
Network Processing Forum Software Working Group

IPv4 Unicast Forwarding Service API
Implementation Agreement

Revision 2.0

Editor:
Reda Haddad, Ericsson, Inc. reda.haddad@ericsson.com

Copyright © 2002, 2003, 2004 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THIS DOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", “MAY", and "OPTIONAL" in the
remainder of this document are to be interpreted as described in the NPF Software API
Conventions Implementation Agreement revision 1.0.

For additional information contact:
The Network Processing Forum, 39355 California Street,

Suite 307, Fremont, CA 94538
+1 510 608-5990 phone info@npforum.org

 IPv4 Unicast Forwarding Task Group 1

mailto:info@npforum.org

Network Processing Forum Software Working Group

Table of Contents
1 Introduction... 5

1.1 Assumptions and External Requirements ... 8
1.2 Scope 8
1.3 Dependencies 8

2 API Usage Model.. 9
2.1 Unified Table Model... 10
2.2 Discrete Table Model.. 11
2.3 Address Resolution Table ... 12
2.4 API Usage Guidelines... 13

3 Data Types .. 14
3.1 Common Data Types .. 14

3.1.1 TABLE MODE QUERY DATA TYPES ..14
3.1.2 PREFIX DATA TYPES ..14
3.1.3 NEXT HOP ARRAY DATA TYPES..14
3.1.4 ADDRESS RESOLUTION DATA TYPES..17
3.1.5 TABLE TYPES...19
3.1.6 RETURN CODES ..19

3.2 Unified Mode Data Types... 20
3.2.1 FIB TABLE QUERY DATA TYPE ..20
3.2.2 TABLE TYPES...20

3.3 Discrete Mode Data Types.. 21
3.3.1 PREFIX TABLE QUERY DATA TYPE...21
3.3.2 NEXT HOP TABLE QUERY DATA TYPE ...21
3.3.3 TABLE TYPES...21

3.4 Data Structures for Completion Callbacks ... 22
3.4.1 COMPLETION CALLBACK STRUCTURES......................................23

3.5 Data Structures for Event Notification ... 26
3.5.1 EVENT NOTIFICATION TYPES..26
3.5.2 EVENT NOTIFICATION STRUCTURES...26

4 Function Calls ... 29
4.1 Completion Callback Function Calls .. 29

4.1.1 NPF_IPV4UC_CALLBACKFUNC..29
4.2 Event Notification Function Calls .. 29

4.2.1 NPF_IPV4UC_EVENTCALLFUNC_T ...30
4.3 Callback Registration/Deregistration Function Calls ... 30

4.3.1 NPF_IPV4UC_REGISTER ..30
4.3.2 NPF_IPV4UC_DEREGISTER ...31

4.4 Event Registration/Deregistration Function Calls .. 32
4.4.1 NPF_IPV4UC_EVENTREGISTER ..32
4.4.2 NPF_IPV4UC_EVENTDEREGISTER ...33

4.5 Supported & Preferred Mode Query Function Calls .. 34
4.5.1 NPF_IPV4UC_GETSUPPORTEDMODES..34
4.5.2 NPF_IPV4UC_GETPREFERREDMODE ..34

4.6 Unified FIB Table Function Calls... 35
4.6.1 NPF_IPV4UC_FIBTABLEHANDLECREATE.....................................35
4.6.2 NPF_IPV4UC_FIBTABLEHANDLEDELETE36
4.6.3 NPF_IPV4UC_FIBENTRYADD ...37

 IPv4 Unicast Forwarding Task Group 2

Network Processing Forum Software Working Group

4.6.4 NPF_IPV4UC_FIBENTRYDELETE...38
4.6.5 NPF_IPV4UC_FIBTABLEFLUSH..40
4.6.6 NPF_IPV4UC_FIBTABLEATTRIBUTEQUERY.................................41
4.6.7 NPF_IPV4UC_FIBENTRYQUERY ..42

4.7 Discrete Prefix Table Function Calls.. 44
4.7.1 NPF_IPV4UC_PREFIXTABLEHANDLECREATE44
4.7.2 NPF_IPV4UC_PREFIXTABLEHANDLEDELETE..............................45
4.7.3 NPF_IPV4UC_PREFIXENTRYADD..46
4.7.4 NPF_IPV4UC_PREFIXENTRYDELETE ...47
4.7.5 NPF_IPV4UC_PREFIXTABLEFLUSH...49
4.7.6 NPF_IPV4UC_PREFIXTABLEATTRIBUTEQUERY..........................50
4.7.7 NPF_IPV4UC_PREFIXENTRYQUERY...51
4.7.8 NPF_IPV4UC_PREFIXNEXTHOPTABLEBIND53

4.8 Discrete Next Hop Table Function Calls .. 54
4.8.1 NPF_IPV4UC_NEXTHOPTABLEHANDLECREATE.........................54
4.8.2 NPF_IPV4UC_NEXTHOPTABLEHANDLEDELETE55
4.8.3 NPF_IPV4UC_NEXTHOPENTRYADD..56
4.8.4 NPF_IPV4UC_NEXTHOPENTRYDELETE58
4.8.5 NPF_IPV4UC_NEXTHOPTABLEFLUSH ..59
4.8.6 NPF_IPV4UC_NEXTHOPTABLEATTRIBUTEQUERY60
4.8.7 NPF_IPV4UC_NEXTHOPENTRYQUERY ..62

4.9 Address Resolution Function Calls... 63
4.9.1 NPF_IPV4UC_ADDRESTABLEHANDLECREATE63
4.9.2 NPF_IPV4UC_ADDRESTABLEHANDLEDELETE............................64
4.9.3 NPF_IPV4UC_ADDRESENTRYADD..65
4.9.4 NPF_IPV4UC_ADDRESENTRYDELETE ...66
4.9.5 NPF_IPV4UC_ADDRESTABLEFLUSH ..68
4.9.6 NPF_IPV4UC_ADDRESTABLEATTRIBUTEQUERY........................69
4.9.7 NPF_IPV4UC_ADDRESENTRYQUERY...70

5 API Call and Event Capabilities ... 72
5.1 Common Function Calls ... 72
5.2 Unified Mode Function Calls.. 72
5.3 Discrete Mode Function Calls .. 73
5.4 Table of Events 73

6 References 74
Appendix A Header File - npf_ipv4uc.h ... 75
Appendix B Acknowledgements... 88
Appendix C List of companies belonging to NPF during approval process 89

Table of Figures

Figure 1 - Example Single FIB System ...6
Figure 2 - Example Multiple FIB System..7
Figure 3 - Unified FIB Table Model ..10
Figure 4 – Discrete Table Model.. 11
Figure 5 - Address Resolution Table Model - (Ethernet example)12
Figure 6 - Usage Models..13

Revision History

 IPv4 Unicast Forwarding Task Group 3

Network Processing Forum Software Working Group

Revision Date Reason for Changes

1.0 04/29/2003 Created Rev 1.0 of the implementation agreement by taking the
IPv4 Unicast Forwarding Service API (npf2003.141.00) and
making minor editorial corrections.

2.0 6/4/2004 Added support for MPLS Next Hops.

 IPv4 Unicast Forwarding Task Group 4

Network Processing Forum Software Working Group

1 Introduction
One prevalent use of network processors is the implementation of devices that perform packet forwarding
based on IPv4 unicast destination addresses. There are at least two databases needed for IP forwarding,
one being the Routing Information Base (RIB), which resides on the control plane, and the other being the
Forwarding Information Base (FIB), which network processors may access on the forwarding plane.
Ingress packets have their destination IP address extracted and used as a lookup key in the FIB.
Assuming a match is found, this forwarding information typically provides a next hop IP address and an
egress interface, which can be used to reach this next hop. The next hop is usually the IP address of the
router that provides a path to the final destination of the packet. The next hop can also be an MPLS Label
Switched Path(LSP) defining a Next Hop Label Forwarding Entry(NHLFE) The forwarding information
located in the FIB may entail not only next hop information, but also other characteristics, such as QoS
based on DiffServ, or encapsulation schemes, such as MPLS tunneling.
The RIB may be created by static configuration or via dynamic routing protocols, such as OSPF and
BGP. Often, such application layer software will interface with an intelligent Route Table Manager
(RTM) component, whose job is to manage the RIB and maintain the FIB used by the forwarding plane
IP packet handling. MPLS information concerning configured LSPs to be used as a possible next hop for
a destination prefix may be passed to RTM by MPLS protocols like LDP and RSVP. Usually, the RIB
contains all the routes known to all routing protocols, and the FIB is the “active” subset of those routes –
the ones chosen as best for forwarding. The RTM can use NPF defined IPv4 Unicast Forwarding Service
API function calls to manage an IPv4 FIB.
Another component of IPv4 packet forwarding is the description of a method to resolve a next hop
destination IPv4 address into the associated media address. There are many ways to resolve Layer 3 to
Layer 2 address mapping, depending upon link layer. For example, in the case of Ethernet links, the
Address Resolution Protocol (ARP, defined in RFC 826) is used for this purpose.
A basic example system might have the following characteristics:

• An RTM managing a RIB in the control plane will use NPF IPv4 Unicast Forwarding Service
API calls to maintain a FIB for use by a network processor.

• An NP in the forwarding plane has knowledge and control of one or more layer 3 interfaces.
• The NP has knowledge of, and access to, a FIB.
• Each FIB is associated with one or more layer 3 interfaces.
• The FIB has been created at some point and is referenced by a unique handle.
• One or more NP’s may be present in the system.

For example, the initial ingress forwarding steps with this model might be:
• A packet arrives on an interface.
• The FIB is selected based on the incoming layer 3 interface.
• The longest prefix match lookup of the packet's destination IPv4 address is done using this

particular FIB.

 IPv4 Unicast Forwarding Task Group 5

Network Processing Forum Software Working Group

The following two figures may prove useful in understanding the specification of the IPv4 Unicast
Forwarding Service API.
In Figure 1, the RTM oversees the management of routes provided by routing protocols and maintains a
single RIB. Using the IPv4 Unicast Forwarding Service API, the RTM defines and populates the FIB,
knowing only about one FIB which is identified by a unique FIB handle. A particular FIB may be
replicated in different NP devices. Such replication may be done by the Services API implementation or
by some system-aware middleware below it.

 A
pplic

 Space ation

OSPF C
ontrol P

lane

RTM RIB1BGP

 Service

IPv4 Service API
Implementation

 Functional API

IPv4 Functional API
Implementation

 Interconnect

 NPE
FIB1 FIB1

NPE
FIB1FIB1

 System
 A

w
ar

action e

 A
bstr

 La yer

 Elem
ent A

w
a

action re

 A
bstr

 La yer

 Forw
arding

 Figure 1 - Example Single FIB System

Yet another design is worth consideration. This implementation might represent a system that has created
multiple virtual routers in order to realize a Virtual Private Network. In this scheme, isolation is provided
between routing domains by maintaining independent RIBs, and as a consequence, unique instances of
their associated FIBs. In this situation, the control plane has knowledge of two unique FIBs and will be
dealing with two unique FIB handles.

 IPv4 Unicast Forwarding Task Group 6

Network Processing Forum Software Working Group

RTM

OSPF 2

Multiprotocol
BGP

RIB2

 Service

IPv4 Service API
Implementation

 Functional API

IPv4 Functional API
Implementation

 Interconnect

RIB1
OSPF 1

 C
ontrol P

lane

 A
pplic

 Space ation
 System

 A
w

a
ction re

 A
bstra

 La yer

 Elem
ent A

w
a

action re
 A

bstr
 La yer

Forw
a

 Plane
 rding

 NPE NPE
FIB1 FIB2 FIB1 FIB2

Figure 2 - Example Multiple FIB System

The introduction, so far, has presented high level concepts related to IPv4 Unicast Forwarding and the
placement of various components. This document acknowledges the wide range and variety of target
environments for control plane applications and NPs. In Section 3, API Usage Model, in depth
information is provided regarding the representation of a FIB and the affect this has on the design of the
IPv4 Unicast Forwarding Service API.
The remainder of this document is organized as follows:

• Section 3 describes forwarding information base models and usage of the corresponding APIs.
• Section 4 describes the data structures, callbacks, return values, and events used in the IPv4

Unicast Forwarding Service API.
• Section 5 describes the function calls used in the IPv4 Unicast Forwarding Service API.
• Section 6 provides references to other relevant documentation.
• Section 7 summarizes the function call names by category and also provides a list of events.
• The Appendix contains an IPv4 Unicast Forwarding header file.

 IPv4 Unicast Forwarding Task Group 7

Network Processing Forum Software Working Group

1.1 Assumptions and External Requirements
• For a better understanding of this specification, it is assumed that the reader has an understanding

of the concepts and guidelines presented in the following NPF Software Implementation
Agreements:

o Software API Conventions (Revision 1, August 2002).
o API Software Framework (Revision 1, August 2002).
o Interface Management APIs (Revision 1, August 2002).

• While the term “table” is used throughout this document, this is a convenience to describe the
model. There is no requirement that tables be implemented below the API, either on the control
plane or the forwarding plane.

• The following concepts are contained in the NPF Software Implementation Agreement –
Interface Management APIs (Revision 1, August 2002):

o The description of how logical layer 3 interfaces are associated with a particular FIB.
• All API calls are considered asynchronous in nature, unless otherwise specified. The definitions

of synchronous and asynchronous behavior are specified by the NPF Software Implementation
Agreement – Software API Conventions (Revision 1, August 2002).

• As specified in the Software API Conventions (Revision 1, August 2002) Implementation
Agreement, Section 6.4, memories that are used to hold values that are passed as parameters are
“owned” by the side that allocated them. An owner of a memory is responsible for de-allocating
this memory when it is no longer used.

1.2 Scope
This specification describes data structures for IPv4 unicast forwarding and address resolution. The data
types and structures generally used by all API specifications are defined by the NPF Software
Implementation Agreement - Software API Conventions (Revision 1, August 2002) document; however,
IPv4 specific structures are defined in this document.
This specification describes Service API definitions for IPv4 unicast forwarding and address resolution.
The API function details will include input/output parameters, return code specifications and detailed
usage notes specific to each invocation.
This specification provides details regarding the handling of asynchronous events and expected responses
from API function invocations, including specifications for completion callback and event handler routine
registration and deregistration.

1.3 Dependencies
This document depends on the NPF Software Implementation Agreement - Software API Conventions
(Revision 1, August 2002) document for basic type definitions as well as the IPv4 network address, ATM
VPI/VCI, and MAC address structures.
The document also depends on the NPF Software Implementation Agreement, Interface Management
APIs (Revision 1, August 2002) document for the definition of NPF_IfHandle_t, and MPLS Forwarding
Service API Implementation Agreement for the definition of LSP Handle.

 IPv4 Unicast Forwarding Task Group 8

Network Processing Forum Software Working Group

2 API Usage Model
Depending upon the networking environment, control plane application design and forwarding plane NP
architecture, a Forwarding Information Base (FIB) may be modeled in several ways. This document
considers two modes for organizing and manipulating the IPv4 unicast forwarding information at the
Service API level. Since it is customary to describe a Forwarding Information Base (FIB) in terms of a
table data structure, this abstraction is used throughout the rest of this specification.
The first mode, called the unified table mode, uses a single table for structuring and managing IPv4
unicast forwarding information. The second mode, called the discrete table mode, uses separate prefix
and next hop tables for structuring and managing IPv4 unicast forwarding information. Additionally, both
modes represent address resolution information using a separate address resolution table.
The modes do not imply that the underlying NP forwarding elements support one or the other of these
modes. Since this is an NPF Services API, the application has no knowledge of the individual NP
forwarding elements, so the modes only specify the application layer interface to the IPv4 Unicast
Forwarding services provided by the system. The models each represent a shared view between an
application and the Service API implementation.
For example, an NP forwarding element may implement discrete mode prefix and next hop tables,
whereas the control plane routing application may organize its FIB information in a unified model. In
such a case, it is appropriate for the application to use the unified mode API function calls. The IPv4
Unicast Forwarding Services API implementation or some other software below it on the CP or NP
forwarding element, would then be responsible for mapping the unified parameters to a suitable format
for the discrete mode organization of the NP.
The two modes and their data entities are representative of a large number of system implementations.
However, based on a desire for maximum interoperability and a perceived current market prevalence of
routing applications designed using a unified mode, it is so stated:
Compliant implementations of the IPv4 Unicast Forwarding Service API specification MUST
implement the unified table mode, but MAY also implement the discrete table mode, according to
segment needs and product capabilities.
With the above requirements statement, it is acknowledged that certain combinations of application and
NP architecture choices may place an extra burden upon either the application or the IPv4 Service API
implementation. Therefore, the decision to offer an optional discrete mode is prompted primarily to
alleviate two concerns:

• First, excessive amounts of storage may be required to maintain state information if the Service
API mode does not match the underlying forwarding element representation. This is particularly
important because many network processors have imbedded control points with limited storage.

• Second, the amount of processing needed to manage a table model which does not match the
underlying representation could lead to unreasonable delays in transmitting changes to the
network processor.

 IPv4 Unicast Forwarding Task Group 9

Network Processing Forum Software Working Group

2.1 Unified Table Model
Implementations that utilize the unified table model to represent IPv4 unicast forwarding information use
a single data entity, which shall be subsequently referred to as a “FIB Table.”1 This table is comprised of
entries, each one consisting of a prefix and an array of next hop information.
To facilitate capabilities such as load balancing or ECMP, the next hop array may contain information for
one or more next hops. Each next hop array is essentially a set of next hops. There are different flavors of
next hop, each of which dictates a different forwarding action. The basic, direct attach, and remote types
forward packets through the network processor. These forwarding next hop types have an IP destination
address and an egress interface included in their definition. Other flavors of next hop indicate other
actions such as discard the packet, forward the packet to the control plane or map to MPLS LSPs as in the
FEC to NHLFE mapping (FTNs).
Figure 3 illustrates the conceptual layout of a FIB table and several table entries. In this structure, the
unique “key” used to reference an entry is the prefix element.

NextHop 5

NextHop 3

NextHop 4

NextHop 1

NextHop 3

NextHop 2

NextHop 1

IPv4
Prefix 4

IPv4
Prefix 3

IPv4
Prefix 2

IPv4
Prefix 1

Prefix Next Hop Array

 FIB Table

Figure 3 - Unified FIB Table Model

Address resolution in the unified table mode is modeled separately, using the distinct address resolution
functions and data types described later in this specification.

1 The term FIB is an acronym used for a Forwarding Information Base and is used throughout the document when
referring to the forwarding information abstraction. However, note that the term “FIB Table” has been chosen to
refer to the unified mode data entity used to model forwarding information. Therefore, it is used in the nomenclature
of the unified mode data structures and API function names.

 IPv4 Unicast Forwarding Task Group 10

Network Processing Forum Software Working Group

2.2 Discrete Table Model
Implementations that utilize the discrete table model to represent IPv4 unicast forwarding information use
two separate data entities, which shall be subsequently referred to as the “Prefix Table” and the “Next
Hop Table.”
The prefix table is comprised of entries, each one consisting of a prefix and a next hop identifier that
uniquely indicates an entry in a next hop table. The next hop table is comprised of entries, each one
consisting of a next hop identifier and an array of next hop information. As with the unified mode FIB
table, the next hop array can contain one or more elements of next hop information.
In order to forward a packet, each IP destination address specified in the prefix must have one or more
next hops associated with it. In the discrete model, this association is provided by the next hop identifier,
which correlates a prefix table entry to an entry in the next hop table. This “split” table model provides
several benefits in some system designs. For example, some classes of high-performance networking
nodes (e.g. – BGP routers) require optimal FIB updates when a set of routes change. With a discrete
model implementation, it may be possible to efficiently update forwarding information by altering a
subset of next hop table entries. Whereas, in a unified model, it may be required that a larger set of FIB
table entries be modified to accomplish the same forwarding information update.
Figure 4 illustrates the conceptual layout and relationship of the prefix table and next hop table. In the
prefix table, the unique “key” used to reference an entry is the prefix element. In the next hop table, the
unique “key” used to reference an entry is the next hop identifier.

Next Hop
 Table Prefix Table

Next Hop
 ID Next Hop Array Next Hop

 ID Prefix

NextHop 1 Weight=1
Next Hop
ID 1 IPv4

Prefix 1
Next Hop
ID 2 NextHop 2

NextHop 3
IPv4
Prefix 2

Next Hop
ID 4

NextHop 1
IPv4
Prefix 3

Next Hop
ID 1

Next Hop
 ID 2 NextHop 4

IPv4
Prefix 4

Next Hop
ID 2

NextHop 3
Next Hop
 ID 3

IPv4
Prefix N

Next Hop
ID 3

NextHop 5
Next Hop
 ID 4

Figure 4 – Discrete Table Model

An application may create multiple prefix and next hop tables. The API defines a function that creates a
relationship between a prefix table and a next hop table. Such relationships can be one-to-one, so that
there is a prefix table corresponding to each next hop table. Additionally, the relationship may be many-
to-one, in which two or more prefix tables share a single next hop table. A one-to-many relationship, in
which a single prefix table is associated with multiple next hop tables, is not supported.

 IPv4 Unicast Forwarding Task Group 11

Network Processing Forum Software Working Group

The application is responsible for the allocation and use of next hop identifier values. It may choose any
values it wants, and it may re-use them in any way it wants. An application should create a next hop table
entry for each new next hop identifier it uses in the prefix table. If an NP forwarding element references a
prefix table entry containing a next hop identifier that is not assigned to a valid next hop table entry, the
implementation may generate an event to signal the application of the problem.
Address resolution in the discrete table mode is also modeled separately, using the distinct address
resolution functions and data types described later in this specification.

2.3 Address Resolution Table
For both the unified and discrete model, the next hop information in a next hop array element contains IP-
level address and egress interface information. In order to forward a packet, the next hop IP address and
egress interface must be resolved to a layer 2 address. The address resolution table makes this possible, by
taking an IP address and egress interface as key fields, and providing a media specific address.
To provide further flexibility, note that the three pieces of information that comprise an address resolution
table entry are also defined in the next hop information in a next hop array element. This allows some
implementations to avoid an additional address resolution table lookup because the media address is
available immediately when the next hop is determined.
An address resolution table entry contains media specific information for IP address and egress interface
pairs. Because there are many types of physical media, the media address component is defined as a type
field, indicating the media type, and a union of media address definitions.
Figure 5 illustrates the conceptual layout of the address resolution table. As mentioned, the unique “key”
used to reference an entry is the combination of the IP address and the egress interface identifier.

 Address Resolution Table
Next Hop
IP
Address Interface Handle Media Address

IP Address
 1

Interface
 4

MAC
Address A

IP Address
 2

Interface
 3

MAC
Address C

IP Address
 3

Interface
 1

MAC
Address X

IP Address
 4

Interface
 6

MAC
Address D

 Figure 5 - Address Resolution Table Model - (Ethernet example)

 IPv4 Unicast Forwarding Task Group 12

Network Processing Forum Software Working Group

2.4 API Usage Guidelines
Application clients of the IPv4 Services API will create one or more instances of IPv4 tables to control
the IPv4 forwarding of a device. In order to determine what type of table to create, implementations may
use the query methods defined in section 5.5 to determine which table modes are supported and which
mode provides the best performance. Once an application has determined the supported and preferred
modes of operation, it may create one or more Prefix, Next Hop, FIB, and Address Resolution tables,
using the functions associated with each table type to populate and monitor each table.
Some implementations may only support a unified table mode of operation. Unified table-only
implementations will return an error code if discrete prefix or next hop table functions are invoked.
Unified and discrete table implementations will support the address resolution functions.
Implementations that support both discrete and unified table mode of operation may be used in both
modes at the same time, however, it is assumed that each mode is used for a unique and distinct FIB. In
other words, the two different modes should not be used to operate on the same FIB.
The unified FIB table functions may not be used with the discrete next hop and prefix table handles and
discrete next hop and prefix table functions may not be used with unified FIB table handles. Type
checking will detect such misuse at compile time, or, if not detected, the implementation will return errors
when discrete handles are used with unified functions and vice versa.

Calls Calls

Applications
Supporting
Discrete Mode
Function

Applications
Supporting
Unified Mode
Function

Discrete
Function Calls

Unified Function Calls

Implementations
Providing Both
Unified and
Discrete Mode
Function Calls

Implementations
Providing Only
Unified Mode
Function Calls

Figure 6 - Usage Models

 IPv4 Unicast Forwarding Task Group 13

Network Processing Forum Software Working Group

3 Data Types
This section defines data types that are used in the unified and discrete mode implementations as well as
shared data types such as return codes, table mode query values, next hop information and IPv4 address
resolution data structures. In addition, this section provides data structures used for asynchronous
completion callbacks and event notifications.

3.1 Common Data Types
3.1.1 Table Mode Query Data Types

This section defines the types used by an application to query the supported and preferred table
modes of an implementation.

typedef enum {
 NPF_IPV4UC_UNIFIED_ONLY = 1,
 NPF_IPV4UC_BOTH_SUPPORTED = 2
} NPF_IPv4UC_SupportedMode_t;

typedef enum {
 NPF_IPV4UC_DISCRETE_PREFERRED = 1,
 NPF_IPV4UC_UNIFIED_PREFERRED = 2,
 NPF_IPV4UC_NO_PREFERENCE = 3
} NPF_IPv4UC_PreferredMode_t;

3.1.2 Prefix Data Types
This simple data type provides a more meaningful name for the structure that defines an IPv4 address
and prefix length.
Also note that even though the NPF_IPv4NetAddr_t type is used here, it is actually defined in the
Software API Conventions, Revision 1, August 2002.

/*
 * IPv4 unicast prefix type
 */
typedef NPF_IPv4NetAddr_t NPF_IPv4UC_Prefix_t;

3.1.3 Next Hop Array Data Types
A Next Hop Table entry consists of a Next Hop identifier and a Next Hop array, whereas, a FIB Table
entry consists of a prefix and a Next Hop array. In each case, there exists a Next Hop array which
defines one or more next hops with a count to indicate the number of next hops in the array.

• nextHopCount – The number of next hops in the Next Hop array.
• nextHopArray – An array of next hops. If multiple next hops are specified, the weight

member of the NPF_IPv4UC_NextHop_t structure is used to determine which data packets to
forward to each next hop. The algorithm used to select particular next hops is implementation
dependent.

 IPv4 Unicast Forwarding Task Group 14

Network Processing Forum Software Working Group

/*
 * IPv4 unicast Next Hop Array: nextHopArray points to an array
 * (one or more) of NPF_IPv4UC_NextHop_t structures.
 * nextHopCount indicates how many next hops are in the array.
 */
typedef struct {
 NPF_uint32_t nextHopCount;
 NPF_IPv4UC_NextHop_t *nextHopArray;
} NPF_IPv4UC_NextHopArray_t;

Each member of the nextHopArray specifies a particular next hop definition, with the following
components:

• type – The type of the next hop:
o basic – The forwarding behavior for a basic entry is to send the packet to the Next Hop IP

address in the associated NPF_IPv4UC_IPv4NextHop_t structure.
o directAttach – A directly attached subnet means that the IPv4 destination address is on a

directly attached network, and the Next Hop IP address in the associated
NPF_IPv4UC_IPv4NextHop_t structure is either absent or is identical to the IPv4
destination address. The forwarding behavior is modified by selecting a media address
corresponding to the destination IP address, not a next hop router IP address. Support for
this type is optional.

o sendToCP – Forwarding behavior for this type is for the network processor to send the
packet to a Control Plane. Other than type, no other fields are used for this kind of next
hop.

o discard – The network processor counts the packet and then drops it. Other than type,
there are no other fields for this kind of next hop.

o remote – The next hop IP address in the associated NPF_IPv4UC_IPv4NextHop_t
structure is an address of a remote router through which this packet will be forwarded,
not the immediate next hop IP address. The egress interface handle MAY be absent.
Route table entries with prefixes learned through the BGP protocol MAY use these Next
Hop Entries. Forwarding behavior modification, if any, is the implementer’s choice. One
possible use of the Remote type is in optimization of prefix table updates on BGP routes
with an IBGP switch over. Support for this type is optional.

o mpls LSP – The packet is to be encapsulated with an MPLS Header and forwarded on the
LSP specified.

• weight – Has meaning when the Next Hop array contains a list of multiple interchangeable
next hops. One possible use may be for the forwarder to assign each packet to one next hop in
the list, while trying to keep the link bandwidth utilization of each proportional to its own
weight, relative to the rest of the list. This parameter can be used in various environments,
such as link bundling, ECMP, traffic engineering and others. How this value is assigned and
used is outside the scope of this document.

 IPv4 Unicast Forwarding Task Group 15

Network Processing Forum Software Working Group

/*
 * Next hop structure;
 */
typedef struct {
 NPF_IPv4UC_NextHopType_t type;
 NPF_uint16_t weight;
 union {
 NPF_IPv4UC_IPv4NextHop_t ipv4NextHop;
 NPF_MPLS_LSP_Handle_t lspHandle;
 } u;
} NPF_IPv4UC_NextHop_t;

typedef enum {
 NPF_IPV4UC_NH_BASIC = 1,
 NPF_IPV4UC_NH_DIRECT_ATTACH = 2,
 NPF_IPV4UC_NH_SEND_TO_CP = 3,
 NPF_IPV4UC_NH_DISCARD = 4,
 NPF_IPV4UC_NH_REMOTE = 5,
 NPF_IPV4UC_NH_MPLSLSP = 6
} NPF_IPv4UC_NextHopType_t;

An IPv4 Next hop type structure holds:
• egressInterface – The handle of the interface representing the egress path to which the next hop

router is connected.
• nextHopIP – The IPv4 address of the next hop router or end system.
• mediaAddress – Optional lower layer information associated with the next hop IP address. This

parameter may be used to populate lower layer information in the FIB, if the FIB is organized to
contain such information. However, some implementations hold lower layer information in a
different table; the address resolution table. In such a case, the address resolution table function
calls will provide the means to manipulate the lower layer information. This lower layer
information may be provided by one means or the other2, but in general, both methods should not
be used together. If an implementation does provide the means to use both this parameter and the
address resolution table function calls, the preference of which function call to use is application
dependent.

/*
 * IPv4 unicast next hop type structure: used only for
 * NPF_IPV4UC_NH_BASIC, NPF_IPV4UC_NH_DIRECT_ATTACH, and
 * NPF_IPV4UC_NH_REMOTE types.
 */
typedef struct {
 NPF_IfHandle_t egressInterface;
 NPF_IPv4Address_t nextHopIP;
 NPF_MediaAddress_t mediaAddress;
} NPF_IPv4UC_IPv4NextHop_t;

An MPLS LSP Next hop type holds:

• lspHandle – The handle of the MPLS LSP, as defined in the MPLS SAPI, and provided by the
signaling protocol

2 An implementation MAY ignore L2 addresses from the IPv4 API, if it has a better source for the information, such
as ARP directly implemented on a line card.

 IPv4 Unicast Forwarding Task Group 16

Network Processing Forum Software Working Group

3.1.4 Address Resolution Data Types
This section defines the IPv4 control structures that are required to perform IPv4 address to physical
address resolution. There are a number of ways of performing this resolution, Address Resolution
Protocol (ARP, RFC 826) being one widely-known method.
An Address Resolution Table entry consists of an IP address, an interface handle and a media specific
address. These components are defined in a single NPF_IPv4UC_AddResEntry_t structure.

• IP_Address - The protocol address for which a media-specific address binding is defined.
• interfaceHandle – The interface which is associated with this entry.
• mediaAddress - The media address associated with the specified protocol address. Examples

might be a 6 byte Ethernet MAC address or an ATM VPI/VCI.

/*
 * IPv4 unicast Address Resolution entry:
 */
typedef struct {
 NPF_IPv4Address_t IP_Address;
 NPF_IfHandle_t interfaceHandle;
 NPF_MediaAddress_t mediaAddress;
} NPF_IPv4UC_AddResEntry_t;

When performing a query of the address resolution table, the NPF_IPv4UC_AddResKey_t structure
defines the search key.

/*
 * This structure contains the key of an Address Resolution
 * table entry, consisting of IP address and interface handle.
 */
typedef struct {
 NPF_IPv4Address_t IP_Address;
 NPF_IfHandle_t interfaceHandle;
} NPF_IPv4UC_AddResKey_t;

For an Address Resolution Table query, the response structure is identical to the
NPF_IPv4UC_AddResEntry_t structure defined above. Instead of duplicating this structure with a
unique name, a simple typedef is defined and this structure name is then used in the completion
callback asynchronous response union.

/*
 * This simple data type provides a more meaningful name for the
 * structure used in the address resolution asynchronous callback data.
 */
typedef NPF_IPv4UC_AddResEntry_t NPF_IPv4UC_AddResQueryResp_t;

The media specific address structure contains a type field to identify the particular format.

• type – The type of address contained in the mediaAddress parameter.

/*
 * Media Address structure:
 */

 IPv4 Unicast Forwarding Task Group 17

Network Processing Forum Software Working Group

typedef struct {
 NPF_MediaType_t type;
 union {
 NPF_MAC_Address_t MAC_Address;
 NPF_VccAddr_t ATM_Vc;
 }u;
} NPF_MediaAddress_t;

/*
 * Media type definition:
 */
typedef enum {
 NPF_NO_MEDIA_TYPE = 1,
 NPF_MAC_ADDRESS = 2,
 NPF_ATM_VC = 3
} NPF_MediaType_t;

 IPv4 Unicast Forwarding Task Group 18

Network Processing Forum Software Working Group

3.1.5 Table Types
An Address Resolution Table is uniquely identified by a table handle which is defined as follows:

typedef NPF_uint32_t NPF_IPv4UC_AddResTableHandle_t;

The IPv4 Unicast Forwarding API supports forwarding tables of two types, unified and discrete,
which each have their own corresponding handle types. Other APIs, such as Interface Management
and Packet Handler, depend on the IPv4 Unicast Forwarding API for handle definitions because they
contain functions that refer to forwarding tables. The following Forwarding Table Handle represents
a forwarding table (FIB) regardless of its mode. It is used in other APIs, so as not to expose the
table’s type (unified or discrete) outside of the IPv4 Unicast Forwarding API.
Also note that even though this NPF_IPv4UC_FwdTableHandle_t type is specified here, it is actually
defined in the Software API Conventions, Revision 1, August 2002.

typedef NPF_uint32_t NPF_IPv4UC_FwdTableHandle_t;3

3.1.6 Return Codes
This section defines IPv4 Unicast Forwarding API return codes that are used for IPv4 forwarding and
address resolution function calls. These codes are used for returns from asynchronous API function
calls. The IPv4 range is defined in the NPF Software Implementation Agreement - Software API
Conventions (Revision 1, August 2002) document.

/*
 * Asynchronous error codes (returned in function callbacks)
 */

typedef NPF_uint32_t NPF_IPv4UC_ReturnCode_t;

#define IPV4_ERR(n) ((NPF_IPv4UC_ReturnCode_t) NPF_IPV4_BASE_ERR + (n))

#define NPF_IPV4UC_TABLE_FULL IPV4_ERR(0)
#define NPF_IPV4UC_TABLE_ENTRY_DOES_NOT_EXIST IPV4_ERR(1)
#define NPF_IPV4UC_FUNCTION_NOT_SUPPORTED IPV4_ERR(2)
#define NPF_IPV4UC_INVALID_HANDLE IPV4_ERR(3)
#define NPF_IPV4UC_INSUFFICIENT_STORAGE IPV4_ERR(4)
#define NPF_IPV4UC_INVALID_MPLS_LSP_HANDLE IPV4_ERR(5)

Note that for optional functions, a return code having a value of
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED may be returned to the invoking application in two
ways. This return code may be synchronously returned to the invoking application or it may be
asynchronously returned via the completion callback. The added possibility of an immediate return
code provides the application with a more efficient means of determining that a particular optional
function is not supported by the implementation.

3 Currently, the NPF Interface Management API Implementation Agreement (Revision 1.0, August 2002) defines an
API function call to associate an IPv4 FIB with one or more interfaces. This NPF_ifIPv4FIBSet() function call
specifies an if_FIB_Handle parameter which is defined using an obsolete data type. In fact, this parameter should be
defined using the NPF_IPv4UC_FwdTableHandle_t data type defined in this section. In addition, this same
Implementation agreement defines a NPF_IfIPv4_t data structure that uses an obsolete data type. This structure
should also be defined using the NPF_IPv4UC_FwdTableHandle_t data type defined in this section.

 IPv4 Unicast Forwarding Task Group 19

Network Processing Forum Software Working Group

3.2 Unified Mode Data Types
3.2.1 FIB Table Query Data Type

This section defines the IPv4 specific control structures used for querying FIB table contents in
unified implementations. The asynchronous callback data will contain one or more of the following
NPF_IPv4UC_FibQueryResp_t structures. More than one structure is provided if multiple
FIB table entries are queried at once.

• prefix – The prefix used to locate a particular entry in the FIB Table.
• nextHopArray – The set of one or more next hop definitions related to this prefix.

/*
 * This structure contains the query results for a single FIB
 * table entry.
 */
typedef struct {
 NPF_IPv4UC_Prefix_t prefix;
 NPF_IPv4UC_NextHopArray_t nextHopArray;

 } NPF_IPv4UC_FibQueryResp_t;

3.2.2 Table Types
A FIB Table is uniquely identified within the scope of the IPv4 Unicast Forwarding API by a table
handle which is defined as follows:

typedef NPF_uint32_t NPF_IPv4UC_FibTableHandle_t;

Note that external to the IPv4 Unicast Forwarding API, a FIB table is uniquely identified by a table
handle which is defined by the data type NPF_IPv4UC_FwdTableHandle_t. This specification could
have forced API calls external to the IPv4 Unicast Forwarding API to specify a “FIB type” parameter
and the internal FIB handle type. However, for a cleaner interface, a decision was made to use a
single external handle type to identify a FIB, regardless of how the IPv4 function was structuring the
information.
The following structure is used in the callback from the FIB Table handle creation function,
to return two handles. The internal handle is used within the scope of the IPv4 unicast
forwarding API and the external handle is used by other NPF API’s when referencing an
IPv4 FIB. It is the responsibility of the application to maintain the mapping between these
two handles, which refer to the same FIB.

/*
 * Async Response struct for NPF_IPv4UC_FIBTableHandleCreate()
 */
typedef struct {
 NPF_IPv4UC_FwdTableHandle_t extHandle;
 NPF_IPv4UC_FibTableHandle_t intHandle;
} NPF_IPv4UC_FibCreateResp_t;

 IPv4 Unicast Forwarding Task Group 20

Network Processing Forum Software Working Group

3.3 Discrete Mode Data Types
3.3.1 Prefix Table Query Data Type

This section defines the IPv4 specific control structures used for querying prefix table contents in
discrete implementations. The asynchronous callback data will contain one or more of the following
NPF_IPv4UC_PrefixQueryResp_t structures. More than one structure is provided if multiple
prefix table entries are queried at once.

• prefix – The prefix used to locate a particular entry in the Prefix Table.
• nextHopIdentifier – The identifier of the next hop array in the Next Hop Table for this

particular prefix.

/*
 * This structure contains the query results for a single prefix
 * table entry.
 */
typedef struct {
 NPF_IPv4UC_Prefix_t prefix;
 NPF_uint32_t nextHopIdentifier;
} NPF_IPv4UC_PrefixQueryResp_t;

3.3.2 Next Hop Table Query Data Type
This section defines the IPv4 specific control structures used for querying next hop table contents in
discrete implementations. The asynchronous callback data will contain one or more of the following
NPF_IPv4UC_NextHopQueryResp_t structures. More than one structure is provided if
multiple next hop table entries are queried at once.

• nextHopIdentifier – The next hop identifier used to locate a particular entry in the Next Hop
Table.

• nextHopArray – The set of one or more next hop definitions related to this particular next hop
identifier.

/*
 * This structure contains the query results for a single next
 * hop table entry.
 */
 typedef struct {

 NPF_uint32 nextHopIdentifier;
 NPF_IPv4UC_NextHopArray_t nextHopArray;
 } NPF_IPv4UC_NextHopQueryResp_t;

3.3.3 Table Types
A Prefix Table is uniquely identified within the scope of the IPv4 Unicast Forwarding API by a table
handle, which is defined as follows:

typedef NPF_uint32_t NPF_IPv4UC_PrefixTableHandle_t;

 IPv4 Unicast Forwarding Task Group 21

Network Processing Forum Software Working Group

Note that external to the IPv4 Unicast Forwarding API, a prefix table is uniquely identified by a table
handle which is defined by the data type NPF_IPv4UC_FwdTableHandle_t. This specification could
have forced API calls external to the IPv4 Unicast Forwarding API to specify a “FIB type” parameter
and the internal FIB handle type. However, for a cleaner interface, a decision was made to use a
single external handle type to identify a FIB, regardless of how the IPv4 function was structuring the
information.
The following structure is used in the callback from the Prefix Table handle creation function, to
return two handles. The internal handle is used within the scope of the IPv4 Unicast forwarding API
and the external handle is used by other NPF API’s when referencing an IPv4 FIB. It is the
responsibility of the application to maintain the mapping between these two handles, which refer to
the same FIB.

/*
 * Async Response struct for NPF_IPv4UC_PrefixTableHandleCreate()
 */
typedef struct {
 NPF_IPv4UC_FwdTableHandle_t extHandle;
 NPF_IPv4UC_PrefixTableHandle_t intHandle;
} NPF_IPv4UC_PfxCreateResp_t;

A Next Hop Table is uniquely identified by a table handle which is defined as follows:

typedef NPF_uint32_t NPF_IPv4UC_NextHopTableHandle_t;

3.4 Data Structures for Completion Callbacks
This section defines the control structures needed for a Completion Callback, which provides the response
information to the application which invoked an asynchronous function call. Although an asynchronous
function call can request the execution of a single operation, many functions can also request the
execution of multiple operations. For example, an NPF_IPv4UC_AddResEntryAdd function call may
choose to add a single address resolution entry to the Address Resolution table, but it may also add
multiple entries with a single function call invocation.
When a single operation is requested, a single completion callback will occur. However, when multiple
operations are requested, not all of these requests may complete at the same time. The implementation
MAY invoke the completion callback one or more times in order to provide responses for the total
number of operations requested. For this reason, the callback data structure is designed to be flexible in
how it provides status on these responses and it also allows the bundling of one or more responses into a
single callback invocation.
Each completion callback provides the NPF_IPv4UC_CallbackData_t structure, whose members will
have particular values depending on the invoking function, whether or not a single operation was
requested and whether the operations were successful or not. The following sections provide details
regarding the data structures involved in a completion callback.

 IPv4 Unicast Forwarding Task Group 22

Network Processing Forum Software Working Group

3.4.1 Completion Callback Structures
The NPF_IPv4UC_CallbackData_t structure is provided as a parameter when the callback function is
invoked. The basic definition of the fields is provided below, while more detailed descriptions follow.

• type – This field indicates which function invocation led to this response.
• allOK – This field and the numResp field provide a flexible means of providing information

regarding the number of responses in this callback and their status. The specific details for
these fields are provided below.

• numResp – This field and the allOK field provide a flexible means of providing information
regarding the number of responses in this callback and their status. The specific details for
these fields are provided below

• resp – A pointer to an array of response elements or the NULL pointer. Each array element
contains a return code, indicating the completion status of the request element, and possibly
may contain other information specific to the type of request.

typedef struct {
 NPF_IPv4UC_CallbackType_t type;
 NPF_boolean_t allOK;
 NPF_uint32_t numResp;
 NPF_IPv4UC_AsyncResponse_t *resp;
} NPF_IPv4UC_CallbackData_t;

The following section provides detailed information regarding the content and meaning of the
members in the NPF_IPv4UC_CallbackData_t structure. There are several possibilities to consider.
The application invokes a function requesting a single operation:

• If allOK = TRUE, then numResp = 0 and the “resp” pointer is NULL. This indicates the
operation completed successfully and there is no other additional response data to return.

• If allOK = FALSE, then numResp = 1 and the “resp” pointer points to a response structure. If
the returnCode field indicates NPF_NO_ERROR, the operation completed successfully and
there is additional response data in the structure. Otherwise, the operation failed and the
reason is indicated by the returnCode.

The application invokes a function requesting multiple operations:
• If all operations completed successfully at the same time and there is no additional response

data to provide, then allOK = TRUE, numResp = 0 and the “resp” pointer is NULL.
• If all operations completed successfully at the same time, but there is additional response data

to provide, then allOK = FALSE, numResp indicates the total number of requested operations
and the “resp” pointer points to an array of response structures. The returnCode field will
indicate NPF_NO_ERROR.

• If some operations completed, but not all, then:
o allOK = FALSE, numResp = the number of request operations completed.
o The “resp” pointer will point to an array of response structures, each one containing

one element for each completed request. For operations that completed successfully,
the returnCode field will indicate NPF_NO_ERROR and additional response data
may be present, depending on the type of function invocation. For operations that
failed, the reason is indicated by the returnCode field.

Callback function invocations are repeated in this fashion until all requests are complete.
Responses are not repeated for request elements already indicated as complete in earlier
callback function invocations.

 IPv4 Unicast Forwarding Task Group 23

Network Processing Forum Software Working Group

The NPF_IPv4UC_AsyncResponse_t data structure contains a return code indicating an error or the
success of a particular request operation. The structure may also contain other optional information
that was requested by the operation or the information may assist in correlating the response to the
corresponding request operation when multiple operations are requested by the application.
For IPv4 asynchronous function invocations that operate upon a particular table, it is the
responsibility of the invoking application to associate the table handle with the subsequent
asynchronous response. It is suggested that the “correlator”, supplied as an invocation parameter, be
used for this purpose. For example, when invoking the NPF_IPv4UC_PrefixEntryAdd() function, the
application can choose a correlator value that uniquely identifies, or points to, its own structures
representing the forwarding table. This value returned by the implementation in each callback
invocation can help the application know to which table the callback belongs. When the asynchronous
NPF_IPv4UC_CallbackFunc() is called, the prefix table handle will be returned in its correlator
parameter.
The type field in the NPF_IPv4UC_CallbackData_t structure identifies the asynchronous function call
which has led to this callback, and therefore, the relevant member of the union.
One or more of the following structures may be provided to the callback function in the response
array within the NPF_IPv4UC_CallbackData_t structure.

typedef struct {
 NPF_IPv4UC_ReturnCode_t returnCode;
 union {

 NPF_IPv4UC_PfxCreateResp_t prefixTableHandles;
 NPF_IPv4UC_Prefix_t prefix;
 NPF_IPv4UC_PrefixQueryResp_t prefixQueryResult;
 NPF_IPv4UC_NextHopTableHandle_t nextHopTableHandle;
 NPF_uint32_t nextHopIdentifier;
 NPF_IPv4UC_NextHopQueryResp_t nextHopQueryResult;
 NPF_IPv4UC_FibCreateResp_t fibTableHandles;
 NPF_IPv4UC_Prefix_t fibPrefix;
 NPF_IPv4UC_FibQueryResp_t fibQueryResult;
 NPF_IPv4UC_AddResTableHandle_t addResTableHandle;
 NPF_IPv4UC_AddResKey_t addResKey;
 NPF_IPv4UC_AddResQueryResp_t addResQueryResult;
 NPF_uint32_t tableSpaceRemaining;

 NPF_uint32_t unused;
 } u;

} NPF_IPv4UC_AsyncResponse_t;

The following structure defines the completion callback type values.

/*

 * Common callback definition:
 */
typedef enum NPF_IPv4UC_CallbackType {
 NPF_IPV4UC_PREFIX_TABLE_HANDLE_CREATE = 1,
 NPF_IPV4UC_PREFIX_TABLE_HANDLE_DELETE = 2,
 NPF_IPV4UC_PREFIX_ENTRY_ADD = 3,
 NPF_IPV4UC_PREFIX_ENTRY_DELETE = 4,
 NPF_IPV4UC_PREFIX_TABLE_FLUSH = 5,
 NPF_IPV4UC_PREFIX_TABLE_ATTRIBUTE_QUERY = 6,
 NPF_IPV4UC_PREFIX_ENTRY_QUERY = 7,
 NPF_IPV4UC_PREFIX_NEXT_HOP_TABLE_BIND = 8,

 IPv4 Unicast Forwarding Task Group 24

Network Processing Forum Software Working Group

 NPF_IPV4UC_NEXT_HOP_TABLE_HANDLE_CREATE = 9,
 NPF_IPV4UC_NEXT_HOP_TABLE_HANDLE_DELETE = 10,
 NPF_IPV4UC_NEXT_HOP_ENTRY_ADD = 11,
 NPF_IPV4UC_NEXT_HOP_ENTRY_DELETE = 12,
 NPF_IPV4UC_NEXT_HOP_TABLE_FLUSH = 13,
 NPF_IPV4UC_NEXT_HOP_TABLE_ATTRIBUTE_QUERY = 14,
 NPF_IPV4UC_NEXT_HOP_ENTRY_QUERY = 15,
 NPF_IPV4UC_FIB_TABLE_HANDLE_CREATE = 16,
 NPF_IPV4UC_FIB_TABLE_HANDLE_DELETE = 17,
 NPF_IPV4UC_FIB_ENTRY_ADD = 18,
 NPF_IPV4UC_FIB_ENTRY_DELETE = 19,
 NPF_IPV4UC_FIB_TABLE_FLUSH = 20,
 NPF_IPV4UC_FIB_TABLE_ATTRIBUTE_QUERY = 21,
 NPF_IPV4UC_FIB_ENTRY_QUERY = 22,
 NPF_IPV4UC_ADDRESS_RES_TABLE_HANDLE_CREATE = 23,
 NPF_IPV4UC_ADDRESS_RES_TABLE_HANDLE_DELETE = 24,
 NPF_IPV4UC_ADDRESS_RES_ENTRY_ADD = 25,
 NPF_IPV4UC_ADDRESS_RES_ENTRY_DELETE = 26,
 NPF_IPV4UC_ADDRESS_RES_TABLE_FLUSH = 27,
 NPF_IPv4UC_ADDRESS_RES_TABLE_ATTRIBUTE_QUERY = 28,
 NPF_IPV4UC_ADDRESS_RES_ENTRY_QUERY = 29
}NPF_IPv4UC_CallbackType_t;

Function Name Type Code Union Structure

PrefixTableHandleCreate PREFIX_TABLE_HANDLE_CREATE prefixTableHandles

PrefixTableHandleDelete PREFIX_TABLE_HANDLE_DELETE unused

PrefixEntryAdd PREFIX_ENTRY_ADD prefix

PrefixEntryDelete PREFIX_ENTRY_DELETE prefix

PrefixTableFlush PREFIX_TABLE_FLUSH unused

PrefixTableAttributeQuery PREFIX_TABLE_ATTRIBUTE_QUERY tableSpaceRemaining

PrefixEntryQuery PREFIX_ENTRY_QUERY prefixQueryResult

PrefixNextHopTableBind PREFIX_NEXT_HOP_TABLE_BIND unused

NextHopTableHandleCreate NEXT_HOP_TABLE_HANDLE_CREATE nextHopTableHandle

NextHopTableHandleDelete NEXT_HOP_TABLE_HANDLE_DELETE unused

NextHopEntryAdd NEXT_HOP_ENTRY_ADD nextHopIdentifier

NextHopEntryDelete NEXT_HOP_ENTRY_DELETE nextHopIdentifier

NextHopTableFlush NEXT_HOP_TABLE_FLUSH unused

NextHopTableAttributeQuery NEXT_HOP_TABLE_ATTRIBUTE_QUERY tableSpaceRemaining

NextHopEntryQuery NEXT_HOP_ENTRY_QUERY nextHopQueryResult

FibTableHandleCreate FIB_TABLE_HANDLE_CREATE fibTableHandles

FibTableHandleDelete FIB_TABLE_HANDLE_DELETE unused

FibEntryAdd FIB_ENTRY_ADD fibPrefix

FibEntryDelete FIB_ENTRY_DELETE fibPrefix

 IPv4 Unicast Forwarding Task Group 25

Network Processing Forum Software Working Group

Function Name Type Code Union Structure

FibTableFlush FIB_TABLE_FLUSH unused

FibAttributeQuery FIB_TABLE_ATTRIBUTE_QUERY tableSpaceRemaining

FibEntryQuery FIB_ENTRY_QUERY fibQueryResult

AddResTableHandleCreate ADDRESS_RES_TABLE_HANDLE_CREATE addResTableHandle

AddResTableHandleDelete ADDRESS_RES_TABLE_HANDLE_DELETE unused

AddResEntryAdd ADDRESS_RES_ENTRY_ADD addResKey

AddResEntryDelete ADDRESS_RES_ENTRY_DELETE addResKey

AddResTableFlush ADDRESS_RES_TABLE_FLUSH unused

AddResAttributeQuery ADDRESS_RES_TABLE_ATTRIBUTE_QUERY tableSpaceRemaining

AddResEntryQuery ADDRESS_RES_ENTRY_QUERY addResQueryResult

3.5 Data Structures for Event Notification
The following sections detail the information related to IPv4 Unicast events. When an event notification
routine is invoked, one of the parameters will be a structure of information related to one or more events.

3.5.1 Event Notification Types
The event type indicates the type of event data in the union of event structures returned in
NPF_IPv4UC_EventData_t.

/*
 * This structure enumerates the events defined for IPv4
 * Unicast forwarding.
 */
typedef enum NPF_IPv4UC_Event {
 NPF_IPV4UC_PREFIX_TBL_MISS = 1,
 NPF_IPV4UC_NEXT_HOP_TBL_MISS = 2,
 NPF_IPV4UC_ADD_RES_TBL_MISS = 3,
o NPF_IPV4UC_FIB_PREFIX_MISS = 4,
o NPF_IPV4UC_FWDTBL_REFRESH = 5
} NPF_IPv4UC_Event_t;

3.5.2 Event Notification Structures
This section describes the various events which MAY be implemented.
It is important to note that even if an implementation does not support any of these events, the
implementation still needs to provide the register and deregister event function to enable
interoperability.
Note that some of the event structures provide an internal handle identifying a FIB. It is the
responsibility of the application to provide the mapping between these internal handles and any
external FIB handles used in API invocations other than the IPv4 Unicast Forwarding API.
This structure defines all the possible event definitions for IPv4 Unicast. An event type field indicates
which member of the union is relevant in the specific structure.

 IPv4 Unicast Forwarding Task Group 26

Network Processing Forum Software Working Group

/*
 * This structure represents a single event in the event array. The
 * type field indicates the specific event in the union.
 */
typedef struct {
 NPF_IPv4UC_Event_t type;
 union {
 NPF_IPv4UC_PrefixTblMiss_t prefixTblMiss;
 NPF_IPv4UC_NextHopTblMiss_t nextHopTblMiss;
 NPF_IPv4UC_AddResTblMiss_t addResTblMiss;
 NPF_IPv4UC_FIB_PrefixMiss_t fibPrefixMiss;
 NPF_IPv4UC_FwdTbl_Refresh_t fwdTableRefreshRequest;

 } u;
} NPF_IPv4UC_EventData_t;

This event is triggered when the forwarding plane is unable to find a prefix table entry for a specific
IP address. This event is optional.

/*
 * This event data identifies the prefix table and the destination
 * IP address that was not located during a lookup.
 */
typedef struct {
 NPF_IPv4UC_PrefixTableHandle_t pfxTableHandle;
 NPF_IPv4Address_t destIP_Address;
} NPF_IPv4UC_PrefixTblMiss_t;

This event is triggered when the forwarding plane is unable to find a next hop table entry for a
specific next hop identifier. This event is optional.

/*
 * This event data identifies the next hop table and the next hop
 * identifier that was not located during a lookup.
 */
typedef struct {
 NPF_IPv4UC_NextHopTableHandle _t nextHopTableHandle;
 NPF_uint32_t nextHopIdentifier;
} NPF_IPv4UC_NextHopTblMiss_t;

This event is triggered when the forwarding plane is unable to find a FIB table entry for a specific IP
address. This event is optional.

/*
 * This event data identifies the FIB table and the destination
 * IP address that was not located during a lookup.
 */
typedef struct {
 NPF_IPv4UC_FibTableHandle_t fibTableHandle;
 NPF_IPv4Address_t destIP_Address;
} NPF_IPv4UC_FIB_PrefixMiss_t;

 IPv4 Unicast Forwarding Task Group 27

Network Processing Forum Software Working Group

This event is triggered when the forwarding plane is unable to find an address resolution entry for a
specific next hop. This event is optional.

/*
 * This event data identifies the address resolution table and the
 * next hop information that was not located during a lookup.
 */
typedef struct {
 NPF_IPv4UC_AddResTableHandle_t addResTableHandle;
 NPF_IfHandle_t interfaceHandle;
 NPF_IPv4Address_t IP_Address;
} NPF_IPv4UC_AddResTblMiss_t;

This event is triggered when the application or the IPv4 API implementation needs to be notified that
a FIB needs to be refreshed on the forwarding plane. This event is optional.

/*
 * This event data identifies the unified or discrete table handle
 * identifying the FIB.
 */
typedef struct {
 NPF_IPv4UC_TableType_t tableHandleType;
 union {
 NPF_IPv4UC_FibTableHandle_t fibTableHandle;
 NPF_IPv4UC_PrefixTableHandle_t prefixTableHandle;
 } u;
} NPF_IPv4UC_FwdTbl_Refresh_t;

/*
 * This structure defines the enumerations for the table type used in
 * the NPF_IPv4UC_FwdTbl_Refresh_t structure above.
 */

typedef enum NPF_IPv4UC_TableType {
 NPF_IPV4UC_FIB_TABLE = 1,
 NPF_IPV4UC_PREFIX_TABLE = 2
}NPF_IPv4UC_TableType_t;

This structure represents the data parameter provided when the event notification routine is invoked.
It contains a count of events and an array of structures providing event specific information.

/*
 * This structure is provided when the event notification handler
 * is invoked. It specifies one or more IPv4 Unicast Forwarding events.
 */
typedef struct {
 NPF_uint32_t numEvents;
 NPF_IPv4UC_EventData_t *eventArray;
} NPF_IPv4UC_EventArray_t;

 IPv4 Unicast Forwarding Task Group 28

Network Processing Forum Software Working Group

4 Function Calls
4.1 Completion Callback Function Calls
This callback function is for the application to register an asynchronous response handling routine to the
IPv4Unicast API implementation. This callback function is intended to be implemented by the
application, and to be registered to the IPv4 Unicast API implementation through the
NPF_IPv4UC_Register function.
For more information regarding the design and usage of completion callbacks, please refer to Section 7,
“Function Invocation Model, Events and Completion Callbacks”, of the Network Processing Forum
Software API Conventions Implementation Agreement (Revision 1, August 2002).

4.1.1 NPF_IPv4UC_CallbackFunc
Syntax

typedef void (*NPF_IPv4UC_CallbackFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_IPv4UC_CallbackData_t data);

Description
This function is a registered completion callback routine for handling IPv4 Unicast asynchronous
responses.
This is a required function.

Input Arguments
• userContext - The context item that was supplied by the application when the completion callback

routine was registered.
• correlator - The correlator item that was supplied by the application when the IPv4 Unicast API

function call was invoked.
• data - The response information related to the particular IPv4 Unicast call, which is identified by

the type field in the callback data.
Output Arguments

None
Return Values

None

4.2 Event Notification Function Calls
This event notification function is for the application to register an event handler routine to the
IPv4Unicast API implementation. This handler function is intended to be implemented by the application,
and to be registered to the IPv4 Unicast API implementation through the NPF_IPv4UC_EventRegister
function.

 IPv4 Unicast Forwarding Task Group 29

Network Processing Forum Software Working Group

4.2.1 NPF_IPv4UC_EventCallFunc_t
Syntax

typedef void (*NPF_IPv4UC_EventCallFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_IPv4UC_EventArray_t data);

Description
This function is a registered event notification routine for handling IPv4 Unicast events.
This is a required function.

Input Arguments
• userContext - The context item that was supplied by the application when the event callback

routine was registered.
• data – A structure containing an array of event data structures and a count to indicate how many

events are present. Each of these NPF_IPv4UC_EventData_t members contains event specific
information and a type field to identify the particular event.

Output Arguments
None

Return Values
None

4.3 Callback Registration/Deregistration Function Calls
This section defines the registration and de-registration functions used to install and remove an
asynchronous response callback routine.

4.3.1 NPF_IPv4UC_Register
Syntax

NPF_error_t NPF_IPv4UC_Register(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_IPv4UC_CallbackFunc_t callbackFunc,
 NPF_OUT NPF_callbackHandle_t *callbackHandle);

Description
This function is used by an application to register its completion callback function for receiving
asynchronous responses related to IPv4Unicast API function calls. Applications MAY register
multiple callback functions using this function. The callback function is identified by the pair of
userContext and callbackFunc, and for each individual pair, a unique callbackHandle will be assigned
for future reference.
Since the callback function is identified by both userContext and callbackFunc, duplicate registration
of the same callback function with a different userContext is allowed. Also, the same userContext can
be shared among different callback functions. Duplicate registration of the same userContext and
callbackFunc pair has no effect, and will output a handle that is already assigned to the pair, and will
return NPF_E_ALREADY_REGISTERED.
This is a required function.

 IPv4 Unicast Forwarding Task Group 30

Network Processing Forum Software Working Group

Input Arguments
• userContext – A context item for uniquely identifying the context of the application registering

the completion callback function. The exact value will be provided back to the registered
completion callback function as its first parameter when it is called. Applications can assign any
value to the userContext and the value is completely opaque to the IPv4Unicast API
implementation.

• callbackFunc – The pointer to the completion callback function to be registered.
Output Arguments

• callbackHandle - A unique identifier assigned for the registered userContext and callbackFunc
pair. This handle will be used by the application to specify which callback function to be called
when invoking asynchronous NPF IPv4Unicast API functions. It will also be used when
deregistering the userContext and callbackFunc pair.

Return Values
• NPF_NO_ERROR - The registration completed successfully.
• NPF_E_BAD_CALLBACK_FUNCTION – The callbackFunc is NULL, or otherwise invalid.
• NPF_E_ALREADY_REGISTERED – No new registration was made since the userContext and

callbackFunc pair was already registered.
Notes

• This API function MUST be invoked by any application interested in receiving asynchronous
responses for IPv4 Unicast API function calls.

• This function operates in a synchronous manner, providing a return value as listed above.

4.3.2 NPF_IPv4UC_Deregister
Syntax

NPF_error_t NPF_IPv4UC_Deregister(
 NPF_IN NPF_callbackHandle_t callbackHandle);

Description
This function is used by an application to de-register a completion callback function, which was
previously registered to handle asynchronous callbacks related to API function invocations.
This is a required function.

Input Arguments
• callbackHandle - The unique identifier returned to the application when the completion callback

routine was registered. It represents a unique user context and callback function pair.
Output Arguments

None
Return Values

• NPF_NO_ERROR - The de-registration completed successfully.
• NPF_E_BAD_CALLBACK_HANDLE – The de-registration did not complete successfully due

to problems with the callback handle provided.

 IPv4 Unicast Forwarding Task Group 31

Network Processing Forum Software Working Group

Notes
• This API function may be invoked by any application no longer interested in receiving

asynchronous responses for IPv4 Unicast API function calls.
• This function operates in a synchronous manner, providing a return value as listed above.
• There may be a timing window where outstanding callbacks continue to be delivered to the

callback routine after the de-registration function has been invoked. It is the implementation’s
responsibility to guarantee that the callback function is not called after the deregister function has
returned.

4.4 Event Registration/Deregistration Function Calls
This section defines the registration and de-registration functions used to install and remove an event
handler routine

4.4.1 NPF_IPv4UC_EventRegister
Syntax

NPF_error_t NPF_IPv4UC_EventRegister(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_IPv4UC_EventCallFunc_t eventCallFunc,
 NPF_OUT NPF_callbackHandle_t *eventCallHandle);

Description
This function is used by an application to register its event handling routine for receiving notifications
of IPv4Unicast events. Applications MAY register multiple event handling routines using this
function. The event handling routine is identified by the pair of userContext and eventCallFunc, and
for each individual pair, a unique eventCallHandle will be assigned for future reference.
Since the event handling routine is identified by both userContext and eventCallFunc, duplicate
registration of the same event handling routine with a different userContext is allowed. Also, the same
userContext can be shared among different event handling routines. Duplicate registration of the same
userContext and eventCallFunc pair has no effect, and will output a handle that is already assigned to
the pair, and will return NPF_E_ALREADY_REGISTERED.
This is a required function.

Input Arguments
• userContext – A context item for uniquely identifying the context of the application registering

the event handling routine. The exact value will be provided back to the registered event handling
routine as its first parameter when it is called. Applications can assign any value to the
userContext and the value is completely opaque to the IPv4Unicast API implementation

• eventCallFunc – The pointer to the event handling routine to be registered.
Output Arguments

• eventCallHandle - A unique identifier assigned for the registered userContext and eventCallFunc
pair. This handle will be used when deregistering the userContext and eventCallFunc pair.

Return Values
• NPF_NO_ERROR - The registration completed successfully.
• NPF_E_BAD_CALLBACK_FUNCTION – The eventCallFunc is NULL, or otherwise invalid.
• NPF_E_CALLBACK_ALREADY_REGISTERED – No new registration was made since the

userContext and eventCallFunc pair was already registered.

 IPv4 Unicast Forwarding Task Group 32

Network Processing Forum Software Working Group

Notes
• This API function may be invoked by any application interested in receiving IPv4 Unicast events.
• This function operates in a synchronous manner, providing a return value as listed above.
• Even if an implementation does not support events, the implementation needs to implement this

function to enable interoperability.

4.4.2 NPF_IPv4UC_EventDeregister
Syntax

NPF_error_t NPF_IPv4UC_EventDeregister(
 NPF_IN NPF_callbackHandle_t eventCallHandle);

Description
This function is used by an application to de-register an event handler routine which was previously
registered to receive notifications of IPv4 Unicast events. It represents a unique user context and
event handling routine pair.
This is a required function.

Input Arguments
• eventCallHandle - The unique identifier returned to the application when the event callback

routine was registered.
Output Arguments

None
Return Values

• NPF_NO_ERROR - The de-registration completed successfully.
• NPF_E_BAD_CALLBACK_HANDLE – The de-registration did not complete successfully due

to problems with the callback handle provided.
Notes

• This API function may be invoked by any application no longer interested in receiving IPv4
Unicast events.

• This function operates in a synchronous manner, providing a return value as listed above.
• There may be a timing window where outstanding events continue to be delivered to the event

routine after the de-registration function has been invoked. It is the implementation’s
responsibility to guarantee that the event handler function is not called after the deregister
function has returned.

• Even if an implementation does not support events, the implementation needs to implement this
function to enable interoperability.

 IPv4 Unicast Forwarding Task Group 33

Network Processing Forum Software Working Group

4.5 Supported & Preferred Mode Query Function Calls
These function calls are used by applications to query an implementation about what table modes are
supported and which are preferred for best performance.

4.5.1 NPF_IPv4UC_GetSupportedModes
Syntax

NPF_IPv4UC_SupportedMode_t NPF_IPv4UC_GetSupportedModes();

Description
This function queries the supported table modes of an implementation.

Input Arguments
None

Output Arguments
None

Return Values
• NPF_IPV4UC_UNIFIED_ONLY – The table implementation only supports a unified table mode,

and will return NPF_IPV4UC_FUNCTION_NOT_SUPPORTED if the prefix and next hop table
manipulation functions are used.

• NPF_IPV4UC_BOTH_SUPPORTED – The table implementation supports both a unified table
mode and a discrete table mode.

Notes
None

Asynchronous Response
None

4.5.2 NPF_IPv4UC_GetPreferredMode
Syntax

NPF_IPv4UC_PreferredMode_t NPF_IPv4UC_GetPreferredMode();

Description
This function queries the preferred table modes of an implementation. If the supported mode call
indicates that only a unified mode is supported, then this function call will return
NPF_IPV4UC_UNIFIED_PREFERRED. However, if the supported mode call indicates that both
modes are supported, then this function call may return any one of the three return values listed
below.

Input Arguments
None

Output Arguments
None

 IPv4 Unicast Forwarding Task Group 34

Network Processing Forum Software Working Group

Return Values
• NPF_IPV4UC_DISCRETE_PREFERRED – The table implementation provides better

performance when used with the discrete table APIs.
• NPF_IPV4UC_UNIFIED_PREFERRED – The table implementation provides better

performance when used with the unified table APIs.
• NPF_IPV4UC_NO_PREFERENCE – The table implementation provides equally good or

conditional performance when used with either API. Note that this value may only be returned if
the supported mode call indicated both mode types are supported.

Notes
None

Asynchronous Response
None

4.6 Unified FIB Table Function Calls
This section specifies the functions defined to operate upon the unified mode FIB table.

4.6.1 NPF_IPv4UC_FibTableHandleCreate
Syntax

NPF_error_t NPF_IPv4UC_FibTableHandleCreate(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting);

Description
This function creates internal and external handles for a FIB Table. The internal handle is used
when calling IPv4 Unicast Forwarding API functions. The external handle is used when calling other
functions in other APIs that need to refer to a forwarding table, regardless of whether it is managed in
unified or discrete mode.
This is a required function.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function call.
Output Arguments

None
Return Values

• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The table handle creation did not complete successfully due to problems

encountered when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

 IPv4 Unicast Forwarding Task Group 35

Network Processing Forum Software Working Group

Notes
The errorReporting parameter, included for the sake of consistency, is ignored. This function
generates an asynchronous response, regardless of the value given in the errorReporting parameter.

Asynchronous Response
An NPF_IPv4UC_FibCreateResp_t structure, containing both internal and external handles, will be
returned along with a return code. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INSUFFICIENT_STORAGE - The operation failed due to lack of resources.

4.6.2 NPF_IPv4UC_FibTableHandleDelete
Syntax

NPF_error_t NPF_IPv4UC_FibTableHandleDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_FibTableHandle_t tableHandle);

Description
This function deletes a handle for a FIB Table. Subsequent use of the deleted handle in an API
function call will result in an NPF_IPV4UC_INVALID_HANDLE error.
This is a required function.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function call.
• tableHandle - The FIB table handle to delete.

Output Arguments
None

Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The table handle deletion did not complete successfully due to problems

encountered when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

Notes
None

Asynchronous Response
A return code will be returned asynchronously. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.

 IPv4 Unicast Forwarding Task Group 36

Network Processing Forum Software Working Group

4.6.3 NPF_IPv4UC_FibEntryAdd
Syntax

NPF_error_t NPF_IPv4UC_FibEntryAdd(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_FibTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv4UC_Prefix_t *prefixArray,
 NPF_IN NPF_IPv4UC_NextHopArray_t *nextHopArrays);

Description
This function may be used to insert one or more entries into a FIB table. The prefixArray and
nextHopArrays fields point to arrays of size numEntries, where each element is positionally related.
If no table entry exists for each destination IPv4 address and length indicated in the prefixArray, then
the prefix and next hop array information is added to create a new entry in the specified table.
If a table entry already exists, then the next hop array is replaced with the information specified in the
associated element of the nextHopArrays array.
This is a required function.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function call.
• tableHandle - FIB table identifier.
• numEntries – The number of elements in the prefixArray and the nextHopArrays. Each of these

arrays has the same number of elements and they are positionally related.
• prefixArray – Pointer to the array of prefixes to add.
• nextHopArrays – Pointer to an array of NPF_IPv4UC_NextHopArray_t structures, which are

associated with the prefixes. Each NPF_IPv4UC_NextHopArray_t structure contains a count
plus one or more next hop.

Output Arguments
None

Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The entries were not added to the table due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The entries were not added to the table because the

callback handle was invalid.

 IPv4 Unicast Forwarding Task Group 37

Network Processing Forum Software Working Group

Notes
When determining whether an entry is already present in the FIB, only the IPv4 address and prefix
length are considered.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An NPF_IPv4UC_Prefix_t structure
will be returned along with a return code. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_INSUFFICIENT_STORAGE - The operation failed due to lack of resources.
• NPF_IPV4UC_INVALID_MPLS_LSP_HANDLE – The operation failed due to an invalid

LSP handle at the prefix specified in the associated callback structure (see below).
The response array returned in the callback may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the IP address and prefix length.
An NPF_IPv4UC_CallbackData_t will be returned with each callback. As part of that structure, an
array of NPF_IPv4UC_AsyncResponse_t structures will also be returned. If all of the elements in the
request array completed successfully and there is no additional response data to return, the callback
will return an allOK value of NPF_TRUE, a numResp value of zero, and the array pointer will be
null.
If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.
It is the implementation’s choice how many responses to return in a single callback. The minimum is
one and the maximum is the number of request elements passed in the original API function call.

4.6.4 NPF_IPv4UC_FibEntryDelete
Syntax

NPF_error_t NPF_IPv4UC_FibEntryDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_FibTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv4UC_Prefix_t *prefixArray);

Description
All entries in the designated FIB table that match those found in the prefixArray will be removed.
This is a required function.

 IPv4 Unicast Forwarding Task Group 38

Network Processing Forum Software Working Group

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function call.
• tableHandle - FIB table identifier.
• numEntries – The number of elements in the prefixArray.
• prefixArray – A pointer to an array of prefixes, one for each FIB table entry to be deleted.

Output Arguments
None

Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The entries were not deleted from the table due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The entries were not deleted from the table because the

callback handle was invalid.
Notes

When determining whether an entry is already present in the FIB table, only the IPv4 address and
prefix length are considered.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An NPF_IPv4UC_Prefix_t structure
will be returned along with a return code. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_TABLE_ENTRY_DOES_NOT_EXIST - The operation did not complete

successfully since the specified entry was not found.
The response array returned in the callback may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the corresponding IP address and prefix length.
An NPF_IPv4UC_CallbackData_t will be returned with each callback. As part of that structure, an
array of NPF_IPv4UC_AsyncResponse_t structures will also be returned. If all of the elements in the
request array completed successfully and there is no additional response data to return, the callback
will return an allOK value of NPF_TRUE, a numResp value of zero, and the array pointer will be
null.
If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.
It is the implementation’s choice how many responses to return in a single callback. The minimum is
one and the maximum is the number of request elements passed in the original API function call.

 IPv4 Unicast Forwarding Task Group 39

Network Processing Forum Software Working Group

4.6.5 NPF_IPv4UC_FibTableFlush
Syntax

NPF_error_t NPF_IPv4UC_FibTableFlush(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_FibTableHandle_t tableHandle);

Description
All entries in the designated FIB table will be removed and the designated FIB will be left empty.
This is a required function.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function call.
• tableHandle - FIB table identifier.

Output Arguments
None

Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The entries were not deleted from the table due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The entries were not deleted from the table because the

callback handle was invalid.
Notes

This operation removes all entries from the specified FIB table, but does not destroy that FIB table.
If a FIB entry is removed, a reference to the removed entry by the forwarding plane MAY generate an
NPF_IPV4UC_FIB_PREFIX_MISS event.

Asynchronous Response
A return code will be returned asynchronously. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.

 IPv4 Unicast Forwarding Task Group 40

Network Processing Forum Software Working Group

4.6.6 NPF_IPv4UC_FibTableAttributeQuery
Syntax

NPF_error_t NPF_IPv4UC_FibTableAttributeQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_FibTableHandle_t tableHandle);

Description
This call will provide information about the characteristics of the specified FIB table. Currently, the
attributes available are:

• An estimate of how many free entries are in this table.
This is an optional function. Implementations that do not support attribute queries MUST implement
a stub of this function and MUST either immediately return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED when called or MUST return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode field of the asynchronous
callback structure.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function invocation. The only valid error reporting for this
method is NPF_REPORT_ALL.

• tableHandle – FIB table identifier.
Output Arguments

None
Return Values

• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The table was not queried due to problems encountered when handling

the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The table was not queried because the callback handle

was invalid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – The attribute query capability is not

supported by this implementation.
Notes

Applications may use this query API function to obtain information useful in maintaining the FIB
table. For example, prior to inserting any entries into the FIB table, an RTM might query the available
free space of the FIB table and, therefore, be able to know when it cannot add any more entries to the
table.
The implementation SHOULD be conservative in what it returns. In other words, the value should be
the amount of free space under the worst-case conditions, so that the application can be assured that at
least this many “Add” requests will succeed.

 IPv4 Unicast Forwarding Task Group 41

Network Processing Forum Software Working Group

The errorReporting parameter, included for the sake of consistency, is ignored. This function
generates an asynchronous response, regardless of the value given in the errorReporting parameter.

Asynchronous Response
A return code will be returned asynchronously along with an approximation of the number of free
entries left in the FIB table. The tableSpaceRemaining field in the NPF_IPv4UC_AsyncResponse_t
struct will be set. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – The attribute query capability is not

supported by this implementation.

4.6.7 NPF_IPv4UC_FibEntryQuery
Syntax

NPF_error_t NPF_IPv4UC_FibEntryQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_FibTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv4UC_Prefix_t *prefixArray);

Description
This function call is used to query one or more FIB entries in the FIB table. If the entries exist, the
content of the entries are returned in the completion callback.
This is an optional function. Implementations that do not support entry queries MUST implement a
stub of this function and MUST either immediately return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED when called or MUST return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode field of the asynchronous
callback structure.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function invocation.
• tableHandle - FIB table identifier.
• numEntries – The number of elements in the prefixArray.
• prefixArray – A pointer to an array of prefixes to query. Only the IP address and prefix length are

considered in the key.
Output Arguments

None

 IPv4 Unicast Forwarding Task Group 42

Network Processing Forum Software Working Group

Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The entries were not queried due to problems encountered when handling

the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The entries were not queried because the callback

handle was invalid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – The query capability is not supported by this

implementation.
Notes

None
Asynchronous Response

There may be multiple asynchronous callbacks to this request. An NPF_IPv4UC_FibQueryResp_t
structure will be returned along with a return code. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_TABLE_ENTRY_DOES_NOT_EXIST - The operation did not complete

successfully since the specified entry was not found.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – The entry query capability is not

supported by this implementation.
The response array returned in the callback may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the IP address and prefix length.
An NPF_IPv4UC_CallbackData_t will be returned with each callback. As part of that structure, an
array of NPF_IPv4UC_AsyncResponse_t structures will also be returned. Because this function call
will always return information that was requested, if all of the elements in the request array completed
successfully and there is no additional data to return, the callback will return an allOK value of
NPF_FALSE, a numResp value equal to the number of responses, and the array pointer pointing to
the responses.
If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.
It is the implementation’s choice how many responses to return in a single callback. The minimum is
one and the maximum is the number of request elements passed in the original API function call.

 IPv4 Unicast Forwarding Task Group 43

Network Processing Forum Software Working Group

4.7 Discrete Prefix Table Function Calls
This section specifies the functions defined to operate upon the discrete mode prefix table.

4.7.1 NPF_IPv4UC_PrefixTableHandleCreate
Syntax

NPF_error_t NPF_IPv4UC_PrefixTableHandleCreate(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting);

Description
This function creates internal and external handles for a Prefix Table. The internal handle is used
when calling IPv4 Unicast Forwarding API functions. The external handle is used when calling other
functions in other APIs that need to refer to a forwarding table, regardless of whether it is managed in
unified or discrete mode.
This is an optional function. Implementations that do not support a discrete table mode MUST
implement a stub of this function and MUST either immediately return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED when called or MUST return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode field of the asynchronous
callback structure.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function call.
Output Arguments

None
Return Values

• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The table handle creation did not complete successfully due to problems

encountered when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported

by this implementation.
Notes

The errorReporting parameter, included for the sake of consistency, is ignored. This function
generates an asynchronous response, regardless of the value given in the errorReporting parameter.

Asynchronous Response
An NPF_IPv4UC_PfxCreateResp_t structure, containing both internal and external handles, will
be returned along with a return code. Possible return codes are:

• NPF_NO_ERROR – The operation completed successfully.
• NPF_IPV4UC_INSUFFICIENT_STORAGE – The operation failed due to lack of resources.

 IPv4 Unicast Forwarding Task Group 44

Network Processing Forum Software Working Group

• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not
supported by this implementation.

4.7.2 NPF_IPv4UC_PrefixTableHandleDelete
Syntax

NPF_error_t NPF_IPv4UC_PrefixTableHandleDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_PrefixTableHandle_t tableHandle);

Description
This function deletes a handle for a Prefix Table. Subsequent use of the deleted handle in an API
function call will result in an NPF_IPV4UC_INVALID_HANDLE error.
This is an optional function. Implementations that do not support a discrete table mode MUST
implement a stub of this function and MUST either immediately return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED when called or MUST return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode field of the asynchronous
callback structure.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function call.
• tableHandle - The prefix table handle to delete.

Output Arguments
None

Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The table handle deletion did not complete successfully due to problems

encountered when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported

by this implementation.
Notes

None
Asynchronous Response

A return code will be returned asynchronously. Possible return codes are:
• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE – The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not

supported by this implementation.

 IPv4 Unicast Forwarding Task Group 45

Network Processing Forum Software Working Group

4.7.3 NPF_IPv4UC_PrefixEntryAdd
Syntax

NPF_error_t NPF_IPv4UC_PrefixEntryAdd(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_PrefixTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv4UC_Prefix_t *prefixArray,
 NPF_IN NPF_uint32_t *nextHopIdArray);

Description
This function may be used to insert one or more entries into a prefix table. The prefixArray and
nextHopIdArray fields point to arrays of size numEntries, where each element is positionally related.
If no table entry exists for each destination IPv4 address and length indicated in the prefixArray, then
the prefix and next hop identifier information is added to create a new entry in the specified table.
If a table entry already exists, then the next hop identifier is replaced with the information specified in
the associated element of the nextHopIdArray.
This is an optional function. Implementations that do not support a discrete table mode MUST
implement a stub of this function and MUST either immediately return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED when called or MUST return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode field of the asynchronous
callback structure.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function invocation.
• tableHandle - Prefix table identifier.
• numEntries – The number of elements in the prefixArray and the nextHopIdArray. Each of these

arrays has the same number of elements and they are positionally related.
• prefixArray - Pointer to the array of prefixes to add.
• nextHopIdArray – Pointer to the array of next hop identifiers associated with the prefixes.

Output Arguments
None

Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The entries were not added to the table due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The entries were not added to the table because the

callback handle was invalid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported

by this implementation.

 IPv4 Unicast Forwarding Task Group 46

Network Processing Forum Software Working Group

Notes
When determining whether an entry is already present in the prefix table, only the IPv4 address and
prefix length are considered.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An NPF_IPv4UC_Prefix_t structure
will be returned along with a return code. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_INSUFFICIENT_STORAGE - The operation failed due to lack of resources.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not

supported by this implementation.
The response array returned in the callback may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the IP address and prefix length.
An NPF_IPv4UC_CallbackData_t will be returned with each callback. As part of that structure, an
array of NPF_IPv4UC_AsyncResponse_t structures will also be returned. If all of the elements in the
request array completed successfully and there is no additional response data to return, the callback
will return an allOK value of NPF_TRUE, a numResp value of zero, and the array pointer will be
null.
If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.
It is the implementation’s choice how many responses to return in a single callback. The minimum is
one and the maximum is the number of request elements passed in the original API function call.

4.7.4 NPF_IPv4UC_PrefixEntryDelete
Syntax

NPF_error_t NPF_IPv4UC_PrefixEntryDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_PrefixTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv4UC_Prefix_t *prefixArray);

Description
This function may be used to remove one or more entries from a prefix table. If a prefix table entry
exists as indicated by the destination IPv4 address and prefix length in an element contained in the
prefixArray, then that entry will be removed from the specified table.
This is an optional function. Implementations that do not support a discrete table mode MUST
implement a stub of this function and MUST either immediately return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED when called or MUST return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode field of the asynchronous
callback structure.

 IPv4 Unicast Forwarding Task Group 47

Network Processing Forum Software Working Group

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function invocation.
• tableHandle - Prefix table identifier.
• numEntries – The number of elements in the prefixArray.
• prefixArray - A pointer to an array of prefixes, one for each prefix table entry to be deleted.

Output Arguments
None

Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The entries were not deleted from the table due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The entries were not deleted from the table because the

callback handle was invalid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported

by this implementation.
Notes

When determining whether an entry is already present in the prefix table, only the IPv4 address and
prefix length are considered.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An NPF_IPv4UC_Prefix_t structure
will be returned along with a return code. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_TABLE_ENTRY_DOES_NOT_EXIST – The operation did not complete

successfully since the specified entry was not found.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not

supported by this implementation.
The response array returned in the call back may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the IP address and prefix length.
An NPF_IPv4UC_CallbackData_t will be returned with each callback. As part of that structure, an
array of NPF_IPv4UC_AsyncResponse_t structures will also be returned. If all of the elements in the
request array completed successfully and there is no additional response data to return, the callback
will return an allOK value of NPF_TRUE, a numResp value of zero, and the array pointer will be
null.

 IPv4 Unicast Forwarding Task Group 48

Network Processing Forum Software Working Group

If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.
It is the implementation’s choice how many responses to return in a single callback. The minimum is
one and the maximum is the number of request elements passed in the original API function calls.

4.7.5 NPF_IPv4UC_PrefixTableFlush
Syntax

NPF_error_t NPF_IPv4UC_PrefixTableFlush(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_PrefixTableHandle_t tableHandle);

Description
All entries in the designated prefix table will be removed and the designated table will be left empty.
This is an optional function. Implementations that do not support a discrete table mode MUST
implement a stub of this function and MUST either immediately return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED when called or MUST return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode field of the asynchronous
callback structure.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function invocation.
• tableHandle - Prefix table identifier.

Output Arguments
None

Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The prefix table was not flushed due to problems encountered when

handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The prefix table was not flushed because the callback

handle was invalid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported

by this implementation.
Notes

This operation removes all entries from the specified table, but does not destroy that table.
If a prefix table entry is removed, a reference to the removed entry by the forwarding plane MAY
generate an NPF_IPV4UC_PREFIX_TBL_MISS event.

 IPv4 Unicast Forwarding Task Group 49

Network Processing Forum Software Working Group

Asynchronous Response
A return code will be returned asynchronously. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not

supported by this implementation.

4.7.6 NPF_IPv4UC_PrefixTableAttributeQuery
Syntax

NPF_error_t NPF_IPv4UC_PrefixTableAttributeQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_PrefixTableHandle_t tableHandle);

Description
This call will provide information about the characteristics of the specified prefix table. Currently, the
attributes available are:

• An estimate of how many free entries are in this table.
This is an optional function. Implementations that do not support queries or that do not support a
discrete table mode MUST implement a stub of this function and MUST either immediately return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED when called or MUST return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode field of the asynchronous
callback structure.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function invocation. The only valid error reporting for this call is
NPF_REPORT_ALL.

• tableHandle - Prefix table identifier.
Output Arguments

None
Return Values

• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The table was not queried due to problems encountered when handling

the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The table was not queried because the callback handle

was invalid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – The attribute query capability or discrete

table operations are not supported by this implementation.

 IPv4 Unicast Forwarding Task Group 50

Network Processing Forum Software Working Group

Notes
Applications may use this query API function to obtain information useful in maintaining the prefix
table. For example, prior to inserting any prefix entries into the prefix table, an RTM might query the
available free space of the prefix table and, therefore, be able to know when it cannot add any more
entries to the table.
The implementation SHOULD be conservative in what it returns. In other words, the value should be
the amount of free space under the worst-case conditions, so that the application can be assured that at
least this many “Add” requests will succeed.
The errorReporting parameter, included for the sake of consistency, is ignored. This function
generates an asynchronous response, regardless of the value given in the errorReporting parameter.

Asynchronous Response
A return code will be returned asynchronously along with an approximation of the number of free
entries left in the prefix table. The tableSpaceRemaining field in the NPF_IPv4UC_AsyncResponse_t
struct will be set. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – The attribute query capability is not

supported or discrete table operations are not supported by this implementation.

4.7.7 NPF_IPv4UC_PrefixEntryQuery
Syntax

NPF_error_t NPF_IPv4UC_PrefixEntryQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UCPrefixTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv4UC_Prefix_t *prefixArray);

Description
This function call is used to query one or more prefix entries in the prefix table. If the entries exist,
the content of the entries are returned in the completion callback.
This is an optional function. Implementations that do not support queries or that do not support a
discrete table mode MUST implement a stub of this function and MUST either immediately return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED when called or MUST return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode field of the asynchronous
callback structure.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API invocation.
• tableHandle - Prefix table identifier.

 IPv4 Unicast Forwarding Task Group 51

Network Processing Forum Software Working Group

• numEntries – The number of elements in the prefixArray.
• prefixArray - Pointer to the array of prefixes to query. Only the address and prefix length are

considered in the key.
Output Arguments

None
Return Values

• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The entries were not queried due to problems encountered when handling

the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The entries were not queried because the callback

handle was invalid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – The entry query capability or discrete table

operations are not supported by this implementation.
Asynchronous Response

There may be multiple asynchronous callbacks to this request. An
NPF_IPv4UC_PrefixQueryResp_t structure will be returned along with a return code. Possible
return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_TABLE_ENTRY_DOES_NOT_EXIST - The operation did not complete

successfully since the specified entry was not found.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – The entry query capability is not

supported or discrete table operations are not supported by this implementation.
The response array returned in the call back may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the IP address and prefix length.
An NPF_IPv4UC_CallbackData_t will be returned with each callback. As part of that structure, an
array of NPF_IPv4UC_AsyncResponse_t structures will also be returned. Because this function call
will always return information that was requested, if all of the elements in the request array completed
successfully and there is no additional data to return, the callback will return an allOK value of
NPF_FALSE, a numResp value equal to the number of responses, and the array pointer pointing to
the responses.
If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.
It is the implementation’s choice how many responses to return in a single callback. The minimum is
one and the maximum is the number of request elements passed in the original API function calls.

 IPv4 Unicast Forwarding Task Group 52

Network Processing Forum Software Working Group

4.7.8 NPF_IPv4UC_PrefixNextHopTableBind
Syntax

NPF_error_t NPF_IPv4UC_PrefixNextHopTableBind(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_PrefixTableHandle_t prefixTableHandle),
 NPF_IN NPF_IPv4UC_NextHopTableHandle_t nextHopTableHandle);

Description
This function makes an association between a Prefix Table and a Next Hop Table. It designates the
Next Hop Table whose entries are to be used when a particular Prefix Table is referenced. If the
Prefix Table is already associated with another Next Hop Table, that association is replaced by the
new Next Hop Table. If the Next Hop Table is already associated with a different Prefix Table, the
new Prefix Table is added to the set of Prefix Tables that share this Next Hop Table. Thus the
possible relationships of Prefix Table to Next Hop Table are one-to-one and many-to-one, but never
one-to-many.
This is an optional function. Implementations that do not support a discrete table mode MUST
implement a stub of this function and MUST either immediately return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED when called or MUST return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode field of the asynchronous
callback structure.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function call.
• prefixTableHandle - The prefix table identifier.
• nextHopTableHandle - The next hop table identifier.

Output Arguments
None

Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The table binding did not complete successfully due to problems

encountered when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported

by this implementation.
Notes

None

 IPv4 Unicast Forwarding Task Group 53

Network Processing Forum Software Working Group

Asynchronous Response
A return code will be returned asynchronously. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE – The operation did not complete successfully due to

problems with one of the table handles.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not

supported by this implementation.

4.8 Discrete Next Hop Table Function Calls
This section specifies the functions defined to operate upon the discrete mode next hop table.

4.8.1 NPF_IPv4UC_NextHopTableHandleCreate
Syntax

NPF_error_t NPF_IPv4UC_NextHopTableHandleCreate(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting);

Description
This function creates a handle for a Next Hop Table.
This is an optional function. Implementations that do not support a discrete table mode MUST
implement a stub of this function and MUST either immediately return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED when called or MUST return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode field of the asynchronous
callback structure.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function call.
Output Arguments

None
Return Values

• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The table handle creation did not complete successfully due to problems

encountered when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported

by this implementation.
Notes

The errorReporting parameter, included for the sake of consistency, is ignored. This function
generates an asynchronous response, regardless of the value given in the errorReporting parameter.

 IPv4 Unicast Forwarding Task Group 54

Network Processing Forum Software Working Group

Asynchronous Response
A next hop table handle will be returned along with a return code. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INSUFFICIENT_STORAGE - The operation failed due to lack of resources.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not

supported by this implementation.

4.8.2 NPF_IPv4UC_NextHopTableHandleDelete
Syntax

NPF_error_t NPF_IPv4UC_NextHopTableHandleDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_NextHopTableHandle_t tableHandle);

Description
This function deletes a handle for a Next Hop Table. Subsequent use of the deleted handle in an API
function call will result in an NPF_IPV4UC_INVALID_HANDLE error.
This is an optional function. Implementations that do not support a discrete table mode MUST
implement a stub of this function and MUST either immediately return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED when called or MUST return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode field of the asynchronous
callback structure.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function call.
• tableHandle - The next hop table handle to delete.

Output Arguments
None

Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The table handle deletion did not complete successfully due to problems

encountered when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported

by this implementation.
Notes

None

 IPv4 Unicast Forwarding Task Group 55

Network Processing Forum Software Working Group

Asynchronous Response
A return code will be returned asynchronously. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not

supported by this implementation.

4.8.3 NPF_IPv4UC_NextHopEntryAdd
Syntax

NPF_error_t NPF_IPv4UC_NextHopEntryAdd(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_NextHopTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_uint32_t *nextHopIdArray,
 NPF_IN NPF_IPv4UC_NextHopArray_t *nextHopArrays);

Description
This function may be used to insert one or more entries into a next hop table. The nextHopIdArray
and nextHopArrays fields point to arrays of size numEntries, where each element is positionally
related.
If no table entry exists for each next hop identifier indicated in the nextHopIdArray, then the next hop
identifier and next hop array information is added to create a new entry in the specified table.
If a table entry already exists, then the next hop array is replaced with the information specified in the
associated element of the nextHopArrays array.
This is an optional function. Implementations that do not support a discrete table mode MUST
implement a stub of this function and MUST either immediately return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED when called or MUST return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode field of the asynchronous
callback structure.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function invocation.
• tableHandle – Next Hop Table identifier.
• numEntries – The number of elements in the nextHopIdArray and the nextHopArrays. Each of

these arrays has the same number of elements and they are positionally related.
• nextHopIdArray – Pointer to an array of next hop identifiers.
• nextHopArrays - Pointer to an array of NPF_IPv4UC_NextHopArray_t structures, which are

associated with the next hop identifiers. Each NPF_IPv4UC_NextHopArray_t structure contains
a count plus one or more next hop definitions.

 IPv4 Unicast Forwarding Task Group 56

Network Processing Forum Software Working Group

Output Arguments
None

Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The entries were not added to the table due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The entries were not added to the table because the

callback handle was invalid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported

by this implementation.
Notes

None
Asynchronous Response

There may be multiple asynchronous callbacks to this request. The NextHop Identifier will be
returned along with a return code. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_INSUFFICIENT_STORAGE - The operation failed due to lack of resources.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not

supported by this implementation.
• NPF_IPV4UC_INVALID_MPLS_LSP_HANDLE - The operation failed due to an invalid

LSP handle at the Next Hop Identifier specified in the associated callback structure (see
below).

The response array returned in the callback may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the Next Hop Identifier value.
An NPF_IPv4UC_CallbackData_t will be returned with each callback. As part of that structure, an
array of NPF_IPv4UC_AsyncResponse_t structures will also be returned. If all of the elements in the
request array completed successfully and there is no additional response data to return, the callback
will return an allOK value of NPF_TRUE, a numResp value of zero, and the array pointer will be
null.
If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.
It is the implementation’s choice how many responses to return in a single callback. The minimum is
one and the maximum is the number of request elements passed in the original API function call.

 IPv4 Unicast Forwarding Task Group 57

Network Processing Forum Software Working Group

4.8.4 NPF_IPv4UC_NextHopEntryDelete
Syntax

NPF_error_t NPF_IPv4UC_NextHopEntryDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_NextHopTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_uint32_t *nextHopIdArray);

Description
This function deletes one or more Next Hop Entries. If a Next Hop Entry exists, that entry will be
removed from the specified table.
If a Next Hop Entry is removed, a reference to the removed entry by the forwarding plane MAY
generate an NPF_IPV4UC_NEXT_HOP_TBL_MISS event.
This is an optional function. Implementations that do not support a discrete table mode MUST
implement a stub of this function and MUST either immediately return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED when called or MUST return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode field of the asynchronous
callback structure.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function invocation.
• tableHandle – Next Hop Table identifier.
• numEntries – The number of elements in the nextHopIdArray.
• nextHopIdArray – A pointer to an array of Next Hop Identifier values, one for each next hop

table entry to be deleted.
Output Arguments

None
Return Values

• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The entries were not deleted from the table due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The entries were not deleted from the table because the

callback handle was invalid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported

by this implementation.

 IPv4 Unicast Forwarding Task Group 58

Network Processing Forum Software Working Group

Asynchronous Response
There may be multiple asynchronous callbacks to this request. The NextHop Identifier will be
returned along with a return code. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_TABLE_ENTRY_DOES_NOT_EXIST - The operation did not complete

successfully since the specified entry was not found.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not

supported by this implementation.
The response array returned in the callback may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the next hop identifier value.
An NPF_IPv4UC_CallbackData_t will be returned with each callback. As part of that structure, an
array of NPF_IPv4UC_AsyncResponse_t structures will also be returned. If all of the elements in the
request array completed successfully and there is no additional response data to return, the callback
will return an allOK value of NPF_TRUE, a numResp value of zero, and the array pointer will be
null.
 If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.
It is the implementation’s choice how many responses to return in a single callback. The minimum is
one and the maximum is the number of request elements passed in the original API function call.

4.8.5 NPF_IPv4UC_NextHopTableFlush
Syntax

NPF_error_t NPF_IPv4UC_NextHopTableFlush(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_NextHopTableHandle_t tableHandle);

Description
All entries in the designated next hop table will be removed and the designated table will be left
empty.
This is an optional function. Implementations that do not support a discrete table mode MUST
implement a stub of this function and MUST either immediately return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED when called or MUST return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode field of the asynchronous
callback structure.

 IPv4 Unicast Forwarding Task Group 59

Network Processing Forum Software Working Group

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function invocation.
• tableHandle – Next Hop Table identifier.

Output Arguments
None

Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The table was not flushed due to problems encountered when handling

the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The table was not flushed because the callback handle

was invalid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported

by this implementation.
Notes

This operation removes all entries from the specified table, but does not destroy that table.
If a Next Hop Entry is removed, a reference to the removed entry by the forwarding plane MAY
generate an NPF_IPV4UC_NEXT_HOP_TBL_MISS event.

Asynchronous Response
A return code will be returned asynchronously. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – Discrete table operations are not

supported by this implementation.

4.8.6 NPF_IPv4UC_NextHopTableAttributeQuery
Syntax

NPF_error_t NPF_IPv4UC_NextHopTableAttributeQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_NextHopTableHandle_t tableHandle);

Description
This call will provide information about the characteristics of the specified Next Hop Table.
Currently, the attributes available are:

• An estimate of how many free entries are in this table.

 IPv4 Unicast Forwarding Task Group 60

Network Processing Forum Software Working Group

This is an optional function. Implementations that do not support queries or that do not support a
discrete table mode MUST implement a stub of this function and MUST either immediately return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED when called or MUST return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode field of the asynchronous
callback structure.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function invocation. The only valid reporting level is
NPF_REPORT_ALL.

• tableHandle – The Next Hop Table identifier.
Output Arguments

None
Return Values

• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The table was not queried due to problems encountered when handling

the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The table was not queried because the callback handle

was invalid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – The attribute query capability or discrete

table operations are not supported by this implementation.
Notes

Applications may use this query API function to obtain information useful in maintaining the Next
Hop Table. For example, prior to inserting any next hop entries into the next hop table, an RTM
might query the available free space of the Next Hop Table and, therefore, be able to know when it
cannot add any more entries to the table.
The implementation SHOULD be conservative in what it returns. In other words, the value should be
the amount of free space under the worst-case conditions, so that the application can be assured that at
least this many “Add” requests will succeed.
The errorReporting parameter, included for the sake of consistency, is ignored. This function
generates an asynchronous response, regardless of the value given in the errorReporting parameter.

Asynchronous Response
A return code will be returned asynchronously along with an approximation of the number of free
entries left in the Next Hop Table. The tableSpaceRemaining field in the
NPF_IPv4UC_AsyncResponse_t struct will be set. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – The attribute query capability is not

supported or discrete table operations are not supported by this implementation.

 IPv4 Unicast Forwarding Task Group 61

Network Processing Forum Software Working Group

4.8.7 NPF_IPv4UC_NextHopEntryQuery
Syntax

NPF_error_t NPF_IPv4UC_NextHopEntryQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_NextHopTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_uint32_t *nextHopIdArray);

Description
This function call is used to query one or more next hop entries in the next hop table. If the entries
exist, the content of the entries are returned in the completion callback.
This is an optional function. Implementations that do not support queries or that do not support a
discrete table mode MUST implement a stub of this function and MUST either immediately return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED when called or MUST return
NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode field of the asynchronous
callback structure.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API invocation.
• tableHandle – Next hop table identifier.
• numEntries – The number of elements in the nextHopIdArray.
• nextHopIdArray - Pointer to the array of next hop identifiers to query. Only the next hop

identifier is considered in the key.
Output Arguments

None
Return Values

• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The entries were not queried due to problems encountered when handling

the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The entries were not queried because the callback

handle was invalid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – The query capability or discrete table

operations are not supported by this implementation.

 IPv4 Unicast Forwarding Task Group 62

Network Processing Forum Software Working Group

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An
NPF_IPv4UC_NextHopQueryResp_t structure will be returned along with a return code. Possible
return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_TABLE_ENTRY_DOES_NOT_EXIST - The operation did not complete

successfully since the specified entry was not found.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – The entry query capability is not

supported or discrete table operations are not supported by this implementation.
The response array returned in the callback may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the next hop identifier value.
An NPF_IPv4UC_CallbackData_t will be returned with each callback. As part of that structure, an
array of NPF_IPv4UC_AsyncResponse_t structures will also be returned. Because this function call
will always return information that was requested, if all of the elements in the request array completed
successfully and there is no additional data to return, the callback will return an allOK value of
NPF_FALSE, a numResp value equal to the number of responses, and the array pointer pointing to
the responses.
 If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.
It is the implementation’s choice how many responses to return in a single callback. The minimum is
one and the maximum is the number of request elements passed in the original API function call.

4.9 Address Resolution Function Calls
This section specifies the functions defined to operate upon the address resolution table. These functions
are intended to be used in either unified or discrete modes.

4.9.1 NPF_IPv4UC_AddResTableHandleCreate
Syntax

NPF_error_t NPF_IPv4UC_AddResTableHandleCreate(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting);

Description
This function creates a handle for an Address Resolution Table.
This is a required function.

 IPv4 Unicast Forwarding Task Group 63

Network Processing Forum Software Working Group

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function call.
Output Arguments

None
Return Values

• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The table handle creation did not complete successfully due to problems

encountered when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

Notes
The errorReporting parameter, included for the sake of consistency, is ignored. This function
generates an asynchronous response, regardless of the value given in the errorReporting parameter.

Asynchronous Response
An address resolution table handle will be returned along with a return code. Possible return codes
are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INSUFFICIENT_STORAGE - The operation failed due to lack of resources.

4.9.2 NPF_IPv4UC_AddResTableHandleDelete
Syntax

NPF_error_t NPF_IPv4UC_AddResTableHandleDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_AddResTableHandle_t tableHandle);

Description
This function deletes a handle for an Address Resolution Table. Subsequent use of the deleted handle
in an API function call will result in an NPF_IPV4UC_INVALID_HANDLE error.
This is a required function.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function call.
• tableHandle - The address resolution table handle to delete.

 IPv4 Unicast Forwarding Task Group 64

Network Processing Forum Software Working Group

Output Arguments
None

Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The table handle deletion did not complete successfully due to problems

encountered when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

Notes
None

Asynchronous Response
A return code will be returned asynchronously. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.

4.9.3 NPF_IPv4UC_AddResEntryAdd
Syntax

NPF_error_t NPF_IPv4UC_AddResEntryAdd(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_AddResTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv4UC_AddResEntry_t *entryArray);

Description
This function may be used to insert one or more entries into an address resolution table. The
entryArray field points to an array of size numEntries, where each element is an address resolution
entry to add.
If no table entry exists for the IP address and interface pair supplied in the entryArray, then the
address resolution entry information is added to create a new entry in the specified table.
If a table entry already exists, then it is replaced with the information specified in the entryArray.
This is a required function.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function invocation.
• tableHandle – Address Resolution table identifier.
• numEntries – The number of elements in the entryArray.
• entryArray - Pointer to an array of NPF_IPv4UC_AddResEntry_t structures. Each structure has

an IP address, logical interface handle and a media specific address.

 IPv4 Unicast Forwarding Task Group 65

Network Processing Forum Software Working Group

Output Arguments
None

Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The entries were not added due to problems encountered when handling

the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The entries were not added to the table because the

callback handle was invalid.
Asynchronous Response

There may be multiple asynchronous callbacks to this request. An NPF_IPv4UC_AddResKey_t
structure will be returned along with a return code. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_INSUFFICIENT_STORAGE - The operation failed due to lack of resources.

The response array returned in the callback may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing IP_Address and interfaceHandle fields.
An NPF_IPv4UC_CallbackData_t will be returned with each callback. As part of that structure, an
array of NPF_IPv4UC_AsyncResponse_t structures will also be returned. If all of the elements in the
request array completed successfully and there is no additional response data to return, the callback
will return an allOK value of NPF_TRUE, a numResp value of zero, and the array pointer will be
null.
If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.
It is the implementation’s choice how many responses to return in a single callback. The minimum is
one and the maximum is the number of request elements passed in the original API function call.

4.9.4 NPF_IPv4UC_AddResEntryDelete
Syntax

NPF_error_t NPF_IPv4UC_AddResEntryDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_AddResTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv4UC_AddResKey_t *entryArray);

Description
If an entry exists in the address resolution table as indicated by the IP address and interface pair
supplied in an Address Resolution entry contained in the entryArray, then it will be removed from the
specified table.
If an Address Resolution entry is removed, a reference to the removed entry by the forwarding plane
MAY generate an NPF_IPV4UC_ADD_RES_TBL_MISS event.

 IPv4 Unicast Forwarding Task Group 66

Network Processing Forum Software Working Group

This is a required function.
Input Arguments

• callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

• tableHandle – Address Resolution table handle.
• numEntries – The number of elements in the entryArray.
• entryArray – A pointer to an array of NPF_IPv4UC_AddResKey_t structures, one for each

address resolution table entry to be deleted.
Output Arguments

None
Return Values

• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The entries were not deleted from the table due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The entries were not deleted from the table because the

callback handle was invalid.
Asynchronous Response

There may be multiple asynchronous callbacks to this request. An NPF_IPv4UC_AddResKey_t
structure will be returned along with a return code. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_TABLE_ENTRY_DOES_NOT_EXIST - The operation did not complete

successfully since the specified entry was not found.
The response array returned in the call back may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the IP address and interface handle fields.
An NPF_IPv4UC_CallbackData_t will be returned with each callback. As part of that structure, an
array of NPF_IPv4UC_AsyncResponse_t structures will also be returned. If all of the elements in the
request array completed successfully and there is no additional response data to return, the callback
will return an allOK value of NPF_TRUE, a numResp value of zero, and the array pointer will be
null.
If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.
It is the implementation’s choice how many responses to return in a single callback. The minimum is
one and the maximum is the number of request elements passed in the original API function calls.

 IPv4 Unicast Forwarding Task Group 67

Network Processing Forum Software Working Group

4.9.5 NPF_IPv4UC_AddResTableFlush
Syntax

NPF_error_t NPF_IPv4UC_AddResTableFlush(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_AddResTableHandle_t tableHandle);

Description
All entries in the designated address resolution table will be removed and the designated address
resolution table will be left empty.
This is a required function.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function call.
• tableHandle – Address resolution table identifier.

Output Arguments
None

Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The entries were not deleted from the table due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The entries were not deleted from the table because the

callback handle was invalid.
Notes

This operation removes all entries from the specified table, but does not destroy that table.
If an address resolution entry is removed, a reference to the removed entry by the forwarding plane
MAY generate an NPF_IPV4UC_ADD_RES_TBL_MISS event.

Asynchronous Response
A return code will be returned asynchronously. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.

 IPv4 Unicast Forwarding Task Group 68

Network Processing Forum Software Working Group

4.9.6 NPF_IPv4UC_AddResTableAttributeQuery
Syntax

NPF_error_t NPF_IPv4UC_AddResAttributeQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_AddResTableHandle_t tableHandle);

Description
This call will provide information about the characteristics of the specified address resolution table.
Currently, the attributes available are:

• An estimate of how many free entries are in this table.
This is an optional function. Implementations that do not support queries MUST implement a stub of
this function and MUST either immediately return NPF_IPV4UC_FUNCTION_NOT_SUPPORTED
when called or MUST return NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode
field of the asynchronous callback structure.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API function invocation. The only valid error reporting for this
method is NPF_REPORT_ALL.

• tableHandle – Address resolution table identifier.
Output Arguments

None
Return Values

• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The table was not queried due to problems encountered when handling

the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The table was not queried because the callback handle

was invalid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – The attribute query capability is not

supported by this implementation.
Notes

Applications may use this query API function to obtain information useful in maintaining the address
resolution table. For example, prior to inserting any address resolution entries into the table, the
application might query the available free space of the address resolution table and, therefore, be able
to know when it cannot add any more entries to the table.
The implementation SHOULD be conservative in what it returns. In other words, the value should be
the amount of free space under the worst-case conditions, so that the application can be assured that at
least this many “Add” requests will succeed.
The errorReporting parameter, included for the sake of consistency, is ignored. This function
generates an asynchronous response, regardless of the value given in the errorReporting parameter.

 IPv4 Unicast Forwarding Task Group 69

Network Processing Forum Software Working Group

Asynchronous Response
A return code will be returned asynchronously along with an approximation of the number of free
entries left in the address resolution table. The tableSpaceRemaining field in the
NPF_IPv4UC_AsyncResponse_t struct will be set. Possible return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – The attribute query function for the

address resolution table is not supported by this implementation.

4.9.7 NPF_IPv4UC_AddResEntryQuery
Syntax

NPF_error_t NPF_IPv4UC_AddResEntryQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_AddResTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv4UC_AddResKey_t *entryArray);

Description
This function call is used to query one or more address resolution entries in the address resolution
table. If the entries exist, the content of the entries are returned in the completion callback.
This is an optional function. Implementations that do not support queries MUST implement a stub of
this function and MUST either immediately return NPF_IPV4UC_FUNCTION_NOT_SUPPORTED
when called or MUST return NPF_IPV4UC_FUNCTION_NOT_SUPPORTED in the returnCode
field of the asynchronous callback structure.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
• correlator - A unique application invocation value that will be supplied to the asynchronous

completion callback routine.
• errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API invocation.
• tableHandle – Address resolution table identifier.
• numEntries – The number of entries in the entryArray.
• entryArray - Pointer to the array of address resolution keys to query.

Output Arguments
None

Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The entries were not queried due to problems encountered when

handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The entries were not queried because the callback

handle was invalid.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED – The query capability is not supported by this

implementation.

 IPv4 Unicast Forwarding Task Group 70

Network Processing Forum Software Working Group

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An
NPF_IPv4UC_AddResQueryResp_t structure will be returned along with a return code. Possible
return codes are:

• NPF_NO_ERROR - The operation completed successfully.
• NPF_IPV4UC_INVALID_HANDLE - The operation did not complete successfully due to

problems with the table handle.
• NPF_IPV4UC_TABLE_ENTRY_DOES_NOT_EXIST - The operation did not complete

successfully since the specified entry was not found.
• NPF_IPV4UC_FUNCTION_NOT_SUPPORTED - The entry query function call is not

supported by this implementation.
The response array returned in the call back may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the IP address and interface handle fields.
An NPF_IPv4UC_CallbackData_t will be returned with each callback. As part of that structure, an
array of NPF_IPv4UC_AsyncResponse_t structures will also be returned. Because this function call
will always return information that was requested, if all of the elements in the request array completed
successfully and there is no additional data to return, the callback will return an allOK value of
NPF_FALSE, a numResp value equal to the number of responses, and the array pointer pointing to
the responses.
If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.
It is the implementation’s choice how many responses to return in a single callback. The minimum is
one and the maximum is the number of request elements passed in the original API function calls.

 IPv4 Unicast Forwarding Task Group 71

Network Processing Forum Software Working Group

5 API Call and Event Capabilities
These tables are included as a summary for informative purposes.

5.1 Common Function Calls

API function Name Function Required

NPF_IPv4UC_CallBackFunc Required

NPF_IPv4UC_EventCallFunc Required

NPF_IPv4UC_Register Required

NPF_IPv4UC_Deregister Required

NPF_IPv4UC_EventRegister Required

NPF_IPv4UC_EventDeregister Required

NPF_IPv4UC_Get_SupportedModes Required

NPF_IPv4UC_Get_PreferredMode Required

NPF_IPv4UC_AddResTableHandleCreate Required

NPF_IPv4UC_AddResTableHandleDelete Required

NPF_IPv4UC_AddResEntryAdd Required

NPF_IPv4UC_AddResEntryDelete Required

NPF_IPv4UC_AddResTableFlush Required

NPF_IPv4UC_AddResTableAttributeQuery Optional

NPF_IPv4UC_AddResEntryQuery Optional

5.2 Unified Mode Function Calls

API function Name Function Required

NPF_IPv4UC_FibTableHandleCreate Required

NPF_IPv4UC_FibTableHandleDelete Required

NPF_IPv4UC_FibEntryAdd Required

NPF_IPv4UC_FibEntryDelete Required

NPF_IPv4UC_FibTableFlush Required

NPF_IPv4UC_FibTableAttributeQuery Optional

NPF_IPv4UC_FibEntryQuery Optional

 IPv4 Unicast Forwarding Task Group 72

Network Processing Forum Software Working Group

5.3 Discrete Mode Function Calls
If the Discrete Mode is implemented then all the functions below except
NPF_IPv4UC_NextHopTableAttributeQuery and NPF_IPv4UC_NextHopEntryQuery are Required.

API function Name Function Required

NPF_IPv4UC_PrefixTableHandleCreate Optional

NPF_IPv4UC_PrefixTableHandleDelete Optional

NPF_IPv4UC_PrefixEntryAdd Optional

NPF_IPv4UC_PrefixEntryDelete Optional

NPF_IPv4UC_PrefixTableFlush Optional

NPF_IPv4UC_PrefixTableAttributeQuery Optional

NPF_IPv4UC_PrefixNextHopTableBind Optional

NPF_IPv4UC_PrefixEntryQuery Optional

NPF_IPv4UC_NextHopTableHandleCreate Optional

NPF_IPv4UC_NextHopTableHandleDelete Optional

NPF_IPv4UC_NextHopEntryAdd Optional

NPF_IPv4UC_NextHopEntryDelete Optional

NPF_IPv4UC_NextHopTableFlush Optional

NPF_IPv4UC_NextHopTableAttributeQuery Optional

NPF_IPv4UC_NextHopEntryQuery Optional

5.4 Table of Events

Event Name Event Required

NPF_IPV4UC_PREFIX_TBL_MISS Optional
NPF_IPV4UC_NEXT_HOP_TBL_MISS Optional
NPF_IPV4UC_FIB_PREFIX_MISS Optional
NPF_IPV4UC_ADD_RES_TBL_MISS Optional
NPF_IPV4UC_FWD_TABLE_REFRESH_REQUEST Optional

 IPv4 Unicast Forwarding Task Group 73

Network Processing Forum Software Working Group

6 References
[1] Network Processing Forum, NPF Software Implementation Agreement – API Software

Framework, Revision 1, August 2002.

[2] Network Processing Forum, NPF Software Implementation Agreement – Software API
Conventions, Revision 1, August 2002.

[3] Network Processing Forum, NPF Software Implementation Agreement – Software
Lexicon, Revision 1, August 2002.

[4] Network Processing Forum, NPF Software Implementation Agreement – Interface
Management APIs, Revision 1, August 2002.

 IPv4 Unicast Forwarding Task Group 74

Network Processing Forum Software Working Group

APPENDIX A HEADER FILE - NPF_IPV4UC.H

/*
 * This header file defines typedefs, constants, and functions
 * for the NP Forum IPv4 Unicast Forwarding API
 */
#ifndef __NPF_IPV4U_H
#define __NPF_IPV4U_H

#ifdef __cplusplus
extern "C" {
#endif

/*---
 *
 * Common Data Types
 *
 ---/

/*
 * Table support enumeration.
 */
typedef enum {
 NPF_IPV4UC_UNIFIED_ONLY = 1,
 NPF_IPV4UC_BOTH_SUPPORTED = 2
} NPF_IPv4UC_SupportedMode_t;

/*
 * Table preference enumeration. No preference value may only be returned
 * by implementations that returned "both supported" to the support query.
 */
typedef enum {
 NPF_IPV4UC_DISCRETE_PREFERRED = 1,
 NPF_IPV4UC_UNIFIED_PREFERRED = 2,
 NPF_IPV4UC_NO_PREFERENCE = 3
} NPF_IPv4UC_PreferredMode_t;

/*
 * Network Address / Prefix definition
 *
 * This structure is defined in a common NPF header file since it
 * is used by several APIs. It is replicated here as a comment for
 * informative purposes.
 */
/*
typedef struct {
 NPF_IPv4Address_t IPv4Addr;
 NPF_uint8_t IPv4NetPlen;
} NPF_IPv4NetAddr_t;
*/

/*
 * IPv4 unicast prefix type:
 */
typedef NPF_IPv4NetAddr_t NPF_IPv4UC_Prefix_t;

/*
 * Next hop type definition

 IPv4 Unicast Forwarding Task Group 75

Network Processing Forum Software Working Group

 */
typedef enum {
 NPF_IPV4UC_NH_BASIC = 1,
 NPF_IPV4UC_NH_DIRECT_ATTACH = 2,
 NPF_IPV4UC_NH_SEND_TO_CP = 3,
 NPF_IPV4UC_NH_DISCARD = 4,
 NPF_IPV4UC_NH_REMOTE = 5,
 NPF_IPV4UC_NH_MPLSLSP = 6
} NPF_IPv4UC_NextHopType_t;

/*
 * Media type definition:
 */
typedef enum {
 NPF_NO_MEDIA_TYPE = 1,
 NPF_MAC_ADDRESS = 2,
 NPF_ATM_VC = 3
} NPF_MediaType_t;

/*
 * Media Address structure:
 */
typedef struct {
 NPF_MediaType_t type;
 union {
 NPF_MAC_Address_t MAC_Address;
 NPF_VccAddr_t ATM_Vc;
 }u;
} NPF_MediaAddress_t;

/*
 * IPv4 unicast next hop type structure: used only for
 * NPF_IPV4UC_NH_BASIC, NPF_IPV4UC_NH_DIRECT_ATTACH, and
 * NPF_IPV4UC_NH_REMOTE types.
 */
typedef struct {
 NPF_IfHandle_t egressInterface;

NPF_IPv4Address_t nextHopIP;
NPF_MediaAddress_t mediaAddress;

} NPF_IPv4UC_IPv4NextHop_t;

/*
 * IPv4 unicast next hop structure: weight, egressInterface and
 * nextHopIP fields are valid only for IPV4UC_BASIC,
 * IPV4UC_DIRECT_ATTACH, and IPV4UC_REMOTE types.
 */
typedef struct {
 NPF_IPv4UC_NextHopType_t type;
 NPF_uint16_t weight;

 union {
 NPF_IPv4UC_IPv4NextHop_t ipv4NextHop;

 NPF_MPLS_LSP_Handle_t lspHandle;
 } u;

} NPF_IPv4UC_NextHop_t;

/*
 * IPv4 unicast Next Hop Entry: nextHopArray points to an array

 IPv4 Unicast Forwarding Task Group 76

Network Processing Forum Software Working Group

 * (one or more) of NPF_IPv4UC_NextHop_t structures.
 * nextHopCount indicates how many next hops are in the array.
 * An array is passed because a single prefix may use multiple
 * next hops.
 */
typedef struct {
 NPF_uint32_t nextHopCount;
 NPF_IPv4UC_NextHop_t *nextHopArray;
} NPF_IPv4UC_NextHopArray_t;

 IPv4 Unicast Forwarding Task Group 77

Network Processing Forum Software Working Group

/*
 * IPv4 unicast Address Resolution entry:
 */
typedef struct {
 NPF_IPv4Address_t IP_Address;
 NPF_IfHandle_t interfaceHandle;
 NPF_MediaAddress_t mediaAddress;
} NPF_IPv4UC_AddResEntry_t;

/*
 * This structure contains the key of an Address Resolution
 * table entry, consisting of IP address and interface handle.
 */
typedef struct {
 NPF_IPv4Address_t IP_Address;
 NPF_IfHandle_t interfaceHandle;
} NPF_IPv4UC_AddResKey_t;

/*
 * Meaningful structure name used in address resolution
 * asynchronous callback data.
 */

typedef NPF_IPv4UC_AddResEntry_t NPF_IPv4UC_AddResQueryResp_t;

/*
 * Common table handle types
 */
typedef NPF_uint32_t NPF_IPv4UC_AddResTableHandle_t;

/*
 * Asynchronous error codes (returned in function callbacks)
 */

typedef NPF_uint32_t NPF_IPv4UC_ReturnCode_t;

#define IPV4_ERR(n) ((NPF_IPv4UC_ReturnCode_t) NPF_IPV4_BASE_ERR + (n))

#define NPF_IPV4UC_TABLE_FULL IPV4_ERR(0)
#define NPF_IPV4UC_TABLE_ENTRY_DOES_NOT_EXIST IPV4_ERR(1)
#define NPF_IPV4UC_FUNCTION_NOT_SUPPORTED IPV4_ERR(2)
#define NPF_IPV4UC_INVALID_HANDLE IPV4_ERR(3)
#define NPF_IPV4UC_INSUFFICIENT_STORAGE IPV4_ERR(4)
#define NPF_IPV4UC_INVALID_MPLS_LSP_HANDLE IPV4_ERR(5)

/*---
 *
 * Discrete Mode Data Types
 *
 ---/

/*
 * This structure contains the query results for a single
 * prefix table entry.
 */
typedef struct {
 NPF_IPv4UC_Prefix_t prefix;

 IPv4 Unicast Forwarding Task Group 78

Network Processing Forum Software Working Group

 NPF_uint32_t nextHopIdentifier;
} NPF_IPv4UC_PrefixQueryResp_t;

/*
 * This structure contains the query results for a single
 * next hop table entry.
 */
typedef struct {
 NPF_uint32_t nextHopIdentifier;
 NPF_IPv4UC_NextHopArray_t nextHopArray;
} NPF_IPv4UC_NextHopQueryResp_t;

/*
 * Discrete mode handle types
 */
typedef NPF_uint32_t NPF_IPv4UC_PrefixTableHandle_t;
typedef NPF_uint32_t NPF_IPv4UC_NextHopTableHandle_t;

/*
 * Asynchronous response structure for NPF_IPv4UC_PrefixTableHandleCreate()
 */
typedef struct {
 NPF_IPv4UC_FwdTableHandle_t extHandle;
 NPF_IPv4UC_PrefixTableHandle_t intHandle;
} NPF_IPv4UC_PfxCreateResp_t;

/*---
 *
 * Unified Mode Data Types
 *
 ---/

/*
 * This structure contains the query results for a single FIB table
 * entry.
 */
typedef struct {
 NPF_IPv4UC_Prefix_t prefix;
 NPF_IPv4UC_NextHopArray_t nextHopArray;
} NPF_IPv4UC_FibQueryResp_t;

/*
 * Unified table handle types
 */
typedef NPF_uint32_t NPF_IPv4UC_FibTableHandle_t;

/*
 * Asynchronous response structure for NPF_IPv4UC_FIBTableHandleCreate()
 */
typedef struct {
 NPF_IPv4UC_FwdTableHandle_t extHandle;
 NPF_IPv4UC_FibTableHandle_t intHandle;
} NPF_IPv4UC_FibCreateResp_t;

 IPv4 Unicast Forwarding Task Group 79

Network Processing Forum Software Working Group

/*---
 *
 * Completion Callback Data Types
 *
 ---/

/*
 * Common callback definition:
 */
typedef enum NPF_IPv4UC_CallbackType {
 NPF_IPV4UC_PREFIX_TABLE_HANDLE_CREATE = 1,
 NPF_IPV4UC_PREFIX_TABLE_HANDLE_DELETE = 2,
 NPF_IPV4UC_PREFIX_ENTRY_ADD = 3,
 NPF_IPV4UC_PREFIX_ENTRY_DELETE = 4,
 NPF_IPV4UC_PREFIX_TABLE_FLUSH = 5,
 NPF_IPV4UC_PREFIX_TABLE_ATTRIBUTE_QUERY = 6,
 NPF_IPV4UC_PREFIX_ENTRY_QUERY = 7,
 NPF_IPV4UC_PREFIX_NEXT_HOP_TABLE_BIND = 8,
 NPF_IPV4UC_NEXT_HOP_TABLE_HANDLE_CREATE = 9,
 NPF_IPV4UC_NEXT_HOP_TABLE_HANDLE_DELETE = 10,
 NPF_IPV4UC_NEXT_HOP_ENTRY_ADD = 11,
 NPF_IPV4UC_NEXT_HOP_ENTRY_DELETE = 12,
 NPF_IPV4UC_NEXT_HOP_TABLE_FLUSH = 13,
 NPF_IPV4UC_NEXT_HOP_TABLE_ATTRIBUTE_QUERY = 14,
 NPF_IPV4UC_NEXT_HOP_ENTRY_QUERY = 15,
 NPF_IPV4UC_FIB_TABLE_HANDLE_CREATE = 16,
 NPF_IPV4UC_FIB_TABLE_HANDLE_DELETE = 17,
 NPF_IPV4UC_FIB_ENTRY_ADD = 18,
 NPF_IPV4UC_FIB_ENTRY_DELETE = 19,
 NPF_IPV4UC_FIB_TABLE_FLUSH = 20,
 NPF_IPV4UC_FIB_TABLE_ATTRIBUTE_QUERY = 21,
 NPF_IPV4UC_FIB_ENTRY_QUERY = 22,
 NPF_IPV4UC_ADDRESS_RES_TABLE_HANDLE_CREATE = 23,
 NPF_IPV4UC_ADDRESS_RES_TABLE_HANDLE_DELETE = 24,
 NPF_IPV4UC_ADDRESS_RES_ENTRY_ADD = 25,
 NPF_IPV4UC_ADDRESS_RES_ENTRY_DELETE = 26,
 NPF_IPV4UC_ADDRESS_RES_TABLE_FLUSH = 27,
 NPF_IPv4UC_ADDRESS_RES_TABLE_ATTRIBUTE_QUERY = 28,
 NPF_IPV4UC_ADDRESS_RES_ENTRY_QUERY = 29
} NPF_IPv4UC_CallbackType_t;

/*
 * An asynchronous response contains a return code indicating
 * an error or success of a particular request operation.
 * The structure may also contain other optional information
 * that was requested by the operation orthe information may
 * assist in correlating the response to the corresponding request
 * operation when multiple operations are requested by the application.
 */
typedef struct {
 NPF_IPv4UC_ReturnCode_t returnCode;
 union {
 NPF_IPv4UC_PfxCreateResp_t prefixTableHandles;
 NPF_IPv4UC_Prefix_t prefix;
 NPF_IPv4UC_PrefixQueryResp_t prefixQueryResult;
 NPF_IPv4UC_NextHopTableHandle_t nextHopTableHandle;
 NPF_uint32_t nextHopIdentifier;
 NPF_IPv4UC_NextHopQueryResp_t nextHopQueryResult;
 NPF_IPv4UC_FibCreateResp_t fibTableHandles;

 IPv4 Unicast Forwarding Task Group 80

Network Processing Forum Software Working Group

 NPF_IPv4UC_Prefix_t fibPrefix;
 NPF_IPv4UC_FibQueryResp_t fibQueryResult;
 NPF_IPv4UC_AddResTableHandle_t addResTableHandle;
 NPF_IPv4UC_AddResKey_t addResKey;
 NPF_IPv4UC_AddResQueryResp_t addResQueryResult;
 NPF_uint32_t tableSpaceRemaining;
 NPF_uint32_t unused;
 } u;
} NPF_IPv4UC_AsyncResponse_t;

/*
 * This structure is passed to the application as a paramter on a registered
 * completion callback. The type field inidcates which function invocation
 * led to this response. The other three fields contain values depending
 * upon the invoking function, whether or not a single operation was
 * requested and whether the operations were successful or not.
 *
 * There are several possibilities:
 *
 * The application invokes a function requesting a single operation:
 * - If allOK = TRUE, then numResp = 0 and the "resp" pointer is NULL.
 * This indicates the operation completed successfully and there is
 * no other additional response data to return.
 * - If allOK = FALSE, then numResp = 1 and the "resp" pointer points to
 * a response structure. If the returnCode field indicates NPF_NO_ERROR,
 * the operation completed successfully and there is additional response
 * data in the structure. Otherwise, the operation failed and the reason
 * is indicated by the returnCode.
 * The application invokes a function requesting multiple operations:
 * - If all operations completed successfully at the same time and there
 * is no additional response data to provide, then allOK = TRUE,
 * numResp = 0 and the "resp" pointer is NULL.
 * - If all operations completed successfully at the same time, but there
 * is additional response data to provide, then allOK = FALSE, numResp
 * indicates the total number of requested operations and the "resp"
 * pointer points to an array of response structures. The returnCode
 * field will indicate NPF_NO_ERROR.
 * - If some operations completed, but not all, then:
 * > allOK = FALSE, numResp = the number of request operations
 * completed.
 * > The "resp" pointer will point to an array of response structures,
 * each one containing one element for each completed request. For
 * operations that completed successfully, the returnCode field will
 * indicate NPF_NO_ERROR and additional response data may be present,
 * depending on the type of function invocation. For operations that
 * failed, the reason is indicated by the returnCode field.
 */

typedef struct {
 NPF_IPv4UC_CallbackType_t type;
 NPF_boolean_t allOK;
 NPF_uint32_t numResp;
 NPF_IPv4UC_AsyncResponse_t *resp;
} NPF_IPv4UC_CallbackData_t;

 IPv4 Unicast Forwarding Task Group 81

Network Processing Forum Software Working Group

/*---
 *
 * Event Notification Data Types
 *
 ---/

/*
 * Event Notification Types
 */
typedef enum NPF_IPv4UC_Event {
 NPF_IPV4UC_PREFIX_TBL_MISS = 1,
 NPF_IPV4UC_NEXT_HOP_TBL_MISS = 2,
 NPF_IPV4UC_ADD_RES_TBL_MISS = 3,
 NPF_IPV4UC_FIB_PREFIX_MISS = 4,
 NPF_IPV4UC_FWDTBL_REFRESH = 5
} NPF_IPv4UC_Event_t;

/* This event is triggered when the forwarding plane is unable to find a */
/* next hop identifier for a specific prefix. This event is optional. */
typedef struct {
 NPF_IPv4UC_PrefixTableHandle_t pfxTableHandle;
 NPF_IPv4Address_t destIP_Address;
} NPF_IPv4UC_PrefixTblMiss_t;

/* This event is triggered when the forwarding plane is unable to find a */
/* next hop table entry for a specific next hop identifier. This event */
/* is optional. */
typedef struct {
 NPF_IPv4UC_NextHopTableHandle_t nextHopTableHandle;
 NPF_uint32_t nextHopIdentifier;
} NPF_IPv4UC_NextHopTblMiss_t;

/* This event is triggered when the forwarding plane is unable to find a */
/* FIB table entry for a specific IP address. This event is optional */
typedef struct {
 NPF_IPv4UC_FibTableHandle_t fibTableHandle;
 NPF_IPv4Address_t destIP_Address;
} NPF_IPv4UC_FIB_PrefixMiss_t;

/* This event is triggered when the forwarding plane is unable to find an*/
/* address resolution entry for a specific next hop. This event is */
/* optional. */
typedef struct {
 NPF_IPv4UC_AddResTableHandle_t addResTableHandle;
 NPF_IfHandle_t interfaceHandle;
 NPF_IPv4Address_t IP_Address;
} NPF_IPv4UC_AddResTblMiss_t;

/* This event is triggered when the application or the IPv4 API */
/* implementation needs to be notified that a FIB needs t be refreshed */
/* on the forwarding plane. This event is optional. */
typedef struct {
 NPF_IPv4UC_TableType_t tableHandleType;
 union {
 NPF_IPv4UC_FibTableHandle_t fibTableHandle;
 NPF_IPv4UC_PrefixTableHandle_t prefixTableHandle;
 } u;
} NPF_IPv4UC_FwdTbl_Refresh_t;

 IPv4 Unicast Forwarding Task Group 82

Network Processing Forum Software Working Group

/*
 * This structure defines the enumerations for the table type used in
 * the NPF_IPv4UC_FwdTbl_Refresh_t structure above.
 */
typedef enum NPF_IPv4UC_TableType {
 NPF_IPV4UC_FIB_TABLE = 1,
 NPF_IPV4UC_PREFIX_TABLE = 2
}NPF_IPv4UC_TableType_t;

/*
 * Event Notification Structures
 */
typedef struct {
 NPF_IPv4UC_Event_t type;
 union {
 NPF_IPv4UC_PrefixTblMiss_t prefixTblMiss;
 NPF_IPv4UC_NextHopTblMiss_t nextHopTblMiss;
 NPF_IPv4UC_AddResTblMiss_t addResTblMiss;
 NPF_IPv4UC_FIB_PrefixMiss_t fibPrefixMiss;
 NPF_IPv4UC_FwdTbl_Refresh_t fwdTableRefreshRequest;
 } u;
} NPF_IPv4UC_EventData_t;

/*
 * This structure is provided when the event notification handler
 * is invoked. It specifies one or more IPv4 unicast forwarding events.
 */

typedef struct {
 NPF_uint32_t numEvents;
 NPF_IPv4UC_EventData_t *eventArray;
} NPF_IPv4UC_EventArray_t;

/*---
 *
 * Function Call Prototypes
 *
 ---/
typedef void (*NPF_IPv4UC_CallbackFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_IPv4UC_CallbackData_t data);

typedef void (*NPF_IPv4UC_EventCallFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_IPv4UC_EventArray_t data);

NPF_error_t NPF_IPv4UC_Register(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_IPv4UC_CallbackFunc_t callbackFunc,
 NPF_OUT NPF_callbackHandle_t *callbackHandle);

NPF_error_t NPF_IPv4UC_Deregister(
 NPF_IN NPF_callbackHandle_t callbackHandle);

NPF_error_t NPF_IPv4UC_EventRegister(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_IPv4UC_EventCallFunc_t eventCallFunc,
 NPF_OUT NPF_callbackHandle_t *eventCallHandle);

 IPv4 Unicast Forwarding Task Group 83

Network Processing Forum Software Working Group

NPF_error_t NPF_IPv4UC_EventDeregister(
 NPF_IN NPF_callbackHandle_t eventCallHandle);

NPF_IPv4UC_SupportedMode_t NPF_IPv4UC_GetSupportedModes (void);

NPF_IPv4UC_PreferredMode_t NPF_IPv4UC_GetPreferredMode(void);

NPF_error_t NPF_IPv4UC_PrefixTableHandleCreate(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting);

NPF_error_t NPF_IPv4UC_PrefixTableHandleDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_PrefixTableHandle_t tableHandle);

NPF_error_t NPF_IPv4UC_PrefixEntryAdd(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_PrefixTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv4UC_Prefix_t *prefixArray,
 NPF_IN NPF_uint32_t *nextHopIdArray);

NPF_error_t NPF_IPv4UC_PrefixEntryDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_PrefixTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv4UC_Prefix_t *prefixArray);

NPF_error_t NPF_IPv4UC_PrefixTableFlush(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_PrefixTableHandle_t tableHandle);

NPF_error_t NPF_IPv4UC_PrefixTableAttributeQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_PrefixTableHandle_t tableHandle);

NPF_error_t NPF_IPv4UC_PrefixEntryQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_PrefixTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv4UC_Prefix_t *prefixArray);

 IPv4 Unicast Forwarding Task Group 84

Network Processing Forum Software Working Group

NPF_error_t NPF_IPv4UC_PrefixNextHopTableBind(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_PrefixTableHandle_t prefixTableHandle,
 NPF_IN NPF_IPv4UC_NextHopTableHandle_t nextHopTableHandle);

NPF_error_t NPF_IPv4UC_NextHopTableHandleCreate(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting);

NPF_error_t NPF_IPv4UC_NextHopTableHandleDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_NextHopTableHandle_t tableHandle);

NPF_error_t NPF_IPv4UC_NextHopEntryAdd(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_NextHopTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_uint32_t *nextHopIdArray,
 NPF_IN NPF_IPv4UC_NextHopArray_t *nextHopArrays);

NPF_error_t NPF_IPv4UC_NextHopEntryDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_NextHopTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_uint32_t *nextHopIdArray);

NPF_error_t NPF_IPv4UC_NextHopTableFlush(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_NextHopTableHandle_t tableHandle);

NPF_error_t NPF_IPv4UC_NextHopTableAttributeQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_NextHopTableHandle_t tableHandle);

NPF_error_t NPF_IPv4UC_NextHopEntryQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_NextHopTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_uint32_t *nextHopIdArray);

NPF_error_t NPF_IPv4UC_FibTableHandleCreate(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting);

 IPv4 Unicast Forwarding Task Group 85

Network Processing Forum Software Working Group

NPF_error_t NPF_IPv4UC_FibTableHandleDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_FibTableHandle_t tableHandle);

NPF_error_t NPF_IPv4UC_FibEntryAdd(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_FibTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv4UC_Prefix_t *prefixArray,
 NPF_IN NPF_IPv4UC_NextHopArray_t *nextHopArrays);

NPF_error_t NPF_IPv4UC_FibEntryDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_FibTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv4UC_Prefix_t *prefixArray);

NPF_error_t NPF_IPv4UC_FibTableFlush(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_FibTableHandle_t tableHandle);

NPF_error_t NPF_IPv4UC_FibAttributeQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_FibTableHandle_t tableHandle);

NPF_error_t NPF_IPv4UC_FibEntryQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_FibTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv4UC_Prefix_t *prefixArray);

NPF_error_t NPF_IPv4UC_AddResTableHandleCreate(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting);

NPF_error_t NPF_IPv4UC_AddResTableHandleDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_AddResTableHandle_t tableHandle);

 IPv4 Unicast Forwarding Task Group 86

Network Processing Forum Software Working Group

NPF_error_t NPF_IPv4UC_AddResEntryAdd(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_AddResTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv4UC_AddResEntry_t *entryArray);

NPF_error_t NPF_IPv4UC_AddResEntryDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_AddResTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv4UC_AddResKey_t *entryArray);

NPF_error_t NPF_IPv4UC_AddResTableFlush(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_AddResTableHandle_t tableHandle);

NPF_error_t NPF_IPv4UC_AddResAttributeQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_AddResTableHandle_t tableHandle);

NPF_error_t NPF_IPv4UC_AddResEntryQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv4UC_AddResTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv4UC_AddResKey_t *entryArray);

#ifdef __cplusplus
}
#endif

#endif /* __NPF_IPV4U_H */

 IPv4 Unicast Forwarding Task Group 87

Network Processing Forum Software Working Group

APPENDIX B ACKNOWLEDGEMENTS

Working Group Chair: Vinoj Kumar, Agere Systems

Task Group Chair: John Scott, S3 Corporation (MPLS TG Chair)

 IPv4 Unicast Forwarding Task Group 88

Network Processing Forum Software Working Group

 IPv4 Unicast Forwarding Task Group 89

APPENDIX C LIST OF COMPANIES BELONGING TO NPF DURING APPROVAL
PROCESS

Agere Systems FutureSoft Nortel Networks

Altera HCL Technologies NTT Electronics

AMCC Hifn PMC Sierra

Analog Devices IBM Sun Microsystems

Avici Systems IDT Teja Technologies

Cypress Semiconductor Intel TranSwitch

Ericsson IP Fabrics U4EA Group

Erlang Technologies IP Infusion Xelerated

ETRI Kawasaki LSI Xilinx

EZChip Motorola Zettacom

Flextronics Nokia

	Introduction
	Assumptions and External Requirements
	Scope
	Dependencies

	API Usage Model
	Unified Table Model
	Discrete Table Model
	Address Resolution Table
	API Usage Guidelines

	Data Types
	Common Data Types
	Table Mode Query Data Types
	Prefix Data Types
	Next Hop Array Data Types
	Address Resolution Data Types
	Table Types
	Return Codes

	Unified Mode Data Types
	FIB Table Query Data Type
	Table Types

	Discrete Mode Data Types
	Prefix Table Query Data Type
	Next Hop Table Query Data Type
	Table Types

	Data Structures for Completion Callbacks
	Completion Callback Structures

	Data Structures for Event Notification
	Event Notification Types
	Event Notification Structures

	Function Calls
	Completion Callback Function Calls
	NPF_IPv4UC_CallbackFunc

	Event Notification Function Calls
	NPF_IPv4UC_EventCallFunc_t

	Callback Registration/Deregistration Function Calls
	NPF_IPv4UC_Register
	NPF_IPv4UC_Deregister

	Event Registration/Deregistration Function Calls
	NPF_IPv4UC_EventRegister
	NPF_IPv4UC_EventDeregister

	Supported & Preferred Mode Query Function Calls
	NPF_IPv4UC_GetSupportedModes
	NPF_IPv4UC_GetPreferredMode

	Unified FIB Table Function Calls
	NPF_IPv4UC_FibTableHandleCreate
	NPF_IPv4UC_FibTableHandleDelete
	NPF_IPv4UC_FibEntryAdd
	NPF_IPv4UC_FibEntryDelete
	NPF_IPv4UC_FibTableFlush
	NPF_IPv4UC_FibTableAttributeQuery
	NPF_IPv4UC_FibEntryQuery

	Discrete Prefix Table Function Calls
	NPF_IPv4UC_PrefixTableHandleCreate
	NPF_IPv4UC_PrefixTableHandleDelete
	NPF_IPv4UC_PrefixEntryAdd
	NPF_IPv4UC_PrefixEntryDelete
	NPF_IPv4UC_PrefixTableFlush
	NPF_IPv4UC_PrefixTableAttributeQuery
	NPF_IPv4UC_PrefixEntryQuery
	NPF_IPv4UC_PrefixNextHopTableBind

	Discrete Next Hop Table Function Calls
	NPF_IPv4UC_NextHopTableHandleCreate
	NPF_IPv4UC_NextHopTableHandleDelete
	NPF_IPv4UC_NextHopEntryAdd
	NPF_IPv4UC_NextHopEntryDelete
	NPF_IPv4UC_NextHopTableFlush
	NPF_IPv4UC_NextHopTableAttributeQuery
	NPF_IPv4UC_NextHopEntryQuery

	Address Resolution Function Calls
	NPF_IPv4UC_AddResTableHandleCreate
	NPF_IPv4UC_AddResTableHandleDelete
	NPF_IPv4UC_AddResEntryAdd
	NPF_IPv4UC_AddResEntryDelete
	NPF_IPv4UC_AddResTableFlush
	NPF_IPv4UC_AddResTableAttributeQuery
	NPF_IPv4UC_AddResEntryQuery

	API Call and Event Capabilities
	Common Function Calls
	Unified Mode Function Calls
	Discrete Mode Function Calls
	Table of Events

	References

