInternalLoopbackMode_t intLoop; /* Internal loopback */
NPF_IfExternalLoopbackMode_t extLoop; /* External loopback */

 NPF_uint32_t nChildren; /* Number of child interfaces */
 NPF_uint32_t *childIDs; /* Array of child interface IDs */
 NPF_uint32_t nParents; /* Number of parent interfaces */
 NPF_uint32_t *parentIDs; /* Array of parent i/f IDs */
 union { /* Type specific attributes (by if_type code) */

 /* **** CAUTION ****
 * ONLY POINTERS TO STRUCTURES MAY BE USED IN THIS UNION.
 * **** CAUTION **** */

 /* The implementer adds lines like the following,
 * depending on the interface types supported. In
 * this example, we have support for LAN and IPv4
 * interface types.
 */
 NPF_IfLAN_t *LAN_Attr; /* LAN interface attributes */
 NPF_IfIPv4_t *IPv4_Attr; /* IPv4 Interface attributes */
 } u;
} NPF_IfGeneric_t;

/*
 * Action for address changes
 */
typedef enum {
 IF_ADDR_ADD = 0,
 IF_ADDR_DELETE = 1,
 IF_ADDR_MODIFY = 2
} NPF_IfAddrUpdate_Type_t;

/*
 * L2/L3 Address type
 */
typedef enum {
 IF_IPV4_ADDR = 1, /* modify primary IPv4 address */
 IF_IPV4_UCADDR = 2, /* Add, delete IPv4 unicast addresses */
 IF_IPV4_MCADDR = 3, /* Add, delete Multicast addresses */
 IF_IPV6_ADDR = 4, /* Add, delete IPv6 addresses */
 IF_MAC_ADDR = 5 /* Add, delete MAC addresses */
} NPF_IfL2L3Addr_Type_t;

/*
 * L2/L3 Address Changes
 */
typedef struct
{
 NPF_IfAddrUpdate_Type_t addrChangeType; /* add, delete or modify */
 NPF_IfL2L3Addr_Type_t addrType; /* Ipv4, Ipv6, MAC addr, etc. */

 Interfaces Task Group 50

Network Processing Forum Software Work Group

 NPF_uint32_t nAddrs
 union {
 NPF_IPv4Prefix_t *if_IPv4AddrArray;
 NPF_IPv6Prefix_t *if_IPv6AddrArray;
 NPF_IfMacAddress_t *macAddrArray;
 } newAddr;
} NPF_IfL2L3Addr_Update_t;

/*
 * Completion Callback Types
 */
typedef NPF_uint32_t NPF_IfCallbackType_t;
#define NPF_IF_CREATE 1
#define NPF_IF_DELETE 2
#define NPF_IF_BIND 3
#define NPF_IF_UN_BIND 4
#define NPF_IF_STATS_GET 5
#define NPF_IF_ATTR_SET 6
#define NPF_IF_CREATE_AND_SET 7
#define NPF_IF_ENABLE 8
#define NPF_IF_DISABLE 9
#define NPF_IF_OPER_STATUS_GET 10
#define NPF_IF_MAX_PDU_SIZE_SET 11
#define NPF_IF_ATTR_GET 12
#define NPF_IF_FWD_ENABLE 13
#define NPF_IF_FWD_DISABLE 14
#define NPF_IF_INTERNAL_LOOPBACK_ENABLE 15
#define NPF_IF_INTERNAL_LOOPBACK_DISABLE 16
#define NPF_IF_EXTERNAL_LOOPBACK_ENABLE 17
#define NPF_IF_EXTERNAL_LOOPBACK_DISABLE 18
#define NPF_IF_HANDLE_GET 19
#define NPF_IF_HANDLE_GET_ALL 20

typedef NPF_uint32_t NPF_IfErrorType_t;

/*
 * An asynchronous response contains an interface handle,
 * a error or success code, and in some cases a function-
 * specific structure embedded in a union. One or more of
 * these is passed to the callback function as an array
 * within the NPF_IfCallbackData_t structure (below).
 */

typedef struct NPF_IfATM_VccStats NPF_IfATM_VccStats_t; /* Forward reference
*/

typedef struct { /* Asynchronous Response Structure */
 NPF_IfHandle_t ifHandle; /* Interface handle for this response */
 NPF_IfID_t ifID; /* Interface ID */
 NPF_IfErrorType_t error; /* Error code for this response */
 union { /* Function-specific response information: */

 /* **** CAUTION ****
 * EACH MEMBER OF THIS UNION MUST BE THE SAME SIZE,

 Interfaces Task Group 51

Network Processing Forum Software Work Group

 * EQUAL TO THE SIZE OF A POINTER VARIABLE.
 * **** CAUTION **** */

 /* For generic functions */
 NPF_uint32_t unused; /* Default */
 NPF_uint32_t arrayIndex; /* NPF_IfCreateAndSet index */
 NPF_IfStatistics_t *ifStats; /* NPF_IfGenericStatsGet() */
 NPF_IfOperStatus_t operStat; /* NPF_IfOperStatusGet() */
 NPF_IfHandle_t child; /* NPF_IfBind(), handle=parent*/
 NPF_IfGeneric_t *attrs; /* NPF_IfAttrGet() */
 NPF_IfIdentifyArray_t *idArray /* NPF_IfHandleGetAll() */

 /* For type-specific functions */

 /*
 * The implementer must add lines like the following,
 * as needed for the responses of functions supporting
 * the interface types included in the implementation.
 * In this example we have support for LAN and IPv4
 * interface types. Each member must be the same
 * size: the size of a pointer variable.
 */

 NPF_MAC_Address_t *MACaddr; /* NPF_IfLAN_SrcAddrGet() */
 NPF_IPv4Prefix_t *v4prefix; /* NPF_IPv4UC_AddrAdd(), */
 /* Set(),Delete() */
 NPF_IPv4Address_t *v4addr; /* NPF_IPv4McastAddrAdd(), */
 /* Set() */
 } u;

} NPF_IfAsyncResponse_t;

/*
 * The callback function receives the following structure containing
 * one or more asynchronous responses from a single function call.
 * There are several possibilities:
 * 1. The called function does a single request
 * - n_resp = 1, and the resp array has just one element.
 * - allOK = TRUE if the request completed without error
 * and the only return value is the response code.
 * - if allOK = FALSE, the "resp" structure has the error code.
 * 2. the called function supports an array of requests
 * a. All completed successfully, at the same time, and the
 * only returned value is the response code:
 * - allOK = TRUE, n_resp = 0.
 * b. Some completed, but not all, or there are values besides
 * the response code to return:
 * - allOK = FALSE, n_resp = the number completed
 * - the "resp" array will contain one element for
 * each completed request, with the error code
 * in the NPF_IfAsyncResponse_t structure, along
 * with any other information needed to identify
 * which request element the response belongs to.
 * - Callback function invocations are repeated in
 * this fashion until all requests are complete.
 * Responses are not repeated for request elements
 * already indicated as complete in earlier callback

 Interfaces Task Group 52

Network Processing Forum Software Work Group

 * function invocations.
 */
typedef struct {
 NPF_IfCallbackType_t type; /* Which function was called? */
 NPF_boolean_t allOK; /* TRUE if all completed OK */
 NPF_uint32_t n_resp; /* Number of responses in array */
 NPF_IfAsyncResponse_t *resp; /* Pointer to response structures*/
} NPF_IfCallbackData_t;

/*
 * Error codes */

/* Callback/event reg. error */
#define NPF_IF_E_ALREADY_REGISTERED ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR)

/* Callback/event handle invalid */
#define NPF_IF_E_BAD_CALLBACK_HANDLE ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+1)

/* Callback function is NULL */
#define NPF_IF_E_BAD_CALLBACK_FUNCTION ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+2)

/* Invalid parameter */
#define NPF_IF_E_INVALID_PARAM ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+3)

/* Invalid child i/f handle */
#define NPF_IF_E_INVALID_CHILD_HANDLE ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+4)

/* Invalid parent i/f handle */
#define NPF_IF_E_INVALID_PARENT_HANDLE ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+5)

/* Invalid interface handle */
#define NPF_IF_E_INVALID_HANDLE ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+6)

/* Invalid interface attribute */
#define NPF_IF_E_INVALID_ATTRIBUTE ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+11)

/* Error ? interface not created */
#define NPF_IF_E_NOT_CREATED ((NPF_IfErrorType_t) NPF_INTERFACES_BASE_ERR+12)

/* Invalid layer 3 i/f handle */
#define NPF_IF_E_INVALID_L3_HANDLE ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+16)

/* Array length <= 0 or too big */
#define NPF_IF_E_BAD_ARRAY_LENGTH ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+17)

/* Interface has no source addr. */

 Interfaces Task Group 53

Network Processing Forum Software Work Group

#define NPF_IF_E_NO_SRC_ADDRESS ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+18)

/* Invalid Interface Type */
#define NPF_IF_E_INVALID_IF_TYPE ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+21)

/* Invalid Port number */
#define NPF_IF_E_INVALID_PORT_NUMBER ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+22)

/* Invalid Administrative Status code */
#define NPF_IF_E_INVALID_ADMIN_STATUS ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+22)

/* Parent/child binding not found */
#define NPF_IF_E_NO_SUCH_BINDING ((NPF_IfErrorType_t)
NPF_INTERFACES_BASE_ERR+30)

/*
 * Event bit mask specification
 * The client supplies an array of these, one for each
 * interface type, when registering for events on a given
 * set of interfaces. A type code of zero accompanies the
 * mask for Core events.
 */
typedef struct {
 NPF_IfType_t ifType; /* Type designator for this mask */
 NPF_uint32_t evMask; /* Event bit mask for this type */
} NPF_IfEvMaskSpec_t;

/*
 * Event bit mask array
 * Passed by the client to the event registration function.
 */
typedef struct {
 NPF_uint32_t nMasks; /* Number of masks in the array */
 NPF_IfEvMaskSpec_t *evMaskArray /* Pointer to array of masks */
} NPF_IfEvMaskArray_t;

#define NPF_IF_EVMASK_IF_UP (1<<0) /* Interface went oper UP */
#define NPF_IF_EVMASK_IF_DOWN (1<<1) /* Interface went oper DOWN
*/
#define NPF_IF_EVMASK_COUNTER_DISCONTINUITY (1<<2) /* Counter
discontinuity occurred*/
#define NPF_IF_EVMASK_CREATED (1<<3) /* Interface was created */
#define NPF_IF_EVMASK_DELETED (1<<4) /* Interface was deleted */
#define NPF_IF_EVMASK_BINDING_CHANGE (1<<5) /* A parent-child binding
changed*/
#define NPF_IF_EVMASK_ADDRESS_CHANGE (1<<6) /* L2 or L3 Address changed
*/
#define NPF_IF_EVMASK_SPEED_CHANGE (1<<7) /* Speed change */
#define NPF_IF_EVMASK_FWD_CHANGE (1<<8) /* Forwarding mode chg */

#define NPF_IF_EVMASK_ALL 0xFFFFFFFF

/*

 Interfaces Task Group 54

Network Processing Forum Software Work Group

 * Core Event types
 */
typedef NPF_uint32_t NPF_IfEvent_t;
#define NPF_IF_UP 1 /* Interface went oper UP */
#define NPF_IF_DOWN 2 /* Interface went oper DOWN */
#define NPF_IF_COUNTER_DISCONTINUITY 3 /* Counter discontinuity occurred*/
#define NPF_IF_EV_CREATED 4 /* Interface was created */
#define NPF_IF_EV_DELETED 5 /* Interface was deleted */
#define NPF_IF_EV_BINDING_CHANGE 6 /* A parent-child binding changed*/
#define NPF_IF_EV_ADDRESS_CHANGE 7 /* L2 or L3 Address changed */
#define NPF_IF_EV_SPEED_CHANGE 8 /* Speed change */
#define NPF_IF_EV_FWD_CHANGE 9 /* Forwarding mode chg */

/*
 * Event notification structure and array
 */
typedef struct NPF_IfEventData {
 NPF_IfEvent_t eventType; /* Event type */
 NPF_IfHandle_t ifHandle; /* Interface Handle */
 NPF_IfID_t ifID; /* Interface ID */
 NPF_IfType_t ifType; /* Interface Type */
 union {

 /* **** CAUTION ****
 * EACH MEMBER OF THIS UNION MUST BE THE SAME SIZE,
 * EQUAL TO THE SIZE OF A POINTER VARIABLE.
 * **** CAUTION **** */

 /* For generic functions */

 void * unused; /* Up/down, create/delete events */
 NPF_uint64_t *speed; /* new speed in Kbits/second */
 NPF_IfL2L3Addr_Update_t *L3addrUpdate; /* IP address updates */
 NPF_IfFwdMode_t *fwdMode; /* new forwarding mode */
 NPF_IfBind_Update_t *ifBindUpd; /* new Parent-Child binding*/

 /* For type-specific functions */

 /*
 * The implementer must add lines similar to the above,
 * as needed for the events generated by interface types
 * included in the implementation.
 */

 } u;
} NPF_IfEventData_t;

typedef struct {
 NPF_uint16_t n_data; /* Number of events in array */
 NPF_IfEventData_t *eventData; /* Array of event notifications */
} NPF_IfEventArray_t;

typedef NPF_uint32_t NPF_IfEventHandlerHandle_t;

typedef void (*NPF_IfCallbackFunc_t) (

 Interfaces Task Group 55

Network Processing Forum Software Work Group

 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_IfCallbackData_t ifCallbackData);

NPF_error_t NPF_IfRegister(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_IfCallbackFunc_t ifCallbackFunc,
 NPF_OUT NPF_callbackHandle_t *ifCallbackHandle);

NPF_error_t NPF_IfDeregister(
 NPF_IN NPF_callbackHandle_t ifCallbackHandle);

typedef void (*NPF_IfEventHandlerFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_IfEventArray_t ifEventArray);

NPF_error_t NPF_IfEventRegister(

NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_IfEventHandlerFunc_t ifEventHandlerFunc,
NPF_IN NPF_IfEvMaskArray_t evMaskArray,
NPF_OUT NPF_IfEventHandlerHandle_t *ifEventHandlerHandle);

NPF_error_t NPF_IfEventDeregister(
 NPF_IN NPF_IfEventHandlerHandle_t ifEventHandlerHandle);

NPF_error_t NPF_IfCreate(
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t n_if,
 NPF_IN NPF_IfType_t if_Type,
 NPF_IN NPF_IfID_t *ifID);

NPF_error_t NPF_IfDelete(
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t n_handles,
 NPF_IN NPF_IfHandle_t *if_HandleArray);

NPF_error_t NPF_IfBind(
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t nbinds,
 NPF_IN NPF_IfBinding_t *if_bindArray);

NPF_error_t NPF_IfUnBind(
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t nbinds,
 NPF_IN NPF_IfBinding_t *if_bindArray);

NPF_error_t NPF_IfGenericStatsGet(

 Interfaces Task Group 56

Network Processing Forum Software Work Group

 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t n_handles,
 NPF_IN NPF_IfHandle_t *if_HandleArray);

NPF_error_t NPF_IfAttrSet(
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t n_handles,
 NPF_IN NPF_IfHandle_t *if_HandleArray,
 NPF_IN NPF_IfGeneric_t *if_StructArray);

NPF_error_t NPF_IfCreateAndSet(
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t n_if,
 NPF_IN NPF_IfGeneric_t *if_StructArray);

NPF_error_t NPF_IfEnable(
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t n_handles,
 NPF_IN NPF_IfHandle_t *if_HandleArray);

NPF_error_t NPF_IfDisable(
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t n_handles,
 NPF_IN NPF_IfHandle_t *if_HandleArray);

NPF_error_t NPF_IfOperStatusGet(
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t n_handles,
 NPF_IN NPF_IfHandle_t *if_HandleArray);

NPF_error_t NPF_IfMaxPDU_SizeSet(
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t n_handles,
 NPF_IN NPF_IfHandle_t *if_HandleArray,
 NPF_IN NPF_uint16_t *maxPDU_Array);

NPF_error_t NPF_IfAttrGet(
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t n_handles,
 NPF_IN NPF_IfHandle_t *if_HandleArray);

 Interfaces Task Group 57

Network Processing Forum Software Work Group

NPF_error_t NPF_IfFwdEnable(
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t n_handles,
 NPF_IN NPF_IfHandle_t *if_HandleArray);

NPF_error_t NPF_IfFwdDisable(
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t n_handles,
 NPF_IN NPF_IfHandle_t *if_HandleArray);

NPF_error_t NPF_IfInternalLoopbackEnable(
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t n_handles,
 NPF_IN NPF_IfHandle_t *if_HandleArray);

NPF_error_t NPF_IfInternalLoopbackDisable(
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t n_handles,
 NPF_IN NPF_IfHandle_t *if_HandleArray);

NPF_error_t NPF_IfExternalLoopbackEnable(
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t n_handles,
 NPF_IN NPF_IfHandle_t *if_HandleArray);

NPF_error_t NPF_IfExternalLoopbackDisable(
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t n_handles,
 NPF_IN NPF_IfHandle_t *if_HandleArray);

NPF_error_t NPF_IfHandleGet (
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting,
 NPF_IN NPF_uint32_t n_if,
 NPF_IN NPF_IfID_t *ifIDArray);

NPF_error_t NPF_IfIdentity_GetAll (
 NPF_IN NPF_callbackHandle_t if_cbHandle,
 NPF_IN NPF_correlator_t if_cbCorrelator,
 NPF_IN NPF_errorReporting_t if_errorReporting);

#ifdef __cplusplus
}
#endif

 Interfaces Task Group 58

Network Processing Forum Software Work Group

#endif

 Interfaces Task Group 59

Network Processing Forum Software Work Group

 Interfaces Task Group 60

APPENDIX C ACKNOWLEDGEMENTS

Working Group Chair:

Alex Conta, Transwitch, aconta@txc.com

Task Group Chair:

Alex Conta, Transwitch, aconta@txc.com

Task Group Editor:

John Renwick, Agere Systems, jrenwick@agere.com

The following individuals are acknowledged for their participation to IM API TG
teleconferences, plenary meetings, mailing list, and/or for their NPF contributions used for the
development of this Implementation Agreement. This list may not be all-inclusive since only
names supplied by member companies for inclusion here will be listed. The NPF wishes to
thank all active participants to this Implementation Agreement, whether listed here or not.

The list is in alphabetical order of last names:

mailto:david.putzolu@intel.com

	Revision History
	Introduction
	Assumptions and External Requirements
	Scope
	Dependencies
	Interface Management Structures
	Common Interface Attributes
	Common Interface Statistics
	Interface Relatedness
	Interface Manager Application

	Data Types
	Interface Management API Types
	Interface Identifier
	Generic Interface Structure: NPF_IfGeneric_t
	Interface Handle: NPF_IfHandle_t
	Interface Type Code: NPF_IfType_t
	Structure to Relate Two Interfaces: NPF_IfBinding_t
	Interface Statistics: NPF_IfStatistics_t
	Operational Status Code: NPF_IfOperStatus_t
	Administrative Status Code: NPF_IfAdminStatus_t
	Forwarding Mode : NPF_IfFwdMode_t
	Loopback Modes
	Interface Identity : NPF_IfIdentity_t
	Interface Identity Array : NPF_IfIdentityArray_t
	Binding Update Information
	Address Update Information

	Data Structures for Completion Callbacks
	Completion Callback Type (NPF_IfCallbackType_t)
	Asynchronous Response Array Element: NPF_IfAsyncResponse_t
	Callback Data Structure: NPF_IfCallbackData_t

	Error Codes (NPF_IfErrorType_t)
	Data Structures for Event Notifications
	Event Types: NPF_IfEvent_t
	Event Mask Structure
	Core Event Mask Bit Assignments
	Event Notification Structure and Array: NPF_IfEventData_t and NPF_IfEventArray_t

	Functions
	Completion Callback
	Completion Callback Function
	
	Description

	NPF_IfRegister: Completion Callback Registration Function
	
	Description

	NPF_IfDeregister: Completion Callback Deregistration Function
	
	Description

	Event Notification
	Event Handler Function
	
	Description

	NPF_IfEventRegister: Event Handler Registration Function
	
	Description

	NPF_IfEventDeregister: Event Handler Deregistration Function
	
	Description

	Event Definition Signature
	Order of Operations
	Completion Callbacks and Error Returns
	Interface Management API – Generic Functions
	NPF_IfCreate: Create an Interface
	NPF_IfDelete: Delete an Interface
	NPF_IfBind: Bind Interfaces
	NPF_IfUnBind: Remove Interface Bindings
	NPF_IfGenericStatsGet: Read Interface Statistics
	NPF_IfAttrSet: Set All Interface Attributes
	NPF_IfCreateAndSet: Create an Interface and Set All of its Attributes
	NPF_IfEnable: Enable an Interface
	NPF_IfDisable: Disable an Interface
	NPF_IfOperStatusGet: Return the Operational Status of an Interface
	NPF_IfMaxPDU_SizeSet: Set an Interface’s Maximum
	NPF_IfAttrGet: Read Interface Attributes
	NPF_IfFwdEnable: Enable Forwarding on One or More Interfaces
	NPF_IfFwdDisable: Disable Forwarding on One or More Interfaces
	NPF_IfInternalLoopbackEnable: Enable Internal Loopback on One or More Interfaces
	NPF_IfInternalLoopbackDisable: Disable Internal Loopback on One or More Interfaces
	NPF_IfExternalLoopbackEnable: Enable External Loopback on One or More Interfaces
	NPF_IfExternalLoopbackDisable: Disable External Loopback on One or More Interfaces
	NPF_IfHandleGet: Return the Handle Value For a Given Interface
	NPF_IfHandleGetAll: Return the Handles of All Interfaces

	References
	API Capabilities
	Optional support of specific types
	API Functions
	API Events

