
Network Processing Forum Software Working Group

IPv6 Unicast Forwarding Service API
 Implementation Agreement

Revision 1.0

Editor(s):

Kristian Gregersen, kristian.gregersen@ericsson.com

Copyright © 2003 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THIS DOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", “MAY", and "OPTIONAL" in the remainder of this
document are to be interpreted as described in the NPF Software API Conventions Implementation
Agreement revision 2.0.

For additional information contact:
The Network Processing Forum, 39355 California Street,

Suite 307, Fremont, CA 94538
+1 510 608-5990 phone info@npforum.org

 IPv6 Task Group 1

mailto:kristian.gregersen@ericsson.com
mailto:info@npforum.org

Network Processing Forum Software Working Group

Table of Contents
1 Revision History ... 3
2 Introduction... 4

2.1 Assumptions and External Requirements... 8
2.2 Scope .. 8
2.3 Dependencies.. 9

3 API Usage Model.. 10
3.1 Unified Table Model .. 11
3.2 Discrete Table Model ... 12
3.3 Address Resolution Table... 14
3.4 API Usage Guidelines .. 18

4 Data Types .. 19
4.1 Common Data Types.. 19
4.2 Unified Mode Data Types .. 25
4.3 Discrete Mode Data Types ... 27
4.4 Data Structures for Completion Callbacks ... 29
4.5 Data Structures for Event Notification ... 33

5 Function Calls ... 37
5.1 Completion Callback Function Calls.. 37
5.2 Event Notification Function Calls .. 38
5.3 Callback Registration/Deregistration Function Calls ... 39
5.4 Event Registration/Deregistration Function Calls.. 41
5.5 Supported & Preferred Mode Query Function Calls .. 44
5.6 Unified FIB Table Function Calls .. 46
5.7 Discrete Prefix Table Function Calls ... 58
5.8 Discrete Next Hop Table Function Calls.. 72
5.9 Address Resolution Function Calls .. 84

6 API Summary.. 96
6.1 Common Function Calls... 96
6.2 Unified Mode Function Calls ... 96
6.3 Discrete Mode Function Calls .. 96
6.4 Events ... 97

7 References... 98
Appendix A Header File: NPF_IPv6UC.h .. 99
Appendix B List of companies belonging to NPF during approval process 113

Table of Figures
Figure 1 - Example Single FIB System .. 6
Figure 2 - Example Multiple FIB System... 7
Figure 3 - Unified FIB Table Model... 11
Figure 4 - Discrete Table Model... 12
Figure 5 - IPv6 Address Resolution Model .. 16
Figure 6 - Address Resolution Table Model - (Ethernet example)... 17
Figure 7 - Usage Models... 18

 IPv6 Task Group 2

Network Processing Forum Software Working Group

1 Revision History
Revision Date Reason for Changes

1.0 09/25/2003 Created Rev 1.0 of the implementation agreement by taking the IPv6 Unicast
Forwarding Service API (npf2002.616.05) and making minor editorial corrections.

 IPv6 Task Group 3

Network Processing Forum Software Working Group

2 Introduction
One prevalent use of network processors is the implementation of devices that perform packet forwarding
based on IPv6 unicast destination addresses. There are at least two databases needed for IP forwarding,
one being the Routing Information Base (RIB), which resides on the control plane, and the other being the
Forwarding Information Base (FIB), which network processors may access on the forwarding plane.

Ingress packets have their destination IP address extracted and used as a lookup key in the FIB. Assuming
a match is found, this forwarding information typically provides a next hop IP address and an egress
interface, which can be used to reach this next hop. The next hop is usually the IP address of the router
that provides a path to the final destination of the packet. The forwarding information located in the FIB
may entail not only next hop information, but also other characteristics, such as QoS based on DiffServ,
or encapsulation schemes, such as MPLS tunneling.

The RIB may be defined by static configuration or via dynamic routing protocols, such as OSPF and
BGP. Often, such application layer software will interface with an intelligent Route Table Manager
(RTM) component, whose job is to manage the RIB and maintain the FIB used by the forwarding plane
IP packet handling. Usually, the RIB contains all the routes known to all routing protocols, and the FIB is
the “active” subset of those routes – the ones chosen as best for forwarding. The RTM can use NPF
defined IPv6 Unicast Forwarding Service API function calls to manage an IPv6 FIB.

Another component of IPv6 packet forwarding is the description of a method to resolve a next hop
destination IPv6 address into the associated media address. For IPv6 the method used for this purpose is
encompassed in the Neighbor Discovery protocol (ND, defined in RFC 2461). IPv6 ND uses IP multicast
for transporting its IPv6 ICMP messages (ICMPv6, defined in RFC 2463). This is a major difference
from IPv4, for which the Address Resolution method to resolve a nexthop destination IPv4 address into
the associated media address is defined as a protocol that runs directly as a Layer 2 client, with
peculiarities dependent on the L2 protocol.

In general, nodes (hosts and routers) use Neighbor Discovery to determine the link-layer addresses for
neighbors known to reside on attached links and to quickly purge cached values that become invalid.
Nodes use the protocol to actively keep track of which neighbors are reachable and which are not, and to
detect changed link-layer addresses. Hosts use Neighbor Discovery to find neighboring routers that are
willing to forward packets on their behalf. When a router or the path to a router fails, a host actively
searches for functioning alternates.

Neighbor Discovery can be handled either as part of the control plane or realized below the SAPI. This
contribution includes primitives to control an address resolution table. The address resolution table
corresponds to the neighbor cache concept of RFC 2461.

A Neighbor Discovery handler will use the Packet Handler API for packet exchange.

A basic example system might have the following characteristics:

• An RTM managing a RIB in the control plane will use NPF IPv6 Unicast Forwarding Service
API calls to maintain a FIB for use by a network processor.

• An NP in the forwarding plane has knowledge and control of one or more layer 3 interfaces.

• The NP has knowledge of, and access to, a FIB.

• Each FIB is associated with one or more layer 3 interfaces.

• The FIB has been created at some point and is referenced by a unique handle.

• One or more NP’s may be present in the system.

 IPv6 Task Group 4

Network Processing Forum Software Working Group

For example, the initial ingress forwarding steps with this model might be:

• A packet arrives on an interface.

• The FIB is selected based on the incoming layer 3 interface.

• If the packet’s destination address is a global IPv6 address, the longest prefix match lookup of the
packet's destination IPv6 address is done using this particular FIB.

 IPv6 Task Group 5

Network Processing Forum Software Working Group

The following two figures may prove useful in understanding the specification of the IPv6 Unicast
Forwarding Service API.

In Figure 1, the RTM oversees the management of routes provided by routing protocols and maintains a
single RIB. Using the IPv6 Unicast Forwarding Service API, the RTM defines and populates the FIB,
knowing only about one FIB which is identified by a unique FIB handle. A particular FIB may be
replicated in different NP devices. Such replication may be done by the Services API implementation or
by some system-aware middleware below it.

RTM

OSPF

BGP RIB1

 Service API

 A
pplication

 Space

FIB1

NPE
FIB1

 NPE

 Interconnect Forw
arding

 Plane
 C

ontrol Plane

IPv6 Functional API
Implementation

 E
lem

ent A
w

are

ction
 A

bstra
 L

a yer

 System
 A

w
are

ction

 A
bstra

 L
a yer

 Functional API

IPv6 Service API
Implementation

Figure 1 - Example Single FIB System

 IPv6 Task Group 6

Network Processing Forum Software Working Group

Yet another design is worth consideration. This implementation might represent a system that has created
multiple virtual routers in order to realize a Virtual Private Network. In this scheme, isolation is provided
between routing domains by maintaining independent RIBs, and as a consequence, unique instances of
their associated FIBs. In this situation, the control plane has knowledge of two unique FIBs and will be
dealing with two unique FIB handles.

RTM

OSPF 2

Multiprotocol
BGP

RIB2

 Service API

 Space

A
pplication

OSPF 1

RIB1

FIB2 FIB1

NPE
FIB2 FIB1

 NPE

 Interconnect Forw
arding

 Plane
 C

ontrol Plane

IPv6 Functional API
Implementation

 E
lem

ent A
w

are

action
 A

bstr
 L

a yer

 System
 A

w
are

ction

 A
bstra

 L
a yer

 Functional API

IPv6 Service API
Implementation

Figure 2 - Example Multiple FIB System

The introduction, so far, has presented high level concepts related to IPv6 Unicast Forwarding and the
placement of various components. This document acknowledges the wide range and variety of target
environments for control plane applications and NPs. In Section 3, API Usage Model, in depth
information is provided regarding the representation of a FIB and the effect this has on the design of the
IPv6 Unicast Forwarding Service API.

 IPv6 Task Group 7

Network Processing Forum Software Working Group

The remainder of this document is organized as follows:

• Section 3 describes forwarding information base models and usage of the corresponding API
function calls. The unified and discrete models are covered as well as the optional address
resolution.

• Section 4 describes the data structures, callbacks, return values, and events used in the IPv6
Unicast Forwarding Service API.

• Section 5 describes the function calls used in the IPv6 Unicast Forwarding Service API.

• Section 6 summarizes the function call names by category and also provides a list of events.

• Section 7 provides references to other relevant NPF documentation.

• Appendix A provides an informative appendix containing an IPv6 Unicast Forwarding header
file.

• Appendix B provides a list of NPF members at the time of approval.

2.1 Assumptions and External Requirements
• For a better understanding of this specification, it is assumed that the reader has an understanding

of the concepts and guidelines presented in the following NPF Software Implementation
Agreements:

o Software API Conventions (Revision 2, September 2003).

o API Software Framework (Revision 1, August 2002).

o Interface Management API (Revision 1, August 2002).

• While the term “table” is used throughout this document, this is a convenience to describe the
model. There is no requirement that tables be implemented below the API, either on the control
plane or the forwarding plane.

• The following concepts are contained in the NPF Software Implementation Agreement –
Interface Management API (Revision 1, August 2002):

o The description of how logical layer 3 interfaces are associated with a particular FIB.

• All API calls are considered asynchronous in nature, unless otherwise specified. The definitions
of synchronous and asynchronous behavior are specified by the NPF Software Implementation
Agreement – Software API Conventions (Revision 2, September 2003).

• As specified in the NPF Software Implementation Agreement – Software API Conventions
(Revision 2, September 2003), Section 6.4, memories that are used to hold values that are passed
as parameters are “owned” by the side that allocated them. An owner of a memory is responsible
for de-allocating this memory when it is no longer used.

2.2 Scope
• This specification describes data structures for IPv6 unicast forwarding and address resolution.

The data types and structures generally used by all API specifications are defined by the NPF
Software Implementation Agreement - Software API Conventions (Revision 2, September 2003)
document; however, IPv6 specific structures must be defined in an update of this document.

 IPv6 Task Group 8

Network Processing Forum Software Working Group

• This specification describes Service API definitions for IPv6 unicast forwarding and address
resolution. The API function details will include input/output parameters, return code
specifications and detailed usage notes specific to each invocation.

• This specification provides details regarding the handling of asynchronous events and expected
responses from API function invocations, including specifications for completion callback and
event handler routine registration and deregistration.

2.3 Dependencies
This document depends on the NPF Software Implementation Agreement - Software API Conventions
(Revision 2, September 2003) document for basic type definitions.

The document also depends on an update of the NPF Software Implementation Agreement – Interface
Management API (Revision 1, August 2002) document for the definition of NPF_IfHandle_t
encompassing definition of IPv6 interfaces and other functions to manage IPv6 interfaces.

Furthermore, this document depends on the NPF Software Implementation Agreement – IPv4 Unicast
Forwarding Service API for the definition of NPF_MediaAddress_t and NPF_MediaType_t.

 IPv6 Task Group 9

Network Processing Forum Software Working Group

3 API Usage Model
Depending upon the networking environment, control plane application design and forwarding plane NP
architecture, a Forwarding Information Base (FIB) may be modeled in several ways. This document
considers two modes for organizing and manipulating the IPv6 unicast forwarding information at the
Service API level. Since it is customary to describe a Forwarding Information Base (FIB) in terms of a
table data structure, this abstraction is used throughout the rest of this specification.

The first mode, called the unified table mode, uses a single table for structuring and managing IPv6
unicast forwarding information. The second mode, called the discrete table mode, uses separate prefix
and next hop tables for structuring and managing IPv6 unicast forwarding information. Additionally, both
modes represent address resolution information using a separate address resolution table.

The modes do not imply that the underlying NP forwarding elements support one or the other of these
modes. Since this is an NPF Services API, the application has no knowledge of the individual NP
forwarding elements, so the modes only specify the application layer interface to the IPv6 Unicast
Forwarding services provided by the system. The models each represent a shared view between an
application and the Service API implementation.

For example, an NP forwarding element may implement discrete mode prefix and next hop tables,
whereas the control plane routing application may organize its FIB information in a unified model. In
such a case, it is appropriate for the application to use the unified mode API function calls. The IPv6
Unicast Forwarding Services API implementation or some other software below it on the CP or NP
forwarding element, would then be responsible for mapping the unified parameters to a suitable format
for the discrete mode organization of the NP.

The two modes and their data entities are representative of a large number of system implementations.
However, based on a desire for maximum interoperability and a perceived current market prevalence of
routing applications designed using a unified mode, it is so stated:

Compliant implementations of the IPv6 Unicast Forwarding Service API specification MUST
implement the unified table mode, but MAY also implement the discrete table mode, according to
segment needs and product capabilities.

With the above requirements statement, it is acknowledged that certain combinations of application and
NP architecture choices may place an extra burden upon either the application or the IPv6 Service API
implementation. Therefore, the decision to offer an optional discrete mode is prompted primarily to
alleviate two concerns:

o First, excessive amounts of storage may be required to maintain state information if the Service
API mode does not match the underlying forwarding element representation. This is particularly
important because many network processors have imbedded control points with limited storage.

o Second, the amount of processing needed to manage a table model which does not match the
underlying representation could lead to unreasonable delays in transmitting changes to the
network processor.

 IPv6 Task Group 10

Network Processing Forum Software Working Group

3.1 Unified Table Model
Implementations that utilize the unified table model to represent IPv6 unicast forwarding information use
a single data entity, which shall be subsequently referred to as a “FIB Table.”1 This table is comprised of
entries, each one consisting of a prefix and an array of next hop information.

To facilitate capabilities such as load balancing or ECMP, the next hop array may contain information for
one or more next hops. Each next hop array is essentially a set of next hops. There are different flavors of
next hop, each of which dictates a different forwarding action. The basic, direct attach, and remote types
forward packets through the network processor. These forwarding next hop types have an IP destination
address and an egress interface included in their definition. Other flavors of next hop indicate other
actions such as discard the packet or forward the packet to the control plane.

Figure 3 illustrates the conceptual layout of a FIB table and several table entries. In this structure, the
unique “key” used to reference an entry is the prefix element.

NextHop 5 Weight=1

NextHop 3 Weight=1

NextHop 4 Weight=2

NextHop 1 Weight=1

NextHop 3 Weight=2

NextHop 2 Weight=3

NextHop 1 Weight=1

IPv6
Prefix 4

IPv6
Prefix 3

IPv6
Prefix 2

IPv6
Prefix 1

Prefix Next Hop Array

FIB Table

Figure 3 - Unified FIB Table Model

Address resolution in the unified table mode is modeled separately, using the distinct address resolution
functions and data types described later in this specification.

1 The term FIB is an acronym used for a Forwarding Information Base and is used throughout the document when
referring to the forwarding information abstraction. However, note that the term “FIB Table” has been chosen to
refer to the unified mode data entity used to model forwarding information. Therefore, it is used in the nomenclature
of the unified mode data structures and API function names.

 IPv6 Task Group 11

Network Processing Forum Software Working Group

3.2 Discrete Table Model
Implementations that utilize the discrete table model to represent IPv6 unicast forwarding information use
two separate data entities, which shall be subsequently referred to as the “Prefix Table” and the “Next
Hop Table.” The prefix table is comprised of entries, each one consisting of a prefix and a next hop
identifier that uniquely indicates an entry in a next hop table. The next hop table is comprised of entries,
each one consisting of a next hop identifier and an array of next hop information. As with the unified
mode FIB table, the next hop array can contain one or more elements of next hop information.

In order to forward a packet, each IP destination address specified in the prefix must have one or more
next hops associated with it. In the discrete model, this association is provided by the next hop identifier,
which correlates a prefix table entry to an entry in the next hop table. This “split” table model provides
several benefits in some system designs. For example, some classes of high-performance networking
nodes (e.g. – BGP routers) require optimal FIB updates when a set of routes changes. With a discrete
model implementation, it may be possible to efficiently update forwarding information by altering a
subset of next hop table entries. Whereas, in a unified model, it may be required that a larger set of FIB
table entries be modified to accomplish the same forwarding information update.

Figure 4 illustrates the conceptual layout and relationship of the prefix table and next hop table. In the
prefix table, the unique “key” used to reference an entry is the prefix element. In the next hop table, the
unique “key” used to reference an entry is the next hop identifier.

efix 1

efix 2

efix 3

efix 4

efix N

Next Hop Table Prefix Table
Next Hop
ID Next Hop Array Next Hop

ID Prefix

NextHop 1 Weight=1
Next Hop
ID 1 IPv6

Pr
Next Hop
ID 2 NextHop 2 Weight=3

NextHop 3 Weight=2
IPv6
Pr

Next Hop
ID 4

NextHop 1 Weight=1
IPv6
Pr

Next Hop
ID 1

Next Hop
ID 2 NextHop 4 Weight=2

IPv6
Pr

Next Hop
ID 2

NextHop 3 Weight=1
Next Hop
ID 3

IPv6
Pr

Next Hop
ID 3

NextHop 5 Weight=1
Next Hop
ID 4

Figure 4 - Discrete Table Model

An application may create multiple prefix and next hop tables. The API defines a function that creates a
relationship between a prefix table and a next hop table. Such relationships can be one-to-one, so that
there is a prefix table corresponding to each next hop table. Additionally, the relationship may be many-
to-one, in which two or more prefix tables share a single next hop table. A one-to-many relationship, in
which a single prefix table is associated with multiple next hop tables, is not supported.

 IPv6 Task Group 12

Network Processing Forum Software Working Group

The application is responsible for the allocation and use of next hop identifier values. It may choose any
values it wants, and it may re-use them in any way it wants. An application should create a next hop table
entry for each new next hop identifier it uses in the prefix table. If an NP forwarding element references a
prefix table entry containing a next hop identifier that is not assigned to a valid next hop table entry, the
implementation may generate an event to signal the application of the problem.

Address resolution in the discrete table mode is also modeled separately, using the distinct address
resolution functions and data types described later in this specification.

 IPv6 Task Group 13

Network Processing Forum Software Working Group

3.3 Address Resolution Table
For both the unified and discrete model, the next hop information in a next hop array element contains IP-
level address and egress interface information. In order to forward a packet, the next hop IP address and
egress interface must be resolved to a layer 2 address. The address resolution table makes this possible, by
taking an IP address and egress interface as key fields, and providing a media specific address.

Neighbor Discovery may be implemented in several ways, e.g. by means of a Control Plane application.
Alternatively, Neighbor Discovery could be implemented in the forwarding blades.

Neighbor Discovery interacts directly with data forwarding in two situations:

• When a packet should be forwarded and no entry exists in the Address Resolution Table for that
nexthop. Neighbor Discovery must then resolve the nexthop address and install an entry in the
Address Resolution Table.

• When a packet should be forwarded and the Address Resolution Table entry is in the stale state. The
stale state indicates that the destination has been reachable and the packet can be sent, but a refresh is
requested.

A reachability state is included in the Address Resolution Table entries for supporting exchange of state
information with the NP forwarding element. The Neighbor Discovery Handler must maintain the state to
enable the NP forwarding element to distinguish between a reachable entry and a stale entry.

Figure 5 gives an illustration of the model with the Neighbor Discovery Handler implemented in the
Control Plane and using this SAPI.

In the Control Plane the reachability states are then used as defined by the Neighbor Discovery protocol:

incomplete Address resolution is being performed on the entry. Specifically, a Neighbor
Solicitation has been sent to the solicited-node multicast address of the target, but
the corresponding Neighbor Advertisement has not yet been received.

reachable Positive confirmation was received within the last ReachableTime milliseconds that
the forward path to the neighbor was functioning properly. While reachable, no
special action takes place as packets are sent.

stale More than ReachableTime milliseconds have elapsed since the last positive
confirmation was received that the forward path was functioning properly. While
stale, no action takes place until a packet is sent.

The stale state is also entered upon receiving an unsolicited Neighbor Discovery
message that updates the cached link-layer address. Receipt of such a message does
not confirm reachability, and entering the stale state insures reachability is verified
quickly if the entry is actually being used. However, reachability is not actually
verified until the entry is actually used.

 IPv6 Task Group 14

Network Processing Forum Software Working Group

delay More than ReachableTime milliseconds have elapsed since the last positive
confirmation was received that the forward path was functioning properly, and a
packet was sent within the last DELAY_FIRST_PROBE_TIME seconds. If no
reachability confirmation is received within DELAY_FIRST_PROBE_TIME
seconds of entering the delay state, send a Neighbor Solicitation and change the
state to probe.

The delay state is an optimization that gives upper-layer protocols additional time to
provide reachability confirmation in those cases where ReachableTime milliseconds
have passed since the last confirmation due to lack of recent traffic. Without this
optimization the opening of a TCP connection after a traffic lull would initiate
probes even though the subsequent three-way handshake would provide a
reachability confirmation almost immediately.

probe A reachability confirmation is actively sought by retransmitting Neighbor
Solicitations every RetransTimer milliseconds until a reachability confirmation is
received.

Above

• ReachableTime is the time a neighbor is considered reachable after receiving a reachability
confirmation

• RetransTimer is the time between retransmissions of Neighbor Solicitation messages to a
neighbor when resolving the address or when probing the reachability of a neighbor

• DELAY_FIRST_PROBE is a Neighbor Discovery protocol constant, currently being 5 seconds.

In the Forwarding Plane the states are used as follows:

incomplete No layer 2 address is available for the entry. A corresponding TRANSITION event
has been sent across the SAPI.

A small queue of packets, waiting for a layer 2 address to be available, is
maintained.

reachable,
delay,
probe

A layer 2 address is available for the entry and may be used. No special action takes
place as packets are sent.

In the forwarding plane do not distinguish between the reachable, delay and probe
states.

stale While stale, a layer 2 address is available for the entry, however no special action
takes place until a packet is sent. When a packet is sent, a corresponding
TRANSITION event is sent across the SAPI and the reachable, delay or probe state
is entered.

 IPv6 Task Group 15

Network Processing Forum Software Working Group

none

stale

delay

stale

Control
Plane

Forwarding
Plane

*or delay
 or probe

NPF Sw
APIs

TRANSITION
event

TRANSITION
event

tifi ti

AddResEntryAdd(..
reachability←reachable..)

AddResEntryAdd(..
reachability←stale..)

AddResEntryDelete(..)

probe

reachableincomplete

none

Action

Trigger

incomplete reachable*

Figure 5 - IPv6 Address Resolution Model

Figure 5 is a simplified state diagram to illustrate the principles of the ND protocol. Additional transitions
are present to cope with irregular behaviour, i.e. exchange of link address.In the Forwarding Plane, the
forwarding of an IPv6 packet triggers, when no entry in the relevant Address Resolution Table exists for
the next hop, a new entry in this Address Resolution Table in the incomplete state, as well as the queuing
of the packet and the propagation of a corresponding TRANSITION event over the SAPI. This triggers
the Neighbor Discovery handler to proceed with address resolution according to the Neighbor Discovery
protocol. When the IPv6 address is resolved, the Neighbor Discovery handler informs this, by a SAPI
request, to the Forwarding Plane, where it triggers a transition to the reachable state, and sending of
queued packets. When the Neighbor Discovery handler changes the state of the corresponding entry to
stale state, this is informed, by a SAPI request, to the Forwarding Plane, where it triggers a transition to
stale state. The sending of the next relevant IPv6 packet triggers in the Forwarding Plane a state change
back to the reachable (or delay or probe) state, as well as the propagation of a corresponding
TRANSITION event over the SAPI, such that the Neighbor Discovery handler may initiate some
validation of the reachability information in parallel with packet forwarding. Should the Neighbor
Discovery handler delete an entry, this is informed to the Forwarding layer, by a SAPI request.

When Neighbor Discovery is implemented in forwarding blades, it is the SAPI implementation that uses
the reachability states as defined by the Neighbor Discovery protocol. The SAPI implementation may use
or ignore requests regarding address resolution, and application may use or ignore events regarding

 IPv6 Task Group 16

Network Processing Forum Software Working Group

address resolution. As an example, upper layer reachability confirmation indications may be mapped to
address resolution related update requests that may be used or ignored by the SAPI implementation.

An address resolution table entry contains media specific information for IP address and egress interface
pairs. Because there are many types of physical media, the media address component is defined as a type
field, indicating the media type, and a union of media addresses definitions.

Figure 6 illustrates the conceptual layout of the address resolution table. As mentioned, the unique “key”
used to reference an entry is the combination of the IP address and the egress interface identifier.

Address Resolution Table
Next Hop

IP Address Reachability Interface Handle

 Interface
 4

IP Address
 1

 Interface
 3

IP Address
 2

 Interface
 1

IP Address
 3

 Interface
 6

IP Address
 4

Figure 6 - Address Resolution Tab

To provide further flexibility, note that the four pieces
table entry are also defined in the next hop information
implementations to avoid an additional address resolut
available immediately when the next hop is determined

 IPv6 Task
Media Address

MAC
Address A

Reachable

MAC
Address C

Reachable

MAC
Address X

Stale

MAC
Address D

Reachable

le Model - (Ethernet example)

of information that comprise an address resolution
 in a next hop array element. This allows some
ion table lookup because the media address is
.

Group 17

Network Processing Forum Software Working Group

3.4 API Usage Guidelines
Application clients of the IPv6 Services API will create one or more instances of IPv6 tables to control
the IPv6 forwarding of a device. In order to determine what type of table to create, implementations may
use the query methods defined in section 5.5 to determine which table modes are supported and which
mode provides the best performance. Once an application has determined the supported and preferred
modes of operation, it may create one or more Prefix, Next Hop, FIB, and Address Resolution tables,
using the functions associated with each table type to populate and monitor each table.

Some implementations may only support a unified table mode of operation. Unified table-only
implementations will return an error code if discrete prefix or next hop table functions are invoked.

Unified and discrete table implementations will support the address resolution functions.

Implementations that support both discrete and unified table mode of operation may be used in both
modes at the same time, however, it is assumed that each mode is used for a unique and distinct FIB. In
other words, the two different modes should not be used to operate on the same FIB.

The unified FIB table functions may not be used with the discrete next hop and prefix table handles and
discrete next hop and prefix table functions may not be used with unified FIB table handles. Type
checking will detect such misuse at compile time, or, if not detected, the implementation will return errors
when discrete handles are used with unified functions and vice versa.

Applications
Supporting
Discrete Mode
Function Calls

Applications
Supporting
Unified Mode
Function Calls

Discrete Function
Calls

Unified Function Calls

Implementations
Providing Both
Unified and
Discrete Mode
Function Calls

Implementations
Providing Only
Unified Mode
Function Calls

Figure 7 - Usage Models

 IPv6 Task Group 18

Network Processing Forum Software Working Group

4 Data Types
This section defines data types that are used in the unified and discrete mode implementations as well as
shared data types such as return codes, table mode query values, next hop information and IPv6 address
resolution data structures. In addition, this section provides data structures used for asynchronous
completion callbacks and event notifications.

4.1 Common Data Types
4.1.1 Table Mode Query Data Types
This section defines the types used by an application to query the supported and preferred table modes of
an implementation.
typedef enum {
 NPF_IPV6UC_UNIFIED_ONLY = 1,
 NPF_IPV6UC_BOTH_SUPPORTED = 2
} NPF_IPv6UC_SupportedMode_t;

typedef enum {
 NPF_IPV6UC_DISCRETE_PREFERRED = 1,
 NPF_IPV6UC_UNIFIED_PREFERRED = 2,
 NPF_IPV6UC_NO_PREFERENCE = 3
} NPF_IPv6UC_PreferredMode_t;

4.1.2 Prefix Data Types
This simple data type provides a more meaningful name for the structure that defines an IPv6 address and
prefix length.
/*
 * IPv6 prefix type
 */
typedef struct {
 NPF_IPv6Address_t IPv6Addr;
 NPF_uint8_t IPv6Plen;
} NPF_IPv6Prefix_t;

/*
 * IPv6 prefix retype
 */
typedef NPF_IPv6Prefix_t NPF_IPv6UC_Prefix_t;

4.1.3 Next Hop Array Data Types
A Next Hop Table entry consists of a Next Hop identifier and a Next Hop array, whereas, a FIB Table
entry consists of a prefix and a Next Hop array. In each case, there exists a Next Hop array which defines
one or more next hops with a count to indicate the number of next hops in the array.

• nextHopCount – The number of next hops in the Next Hop array.

• nextHopArray – An array of next hops. If multiple next hops are specified, the weight member of the
NPF_IPv6UC_NextHop_t structure is used to determine which data packets to forward to each next
hop. The algorithm used to select particular next hops is implementation dependent.

/*
 * IPv6 unicast Next Hop Array: nextHopArray points to an array
 * (one or more) of NPF_IPv6UC_NextHop_t structures.
 * nextHopCount indicates how many next hops are in the array.

 IPv6 Task Group 19

Network Processing Forum Software Working Group

 */
typedef struct {
 NPF_uint32_t nextHopCount;
 NPF_IPv6UC_NextHop_t *nextHopArray;
} NPF_IPv6UC_NextHopArray_t;

Each member of the nextHopArray specifies a particular next hop definition, with the following
components:

• type – The type of the next hop:

o basic – The forwarding behavior for a basic entry is to send the packet to the Next Hop IP address
in the next hop.

o directAttach – A directly attached subnet means that the IPv6 destination address is on a directly
attached network, and the Next Hop IP address is either absent or is identical to the IPv6
destination address. The forwarding behavior is modified by selecting a media address
corresponding to the destination IP address, not a next hop router IP address. Support for this type
is optional.

o sendToCP – Forwarding behavior for this type is for the network processor to send the packet to a
Control Plane. Other than type, no other fields are used for this kind of next hop.

o discard – The network processor counts the packet and then drops it. Other than type, there are no
other fields for this kind of next hop.

o remote – The next hop IP address is an address of a remote router through which this packet will
be forwarded, not the immediate next hop IP address. The egress interface handle MAY be
absent. Route table entries with prefixes learned through the BGP protocol MAY use these Next
Hop Entries. Forwarding behavior modification, if any, is the implementer’s choice. One possible
use of the Remote type is in optimization of prefix table updates on BGP routes with an IBGP
switch over. Support for this type is optional.

o tunnel – The Next Hop IP address is the address of the next hop in the tunnel. The egress
interface handle points to a tunnel pseudo-interface. The Tunnel Exit Node address, which is the
final destination of the encapsulating packet, is held in the interface structure.

• weight – Has meaning when the Next Hop array contains a list of multiple interchangeable next hops.
One possible use may be for the forwarder to assign each packet to one next hop in the list, while
trying to keep the link bandwidth utilization of each proportional to its own weight, relative to the rest
of the list. This parameter can be used in various environments, such as link bundling, ECMP, traffic
engineering and others. How this value is assigned and used is outside the scope of this document.

• egressInterface – The handle of the interface representing the egress path to which the next hop router
is connected.

• nextHopIP – The IPv6 address of the next hop router or end system.

• mediaAddress – Optional media address associated with the next hop IP address. This parameter may,
together with the reachability parameter below, be used to populate lower layer information in the
FIB, if the FIB is organized to contain such information. However, some implementations hold lower
layer information in a different table; the address resolution table. In such a case, the address
resolution table function calls will provide the means to manipulate the lower layer information. This
lower layer information may be provided by one means or the other2, but in general, both methods

2 An implementation MAY ignore L2 addresses from the IPv6 API, if it has a better source for the information, such
as Neighbor Discovery directly implemented on a line card.

 IPv6 Task Group 20

Network Processing Forum Software Working Group

should not be used together. If an implementation does provide the means to use both this parameter
and the address resolution table function calls, the preference of which function call to use is
application dependent.

• reachability – Optional reachability state associated with the next hop IP address. This parameter
may, together with the mediaAddress parameter above, be used to populate lower layer information in
the FIB, as described for the mediaAddress parameter above.

/*
 * IPv6 unicast next hop structure: weight, egressInterface and
 * nextHopIP fields are valid only for NPF_IPV6UC_NH_BASIC,
 * NPF_IPV6UC_NH_DIRECT_ATTACH, NPF_IPV6UC_NH_REMOTE, and
 * NPF_IPV6UC_NH_TUNNEL types.
 */
typedef struct {
 NPF_IPv6UC_NextHopType_t type;
 NPF_uint16_t weight;
 NPF_IfHandle_t egressInterface;
 NPF_IPv6Address_t nextHopIP;
 NPF_MediaAddress_t mediaAddress;
 NPF_IPv6_Reachability_t reachability;
} NPF_IPv6UC_NextHop_t;

typedef enum {
 NPF_IPV6UC_NH_BASIC = 1,
 NPF_IPV6UC_NH_DIRECT_ATTACH = 2,
 NPF_IPV6UC_NH_SEND_TO_CP = 3,
 NPF_IPV6UC_NH_DISCARD = 4,
 NPF_IPV6UC_NH_REMOTE = 5,
 NPF_IPV6UC_NH_TUNNEL = 6
} NPF_IPv6UC_NextHopType_t;

4.1.4 Address Resolution Data Types
This section defines the IPv6 control structures that are required to perform IPv6 address to physical
address resolution. IPv6 address to physical address resolution is performed by the IPv6 Neighbor
Discovery protocol as described by RFC 2461.

An Address Resolution Table entry consists of an IP address, an interface handle, media specific address
and a reachability state of the entry. These components are defined in a single
NPF_IPv6UC_AddResEntry_t structure.

• IP_Address - The protocol address for which a media-specific address binding is defined.

• interfaceHandle - The interface which is associated with this entry.

• mediaAddress - The media address associated with the specified protocol address. Examples might be
a 6 byte Ethernet MAC address or an ATM VPI/VCI.

• reachability - The reachability state of the entry.
/*
IPv6 unicast Address Resolution entry:
 */
typedef struct {
 NPF_IPv6Address_t IP_Address;
 NPF_IfHandle_t interfaceHandle;
 NPF_MediaAddress_t mediaAddress;
 NPF_IPv6_Reachability_t reachability;

 IPv6 Task Group 21

Network Processing Forum Software Working Group

} NPF_IPv6UC_AddResEntry_t;

When performing a query of the address resolution table, the NPF_IPv6UC_AddResKey_t structure
defines the search key.
/*
 * This structure contains the key of an Address Resolution
 * table entry, consisting of IP address and interface handle.
 */
typedef struct {
 NPF_IPv6Address_t IP_Address;
 NPF_IfHandle_t interfaceHandle;
} NPF_IPv6UC_AddResKey_t;

For an Address Resolution Table query, the response structure is identical to the
NPF_IPv6UC_AddResEntry_t structure defined above. Instead of duplicating this structure with a unique
name, a simple typedef is defined and this structure name is then used in the completion callback
asynchronous response union.
/*
 * This simple data type provides a more meaningful name for the
 * structure used in the address resolution asynchronous callback data.
 */
typedef NPF_IPv6UC_AddResEntry_t NPF_IPv6UC_AddResQueryResp_t;

The media specific address structure is defined in a common NPF header file since it is used by several
APIs (including the NPF Software Implementation Agreement – IPv4 Unicast Forwarding Service API).
It is replicated here as a comment for informative purposes.

The media specific address structure contains a type field to identify the particular format.

• type – The type of address contained in the mediaAddress parameter.
/*
 * Media Address structure:
 */
typedef struct {
 NPF_MediaType_t type;
 union {
 NPF_MAC_Address_t MAC_Address;
 NPF_VccAddr_t ATM_Vc;
 }u;
} NPF_MediaAddress_t;

/*
 * Media type definition:
 */
typedef enum {
 NPF_NO_MEDIA_TYPE = 1,
 NPF_MAC_ADDRESS = 2,
 NPF_ATM_VC = 3
} NPF_MediaType_t;

The IPv6 address resolution reachability type is defined as:
typedef enum {
 NPF_IPv6_VOID = 0,
 NPF_IPv6_NONE = 1,

 IPv6 Task Group 22

Network Processing Forum Software Working Group

 NPF_IPv6_INCOMPLETE = 2,
 NPF_IPv6_REACHABLE = 3,
 NPF_IPv6_STALE = 4,
 NPF_IPv6_DELAY = 5,
 NPF_IPv6_PROBE = 6
} NPF_IPv6_Reachability_t;

where the reachability constants means:

• NPF_IPv6_VOID: no address resolution reachability state information present

• NPF_IPv6_NONE: address resolution entry, required to send packet, is missing

• NPF_IPv6_INCOMPLETE: address resolution is in progress, link-layer addr. not determined

• NPF_IPv6_REACHABLE: link-layer addr. determined, neighbor known reachable recently

• NPF_IPv6_STALE: neighbor no longer known reachable recently, no traffic sent yet

• NPF_IPv6_DELAY: traffic sent to neighbor, delay sending probes for a short while

• NPF_IPv6_PROBE: unicast Neighbor Solicitation probes being sent to verify reachability.

4.1.5 Table Types
The Address Resolution Table id is a nonzero integer value assigned by the application to each Address
Resolution Table. No two Address Resolution Tables may have the same Address Resolution Table id
value. The Address Resolution Table id performs at least two functions: it serves to identify the Address
Resolution Tables in callbacks, and it aids in recovering from the unlikely event of a lost callback from
the Address Resolution Table creation function. The IPv6 Unicast Forwarding Service API
implementation must remember the Address Resolution Table id value associated with each Address
Resolution Table Handle it creates. Any attempt by the application to create a new Address Resolution
Table Handle using an Address Resolution Table id value already associated with an existing handle must
result in an error being returned to the application, and no new handle created. Callback information from
functions that create, modify, destroy or query Address Resolution Tables must always include the
Address Resolution Table id value for each Address Resolution Table referenced.
typedef NPF_uint32_t NPF_IPv6UC_AddResTableId_t;

An Address Resolution Table is uniquely identified by a table handle which is defined as follows:
typedef NPF_uint32_t NPF_IPv6UC_AddResTableHandle_t;

The IPv6 Unicast Forwarding API supports forwarding tables of two types, unified and discrete, which
each have their own corresponding handle types. Other APIs, such as Interface Management and Packet
Handler, depend on the IPv6 Unicast Forwarding API for handle definitions because they contain
functions that refer to forwarding tables. The following Forwarding Table Handle represents a forwarding
table (FIB) regardless of its mode. It is used in other APIs, so as not to expose the table’s type (unified or
discrete) outside of the IPv6 Unicast Forwarding API.
typedef NPF_uint32_t NPF_IPv6UC_FwdTableHandle_t;

4.1.6 Return Codes
This section defines IPv6 Unicast Forwarding API return codes that are used for IPv6 forwarding and
address resolution function calls. These codes are used for returns from asynchronous API function calls.
/*
 * Asynchronous error codes (returned in function callbacks)

 IPv6 Task Group 23

Network Processing Forum Software Working Group

 */

typedef NPF_uint32_t NPF_IPv6UC_ReturnCode_t;

#define IPV6_ERR(n) ((NPF_IPv6UC_ReturnCode_t) NPF_IPV6_BASE_ERR + (n))

#define NPF_IPV6UC_E_TABLE_ENTRY_DOES_NOT_EXIST IPV6_ERR(1)
#define NPF_IPV6UC_E_INVALID_HANDLE IPV6_ERR(3)
#define NPF_IPV6UC_E_INSUFFICIENT_STORAGE IPV6_ERR(4)

 IPv6 Task Group 24

Network Processing Forum Software Working Group

4.2 Unified Mode Data Types
4.2.1 FIB Table Query Data Type
This section defines the IPv6 specific control structures used for querying FIB table contents in unified
implementations. The asynchronous callback data will contain one or more of the following
NPF_IPv6UC_FibQueryResp_t structures. More than one structure is provided if multiple FIB table
entries are queried at once.

• prefix – The prefix used to locate a particular entry in the FIB Table.

• nextHopArray – The set of one or more next hop definitions related to this prefix.
/*
 * This structure contains the query results for a single FIB
 * table entry.
 */
typedef struct {
 NPF_IPv6UC_Prefix_t prefix;
 NPF_IPv6UC_NextHopArray_t nextHopArray;
} NPF_IPv6UC_FibQueryResp_t;

4.2.2 Table Types
The FIB Table id is a nonzero integer value assigned by the application to each FIB Table. No two FIB
Tables may have the same FIB Table id value. The FIB Table id performs at least two functions: it serves
to identify the FIB Tables in callbacks, and it aids in recovering from the unlikely event of a lost callback
from the FIB Table creation function. The IPv6 Unicast Forwarding Service API implementation must
remember the FIB Table id value associated with each FIB Table Handle it creates. Any attempt by the
application to create a new FIB Table Handle using an FIB Table id value already associated with an
existing handle must result in an error being returned to the application, and no new handle created.
Callback information from functions that create, modify, destroy or query FIB Tables must always
include the FIB Table id value for each FIB Table referenced.
typedef NPF_uint32_t NPF_IPv6UC_FibTableId_t;

A FIB Table is uniquely identified within the scope of the IPv6 Unicast Forwarding API by a table handle
which is defined as follows:
typedef NPF_uint32_t NPF_IPv6UC_FibTableHandle_t;

Note that external to the IPv6 Unicast Forwarding API, a FIB table is uniquely identified by a table
handle which is defined by the data type NPF_IPv6UC_FwdTableHandle_t. This specification could have
forced API calls external to the IPv6 Unicast Forwarding API to specify a “FIB type” parameter and the
internal FIB handle type. However, for a cleaner interface, a decision was made to use a single external
handle type to identify a FIB, regardless of how the IPv6 function was structuring the information.

The following structure is used in the callback from the FIB Table handle creation function, to return two
handles. The internal handle is used within the scope of the IPv6 unicast forwarding API and the external
handle is used by other NPF API’s when referencing an IPv6 FIB. It is the responsibility of the
implementation to maintain the mapping between these two handles, which refer to the same FIB.
/*
 * Async Response struct for NPF_IPv6UC_FIBTableHandleCreate()
 */
typedef struct {
 NPF_IPv6UC_FwdTableHandle_t extHandle;

 IPv6 Task Group 25

Network Processing Forum Software Working Group

 NPF_IPv6UC_FibTableHandle_t intHandle;
} NPF_IPv6UC_FibCreateResp_t;

 IPv6 Task Group 26

Network Processing Forum Software Working Group

4.3 Discrete Mode Data Types
4.3.1 Prefix Table Query Data Type
This section defines the IPv6 specific control structures used for querying prefix table contents in discrete
implementations. The asynchronous callback data will contain one or more of the following
NPF_IPv6UC_PrefixQueryResp_t structures. More than one structure is provided if multiple prefix table
entries are queried at once.

• prefix – The prefix used to locate a particular entry in the Prefix Table.

• nextHopIdentifier – The identifier of the next hop array in the Next Hop Table for this particular
prefix.

/*
 * This structure contains the query results for a single prefix
 * table entry.
 */
typedef struct {
 NPF_IPv6UC_Prefix_t prefix;
 NPF_uint32_t nextHopIdentifier;
} NPF_IPv6UC_PrefixQueryResp_t;

4.3.2 Next Hop Table Query Data Type
This section defines the IPv6 specific control structures used for querying next hop table contents in
discrete implementations. The asynchronous callback data will contain one or more of the following
NPF_IPv6UC_NextHopQueryResp_t structures. More than one structure is provided if multiple next hop
table entries are queried at once.

• nextHopIdentifier – The next hop identifier used to locate a particular entry in the Next Hop Table.

• nextHopArray – The set of one or more next hop definitions related to this particular next hop
identifier.

/*
 * This structure contains the query results for a single next
 * hop table entry.
 */
typedef struct {
 NPF_uint32 nextHopIdentifier;
 NPF_IPv6UC_NextHopArray_t nextHopArray;
} NPF_IPv6UC_NextHopQueryResp_t;

4.3.3 Table Types
The Prefix Table id is a nonzero integer value assigned by the application to each Prefix Table. No two
Prefix Tables may have the same Prefix Table id value. The Prefix Table id performs at least two
functions: it serves to identify the Prefix Tables in callbacks, and it aids in recovering from the unlikely
event of a lost callback from the Prefix Table creation function. The IPv6 Unicast Forwarding Service
API implementation must remember the Prefix Table id value associated with each Prefix Table Handle it
creates. Any attempt by the application to create a new Prefix Table Handle using a Prefix Table id value
already associated with an existing handle must result in an error being returned to the application, and no
new handle created. Callback information from functions that create, modify, destroy or query Prefix
Tables must always include the Prefix Table id value for each Prefix Table referenced.
typedef NPF_uint32_t NPF_IPv6UC_PrefixTableId_t;

 IPv6 Task Group 27

Network Processing Forum Software Working Group

A Prefix Table is uniquely identified within the scope of the IPv6 Unicast Forwarding API by a table
handle, which is defined as follows:
typedef NPF_uint32_t NPF_IPv6UC_PrefixTableHandle_t;

Note that external to the IPv6 Unicast Forwarding API, a prefix table is uniquely identified by a table
handle which is defined by the data type NPF_IPv6UC_FwdTableHandle_t. This specification could have
forced API calls external to the IPv6 Unicast Forwarding API to specify a “FIB type” parameter and the
internal FIB handle type. However, for a cleaner interface, a decision was made to use a single external
handle type to identify a FIB, regardless of how the IPv6 function was structuring the information.

The following structure is used in the callback from the Prefix Table handle creation function, to return
two handles. The internal handle is used within the scope of the IPv6 Unicast forwarding API and the
external handle is used by other NPF API’s when referencing an IPv6 FIB. It is the responsibility of the
application to maintain the mapping between these two handles, which refer to the same FIB.
/*
 * Async Response struct for NPF_IPv6UC_PrefixTableHandleCreate()
 */
typedef struct {
 NPF_IPv6UC_FwdTableHandle_t extHandle;
 NPF_IPv6UC_PrefixTableHandle_t intHandle;
} NPF_IPv6UC_PfxCreateResp_t;

The Next Hop Table id is a nonzero integer value assigned by the application to each Next Hop Table. No
two Next Hop Tables may have the same Next Hop Table id value. The Next Hop Table id performs at
least two functions: it serves to identify the Next Hop Tables in callbacks, and it aids in recovering from
the unlikely event of a lost callback from the Next Hop Table creation function. The IPv6 Unicast
Forwarding Service API implementation must remember the Next Hop Table id value associated with
each Next Hop Table Handle it creates. Any attempt by the application to create a new Next Hop Table
Handle using a Next Hop Table id value already associated with an existing handle must result in an error
being returned to the application, and no new handle created. Callback information from functions that
create, modify, destroy or query Next Hop Tables must always include the Next Hop Table id value for
each Next Hop Table referenced.
typedef NPF_uint32_t NPF_IPv6UC_NextHopTableId_t;

A Next Hop Table is uniquely identified by a table handle which is defined as follows:
typedef NPF_uint32_t NPF_IPv6UC_NextHopTableHandle_t;

 IPv6 Task Group 28

Network Processing Forum Software Working Group

4.4 Data Structures for Completion Callbacks
This section defines the control structures needed for a Completion Callback, which provides the response
information to the application which invoked an asynchronous function call. Although an asynchronous
function call can request the execution of a single operation, many functions can also request the
execution of multiple operations. For example, an NPF_IPv6UC_AddResEntryAdd function call may
choose to add a single address resolution entry to the Address Resolution table, but it may also add
multiple entries with a single function call invocation.

When a single operation is requested, a single completion callback will occur. However, when multiple
operations are requested, not all of these requests may complete at the same time. The implementation
MAY invoke the completion callback one or more times in order to provide responses for the total
number of operations requested. For this reason, the callback data structure is designed to be flexible in
how it provides status on these responses and it also allows the bundling of one or more responses into a
single callback invocation.

Each completion callback provides the NPF_IPv6UC_CallbackData_t structure, whose members will
have particular values depending on the invoking function, whether or not a single operation was
requested and whether the operations were successful or not. The following sections provide details
regarding the data structures involved in a completion callback.

4.4.1 Completion Callback Structures
The NPF_IPv6UC_CallbackData_t structure is provided as a parameter when the callback function is
invoked. The basic definition of the fields is provided below, while more detailed descriptions follow.

• type – This field indicates which function invocation led to this response.

• allOK – This field and the numResp field provide a flexible means of providing information
regarding the number of responses in this callback and their status. The specific details for these fields
are provided below.

• numResp – This field and the allOK field provide a flexible means of providing information
regarding the number of responses in this callback and their status. The specific details for these fields
are provided below

• resp – A pointer to an array of response elements or the NULL pointer. Each array element contains
a return code, indicating the completion status of the request element, and possibly may contain other
information specific to the type of request.

typedef struct {
 NPF_IPv6UC_CallbackType_t type;
 NPF_boolean_t allOK;
 NPF_uint32_t numResp;
 NPF_IPv6UC_AsyncResponse_t *resp;
} NPF_IPv6UC_CallbackData_t;

The following section provides detailed information regarding the content and meaning of the members in
the NPF_IPv6UC_CallbackData_t structure. There are several possibilities to consider.

The application invokes a function requesting a single operation:

• If allOK = TRUE, then numResp = 0 and the “resp” pointer is NULL. This indicates the
operation completed successfully and there is no other additional response data to return.

• If allOK = FALSE, then numResp = 1 and the “resp” pointer points to a response
structure. If the returnCode field indicates NPF_NO_ERROR, the operation completed

 IPv6 Task Group 29

Network Processing Forum Software Working Group

successfully and there is additional response data in the structure. Otherwise, the
operation failed and the reason is indicated by the returnCode.

The application invokes a function requesting multiple operations:

• If all operations completed successfully at the same time and there is no additional
response data to provide, then allOK = TRUE, numResp = 0 and the “resp” pointer is
NULL.

• If all operations completed successfully at the same time, but there is additional response
data to provide, then allOK = FALSE, numResp indicates the total number of requested
operations and the “resp” pointer points to an array of response structures. The
returnCode field will indicate NPF_NO_ERROR.

• If some operations completed, but not all, then:

o allOK = FALSE, numResp = the number of request operations completed.

o The “resp” pointer will point to an array of response structures, each one containing
one element for each completed request. For operations that completed successfully,
the returnCode field will indicate NPF_NO_ERROR and additional response data
may be present, depending on the type of function invocation. For operations that
failed, the reason is indicated by the returnCode field.

Callback function invocations are repeated in this fashion until all requests are complete.
Responses are not repeated for request elements already indicated as complete in earlier
callback function invocations.

The NPF_IPv6UC_AsyncResponse_t data structure contains a return code indicating an error or the
success of a particular request operation. The structure may also contain other optional information that
was requested by the operation or the information may assist in correlating the response to the
corresponding request operation when multiple operations are requested by the application.

For IPv6 asynchronous function invocations that operate upon a particular table, it is the responsibility of
the invoking application to associate the table handle with the subsequent asynchronous response. It is
suggested that the “correlator”, supplied as an invocation parameter, be used for this purpose. For
example, when invoking the NPF_IPv6UC_PrefixEntryAdd() function, the application can choose a
correlator value that uniquely identifies, or points to, its own structures representing the forwarding table.
This value returned by the implementation in each callback invocation can help the application know to
which table the callback belongs. When the asynchronous NPF_IPv6UC_CallbackFunc() is called, the
prefix table handle will be returned in its correlator parameter.

The type field in the NPF_IPv6UC_CallbackData_t structure identifies the asynchronous function call
which has led to this callback, and therefore, the relevant member of the union.

One or more of the following structures may be provided to the callback function in the response array
within the NPF_IPv6UC_CallbackData_t structure.
typedef struct {
 NPF_IPv6UC_ReturnCode_t returnCode;
 union {
 NPF_IPv6UC_PrefixTableId_t prefixTableId;
 NPF_IPv6UC_NextHopTableId_t nextHopTableId;
 NPF_IPv6UC_FibTableId_t fibTableId;
 NPF_IPv6UC_AddResTableId_t addResTableId;
 NPF_uint32_t unused;
 } u1;
 union {

 IPv6 Task Group 30

Network Processing Forum Software Working Group

 NPF_IPv6UC_PfxCreateResp_t prefixTableHandles;
 NPF_IPv6UC_Prefix_t prefix
 NPF_IPv6UC_PrefixQueryResp_t prefixQueryResult;
 NPF_IPv6UC_NextHopTableHandle_t nextHopTableHandle;
 NPF_uint32_t nextHopIdentifier;
 NPF_IPv6UC_NextHopQueryResp_t nextHopQueryResult;
 NPF_IPv6UC_FibCreateResp_t fibTableHandles;
 NPF_IPv6UC_Prefix_t fibPrefix;
 NPF_IPv6UC_FibQueryResp_t fibQueryResult;
 NPF_IPv6UC_AddResTableHandle_t addResTableHandle;
 NPF_IPv6UC_AddResKey_t addResKey;
 NPF_IPv6UC_AddResQueryResp_t addResQueryResult;
 NPF_uint32_t tableSpaceRemaining;
 NPF_uint32_t unused;
 } u2;
} NPF_IPv6UC_AsyncResponse_t;

The following structure defines the completion callback type values.
/*
 * Common callback definition:
 */
typedef enum NPF_IPv6UC_CallbackType {
 NPF_IPV6UC_PREFIX_TABLE_HANDLE_CREATE = 1,
 NPF_IPV6UC_PREFIX_TABLE_HANDLE_DELETE = 2,
 NPF_IPV6UC_PREFIX_ENTRY_ADD = 3,
 NPF_IPV6UC_PREFIX_ENTRY_DELETE = 4,
 NPF_IPV6UC_PREFIX_TABLE_FLUSH = 5,
 NPF_IPV6UC_PREFIX_TABLE_ATTRIBUTE_QUERY = 6,
 NPF_IPV6UC_PREFIX_ENTRY_QUERY = 7,
 NPF_IPV6UC_PREFIX_NEXT_HOP_TABLE_BIND = 8,
 NPF_IPV6UC_NEXT_HOP_TABLE_HANDLE_CREATE = 9,
 NPF_IPV6UC_NEXT_HOP_TABLE_HANDLE_DELETE = 10,
 NPF_IPV6UC_NEXT_HOP_ENTRY_ADD = 11,
 NPF_IPV6UC_NEXT_HOP_ENTRY_DELETE = 12,
 NPF_IPV6UC_NEXT_HOP_TABLE_FLUSH = 13,
 NPF_IPV6UC_NEXT_HOP_TABLE_ATTRIBUTE_QUERY = 14,
 NPF_IPV6UC_NEXT_HOP_ENTRY_QUERY = 15,
 NPF_IPV6UC_FIB_TABLE_HANDLE_CREATE = 16,
 NPF_IPV6UC_FIB_TABLE_HANDLE_DELETE = 17,
 NPF_IPV6UC_FIB_ENTRY_ADD = 18,
 NPF_IPV6UC_FIB_ENTRY_DELETE = 19,
 NPF_IPV6UC_FIB_TABLE_FLUSH = 20,
 NPF_IPV6UC_FIB_TABLE_ATTRIBUTE_QUERY = 21,
 NPF_IPV6UC_FIB_ENTRY_QUERY = 22,
 NPF_IPV6UC_ADDRESS_RES_TABLE_HANDLE_CREATE = 23,
 NPF_IPV6UC_ADDRESS_RES_TABLE_HANDLE_DELETE = 24,
 NPF_IPV6UC_ADDRESS_RES_ENTRY_ADD = 25,
 NPF_IPV6UC_ADDRESS_RES_ENTRY_DELETE = 26,
 NPF_IPV6UC_ADDRESS_RES_TABLE_FLUSH = 27,
 NPF_IPv6UC_ADDRESS_RES_TABLE_ATTRIBUTE_QUERY = 28,
 NPF_IPV6UC_ADDRESS_RES_ENTRY_QUERY = 29
} NPF_IPv6UC_CallbackType_t;

 IPv6 Task Group 31

Network Processing Forum Software Working Group

Function Name Type Code Union Structure
(u2)

PrefixTableHandleCreate PREFIX_TABLE_HANDLE_CREATE prefixTableHandles

PrefixTableHandleDelete PREFIX_TABLE_HANDLE_DELETE unused

PrefixEntryAdd PREFIX_ENTRY_ADD prefix

PrefixEntryDelete PREFIX_ENTRY_DELETE prefix

PrefixTableFlush PREFIX_TABLE_FLUSH unused

PrefixTableAttributeQuery PREFIX_TABLE_ATTRIBUTE_QUERY tableSpaceRemaining

PrefixEntryQuery PREFIX_ENTRY_QUERY prefixQueryResult

PrefixNextHopTableBind PREFIX_NEXT_HOP_TABLE_BIND unused

NextHopTableHandleCreate NEXT_HOP_TABLE_HANDLE_CREATE nextHopTableHandle

NextHopTableHandleDelete NEXT_HOP_TABLE_HANDLE_DELETE unused

NextHopEntryAdd NEXT_HOP_ENTRY_ADD nextHopIdentifier

NextHopEntryDelete NEXT_HOP_ENTRY_DELETE nextHopIdentifier

NextHopTableFlush NEXT_HOP_TABLE_FLUSH unused

NextHopTableAttributeQuery NEXT_HOP_TABLE_ATTRIBUTE_QUERY tableSpaceRemaining

NextHopEntryQuery NEXT_HOP_ENTRY_QUERY nextHopQueryResult

FibTableHandleCreate FIB_TABLE_HANDLE_CREATE fibTableHandles

FibTableHandleDelete FIB_TABLE_HANDLE_DELETE unused

FibEntryAdd FIB_ENTRY_ADD fibPrefix

FibEntryDelete FIB_ENTRY_DELETE fibPrefix

FibTableFlush FIB_TABLE_FLUSH unused

FibTableAttributeQuery FIB_TABLE_ATTRIBUTE_QUERY tableSpaceRemaining

FibEntryQuery FIB_ENTRY_QUERY fibQueryResult

AddResTableHandleCreate ADDRESS_RES_TABLE_HANDLE_CREATE addResTableHandle

AddResTableHandleDelete ADDRESS_RES_TABLE_HANDLE_DELETE unused

AddResEntryAdd ADDRESS_RES_ENTRY_ADD addResKey

AddResEntryDelete ADDRESS_RES_ENTRY_DELETE addResKey

AddResTableFlush ADDRESS_RES_TABLE_FLUSH unused

AddResAttributeQuery ADDRESS_RES_TABLE_ATTRIBUTE_QUERY tableSpaceRemaining

AddResEntryQuery ADDRESS_RES_ENTRY_QUERY addResQueryResult

 IPv6 Task Group 32

Network Processing Forum Software Working Group

4.5 Data Structures for Event Notification
The following sections detail the information related to IPv6 Unicast events. When an event notification
routine is invoked, one of the parameters will be a structure of information related to one or more events.

4.5.1 Event Notification Types
The event type indicates the type of event data in the union of event structures returned in
NPF_IPv6UC_EventData_t.
/*
 * This structure enumerates the events defined for IPv6
 * Unicast forwarding.
 */
typedef enum NPF_IPv6UC_Event {
 NPF_IPV6UC_PREFIX_TBL_MISS = 1,
 NPF_IPV6UC_NEXT_HOP_TBL_MISS = 2,
 NPF_IPV6UC_FIB_PREFIX_MISS = 4,
 NPF_IPV6UC_FWDTBL_REFRESH = 5,
 NPF_IPV6UC_ADD_RES_TRANSITION = 6
} NPF_IPv6UC_Event_t;

4.5.2 Event Notification Structures
This section describes the various events which MAY be implemented.

It is important to note that even if an implementation does not support any of these events, the
implementation still needs to provide the register and deregister event function to enable interoperability.

Note that some of the event structures provide an internal handle identifying a FIB. It is the responsibility
of the application to provide the mapping between these internal handles and any external FIB handles
used in API invocations other than the IPv6 Unicast Forwarding API.

This structure defines all the possible event definitions for IPv6 Unicast. An event type field indicates
which member of the two unions are relevant in the specific structure.
/*
 * This structure represents a single event in the event array. The
 * type field indicates the specific event in the union.
 */
typedef struct {
 NPF_IPv6UC_Event_t type;
 union {
 NPF_IPv6UC_PrefixTableId_t prefixTableId;
 NPF_IPv6UC_NextHopTableId_t nextHopTableId;
 NPF_IPv6UC_FibTableId_t fibTableId;
 NPF_IPv6UC_AddResTableId_t addResTableId;
 NPF_uint32_t unused;
 } u1;
 union {
 NPF_IPv6UC_PrefixTblMiss_t prefixTblMiss;
 NPF_IPv6UC_NextHopTblMiss_t nextHopTblMiss;
 NPF_IPv6UC_FIB_PrefixMiss_t fibPrefixMiss;
 NPF_IPv6UC_FwdTbl_Refresh_t fwdTableRefreshRequest;
 NPF_IPv6UC_AddResTransition_t addResTransition;
 } u2;
} NPF_IPv6UC_EventData_t;

 IPv6 Task Group 33

Network Processing Forum Software Working Group

This event is triggered when the forwarding plane is unable to find a prefix table entry for a specific IP
address. This event is optional.
/*
 * This event data identifies the prefix table and the destination
 * IP address that was not located during a lookup.
 */
typedef struct {
 NPF_IPv6UC_PrefixTableHandle_t pfxTableHandle;
 NPF_IPv6Address_t destIP_Address;
} NPF_IPv6UC_PrefixTblMiss_t;

This event is triggered when the forwarding plane is unable to find a next hop table entry for a specific
next hop identifier. This event is optional.
/*
 * This event data identifies the next hop table and the next hop
 * identifier that was not located during a lookup.
 */
typedef struct {
 NPF_IPv6UC_NextHopTableHandle _t nextHopTableHandle;
 NPF_uint32_t nextHopIdentifier;
} NPF_IPv6UC_NextHopTblMiss_t;

This event is triggered when the forwarding plane is unable to find a FIB table entry for a specific IP
address. This event is optional
/*
 * This event data identifies the FIB table and the destination
 * IP address that was not located during a lookup.
 */

typedef struct {
 NPF_IPv6UC_FibTableHandle_t fibTableHandle;
 NPF_IPv6Address_t destIP_Address;
} NPF_IPv6UC_FIB_PrefixMiss_t;

This event is triggered when the application or the IPv6 API implementation needs to be notified that a
FIB needs to be refreshed on the forwarding plane. This event is optional.
/*
 * This event data identifies the unified or discrete table handle
 * identifying the FIB.
 */
typedef struct {
 NPF_IPv6UC_TableType_t tableHandleType;
 union {
 NPF_IPv6UC_FibTableHandle_t fibTableHandle;
 NPF_IPv6UC_PrefixTableHandle_t prefixTableHandle;
 } u;
} NPF_IPv6UC_FwdTbl_Refresh_t;

/*
 * This structure defines the enumerations for the table type used in
 * the NPF_IPv6UC_FwdTbl_Refresh_t structure above.
 */

typedef enum NPF_IPv6UC_TableType {

 IPv6 Task Group 34

Network Processing Forum Software Working Group

 NPF_IPV6UC_FIB_TABLE = 1,
 NPF_IPV6UC_PREFIX_TABLE = 2
}NPF_IPv6UC_TableType_t;

This event is triggered when the forwarding plane performs a transition form one state of an address
resolution entry to another state. This event is optional.
/*
 * This event data identifies the table and the address resolution
 * information as defined immediately after the corresponding
 * transition has been performed, and furthermore includes the
 * previous reachability state as defined immediately before the
 * transition
 */
typedef struct {
 NPF_IPv6UC_AddResTableType_t addResTableType;
 union {
 NPF_IPv6UC_AddResTableHandle_t addResTableHandle;
 NPF_IPv6UC_FibTableHandle_t fibTableHandle;
 NPF_IPv6UC_NextHopTableHandle_t nextHopTableHandle;
 } u;
 NPF_IPv6UC_AddResEntry_t addResEntry;
 NPF_IPv6_Reachability_t previousReachability;
} NPF_IPv6UC_AddResTransition_t;

/*
 * This structure defines the enumerations for the table type used in
 * the NPF_IPv6UC_AddResTransition_t structure above.
 */

typedef enum NPF_IPv6UC_AddResTableType {
 NPF_IPV6UC_ADD_RES_ADDRES_TABLE = 1,
 NPF_IPV6UC_ADD_RES_FIB_TABLE = 2,
 NPF_IPV6UC_ADD_RES_NEXTHOP_TABLE = 3
}NPF_IPv6UC_AddResTableType_t;

This structure represents the data parameter provided when the event notification routine is invoked. It
contains a count of events and an array of structures providing event specific information.
/*
 * This structure is provided when the event notification handler
 * is invoked. It specifies one or more IPv6 Unicast Forwarding events.
 */
typedef struct {
 NPF_uint32_t numEvents;
 NPF_IPv6UC_EventData_t *eventArray;
} NPF_IPv6UC_EventArray_t;

4.5.3 NPF_eventMask Bit Definitions
The NPF_eventMask_t bits defined below is used for selecting the following IPv6 Unicast Forwarding
Service API events

• NPF_IPV6UC_PREFIX_TBL_MISS

• NPF_IPV6UC_NEXT_HOP_TBL_MISS

• NPF_IPV6UC_FIB_PREFIX_MISS

 IPv6 Task Group 35

Network Processing Forum Software Working Group

• NPF_IPV6UC_FWDTBL_REFRESH

• NPF_IPV6UC_ADD_RES_TRANSITION

respectively.
/*
 * Definitions for selectively enabling IPV6UC events
 */
#define NPF_IPV6UC_EV_PREFIX_TBL_MISS_ENABLE (1 << 0)
#define NPF_IPV6UC_EV_NEXT_HOP_TBL_MISS_ENABLE (1 << 1)
#define NPF_IPV6UC_EV_FIB_PREFIX_MISS_ENABLE (1 << 2)
#define NPF_IPV6UC_EV_FWDTBL_REFRESH_ENABLE (1 << 3)
#define NPF_IPV6UC_EV_ADD_RES_TRANSITION_ENABLE (1 << 4)
#define NPF_IPV6UC_EV_LAST (1 << 4)

 IPv6 Task Group 36

Network Processing Forum Software Working Group

5 Function Calls

5.1 Completion Callback Function Calls
This callback function is for the application to register an asynchronous response handling routine to the
IPv6Unicast API implementation. This callback function is intended to be implemented by the
application, and to be registered to the IPv6 Unicast API implementation through the
NPF_IPv6UC_Register function.

For more information regarding the design and usage of completion callbacks, please refer to Section 7,
“Function Invocation Model, Events and Completion Callbacks”, of the NPF Software Implementation
Agreement - Software API Conventions (Revision 2, September 2003).

5.1.1 NPF_IPv6UC_CallbackFunc
Syntax
typedef void (*NPF_IPv6UC_CallbackFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_IPv6UC_CallbackData_t data);

Description
This function is a registered completion callback routine for handling IPv6 Unicast asynchronous
responses.

This is a required function.

Input Arguments
• userContext - The context item that was supplied by the application when the completion callback

routine was registered.

• correlator - The correlator item that was supplied by the application when the IPv6 Unicast API
function call was invoked.

• data - The response information related to the particular IPv6 Unicast call, which is identified by the
type field in the callback data.

Output Arguments
None

Return Values
None

 IPv6 Task Group 37

Network Processing Forum Software Working Group

5.2 Event Notification Function Calls
This event notification function is for the application to register an event handler routine to the
IPv6Unicast API implementation. This handler function is intended to be implemented by the application,
and to be registered to the IPv6 Unicast API implementation through the NPF_IPv6UC_EventRegister
function.

5.2.1 NPF_IPv6UC_EventCallFunc_t
Syntax
typedef void (*NPF_IPv6UC_EventCallFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_IPv6UC_EventArray_t data);

Description
This function is a registered event notification routine for handling IPv6 Unicast events.

This is a required function.

Input Arguments
userContext - The context item that was supplied by the application when the event callback routine was
registered.

data – A structure containing an array of event data structures and a count to indicate how many events
are present. Each of these NPF_IPv6UC_EventData_t members contains event specific information and a
type field to identify the particular event.

Output Arguments
None

Return Values
None

 IPv6 Task Group 38

Network Processing Forum Software Working Group

5.3 Callback Registration/Deregistration Function Calls
This section defines the registration and de-registration functions used to install and remove an
asynchronous response callback routine.

5.3.1 NPF_IPv6UC_Register
Syntax
NPF_error_t NPF_IPv6UC_Register(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_IPv6UC_CallbackFunc_t callbackFunc,
 NPF_OUT NPF_callbackHandle_t *callbackHandle);

Description
This function is used by an application to register its completion callback function for receiving
asynchronous responses related to IPv6Unicast API function calls. Applications MAY register multiple
callback functions using this function. The callback function is identified by the pair of userContext and
callbackFunc, and for each individual pair, a unique callbackHandle will be assigned for future reference.

Since the callback function is identified by both userContext and callbackFunc, duplicate registration of
the same callback function with a different userContext is allowed. Also, the same userContext can be
shared among different callback functions. Duplicate registration of the same userContext and
callbackFunc pair has no effect, and will output a handle that is already assigned to the pair, and will
return NPF_E_ALREADY_REGISTERED.

This is a required function.

Input Arguments
• userContext – A context item for uniquely identifying the context of the application registering the

completion callback function. The exact value will be provided back to the registered completion
callback function as its first parameter when it is called. Applications can assign any value to the
userContext and the value is completely opaque to the IPv6Unicast API implementation.

• callbackFunc – The pointer to the completion callback function to be registered.

Output Arguments
• callbackHandle - A unique identifier assigned for the registered userContext and callbackFunc pair.

This handle will be used by the application to specify which callback function to be called when
invoking asynchronous NPF IPv6Unicast API functions. It will also be used when deregistering the
userContext and callbackFunc pair.

Return Values
NPF_NO_ERROR - The registration completed successfully.

NPF_E_BAD_CALLBACK_FUNCTION – The callbackFunc is NULL, or otherwise invalid.

NPF_E_ALREADY_REGISTERED – No new registration was made since the userContext and
callbackFunc pair was already registered.

Notes
• This API function MUST be invoked by any application interested in receiving asynchronous

responses for IPv6 Unicast API function calls.

• This function operates in a synchronous manner, providing a return value as listed above.

 IPv6 Task Group 39

Network Processing Forum Software Working Group

5.3.2 NPF_IPv6UC_Deregister
Syntax
NPF_error_t NPF_IPv6UC_Deregister(
 NPF_IN NPF_callbackHandle_t callbackHandle);

Description
This function is used by an application to de-register a completion callback function, which was
previously registered to handle asynchronous callbacks related to API function invocations.

This is a required function.

Input Arguments
• callbackHandle - The unique identifier returned to the application when the completion callback

routine was registered. It represents a unique user context and callback function pair.

Output Arguments
None

Return Values
NPF_NO_ERROR - The de-registration completed successfully.

NPF_E_BAD_CALLBACK_HANDLE – The de-registration did not complete successfully due to
problems with the callback handle provided.

Notes
• This API function may be invoked by any application no longer interested in receiving asynchronous

responses for IPv6 Unicast API function calls.

• This function operates in a synchronous manner, providing a return value as listed above.

• There may be a timing window where underlying modules may continue deliver outstanding
callbacks to the callback routine after the de-registration function has been invoked. It is the API
implementation’s responsibility to guarantee that the callback function is not called after the
deregister function has completed.

 IPv6 Task Group 40

Network Processing Forum Software Working Group

5.4 Event Registration/Deregistration Function Calls
This section defines the registration and de-registration functions used to install and remove an event
handler routine

5.4.1 NPF_IPv6UC_EventRegister
Syntax
NPF_error_t NPF_IPv6UC_EventRegister(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_IPv6UC_EventCallFunc_t eventCallFunc,
 NPF_IN NPF_eventMask_t eventMask,
 NPF_OUT NPF_callbackHandle_t *eventCallHandle);

Description
This function is used by an application to register its event handling routine for receiving notifications of
IPv6Unicast events. Applications MAY register multiple event handling routines using this function. The
event handling routine is identified by the pair of userContext and eventCallFunc, and for each individual
pair, a unique eventCallHandle will be assigned for future reference.

Since the event handling routine is identified by both userContext and eventCallFunc, duplicate
registration of the same event handling routine with a different userContext is allowed. Also, the same
userContext can be shared among different event handling routines. Duplicate registration of the same
userContext and eventCallFunc pair has no effect, and will output a handle that is already assigned to the
pair, and will return NPF_E_ALREADY_REGISTERED.

This function also enables notifications for the events selected by the bits that are set in the eventMask
parameter. A mask with all bits set (NPF_EV_ALL_EVENTS_ENABLE) selects all events of this SAPI.
If the application wishes to change the selection of events, it may call the event registration function again
with the same userContext and eventCallFunc, but with a different event selection mask. The events
enabled are those whose bits were set in the most recent registration function call for a particular
userContext and eventCallFunc pair.

This is a required function.

Input Arguments
• userContext – A context item for uniquely identifying the context of the application registering the

event handling routine. The exact value will be provided back to the registered event handling routine
as its first parameter when it is called. Applications can assign any value to the userContext and the
value is completely opaque to the IPv6Unicast API implementation.

• eventCallFunc – The pointer to the event handling routine to be registered.

• eventMask – A bit-mask used to indicate which events the application wishes to receive.

Output Arguments
• eventCallHandle - A unique identifier assigned for the registered userContext and eventCallFunc pair.

This handle will be used when deregistering the userContext and eventCallFunc pair.

Return Values
NPF_NO_ERROR - The registration completed successfully.

NPF_E_BAD_CALLBACK_FUNCTION – The eventCallFunc is NULL, or otherwise invalid.

NPF_E_CALLBACK_ALREADY_REGISTERED – No new registration was made since the
userContext and eventCallFunc pair was already registered.

 IPv6 Task Group 41

Network Processing Forum Software Working Group

Notes
• This API function may be invoked by any application interested in receiving IPv6 Unicast events.

• This function operates in a synchronous manner, providing a return value as listed above.

• Even if a system implementation does not support events, the API implementation needs to
implement this function to enable interoperability.

 IPv6 Task Group 42

Network Processing Forum Software Working Group

5.4.2 NPF_IPv6UC_EventDeregister
Syntax
NPF_error_t NPF_IPv6UC_EventDeregister(
 NPF_IN NPF_callbackHandle_t eventCallHandle);

Description
This function is used by an application to de-register an event handler routine which was previously
registered to receive notifications of IPv6 Unicast events. It represents a unique user context and event
handling routine pair.

This is a required function.

Input Arguments
• eventCallHandle - The unique identifier returned to the application when the event callback routine

was registered.

Output Arguments
None

Return Values
NPF_NO_ERROR - The de-registration completed successfully.

NPF_E_BAD_CALLBACK_HANDLE – The de-registration did not complete successfully due to
problems with the callback handle provided.

Notes
• This API function may be invoked by any application no longer interested in receiving IPv6 Unicast

events.

• This function operates in a synchronous manner, providing a return value as listed above.

• There may be a timing window where outstanding events continue to be delivered to the event routine
after the de-registration function has been invoked. It is the implementation’s responsibility to
guarantee that the event handler function is not called after the deregister function has returned.

• Even if an implementation does not support events, the implementation needs to implement this
function to enable interoperability.

 IPv6 Task Group 43

Network Processing Forum Software Working Group

5.5 Supported & Preferred Mode Query Function Calls
These function calls are used by applications to query an implementation about what table modes are
supported and which are preferred for best performance.

5.5.1 NPF_IPv6UC_GetSupportedModes
Syntax
NPF_IPv6UC_SupportedMode_t NPF_IPv6UC_GetSupportedModes();

Description
This function queries the supported table modes of an implementation.

This is a required function.

Input Argument
None

Output Arguments
None

Return Values
NPF_IPV6UC_UNIFIED_ONLY – The table implementation only supports a unified table mode, and
will return NPF_E_FUNCTION_NOT_SUPPORTED if the prefix and next hop table manipulation
functions are used.

NPF_IPV6UC_BOTH_SUPPORTED – The table implementation supports both a unified table mode and
a discrete table mode.

Notes
None

Asynchronous Response
None

 IPv6 Task Group 44

Network Processing Forum Software Working Group

5.5.2 NPF_IPv6UC_GetPreferredMode
Syntax
NPF_IPv6UC_PreferredMode_t NPF_IPv6UC_GetPreferredMode();

Description
This function queries the preferred table modes of an implementation. If the supported mode call indicates
that only a unified mode is supported, then this function call will return
NPF_IPV6UC_UNIFIED_PREFERRED. However, if the supported mode call indicates that both modes
are supported, then this function call may return any one of the three return values listed below.

This is a required function.

Input Argument
None

Output Arguments
None

Return Values
NPF_IPV6UC_DISCRETE_PREFERRED – The table implementation provides better performance when
used with the discrete table APIs.

NPF_IPV6UC_UNIFIED_PREFERRED – The table implementation provides better performance when
used with the unified table APIs.

NPF_IPV6UC_NO_PREFERENCE – The table implementation provides equally good or conditional
performance when used with either API. Note that this value may only be returned if the supported mode
call indicated both mode types are supported.

Notes
None

Asynchronous Response
None

 IPv6 Task Group 45

Network Processing Forum Software Working Group

5.6 Unified FIB Table Function Calls
This section specifies the functions defined to operate upon the unified mode FIB table.

5.6.1 NPF_IPv6UC_FibTableHandleCreate
Syntax
NPF_error_t NPF_IPv6UC_FibTableHandleCreate(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_FibTableId_t fibTableId);

Description
This function creates internal and external handles for a FIB Table. The internal handle is used when
calling IPv6 Unicast Forwarding API functions. The external handle is used when calling other functions
in other APIs that need to refer to a forwarding table, regardless of whether it is managed in unified or
discrete mode.

This is a required function.

Input Argument
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function call.

• fibTableId - A FIB Table id generated by the application. Must be nonzero and different from FIB
Table id values of existing FIB Tables created on this API.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The table handle creation did not complete successfully due to problems
encountered when handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

NPF_E_RESOURCE_EXISTS - A FIB Table with the same application assigned FIB Table id value
already exists; no new FIB Table is created.

Notes
The errorReporting parameter, included for the sake of consistency, is ignored. This function generates an
asynchronous response, regardless of the value given in the errorReporting parameter.

Asynchronous Response
An NPF_IPv6UC_FibCreateResp_t structure, containing both internal and external handles, will
be returned along with a return code. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

 IPv6 Task Group 46

Network Processing Forum Software Working Group

NPF_E_RESOURCE_EXISTS - A FIB Table with the same application assigned FIB Table id value
already exists; its handles are returned in the callback, and no new FIB Table is created.

NPF_IPV6UC_E_INSUFFICIENT_STORAGE - The operation failed due to lack of resources.

 IPv6 Task Group 47

Network Processing Forum Software Working Group

5.6.2 NPF_IPv6UC_FibTableHandleDelete
Syntax
NPF_error_t NPF_IPv6UC_FibTableHandleDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_FibTableHandle_t tableHandle);

Description
This function deletes a handle for a FIB Table. Subsequent use of the deleted handle in an API function
call will result in an NPF_IPV6UC_E_INVALID_HANDLE error.

This is a required function.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function call.

• tableHandle - The FIB table handle to delete.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The table handle deletion did not complete successfully due to problems
encountered when handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

NPF_E_RESOURCE_NONEXISTENT - A duplicate request to destroy or free the FIB table was
detected. The FIB table was previously destroyed or never existed. No FIB table was deleted.

Notes
None

Asynchronous Response
A return code will be returned asynchronously. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_E_RESOURCE_NONEXISTENT - A duplicate request to destroy or free the FIB table was
detected. The FIB table was previously destroyed or never existed. No FIB table was deleted.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

 IPv6 Task Group 48

Network Processing Forum Software Working Group

5.6.3 NPF_IPv6UC_FibEntryAdd

Syntax
NPF_error_t NPF_IPv6UC_FibEntryAdd(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_FibTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv6UC_Prefix_t *prefixArray,
 NPF_IN NPF_IPv6UC_NextHopArray_t *nextHopArrays);

Description
This function may be used to insert one or more entries into a FIB table. The prefixArray and
nextHopArrays fields point to arrays of size numEntries, where each element is positionally related.

If no table entry exists for each destination IPv6 address and length indicated in the prefixArray, then the
prefix and next hop array information is added to create a new entry in the specified table.

If a table entry already exists, then the next hop array is replaced with the information specified in the
associated element of the nextHopArrays array.

This is a required function.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function call.

• tableHandle - FIB table identifier.

• numEntries – The number of elements in the prefixArray and the nextHopArrays. Each of these
arrays has the same number of elements and they are positionally related.

• prefixArray – Pointer to the array of prefixes to add.

• nextHopArrays – Pointer to an array of NPF_IPv6UC_NextHopArray_t structures, which are
associated with the prefixes. Each NPF_IPv6UC_NextHopArray_t structure contains a count plus
one or more next hop.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The entries were not added to the table due to problems encountered when
handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The entries were not added to the table because the callback
handle was invalid.

 IPv6 Task Group 49

Network Processing Forum Software Working Group

Notes
When determining whether an entry is already present in the FIB, only the IPv6 address and prefix length
are considered.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An NPF_IPv6UC_Prefix_t structure
will be returned along with a return code. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

NPF_IPV6UC_E_INSUFFICIENT_STORAGE - The operation failed due to lack of resources.

The response array returned in the callback may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the IP address and prefix length.

An NPF_IPv6UC_CallbackData_t will be returned with each callback. As part of that structure, an array
of NPF_IPv6UC_AsyncResponse_t structures will also be returned. If all of the elements in the request
array completed successfully and there is no additional response data to return, the callback will return an
allOK value of NPF_TRUE, a numResp value of zero, and the array pointer will be null.

If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.

It is the implementation’s choice how many responses to return in a single callback. The minimum is one
and the maximum is the number of request elements passed in the original API function call.

 IPv6 Task Group 50

Network Processing Forum Software Working Group

5.6.4 NPF_IPv6UC_FibEntryDelete
Syntax
NPF_error_t NPF_IPv6UC_FibEntryDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_FibTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv6UC_Prefix_t *prefixArray);

Description
All entries in the designated FIB table that match those found in the prefixArray will be removed.

This is a required function.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function call.

• tableHandle - FIB table identifier.

• numEntries – The number of elements in the prefixArray.

• prefixArray – A pointer to an array of prefixes, one for each FIB table entry to be deleted.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The entries were not deleted from the table due to problems encountered when
handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The entries were not deleted from the table because the callback
handle was invalid.

Notes
When determining whether an entry is already present in the FIB table, only the IPv6 address and prefix
length are considered.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An NPF_IPv6UC_Prefix_t structure
will be returned along with a return code. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

NPF_IPV6UC_E_TABLE_ENTRY_DOES_NOT_EXIST - The operation did not complete successfully
since the specified entry was not found.

 IPv6 Task Group 51

Network Processing Forum Software Working Group

The response array returned in the callback may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the corresponding IP address and prefix length.

An NPF_IPv6UC_CallbackData_t will be returned with each callback. As part of that structure, an array
of NPF_IPv6UC_AsyncResponse_t structures will also be returned. If all of the elements in the request
array completed successfully and there is no additional response data to return, the callback will return an
allOK value of NPF_TRUE, a numResp value of zero, and the array pointer will be null.

If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.

It is the implementation’s choice how many responses to return in a single callback. The minimum is one
and the maximum is the number of request elements passed in the original API function call.

 IPv6 Task Group 52

Network Processing Forum Software Working Group

5.6.5 NPF_IPv6UC_FibTableFlush
Syntax
NPF_error_t NPF_IPv6UC_FibTableFlush(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_FibTableHandle_t tableHandle);

Description
All entries in the designated FIB table will be removed and the designated FIB will be left empty.

This is a required function.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function call.

• tableHandle - FIB table identifier.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The entries were not deleted from the table due to problems encountered
when handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The entries were not deleted from the table because the
callback handle was invalid.

Notes
This operation removes all entries from the specified FIB table, but does not destroy that FIB table.

If a FIB entry is removed, a reference to the removed entry by the forwarding plane MAY generate an
NPF_IPV6UC_FIB_PREFIX_MISS event.

Asynchronous Response
A return code will be returned asynchronously. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

 IPv6 Task Group 53

Network Processing Forum Software Working Group

5.6.6 NPF_IPv6UC_FibTableAttributeQuery
Syntax
NPF_error_t NPF_IPv6UC_FibTableAttributeQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_FibTableHandle_t tableHandle);

Description
This call will provide information about the characteristics of the specified FIB table. Currently, the
attributes available are:

• An estimate of how many free entries are in this table.

This is an optional function. Implementations that do not support attribute queries MUST implement a
stub of this function and MUST immediately return NPF_E_FUNCTION_NOT_SUPPORTED when
called.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation. The only valid error reporting for this method is
NPF_REPORT_ALL.

• tableHandle – FIB table identifier.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The table was not queried due to problems encountered when handling the input
parameters.

NPF_E_BAD_CALLBACK_HANDLE - The table was not queried because the callback handle was
invalid.

NPF_E_FUNCTION_NOT_SUPPORTED – The attribute query capability is not supported by this
implementation.

Notes
Applications may use this query API function to obtain information useful in maintaining the FIB table.
For example, prior to inserting any entries into the FIB table, an RTM might query the available free
space of the FIB table and, therefore, be able to know when it cannot add any more entries to the table.

The implementation SHOULD be conservative in what it returns. In other words, the value should be the
amount of free space under the worst-case conditions, so that the application can be assured that at least
this many “Add” requests will succeed.

The errorReporting parameter, included for the sake of consistency, is ignored. This function generates an
asynchronous response, regardless of the value given in the errorReporting parameter.

 IPv6 Task Group 54

Network Processing Forum Software Working Group

Asynchronous Response
A return code will be returned asynchronously along with an approximation of the number of free entries
left in the FIB table. The tableSpaceRemaining field in the NPF_IPv6UC_AsyncResponse_t struct will be
set. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

 IPv6 Task Group 55

Network Processing Forum Software Working Group

5.6.7 NPF_IPv6UC_FibEntryQuery
Syntax
NPF_error_t NPF_IPv6UC_FibEntryQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_FibTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv6UC_Prefix_t *prefixArray);

Description
This function call is used to query one or more FIB entries in the FIB table. If the entries exist, the content
of the entries are returned in the completion callback.

This is an optional function. Implementations that do not support entry queries MUST implement a stub
of this function and MUST immediately return NPF_E_FUNCTION_NOT_SUPPORTED when called.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

• tableHandle - FIB table identifier.

• numEntries – The number of elements in the prefixArray.

• prefixArray – A pointer to an array of prefixes to query. Only the IP address and prefix length are
considered in the key.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The entries were not queried due to problems encountered when handling the
input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The entries were not queried because the callback handle was
invalid.

NPF_E_FUNCTION_NOT_SUPPORTED – The query capability is not supported by this
implementation.

Notes
None

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An NPF_IPv6UC_FibQueryResp_t
structure will be returned along with a return code. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

 IPv6 Task Group 56

Network Processing Forum Software Working Group

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

NPF_IPV6UC_E_TABLE_ENTRY_DOES_NOT_EXIST - The operation did not complete successfully
since the specified entry was not found.

The response array returned in the callback may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the IP address and prefix length.

An NPF_IPv6UC_CallbackData_t will be returned with each callback. As part of that structure, an array
of NPF_IPv6UC_AsyncResponse_t structures will also be returned. Because this function call will
always return information that was requested, if all of the elements in the request array completed
successfully and there is no additional data to return, the callback will return an allOK value of
NPF_FALSE, a numResp value equal to the number of responses, and the array pointer pointing to the
responses.

If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.

It is the implementation’s choice how many responses to return in a single callback. The minimum is one
and the maximum is the number of request elements passed in the original API function call.

 IPv6 Task Group 57

Network Processing Forum Software Working Group

5.7 Discrete Prefix Table Function Calls
This section specifies the functions defined to operate upon the discrete mode prefix table.

5.7.1 NPF_IPv6UC_PrefixTableHandleCreate
Syntax
NPF_error_t NPF_IPv6UC_PrefixTableHandleCreate(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_PrefixTableId_t prefixTableId);

Description
This function creates internal and external handles for a Prefix Table. The internal handle is used when
calling IPv6 Unicast Forwarding API functions. The external handle is used when calling other functions
in other APIs that need to refer to a forwarding table, regardless of whether it is managed in unified or
discrete mode.

This is an optional function. Implementations that do not support a discrete table mode MUST implement
a stub of this function and MUST immediately return NPF_E_FUNCTION_NOT_SUPPORTED when
called.

Input Argument
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function call.

• prefixTableId - A Prefix Table id generated by the application. Must be nonzero and different from
Prefix Table id of existing Prefix Tables created on this API.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The table handle creation did not complete successfully due to problems
encountered when handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

NPF_E_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported by this
implementation.

NPF_E_RESOURCE_EXISTS - A Prefix Table with the same application assigned Prefix Table id value
already exists; no new Prefix Table is created.

Notes
The errorReporting parameter, included for the sake of consistency, is ignored. This function generates an
asynchronous response, regardless of the value given in the errorReporting parameter.

 IPv6 Task Group 58

Network Processing Forum Software Working Group

Asynchronous Response
An NPF_IPv6UC_PfxCreateResp_t structure, containing both internal and external handles, will
be returned along with a return code. Possible return codes are:

NPF_NO_ERROR – The operation completed successfully.

NPF_E_RESOURCE_EXISTS - A Prefix Table with the same application assigned Prefix Table id value
already exists; its handles are returned in the callback, and no new Prefix Table is created.

NPF_IPV6UC_E_INSUFFICIENT_STORAGE – The operation failed due to lack of resources.

 IPv6 Task Group 59

Network Processing Forum Software Working Group

5.7.2 NPF_IPv6UC_PrefixTableHandleDelete
Syntax
NPF_error_t NPF_IPv6UC_PrefixTableHandleDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_PrefixTableHandle_t tableHandle);

Description
This function deletes a handle for a Prefix Table. Subsequent use of the deleted handle in an API function
call will result in an NPF_IPV6UC_E_INVALID_HANDLE error.

This is an optional function. Implementations that do not support a discrete table mode MUST implement
a stub of this function and MUST immediately return NPF_E_FUNCTION_NOT_SUPPORTED when
called.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function call.

• tableHandle - The prefix table handle to delete.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The table handle deletion did not complete successfully due to problems
encountered when handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

NPF_E_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported by this
implementation.

NPF_E_RESOURCE_NONEXISTENT - A duplicate request to destroy or free the prefix table was
detected. The prefix table was previously destroyed or never existed. No prefix table was deleted.

Notes
None

Asynchronous Response
A return code will be returned asynchronously. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_E_RESOURCE_NONEXISTENT - A duplicate request to destroy or free the prefix table was
detected. The prefix table was previously destroyed or never existed. No prefix table was deleted.

NPF_IPV6UC_E_INVALID_HANDLE – The operation did not complete successfully due to problems
with the table handle.

 IPv6 Task Group 60

Network Processing Forum Software Working Group

5.7.3 NPF_IPv6UC_PrefixEntryAdd
Syntax
NPF_error_t NPF_IPv6UC_PrefixEntryAdd(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_PrefixTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv6UC_Prefix_t *prefixArray,
 NPF_IN NPF_uint32_t *nextHopIdArray);

Description
This function may be used to insert one or more entries into a prefix table. The prefixArray and
nextHopIdArray fields point to arrays of size numEntries, where each element is positionally related.

If no table entry exists for each destination IPv6 address and length indicated in the prefixArray, then the
prefix and next hop identifier information is added to create a new entry in the specified table.

If a table entry already exists, then the next hop identifier is replaced with the information specified in the
associated element of the nextHopIdArray.

This is an optional function. Implementations that do not support a discrete table mode MUST implement
a stub of this function and MUST immediately return NPF_E_FUNCTION_NOT_SUPPORTED when
called.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

• tableHandle - Prefix table identifier.

• numEntries – The number of elements in the prefixArray and the nextHopIdArray. Each of these
arrays has the same number of elements and they are positionally related.

• prefixArray - Pointer to the array of prefixes to add.

• nextHopIdArray – Pointer to the array of next hop identifiers associated with the prefixes.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The entries were not added to the table due to problems encountered when
handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The entries were not added to the table because the callback
handle was invalid.

NPF_E_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported by this
implementation.

 IPv6 Task Group 61

Network Processing Forum Software Working Group

Notes
When determining whether an entry is already present in the prefix table, only the IPv6 address and prefix
length are considered.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An NPF_IPv6UC_Prefix_t structure
will be returned along with a return code. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

NPF_IPV6UC_E_INSUFFICIENT_STORAGE - The operation failed due to lack of resources.

The response array returned in the callback may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the IP address and prefix length.

An NPF_IPv6UC_CallbackData_t will be returned with each callback. As part of that structure, an array
of NPF_IPv6UC_AsyncResponse_t structures will also be returned. If all of the elements in the request
array completed successfully and there is no additional response data to return, the callback will return an
allOK value of NPF_TRUE, a numResp value of zero, and the array pointer will be null.

If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.

It is the implementation’s choice how many responses to return in a single callback. The minimum is one
and the maximum is the number of request elements passed in the original API function call.

 IPv6 Task Group 62

Network Processing Forum Software Working Group

5.7.4 NPF_IPv6UC_PrefixEntryDelete
Syntax
NPF_error_t NPF_IPv6UC_PrefixEntryDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_PrefixTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv6UC_Prefix_t *prefixArray);

Description
This function may be used to remove one or more entries from a prefix table. If a prefix table entry exists
as indicated by the destination IPv6 address and prefix length in an element contained in the prefixArray,
then that entry will be removed from the specified table.

This is an optional function. Implementations that do not support a discrete table mode MUST implement
a stub of this function and MUST immediately return NPF_E_FUNCTION_NOT_SUPPORTED when
called.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

• tableHandle - Prefix table identifier.

• numEntries – The number of elements in the prefixArray.

• prefixArray - A pointer to an array of prefixes, one for each prefix table entry to be deleted.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The entries were not deleted from the table due to problems encountered when
handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The entries were not deleted from the table because the callback
handle was invalid.

NPF_E_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported by this
implementation.

Notes
When determining whether an entry is already present in the prefix table, only the IPv6 address and prefix
length are considered.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An NPF_IPv6UC_Prefix_t structure
will be returned along with a return code. Possible return codes are:

 IPv6 Task Group 63

Network Processing Forum Software Working Group

NPF_NO_ERROR - The operation completed successfully.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

NPF_IPV6UC_E_TABLE_ENTRY_DOES_NOT_EXIST – The operation did not complete successfully
since the specified entry was not found.

The response array returned in the call back may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the IP address and prefix length.

An NPF_IPv6UC_CallbackData_t will be returned with each callback. As part of that structure, an array
of NPF_IPv6UC_AsyncResponse_t structures will also be returned. If all of the elements in the request
array completed successfully and there is no additional response data to return, the callback will return an
allOK value of NPF_TRUE, a numResp value of zero, and the array pointer will be null.

If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.

It is the implementation’s choice how many responses to return in a single callback. The minimum is one
and the maximum is the number of request elements passed in the original API function calls.

 IPv6 Task Group 64

Network Processing Forum Software Working Group

5.7.5 NPF_IPv6UC_PrefixTableFlush
Syntax
NPF_error_t NPF_IPv6UC_PrefixTableFlush(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_PrefixTableHandle_t tableHandle);

Description
All entries in the designated prefix table will be removed and the designated table will be left empty.

This is an optional function. Implementations that do not support a discrete table mode MUST implement
a stub of this function and MUST immediately return NPF_E_FUNCTION_NOT_SUPPORTED when
called.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

• tableHandle - Prefix table identifier.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The prefix table was not flushed due to problems encountered when handling the
input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The prefix table was not flushed because the callback handle
was invalid.

NPF_E_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported by this
implementation.

Notes
This operation removes all entries from the specified table, but does not destroy that table.

If a prefix table entry is removed, a reference to the removed entry by the forwarding plane MAY
generate an NPF_IPV6UC_PREFIX_TBL_MISS event.

Asynchronous Response
A return code will be returned asynchronously. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

 IPv6 Task Group 65

Network Processing Forum Software Working Group

5.7.6 NPF_IPv6UC_PrefixTableAttributeQuery
Syntax
NPF_error_t NPF_IPv6UC_PrefixTableAttributeQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_PrefixTableHandle_t tableHandle);

Description
This call will provide information about the characteristics of the specified prefix table. Currently, the
attributes available are:

• An estimate of how many free entries are in this table.

This is an optional function. Implementations that do not support queries or that do not support a discrete
table mode MUST implement a stub of this function and MUST immediately return
NPF_E_FUNCTION_NOT_SUPPORTED when called.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation. The only valid error reporting for this call is
NPF_REPORT_ALL.

• tableHandle - Prefix table identifier.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The table was not queried due to problems encountered when handling the input
parameters.

NPF_E_BAD_CALLBACK_HANDLE - The table was not queried because the callback handle was
invalid.

NPF_E_FUNCTION_NOT_SUPPORTED – The attribute query capability or discrete table operations
are not supported by this implementation.

Notes
Applications may use this query API function to obtain information useful in maintaining the prefix table.
For example, prior to inserting any prefix entries into the prefix table, an RTM might query the available
free space of the prefix table and, therefore, be able to know when it cannot add any more entries to the
table.

The implementation SHOULD be conservative in what it returns. In other words, the value should be the
amount of free space under the worst-case conditions, so that the application can be assured that at least
this many “Add” requests will succeed.

The errorReporting parameter, included for the sake of consistency, is ignored. This function generates an
asynchronous response, regardless of the value given in the errorReporting parameter.

 IPv6 Task Group 66

Network Processing Forum Software Working Group

Asynchronous Response
A return code will be returned asynchronously along with an approximation of the number of free entries
left in the prefix table. The tableSpaceRemaining field in the NPF_IPv6UC_AsyncResponse_t struct will
be set. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

 IPv6 Task Group 67

Network Processing Forum Software Working Group

5.7.7 NPF_IPv6UC_PrefixEntryQuery
Syntax
NPF_error_t NPF_IPv6UC_PrefixEntryQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UCPrefixTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv6UC_Prefix_t *prefixArray);

Description
This function call is used to query one or more prefix entries in the prefix table. If the entries exist, the
content of the entries are returned in the completion callback.

This is an optional function. Implementations that do not support queries or that do not support a discrete
table mode MUST implement a stub of this function and MUST immediately return
NPF_E_FUNCTION_NOT_SUPPORTED when called.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API invocation.

• tableHandle - Prefix table identifier.

• numEntries – The number of elements in the prefixArray.

• prefixArray - Pointer to the array of prefixes to query. Only the address and prefix length are
considered in the key.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The entries were not queried due to problems encountered when handling the
input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The entries were not queried because the callback handle was
invalid.

NPF_E_FUNCTION_NOT_SUPPORTED – The entry query capability or discrete table operations are
not supported by this implementation.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An
NPF_IPv6UC_PrefixQueryResp_t structure will be returned along with a return code. Possible
return codes are:

NPF_NO_ERROR - The operation completed successfully.

 IPv6 Task Group 68

Network Processing Forum Software Working Group

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

NPF_IPV6UC_E_TABLE_ENTRY_DOES_NOT_EXIST - The operation did not complete successfully
since the specified entry was not found.

The response array returned in the call back may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the IP address and prefix length.

An NPF_IPv6UC_CallbackData_t will be returned with each callback. As part of that structure, an array
of NPF_IPv6UC_AsyncResponse_t structures will also be returned. Because this function call will
always return information that was requested, if all of the elements in the request array completed
successfully and there is no additional data to return, the callback will return an allOK value of
NPF_FALSE, a numResp value equal to the number of responses, and the array pointer pointing to the
responses.

If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.

It is the implementation’s choice how many responses to return in a single callback. The minimum is one
and the maximum is the number of request elements passed in the original API function calls.

 IPv6 Task Group 69

Network Processing Forum Software Working Group

5.7.8 NPF_IPv6UC_PrefixNextHopTableBind
Syntax
NPF_error_t NPF_IPv6UC_PrefixNextHopTableBind(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_PrefixTableHandle_t prefixTableHandle),

NPF_IN NPF_IPv6UC_NextHopTableHandle_t nextHopTableHandle);

Description
This function makes an association between a Prefix Table and a Next Hop Table. It designates the Next
Hop Table whose entries are to be used when a particular Prefix Table is referenced. If the Prefix Table
is already associated with another Next Hop Table, that association is replaced by the new Next Hop
Table. If the Next Hop Table is already associated with a different Prefix Table, the new Prefix Table is
added to the set of Prefix Tables that share this Next Hop Table. Thus the possible relationships of Prefix
Table to Next Hop Table are one-to-one and many-to-one, but never one-to-many.

This is an optional function. Implementations that do not support a discrete table mode MUST implement
a stub of this function and MUST immediately return NPF_E_FUNCTION_NOT_SUPPORTED when
called.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function call.

• prefixTableHandle - The prefix table identifier.

• nextHopTableHandle - The next hop table identifier.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The table binding did not complete successfully due to problems encountered
when handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

NPF_E_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported by this
implementation.

Notes
None

Asynchronous Response
A return code will be returned asynchronously. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

 IPv6 Task Group 70

Network Processing Forum Software Working Group

NPF_IPV6UC_E_INVALID_HANDLE – The operation did not complete successfully due to problems
with one of the table handles.

 IPv6 Task Group 71

Network Processing Forum Software Working Group

5.8 Discrete Next Hop Table Function Calls
This section specifies the functions defined to operate upon the discrete mode next hop table.

5.8.1 NPF_IPv6UC_NextHopTableHandleCreate
Syntax
NPF_error_t NPF_IPv6UC_NextHopTableHandleCreate(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_NextHopTableId_t nextHopTableId);

Description
This function creates a handle for a Next Hop Table.

This is an optional function. Implementations that do not support a discrete table mode MUST implement
a stub of this function and MUST immediately return NPF_E_FUNCTION_NOT_SUPPORTED when
called.

Input Argument
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function call.

• nextHopTableId - A Next Hop Table id generated by the application. Must be nonzero and different
from Next Hop Table id values of existing Next Hop Tables created on this API.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The table handle creation did not complete successfully due to problems
encountered when handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

NPF_E_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported by this
implementation.

NPF_E_RESOURCE_EXISTS - A Next Hop Table with the same application assigned Next Hop Table
id value already exists; no new Next Hop Table is created.

Notes
The errorReporting parameter, included for the sake of consistency, is ignored. This function generates an
asynchronous response, regardless of the value given in the errorReporting parameter.

Asynchronous Response
A next hop table handle will be returned along with a return code. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

 IPv6 Task Group 72

Network Processing Forum Software Working Group

NPF_E_RESOURCE_EXISTS - A Next Hop Table with the same application assigned Next Hop Table
id value already exists; its handle is returned in the callback, and no new Next Hop Table is created.

NPF_IPV6UC_E_INSUFFICIENT_STORAGE - The operation failed due to lack of resources.

 IPv6 Task Group 73

Network Processing Forum Software Working Group

5.8.2 NPF_IPv6UC_NextHopTableHandleDelete
Syntax
NPF_error_t NPF_IPv6UC_NextHopTableHandleDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_NextHopTableHandle_t tableHandle);

Description
This function deletes a handle for a Next Hop Table. Subsequent use of the deleted handle in an API
function call will result in an NPF_IPV6UC_E_INVALID_HANDLE error.

This is an optional function. Implementations that do not support a discrete table mode MUST implement
a stub of this function and MUST immediately return NPF_E_FUNCTION_NOT_SUPPORTED when
called.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function call.

• tableHandle - The next hop table handle to delete.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The table handle deletion did not complete successfully due to problems
encountered when handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

NPF_E_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported by this
implementation.

NPF_E_RESOURCE_NONEXISTENT - A duplicate request to destroy or free the next hop table was
detected. The next hop table was previously destroyed or never existed. No next hop table was deleted.

Notes
None

Asynchronous Response
A return code will be returned asynchronously. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_E_RESOURCE_NONEXISTENT - A duplicate request to destroy or free the next hop table was
detected. The next hop table was previously destroyed or never existed. No next hop table was deleted.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

 IPv6 Task Group 74

Network Processing Forum Software Working Group

5.8.3 NPF_IPv6UC_NextHopEntryAdd
Syntax
NPF_error_t NPF_IPv6UC_NextHopEntryAdd(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_NextHopTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_uint32_t *nextHopIdArray,
 NPF_IN NPF_IPv6UC_NextHopArray_t *nextHopArrays);

Description
This function may be used to insert one or more entries into a next hop table. The nextHopIdArray and
nextHopArrays fields point to arrays of size numEntries, where each element is positionally related.

If no table entry exists for each next hop identifier indicated in the nextHopIdArray, then the next hop
identifier and next hop array information is added to create a new entry in the specified table.

If a table entry already exists, then the next hop array is replaced with the information specified in the
associated element of the nextHopArrays array.

This is an optional function. Implementations that do not support a discrete table mode MUST implement
a stub of this function and MUST immediately return NPF_E_FUNCTION_NOT_SUPPORTED when
called.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

• tableHandle – Next Hop Table identifier.

• numEntries – The number of elements in the nextHopIdArray and the nextHopArrays. Each of these
arrays has the same number of elements and they are positionally related.

• nextHopIdArray – Pointer to an array of next hop identifiers.

• nextHopArrays - Pointer to an array of NPF_IPv6UC_NextHopArray_t structures, which are
associated with the next hop identifiers. Each NPF_IPv6UC_NextHopArray_t structure contains a
count plus one or more next hop definitions.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The entries were not added to the table due to problems encountered when
handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The entries were not added to the table because the callback
handle was invalid.

 IPv6 Task Group 75

Network Processing Forum Software Working Group

NPF_E_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported by this
implementation.

Notes
None

Asynchronous Response
There may be multiple asynchronous callbacks to this request. The Next Hop Identifier will be returned
along with a return code. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

NPF_IPV6UC_E_INSUFFICIENT_STORAGE - The operation failed due to lack of resources.

The response array returned in the callback may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the Next Hop Identifier value.

An NPF_IPv6UC_CallbackData_t will be returned with each callback. As part of that structure, an array
of NPF_IPv6UC_AsyncResponse_t structures will also be returned. If all of the elements in the request
array completed successfully and there is no additional response data to return, the callback will return an
allOK value of NPF_TRUE, a numResp value of zero, and the array pointer will be null.

If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.

It is the implementation’s choice how many responses to return in a single callback. The minimum is one
and the maximum is the number of request elements passed in the original API function call.

 IPv6 Task Group 76

Network Processing Forum Software Working Group

5.8.4 NPF_IPv6UC_NextHopEntryDelete
Syntax
NPF_error_t NPF_IPv6UC_NextHopEntryDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_NextHopTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_uint32_t *nextHopIdArray);

Description
This function deletes one or more Next Hop Entries. If a Next Hop Entry exists, that entry will be
removed from the specified table.

If a Next Hop Entry is removed, a reference to the removed entry by the forwarding plane MAY generate
an NPF_IPV6UC_NEXT_HOP_TBL_MISS event.

This is an optional function. Implementations that do not support a discrete table mode MUST implement
a stub of this function and MUST immediately return NPF_E_FUNCTION_NOT_SUPPORTED when
called.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

• tableHandle – Next Hop Table identifier.

• numEntries – The number of elements in the nextHopIdArray.

• nextHopIdArray – A pointer to an array of Next Hop Identifier values, one for each next hop table
entry to be deleted.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The entries were not deleted from the table due to problems encountered when
handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The entries were not deleted from the table because the callback
handle was invalid.

NPF_E_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported by this
implementation.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. The Next Hop Identifier will be returned
along with a return code. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

 IPv6 Task Group 77

Network Processing Forum Software Working Group

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

NPF_IPV6UC_E_TABLE_ENTRY_DOES_NOT_EXIST - The operation did not complete successfully
since the specified entry was not found.

The response array returned in the callback may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the next hop identifier value.

An NPF_IPv6UC_CallbackData_t will be returned with each callback. As part of that structure, an array
of NPF_IPv6UC_AsyncResponse_t structures will also be returned. If all of the elements in the request
array completed successfully and there is no additional response data to return, the callback will return an
allOK value of NPF_TRUE, a numResp value of zero, and the array pointer will be null.

 If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.

It is the implementation’s choice how many responses to return in a single callback. The minimum is one
and the maximum is the number of request elements passed in the original API function call.

 IPv6 Task Group 78

Network Processing Forum Software Working Group

5.8.5 NPF_IPv6UC_NextHopTableFlush
Syntax
NPF_error_t NPF_IPv6UC_NextHopTableFlush(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_NextHopTableHandle_t tableHandle);

Description
All entries in the designated next hop table will be removed and the designated table will be left empty.

This is an optional function. Implementations that do not support a discrete table mode MUST implement
a stub of this function and MUST immediately return NPF_E_FUNCTION_NOT_SUPPORTED when
called.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

• tableHandle – Next Hop Table identifier.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The table was not flushed due to problems encountered when handling the input
parameters.

NPF_E_BAD_CALLBACK_HANDLE - The table was not flushed because the callback handle was
invalid.

NPF_E_FUNCTION_NOT_SUPPORTED – Discrete table operations are not supported by this
implementation.

Notes
This operation removes all entries from the specified table, but does not destroy that table.

If a Next Hop Entry is removed, a reference to the removed entry by the forwarding plane MAY generate
an NPF_IPV6UC_NEXT_HOP_TBL_MISS event.

Asynchronous Response
A return code will be returned asynchronously. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

 IPv6 Task Group 79

Network Processing Forum Software Working Group

5.8.6 NPF_IPv6UC_NextHopTableAttributeQuery
Syntax
NPF_error_t NPF_IPv6UC_NextHopTableAttributeQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_NextHopTableHandle_t tableHandle);

Description
This call will provide information about the characteristics of the specified Next Hop Table. Currently,
the attributes available are:

• An estimate of how many free entries are in this table.

This is an optional function. Implementations that do not support queries or that do not support a discrete
table mode MUST implement a stub of this function and MUST immediately return
NPF_E_FUNCTION_NOT_SUPPORTED when called.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation. The only valid reporting level is
NPF_REPORT_ALL.

• tableHandle – The Next Hop Table identifier.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The table was not queried due to problems encountered when handling the input
parameters.

NPF_E_BAD_CALLBACK_HANDLE - The table was not queried because the callback handle was
invalid.

NPF_E_FUNCTION_NOT_SUPPORTED – The attribute query capability or discrete table operations
are not supported by this implementation.

Notes
Applications may use this query API function to obtain information useful in maintaining the Next Hop
Table. For example, prior to inserting any next hop entries into the next hop table, an RTM might query
the available free space of the Next Hop Table and, therefore, be able to know when it cannot add any
more entries to the table.

The implementation SHOULD be conservative in what it returns. In other words, the value should be the
amount of free space under the worst-case conditions, so that the application can be assured that at least
this many “Add” requests will succeed.

The errorReporting parameter, included for the sake of consistency, is ignored. This function generates an
asynchronous response, regardless of the value given in the errorReporting parameter.

 IPv6 Task Group 80

Network Processing Forum Software Working Group

Asynchronous Response
A return code will be returned asynchronously along with an approximation of the number of free entries
left in the Next Hop Table. The tableSpaceRemaining field in the NPF_IPv6UC_AsyncResponse_t struct
will be set. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

 IPv6 Task Group 81

Network Processing Forum Software Working Group

5.8.7 NPF_IPv6UC_NextHopEntryQuery
Syntax
NPF_error_t NPF_IPv6UC_NextHopEntryQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_NextHopTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_uint32_t *nextHopIdArray);

Description
This function call is used to query one or more next hop entries in the next hop table. If the entries exist,
the content of the entries are returned in the completion callback.

This is an optional function. Implementations that do not support queries or that do not support a discrete
table mode MUST implement a stub of this function and MUST immediately return
NPF_E_FUNCTION_NOT_SUPPORTED when called.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API invocation.

• tableHandle – Next hop table identifier.

• numEntries – The number of elements in the nextHopIdArray.

• nextHopIdArray - Pointer to the array of next hop identifiers to query. Only the next hop identifier is
considered in the key.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The entries were not queried due to problems encountered when handling the
input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The entries were not queried because the callback handle was
invalid.

NPF_E_FUNCTION_NOT_SUPPORTED – The query capability or discrete table operations are not
supported by this implementation.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An
NPF_IPv6UC_NextHopQueryResp_t structure will be returned along with a return code. Possible
return codes are:

NPF_NO_ERROR - The operation completed successfully.

 IPv6 Task Group 82

Network Processing Forum Software Working Group

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

NPF_IPV6UC_E_TABLE_ENTRY_DOES_NOT_EXIST - The operation did not complete successfully
since the specified entry was not found.

The response array returned in the callback may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the next hop identifier value.

An NPF_IPv6UC_CallbackData_t will be returned with each callback. As part of that structure, an array
of NPF_IPv6UC_AsyncResponse_t structures will also be returned. Because this function call will
always return information that was requested, if all of the elements in the request array completed
successfully and there is no additional data to return, the callback will return an allOK value of
NPF_FALSE, a numResp value equal to the number of responses, and the array pointer pointing to the
responses.

 If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.

It is the implementation’s choice how many responses to return in a single callback. The minimum is one
and the maximum is the number of request elements passed in the original API function call.

 IPv6 Task Group 83

Network Processing Forum Software Working Group

5.9 Address Resolution Function Calls
This section specifies the functions defined to operate upon the address resolution table. These functions
are intended to be used in either unified or discrete modes.

5.9.1 NPF_IPv6UC_AddResTableHandleCreate
Syntax
NPF_error_t NPF_IPv6UC_AddResTableHandleCreate(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_AddResTableId_t addResTableId);

Description
This function creates a handle for an Address Resolution Table.

This is a required function.

Input Argument
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function call.

• AddResTableId - An Address Resolution Table id generated by the application. Must be nonzero and
different from Address Resolution Table identifiers of existing Address Resolution Tables created on
this API.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The table handle creation did not complete successfully due to problems
encountered when handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

NPF_E_RESOURCE_EXISTS - An Address Resolution Table with the same application assigned
Address Resolution Table id value already exists; no new Address Resolution Table is created.

Notes
The errorReporting parameter, included for the sake of consistency, is ignored. This function generates an
asynchronous response, regardless of the value given in the errorReporting parameter.

Asynchronous Response
An address resolution table handle will be returned along with a return code. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_E_RESOURCE_EXISTS - An Address Resolution Table with the same application assigned
Address Resolution Table id value already exists; its handle is returned in the callback, and no new
Address Resolution Table is created.

 IPv6 Task Group 84

Network Processing Forum Software Working Group

NPF_IPV6UC_E_INSUFFICIENT_STORAGE - The operation failed due to lack of resources.

 IPv6 Task Group 85

Network Processing Forum Software Working Group

5.9.2 NPF_IPv6UC_AddResTableHandleDelete
Syntax
NPF_error_t NPF_IPv6UC_AddResTableHandleDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_AddResTableHandle_t tableHandle);

Description
This function deletes a handle for an Address Resolution Table. Subsequent use of the deleted handle in
an API function call will result in an NPF_IPV6UC_E_INVALID_HANDLE error.

This is a required function.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function call.

• tableHandle - The address resolution table handle to delete.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The table handle deletion did not complete successfully due to problems
encountered when handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

NPF_E_RESOURCE_NONEXISTENT - A duplicate request to destroy or free the address resolution
table was detected. The address resolution table was previously destroyed or never existed. No address
resolution table was deleted.

Notes
None

Asynchronous Response
A return code will be returned asynchronously. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_E_RESOURCE_NONEXISTENT - A duplicate request to destroy or free the address resolution
table was detected. The address resolution table was previously destroyed or never existed. No address
resolution table was deleted.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

 IPv6 Task Group 86

Network Processing Forum Software Working Group

5.9.3 NPF_IPv6UC_AddResEntryAdd
Syntax
NPF_error_t NPF_IPv6UC_AddResEntryAdd(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_AddResTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv6UC_AddResEntry_t *entryArray);

Description
This function may be used to insert one or more entries into an address resolution table. The entryArray
field points to an array of size numEntries, where each element is an address resolution entry to add.

If no table entry exists for the IP address and interface pair supplied in the entryArray, then the address
resolution entry information is added to create a new entry in the specified table.

If a table entry already exists, then it is replaced with the information specified in the entryArray.

This is a required function.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

• tableHandle – Address Resolution table identifier.

• numEntries – The number of elements in the entryArray.

• entryArray - Pointer to an array of NPF_IPv6UC_AddResEntry_t structures. Each structure has an IP
address, logical interface handle and a media specific address.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The entries were not added due to problems encountered when handling the input
parameters.

NPF_E_BAD_CALLBACK_HANDLE – The entries were not added to the table because the callback
handle was invalid.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An NPF_IPv6UC_AddResKey_t
structure will be returned along with a return code. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

 IPv6 Task Group 87

Network Processing Forum Software Working Group

NPF_IPV6UC_E_INSUFFICIENT_STORAGE - The operation failed due to lack of resources.

The response array returned in the callback may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing IP_Address and interfaceHandle fields.

An NPF_IPv6UC_CallbackData_t will be returned with each callback. As part of that structure, an array
of NPF_IPv6UC_AsyncResponse_t structures will also be returned. If all of the elements in the request
array completed successfully and there is no additional response data to return, the callback will return an
allOK value of NPF_TRUE, a numResp value of zero, and the array pointer will be null.

If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.

It is the implementation’s choice how many responses to return in a single callback. The minimum is one
and the maximum is the number of request elements passed in the original API function call.

 IPv6 Task Group 88

Network Processing Forum Software Working Group

5.9.4 NPF_IPv6UC_AddResEntryDelete
Syntax
NPF_error_t NPF_IPv6UC_AddResEntryDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_AddResTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv6UC_AddResKey_t *entryArray);

Description
If an entry exists in the address resolution table as indicated by the IP address and interface pair supplied
in an Address Resolution entry contained in the entryArray, then it will be removed from the specified
table.

This is a required function.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

• tableHandle – Address Resolution table handle.

• numEntries – The number of elements in the entryArray.

• entryArray – A pointer to an array of NPF_IPv6UC_AddResKey_t structures, one for each address
resolution table entry to be deleted.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The entries were not deleted from the table due to problems encountered when
handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE – The entries were not deleted from the table because the
callback handle was invalid.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An NPF_IPv6UC_AddResKey_t
structure will be returned along with a return code. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

NPF_IPV6UC_E_TABLE_ENTRY_DOES_NOT_EXIST - The operation did not complete successfully
since the specified entry was not found.

 IPv6 Task Group 89

Network Processing Forum Software Working Group

The response array returned in the call back may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the IP address and interface handle fields.

An NPF_IPv6UC_CallbackData_t will be returned with each callback. As part of that structure, an array
of NPF_IPv6UC_AsyncResponse_t structures will also be returned. If all of the elements in the request
array completed successfully and there is no additional response data to return, the callback will return an
allOK value of NPF_TRUE, a numResp value of zero, and the array pointer will be null.

If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.

It is the implementation’s choice how many responses to return in a single callback. The minimum is one
and the maximum is the number of request elements passed in the original API function calls.

 IPv6 Task Group 90

Network Processing Forum Software Working Group

5.9.5 NPF_IPv6UC_AddResTableFlush
Syntax
NPF_error_t NPF_IPv6UC_AddResTableFlush(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_AddResTableHandle_t tableHandle);

Description
All entries in the designated address resolution table will be removed and the designated address
resolution table will be left empty.

This is a required function.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function call.

• tableHandle – Address resolution table identifier.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The entries were not deleted from the table due to problems encountered when
handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The entries were not deleted from the table because the callback
handle was invalid.

Notes
This operation removes all entries from the specified table, but does not destroy that table.

Asynchronous Response
A return code will be returned asynchronously. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

 IPv6 Task Group 91

Network Processing Forum Software Working Group

5.9.6 NPF_IPv6UC_AddResTableAttributeQuery
Syntax
NPF_error_t NPF_IPv6UC_AddResAttributeQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_AddResTableHandle_t tableHandle);

Description
This call will provide information about the characteristics of the specified address resolution table.
Currently, the attributes available are:

• An estimate of how many free entries are in this table.

This is an optional function. Implementations that do not support queries MUST implement a stub of this
function and MUST immediately return NPF_E_FUNCTION_NOT_SUPPORTED when called.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation. The only valid error reporting for this method is
NPF_REPORT_ALL.

• tableHandle – Address resolution table identifier.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The table was not queried due to problems encountered when handling the input
parameters.

NPF_E_BAD_CALLBACK_HANDLE - The table was not queried because the callback handle was
invalid.

NPF_E_FUNCTION_NOT_SUPPORTED – The attribute query capability is not supported by this
implementation.

Notes
Applications may use this query API function to obtain information useful in maintaining the address
resolution table. For example, prior to inserting any address resolution entries into the table, the
application might query the available free space of the address resolution table and, therefore, be able to
know when it cannot add any more entries to the table.

The implementation SHOULD be conservative in what it returns. In other words, the value should be the
amount of free space under the worst-case conditions, so that the application can be assured that at least
this many “Add” requests will succeed.

The errorReporting parameter, included for the sake of consistency, is ignored. This function generates an
asynchronous response, regardless of the value given in the errorReporting parameter.

 IPv6 Task Group 92

Network Processing Forum Software Working Group

Asynchronous Response
A return code will be returned asynchronously along with an approximation of the number of free entries
left in the address resolution table. The tableSpaceRemaining field in the
NPF_IPv6UC_AsyncResponse_t struct will be set. Possible return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

 IPv6 Task Group 93

Network Processing Forum Software Working Group

5.9.7 NPF_IPv6UC_AddResEntryQuery
Syntax
NPF_error_t NPF_IPv6UC_AddResEntryQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_AddResTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv6UC_AddResKey_t *entryArray);

Description
This function call is used to query one or more address resolution entries in the address resolution table. If
the entries exist, the content of the entries are returned in the completion callback.

This is an optional function. Implementations that do not support queries MUST implement a stub of this
function and MUST immediately return NPF_E_FUNCTION_NOT_SUPPORTED when called.

Input Arguments
• callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.

• correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

• errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API invocation.

• tableHandle – Address resolution table identifier.

• numEntries – The number of entries in the entryArray.

• entryArray - Pointer to the array of address resolution keys to query.

Output Arguments
None

Return Values
NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The entries were not queried due to problems encountered when handling the
input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The entries were not queried because the callback handle was
invalid.

NPF_E_FUNCTION_NOT_SUPPORTED – The query capability is not supported by this
implementation.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An
NPF_IPv6UC_AddResQueryResp_t structure will be returned along with a return code. Possible
return codes are:

NPF_NO_ERROR - The operation completed successfully.

NPF_IPV6UC_E_INVALID_HANDLE - The operation did not complete successfully due to problems
with the table handle.

 IPv6 Task Group 94

Network Processing Forum Software Working Group

NPF_IPV6UC_E_TABLE_ENTRY_DOES_NOT_EXIST - The operation did not complete successfully
since the specified entry was not found.

The response array returned in the call back may contain between zero and the number of elements
requested with this API function call. Each element in the response array can be correlated with an
element in the request array by comparing the IP address and interface handle fields.

An NPF_IPv6UC_CallbackData_t will be returned with each callback. As part of that structure, an array
of NPF_IPv6UC_AsyncResponse_t structures will also be returned. Because this function call will
always return information that was requested, if all the elements in the request array completed
successfully and there is no additional data to return, the callback will return an allOK value of
NPF_FALSE, a numResp value equal to the number of responses, and the array pointer pointing to the
responses.

If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOK will be NPF_FALSE, the numResp field will be greater than
zero, and the pointer to the element array will be non-null. Failing elements may be determined by
examining the return code in each array element.

It is the implementation’s choice how many responses to return in a single callback. The minimum is one
and the maximum is the number of request elements passed in the original API function calls.

 IPv6 Task Group 95

Network Processing Forum Software Working Group

6 API Summary
These tables are included as a summary for informative purposes.

6.1 Common Function Calls

API function Name Function
Required

NPF_IPv6UC_Register Required
NPF_IPv6UC_Deregister Required
NPF_IPv6UC_EventRegister Required
NPF_IPv6UC_EventDeregister Required
NPF_IPv6UC_GetSupportedModes Required
NPF_IPv6UC_GetPreferredMode Required
NPF_IPv6UC_AddResTableHandleCreate Required
NPF_IPv6UC_AddResTableHandleDelete Required
NPF_IPv6UC_AddResEntryAdd Required
NPF_IPv6UC_AddResEntryDelete Required
NPF_IPv6UC_AddResTableFlush Required
NPF_IPv6UC_AddResTableAttributeQuery Optional
NPF_IPv6UC_AddResEntryQuery Optional

6.2 Unified Mode Function Calls

API function Name Function
Required

NPF_IPv6UC_FibTableHandleCreate Required
NPF_IPv6UC_FibTableHandleDelete Required
NPF_IPv6UC_FibEntryAdd Required
NPF_IPv6UC_FibEntryDelete Required
NPF_IPv6UC_FibTableFlush Required
NPF_IPv6UC_FibTableAttributeQuery Optional
NPF_IPv6UC_FibEntryQuery Optional

6.3 Discrete Mode Function Calls
If the Discrete Mode is implemented then all the functions below except
NPF_IPv6UC_PrefixTableAttributeQuery, NPF_IPv6UC_PrefixEntryQuery,
NPF_IPv6UC_NextHopTableAttributeQuery and NPF_IPv6UC_NextHopEntryQuery are Required.

 IPv6 Task Group 96

Network Processing Forum Software Working Group

API function Name Function
Required

NPF_IPv6UC_PrefixTableHandleCreate Optional
NPF_IPv6UC_PrefixTableHandleDelete Optional
NPF_IPv6UC_PrefixEntryAdd Optional
NPF_IPv6UC_PrefixEntryDelete Optional
NPF_IPv6UC_PrefixTableFlush Optional
NPF_IPv6UC_PrefixTableAttributeQuery Optional
NPF_IPv6UC_PrefixNextHopTableBind Optional
NPF_IPv6UC_PrefixEntryQuery Optional
NPF_IPv6UC_NextHopTableHandleCreate Optional
NPF_IPv6UC_NextHopTableHandleDelete Optional
NPF_IPv6UC_NextHopEntryAdd Optional
NPF_IPv6UC_NextHopEntryDelete Optional
NPF_IPv6UC_NextHopTableFlush Optional
NPF_IPv6UC_NextHopTableAttributeQuery Optional
NPF_IPv6UC_NextHopEntryQuery Optional

6.4 Events

Event Name Event Required
NPF_IPV6UC_PREFIX_TBL_MISS Optional
NPF_IPV6UC_NEXT_HOP_TBL_MISS Optional
NPF_IPV6UC_FIB_PREFIX_MISS Optional
NPF_IPV6UC_FWDTBL_REFRESH Optional
NPF_IPV6UC_ADD_RES_TRANSITION Optional

 IPv6 Task Group 97

Network Processing Forum Software Working Group

7 References
[1] NP Forum - Software API Framework Lexicon Implementation Agreement Revision 1.0

[2] NP Forum – Software API Conventions Implementation Agreement Revision 2.0

[3] NP Forum – Software API Framework Implementation Agreement Revision 1.0

[4] NP Forum – Interface Management API Implementation Agreement Revision 1.0

[5] NP Forum - IPv4 Unicast Forwarding Service API Revision 1.0

 IPv6 Task Group 98

Network Processing Forum Software Working Group

Appendix A Header File: NPF_IPv6UC.h
/*
 * This header file defines typedefs, constants, and functions
 * that apply to the NPF IPv6 Unicast Forwarding Service API
 */
#ifndef __NPF_IPV6U_H
#define __NPF_IPV6U_H

#ifdef __cplusplus
extern "C" {
#endif

/*---
 *
 * Common Data Types
 *
 ---/

/*
 * Table support enumeration.
 */
typedef enum {
 NPF_IPV6UC_UNIFIED_ONLY = 1,
 NPF_IPV6UC_BOTH_SUPPORTED = 2
} NPF_IPv6UC_SupportedMode_t;

/*
 * Table preference enumeration. No preference value may only be returned
 * by implementations that returned "both supported" to the support query.
 */
typedef enum {
 NPF_IPV6UC_DISCRETE_PREFERRED = 1,
 NPF_IPV6UC_UNIFIED_PREFERRED = 2,
 NPF_IPV6UC_NO_PREFERENCE = 3
} NPF_IPv6UC_PreferredMode_t;

/*
 * Prefix definition
 *
 * This structure is defined in a common NPF header file since it
 * is used by several APIs. It is replicated here as a comment for
 * informative purposes.
 */
/*
typedef struct {
 NPF_IPv6Address_t IPv6Addr;
 NPF_uint8_t IPv6Plen;
} NPF_IPv6Prefix_t;
*/

/*
 * Prefix retype definition
 */
typedef NPF_IPv6Prefix_t NPF_IPv6UC_Prefix_t;

 IPv6 Task Group 99

Network Processing Forum Software Working Group

/*
 * Next hop type definition
 */
typedef enum {
 NPF_IPV6UC_NH_BASIC = 1,
 NPF_IPV6UC_NH_DIRECT_ATTACH = 2,
 NPF_IPV6UC_NH_SEND_TO_CP = 3,
 NPF_IPV6UC_NH_DISCARD = 4,
 NPF_IPV6UC_NH_REMOTE = 5,
 NPF_IPV6UC_NH_TUNNEL = 6
} NPF_IPv6UC_NextHopType_t;

/*
 * Media type definition:
 */
typedef enum {
 NPF_NO_MEDIA_TYPE = 1,
 NPF_MAC_ADDRESS = 2,
 NPF_ATM_VC = 3
} NPF_MediaType_t;

/*
 * Media Address structure:
 */
typedef struct {
 NPF_MediaType_t type;
 union {
 NPF_MAC_Address_t MAC_Address;
 NPF_VccAddr_t ATM_Vc;
 }u;
} NPF_MediaAddress_t;

/*
 * IPv6 unicast Address Resolution reachability type definition:
 */
typedef enum {
 NPF_IPv6_VOID = 0,
 NPF_IPv6_NONE = 1,
 NPF_IPv6_INCOMPLETE = 2,
 NPF_IPv6_REACHABLE = 3,
 NPF_IPv6_STALE = 4,
 NPF_IPv6_DELAY = 5,
 NPF_IPv6_PROBE = 6
} NPF_IPv6_Reachability_t;

/*
 * IPv6 unicast next hop structure: weight, egressInterface and
 * nextHopIP fields are valid only for IPV6UC_BASIC,
 * IPV6UC_DIRECT_ATTACH, IPV6UC_REMOTE, and IPV6_TUNNEL types.
 */
typedef struct {
 NPF_IPv6UC_NextHopType_t type;
 NPF_uint16_t weight;
 NPF_IfHandle_t egressInterface;
 NPF_IPv6Address_t nextHopIP;
 NPF_MediaAddress_t mediaAddress;
 NPF_IPv6_Reachability_t reachability;

 IPv6 Task Group 100

Network Processing Forum Software Working Group

} NPF_IPv6UC_NextHop_t;

/*
 * IPv6 unicast Next Hop Entry: nextHopArray points to an array
 * (one or more) of NPF_IPv6UC_NextHop_t structures.
 * nextHopCount indicates how many next hops are in the array.
 * An array is passed because a single prefix may use multiple
 * next hops.
 */
typedef struct {
 NPF_uint32_t nextHopCount;
 NPF_IPv6UC_NextHop_t *nextHopArray;
} NPF_IPv6UC_NextHopArray_t;

/*
 * IPv6 unicast Address Resolution entry:
 */
typedef struct {
 NPF_IPv6Address_t IP_Address;
 NPF_IfHandle_t interfaceHandle;
 NPF_MediaAddress_t mediaAddress;
 NPF_IPv6_Reachability_t reachability;
} NPF_IPv6UC_AddResEntry_t;

/*
 * This structure contains the key of an Address Resolution
 * table entry, consisting of IP address and interface handle.
 */
typedef struct {
 NPF_IPv6Address_t IP_Address;
 NPF_IfHandle_t interfaceHandle;
} NPF_IPv6UC_AddResKey_t;

/*
 * Meaningful structure name used in adress resolution
 * asynchronous callback data.
 */

typedef NPF_IPv6UC_AddResEntry_t NPF_IPv6UC_AddResQueryResp_t;

/*
 * Common table id types
 */
typedef NPF_uint32_t NPF_IPv6UC_AddResTableId_t;

/*
 * Common table handle types
 */
typedef NPF_uint32_t NPF_IPv6UC_AddResTableHandle_t;

/*
 * Forwarding Table Handle definition
 *
 * This structure is defined in a common NPF header file since it
 * is used by several APIs. It is replicated here as a comment for
 * informative purposes.
 */

 IPv6 Task Group 101

Network Processing Forum Software Working Group

/*
typedef NPF_uint32_t NPF_IPv6UC_FwdTableHandle_t;
*/

/*
 * Asynchronous error codes (returned in function callbacks)
 */

typedef NPF_uint32_t NPF_IPv6UC_ReturnCode_t;

#define IPV6_ERR(n) ((NPF_IPv6UC_ReturnCode_t) NPF_IPV6_BASE_ERR + (n))

#define NPF_IPV6UC_E_TABLE_ENTRY_DOES_NOT_EXIST IPV6_ERR(1)
#define NPF_IPV6UC_E_INVALID_HANDLE IPV6_ERR(3)
#define NPF_IPV6UC_E_INSUFFICIENT_STORAGE IPV6_ERR(4)

/*---
 *
 * Discrete Mode Data Types
 *
 ---/

/*
 * This structure contains the query results for a single
 * prefix table entry.
 */
typedef struct {
 NPF_IPv6UC_Prefix_t prefix;
 NPF_uint32_t nextHopIdentifier;
} NPF_IPv6UC_PrefixQueryResp_t;

/*
 * This structure contains the query results for a single
 * next hop table entry.
 */
typedef struct {
 NPF_uint32_t nextHopIdentifier;
 NPF_IPv6UC_NextHopArray_t nextHopArray;
} NPF_IPv6UC_NextHopQueryResp_t;

/*
 * Discrete mode resource id types
 */
typedef NPF_uint32_t NPF_IPv6UC_PrefixTableId_t;
typedef NPF_uint32_t NPF_IPv6UC_NextHopTableId_t;

/*
 * Discrete mode handle types
 */
typedef NPF_uint32_t NPF_IPv6UC_PrefixTableHandle_t;
typedef NPF_uint32_t NPF_IPv6UC_NextHopTableHandle_t;

/*
 * Asynchronous response structure for NPF_IPv6UC_PrefixTableHandleCreate()
 */
typedef struct {

 IPv6 Task Group 102

Network Processing Forum Software Working Group

 NPF_IPv6UC_FwdTableHandle_t extHandle;
 NPF_IPv6UC_PrefixTableHandle_t intHandle;
} NPF_IPv6UC_PfxCreateResp_t;

/*---
 *
 * Unified Mode Data Types
 *
 ---/

/*
 * This structure contains the query results for a single FIB table
 * entry.
 */
typedef struct {
 NPF_IPv6UC_Prefix_t prefix;
 NPF_IPv6UC_NextHopArray_t nextHopArray;
} NPF_IPv6UC_FibQueryResp_t;

/*
 * Unified table id types
 */
typedef NPF_uint32_t NPF_IPv6UC_FibTableId_t;

/*
 * Unified table handle types
 */
typedef NPF_uint32_t NPF_IPv6UC_FibTableHandle_t;

/*
 * Asynchronous response structure for NPF_IPv6UC_FIBTableHandleCreate()
 */
typedef struct {
 NPF_IPv6UC_FwdTableHandle_t extHandle;
 NPF_IPv6UC_FibTableHandle_t intHandle;
} NPF_IPv6UC_FibCreateResp_t;

/*---
 *
 * Completion Callback Data Types
 *
 ---/

/*
 * Common callback definition:
 */
typedef enum NPF_IPv6UC_CallbackType {
 NPF_IPV6UC_PREFIX_TABLE_HANDLE_CREATE = 1,
 NPF_IPV6UC_PREFIX_TABLE_HANDLE_DELETE = 2,
 NPF_IPV6UC_PREFIX_ENTRY_ADD = 3,
 NPF_IPV6UC_PREFIX_ENTRY_DELETE = 4,
 NPF_IPV6UC_PREFIX_TABLE_FLUSH = 5,
 NPF_IPV6UC_PREFIX_TABLE_ATTRIBUTE_QUERY = 6,
 NPF_IPV6UC_PREFIX_ENTRY_QUERY = 7,
 NPF_IPV6UC_PREFIX_NEXT_HOP_TABLE_BIND = 8,
 NPF_IPV6UC_NEXT_HOP_TABLE_HANDLE_CREATE = 9,
 NPF_IPV6UC_NEXT_HOP_TABLE_HANDLE_DELETE = 10,

 IPv6 Task Group 103

Network Processing Forum Software Working Group

 NPF_IPV6UC_NEXT_HOP_ENTRY_ADD = 11,
 NPF_IPV6UC_NEXT_HOP_ENTRY_DELETE = 12,
 NPF_IPV6UC_NEXT_HOP_TABLE_FLUSH = 13,
 NPF_IPV6UC_NEXT_HOP_TABLE_ATTRIBUTE_QUERY = 14,
 NPF_IPV6UC_NEXT_HOP_ENTRY_QUERY = 15,
 NPF_IPV6UC_FIB_TABLE_HANDLE_CREATE = 16,
 NPF_IPV6UC_FIB_TABLE_HANDLE_DELETE = 17,
 NPF_IPV6UC_FIB_ENTRY_ADD = 18,
 NPF_IPV6UC_FIB_ENTRY_DELETE = 19,
 NPF_IPV6UC_FIB_TABLE_FLUSH = 20,
 NPF_IPV6UC_FIB_TABLE_ATTRIBUTE_QUERY = 21,
 NPF_IPV6UC_FIB_ENTRY_QUERY = 22,
 NPF_IPV6UC_ADDRESS_RES_TABLE_HANDLE_CREATE = 23,
 NPF_IPV6UC_ADDRESS_RES_TABLE_HANDLE_DELETE = 24,
 NPF_IPV6UC_ADDRESS_RES_ENTRY_ADD = 25,
 NPF_IPV6UC_ADDRESS_RES_ENTRY_DELETE = 26,
 NPF_IPV6UC_ADDRESS_RES_TABLE_FLUSH = 27,
 NPF_IPv6UC_ADDRESS_RES_TABLE_ATTRIBUTE_QUERY = 28,
 NPF_IPV6UC_ADDRESS_RES_ENTRY_QUERY = 29
} NPF_IPv6UC_CallbackType_t;

/*
 * An asynchronous response contains a return code indicating
 * an error or success of a particular request operation.
 * The structure may also contain other optional information
 * that was requested by the operation or the information may
 * assist in correlating the response to the corresponding request
 * operation when multiple operations are requested by the application.
 */
typedef struct {
 NPF_IPv6UC_ReturnCode_t returnCode;
 union {
 NPF_IPv6UC_PrefixTableId_t prefixTableId;
 NPF_IPv6UC_NextHopTableId_t nextHopTableId;
 NPF_IPv6UC_FibTableId_t fibTableId;
 NPF_IPv6UC_AddResTableId_t addResTableId;
 NPF_uint32_t unused;
 } u1;
 union {
 NPF_IPv6UC_PfxCreateResp_t prefixTableHandles;
 NPF_IPv6UC_Prefix_t prefix;
 NPF_IPv6UC_PrefixQueryResp_t prefixQueryResult;
 NPF_IPv6UC_NextHopTableHandle_t nextHopTableHandle;
 NPF_uint32_t nextHopIdentifier;
 NPF_IPv6UC_NextHopQueryResp_t nextHopQueryResult;
 NPF_IPv6UC_FibCreateResp_t fibTableHandles;
 NPF_IPv6UC_Prefix_t fibPrefix;
 NPF_IPv6UC_FibQueryResp_t fibQueryResult;
 NPF_IPv6UC_AddResTableHandle_t addResTableHandle;
 NPF_IPv6UC_AddResKey_t addResKey;
 NPF_IPv6UC_AddResQueryResp_t addResQueryResult;
 NPF_uint32_t tableSpaceRemaining;
 NPF_uint32_t unused;
 } u2;
} NPF_IPv6UC_AsyncResponse_t;

/*

 IPv6 Task Group 104

Network Processing Forum Software Working Group

 * This structure is passed to the application as a parameter on a registered
 * completion callback. The type field indicates which function invocation
 * led to this response. The other three fields contain values depending
 * upon the invoking function, whether or not a single operation was
 * requested and whether the operations were successful or not.
 *
 * There are several possibilities:
 *
 * The application invokes a function requesting a single operation:
 * - If allOK = TRUE, then numResp = 0 and the "resp" pointer is NULL.
 * This indicates the operation completed successfully and there is
 * no other additional response data to return.
 * - If allOK = FALSE, then numResp = 1 and the "resp" pointer points to
 * a response structure. If the returnCode field indicates NPF_NO_ERROR,
 * the operation completed successfully and there is additional response
 * data in the structure. Otherwise, the operation failed and the reason
 * is indicated by the returnCode.
 * The application invokes a function requesting multiple operations:
 * - If all operations completed successfully at the same time and there
 * is no additional response data to provide, then allOK = TRUE,
 * numResp = 0 and the "resp" pointer is NULL.
 * - If all operations completed successfully at the same time, but there
 * is additional response data to provide, then allOK = FALSE, numResp
 * indicates the total number of requested operations and the "resp"
 * pointer points to an array of response structures. The returnCode
 * field will indicate NPF_NO_ERROR.
 * - If some operations completed, but not all, then:
 * > allOK = FALSE, numResp = the number of request operations
 * completed.
 * > The "resp" pointer will point to an array of response structures,
 * each one containing one element for each completed request. For
 * operations that completed successfully, the returnCode field will
 * indicate NPF_NO_ERROR and additional response data may be present,
 * depending on the type of function invocation. For operations that
 * failed, the reason is indicated by the returnCode field.
 */

typedef struct {
 NPF_IPv6UC_CallbackType_t type;
 NPF_boolean_t allOK;
 NPF_uint32_t numResp;
 NPF_IPv6UC_AsyncResponse_t *resp;
} NPF_IPv6UC_CallbackData_t;

/*---
 *
 * Event Notification Data Types
 *
 ---/

/*
 * Event Notification Types
 */
typedef enum NPF_IPv6UC_Event {
 NPF_IPV6UC_PREFIX_TBL_MISS = 1,
 NPF_IPV6UC_NEXT_HOP_TBL_MISS = 2,
 NPF_IPV6UC_FIB_PREFIX_MISS = 4,

 IPv6 Task Group 105

Network Processing Forum Software Working Group

 NPF_IPV6UC_FWDTBL_REFRESH = 5,
 NPF_IPV6UC_ADD_RES_TRANSITION = 6
} NPF_IPv6UC_Event_t;

/* This event is triggered when the forwarding plane is unable to find a */
/* next hop identifier for a specific prefix. This event is optional. */
typedef struct {
 NPF_IPv6UC_PrefixTableHandle_t pfxTableHandle;
 NPF_IPv6Address_t destIP_Address;
} NPF_IPv6UC_PrefixTblMiss_t;

/* This event is triggered when the forwarding plane is unable to find a */
/* next hop table entry for a specific next hop identifier. This event */
/* is optional. */
typedef struct {
 NPF_IPv6UC_NextHopTableHandle_t nextHopTableHandle;
 NPF_uint32_t nextHopIdentifier;
} NPF_IPv6UC_NextHopTblMiss_t;

/* This event is triggered when the forwarding plane is unable to find a */
/* FIB table entry for a specific IP address. This event is optional */
typedef struct {
 NPF_IPv6UC_FibTableHandle_t fibTableHandle;
 NPF_IPv6Address_t destIP_Address;
} NPF_IPv6UC_FIB_PrefixMiss_t;

/*
 * This structure defines the enumerations for the table type used in
 * the NPF_IPv6UC_FwdTbl_Refresh_t structure below.
 */
typedef enum NPF_IPv6UC_TableType {
 NPF_IPV6UC_FIB_TABLE = 1,
 NPF_IPV6UC_PREFIX_TABLE = 2
} NPF_IPv6UC_TableType_t;

/* This event is triggered when the application or the IPv6 API */
/* implementation needs to be notified that a FIB needs to be refreshed */
/* on the forwarding plane. This event is optional. */
typedef struct {
 NPF_IPv6UC_TableType_t tableHandleType;
 union {
 NPF_IPv6UC_FibTableHandle_t fibTableHandle;
 NPF_IPv6UC_PrefixTableHandle_t prefixTableHandle;
 } u;
} NPF_IPv6UC_FwdTbl_Refresh_t;

/*
 * This structure defines the enumerations for the table type used in
 * the NPF_IPv6UC_AddResTransition_t structure below.
 */
typedef enum NPF_IPv6UC_AddResTableType {
 NPF_IPV6UC_ADD_RES_ADDRES_TABLE = 1,
 NPF_IPV6UC_ADD_RES_FIB_TABLE = 2,
 NPF_IPV6UC_ADD_RES_NEXTHOP_TABLE = 3
} NPF_IPv6UC_AddResTableType_t;

/*

 IPv6 Task Group 106

Network Processing Forum Software Working Group

 * This event is triggered when the forwarding plane performs a
 * transition from one state of an address resolution entry to another
 * state. This event is optional.
 */
typedef struct {
 NPF_IPv6UC_AddResTableType_t addResTableType;
 union {
 NPF_IPv6UC_AddResTableHandle_t addResTableHandle;
 NPF_IPv6UC_FibTableHandle_t fibTableHandle;
 NPF_IPv6UC_NextHopTableHandle_t nextHopTableHandle;
 } u;
 NPF_IPv6UC_AddResEntry_t addResEntry;
 NPF_IPv6_Reachability_t previousReachability;
} NPF_IPv6UC_AddResTransition_t;

/*
 * Event Notification Structures
 */
typedef struct {
 NPF_IPv6UC_Event_t type;
 union {
 NPF_IPv6UC_PrefixTableId_t prefixTableId;
 NPF_IPv6UC_NextHopTableId_t nextHopTableId;
 NPF_IPv6UC_FibTableId_t fibTableId;
 NPF_IPv6UC_AddResTableId_t addResTableId;
 NPF_uint32_t unused;
 } u1;
 union {
 NPF_IPv6UC_PrefixTblMiss_t prefixTblMiss;
 NPF_IPv6UC_NextHopTblMiss_t nextHopTblMiss;
 NPF_IPv6UC_FIB_PrefixMiss_t fibPrefixMiss;
 NPF_IPv6UC_FwdTbl_Refresh_t fwdTableRefreshRequest;
 NPF_IPv6UC_AddResTransition_t addResTransition;
 } u2;
} NPF_IPv6UC_EventData_t;

/*
 * This structure is provided when the event notification handler
 * is invoked. It specifies one or more IPv6 unicast forwarding events.
 */

typedef struct {
 NPF_uint32_t numEvents;
 NPF_IPv6UC_EventData_t *eventArray;
} NPF_IPv6UC_EventArray_t;

/*
 * Definitions for selectively enabling IPV6UC events
 */
#define NPF_IPV6UC_EV_PREFIX_TBL_MISS_ENABLE (1 << 0)
#define NPF_IPV6UC_EV_NEXT_HOP_TBL_MISS_ENABLE (1 << 1)
#define NPF_IPV6UC_EV_FIB_PREFIX_MISS_ENABLE (1 << 2)
#define NPF_IPV6UC_EV_FWDTBL_REFRESH_ENABLE (1 << 3)
#define NPF_IPV6UC_EV_ADD_RES_TRANSITION_ENABLE (1 << 4)
#define NPF_IPV6UC_EV_LAST (1 << 4)

/*---

 IPv6 Task Group 107

Network Processing Forum Software Working Group

 *
 * Function Call Prototypes
 *
 ---/
typedef void (*NPF_IPv6UC_CallbackFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_IPv6UC_CallbackData_t data);

typedef void (*NPF_IPv6UC_EventCallFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_IPv6UC_EventArray_t data);

NPF_error_t NPF_IPv6UC_Register(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_IPv6UC_CallbackFunc_t callbackFunc,
 NPF_OUT NPF_callbackHandle_t *callbackHandle);

NPF_error_t NPF_IPv6UC_Deregister(
 NPF_IN NPF_callbackHandle_t callbackHandle);

NPF_error_t NPF_IPv6UC_EventRegister(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_IPv6UC_EventCallFunc_t eventCallFunc,
 NPF_IN NPF_eventMask_t eventMask,
 NPF_OUT NPF_callbackHandle_t *eventCallHandle);

NPF_error_t NPF_IPv6UC_EventDeregister(
 NPF_IN NPF_callbackHandle_t eventCallHandle);

NPF_IPv6UC_SupportedMode_t NPF_IPv6UC_GetSupportedModes (void);

NPF_IPv6UC_PreferredMode_t NPF_IPv6UC_GetPreferredMode(void);

NPF_error_t NPF_IPv6UC_PrefixTableHandleCreate(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_PrefixTableId_t prefixTableId);

NPF_error_t NPF_IPv6UC_PrefixTableHandleDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_PrefixTableHandle_t tableHandle);

NPF_error_t NPF_IPv6UC_PrefixEntryAdd(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_PrefixTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv6UC_Prefix_t *prefixArray,
 NPF_IN NPF_uint32_t *nextHopIdArray);

NPF_error_t NPF_IPv6UC_PrefixEntryDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,

 IPv6 Task Group 108

Network Processing Forum Software Working Group

 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_PrefixTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv6UC_Prefix_t *prefixArray);

NPF_error_t NPF_IPv6UC_PrefixTableFlush(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_PrefixTableHandle_t tableHandle);

NPF_error_t NPF_IPv6UC_PrefixTableAttributeQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_PrefixTableHandle_t tableHandle);

NPF_error_t NPF_IPv6UC_PrefixEntryQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_PrefixTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv6UC_Prefix_t *prefixArray);

NPF_error_t NPF_IPv6UC_PrefixNextHopTableBind(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_PrefixTableHandle_t prefixTableHandle,
 NPF_IN NPF_IPv6UC_NextHopTableHandle_t nextHopTableHandle);

NPF_error_t NPF_IPv6UC_NextHopTableHandleCreate(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_NextHopTableId_t nextHopTableId);

NPF_error_t NPF_IPv6UC_NextHopTableHandleDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_NextHopTableHandle_t tableHandle);

NPF_error_t NPF_IPv6UC_NextHopEntryAdd(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_NextHopTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_uint32_t *nextHopIdArray,
 NPF_IN NPF_IPv6UC_NextHopArray_t *nextHopArrays);

NPF_error_t NPF_IPv6UC_NextHopEntryDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,

 IPv6 Task Group 109

Network Processing Forum Software Working Group

 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_NextHopTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_uint32_t *nextHopIdArray);

NPF_error_t NPF_IPv6UC_NextHopTableFlush(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_NextHopTableHandle_t tableHandle);

NPF_error_t NPF_IPv6UC_NextHopTableAttributeQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_NextHopTableHandle_t tableHandle);

NPF_error_t NPF_IPv6UC_NextHopEntryQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_NextHopTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_uint32_t *nextHopIdArray);

NPF_error_t NPF_IPv6UC_FibTableHandleCreate(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_FibTableId_t fibTableId);

NPF_error_t NPF_IPv6UC_FibTableHandleDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_FibTableHandle_t tableHandle);

NPF_error_t NPF_IPv6UC_FibEntryAdd(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_FibTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv6UC_Prefix_t *prefixArray,
 NPF_IN NPF_IPv6UC_NextHopArray_t *nextHopArrays);

NPF_error_t NPF_IPv6UC_FibEntryDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_FibTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv6UC_Prefix_t *prefixArray);

NPF_error_t NPF_IPv6UC_FibTableFlush(
 NPF_IN NPF_callbackHandle_t callbackHandle,

 IPv6 Task Group 110

Network Processing Forum Software Working Group

 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_FibTableHandle_t tableHandle);

NPF_error_t NPF_IPv6UC_FibTableAttributeQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_FibTableHandle_t tableHandle);

NPF_error_t NPF_IPv6UC_FibEntryQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_FibTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv6UC_Prefix_t *prefixArray);

NPF_error_t NPF_IPv6UC_AddResTableHandleCreate(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_AddResTableId_t addResTableId);

NPF_error_t NPF_IPv6UC_AddResTableHandleDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_AddResTableHandle_t tableHandle);

NPF_error_t NPF_IPv6UC_AddResEntryAdd(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_AddResTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv6UC_AddResEntry_t *entryArray);

NPF_error_t NPF_IPv6UC_AddResEntryDelete(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_AddResTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv6UC_AddResKey_t *entryArray);

NPF_error_t NPF_IPv6UC_AddResTableFlush(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_AddResTableHandle_t tableHandle);

NPF_error_t NPF_IPv6UC_AddResAttributeQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,

 IPv6 Task Group 111

Network Processing Forum Software Working Group

 NPF_IN NPF_IPv6UC_AddResTableHandle_t tableHandle);

NPF_error_t NPF_IPv6UC_AddResEntryQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IPv6UC_AddResTableHandle_t tableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_IPv6UC_AddResKey_t *entryArray);

#ifdef __cplusplus
}
#endif

#endif /* __NPF_IPV6U_H */

 IPv6 Task Group 112

Network Processing Forum Software Working Group

Appendix B List of companies belonging to NPF during
approval process

Agere Systems IBM Samsung Electronics

Alcatel IDT Sandburst Corporation

Altera Intel Silicon & Software Systems

AMCC IP Infusion Silicon Access

Analog Devices Kawasaki LSI Sony Electronics

Avici Systems LSI Logic STMicroelectronics

Azanda Network Devices Modelware Sun Microsystems

Cypress Semiconductor Mosaid Teja Technologies

Ericsson Motorola TranSwitch

Erlang Technologies NEC U4EA Group

EZ Chip NetLogic Xelerated

Flextronics Nokia Xilinx

Fujitsu Ltd. Paion Co., Ltd. Zettacom

FutureSoft PMC Sierra ZTE

HCL Technologies RadiSys

Hi/fn

 IPv6 Task Group 113

	Revision History
	Introduction
	Assumptions and External Requirements
	Scope
	Dependencies

	API Usage Model
	Unified Table Model
	Discrete Table Model
	Address Resolution Table
	API Usage Guidelines

	Data Types
	Common Data Types
	Table Mode Query Data Types
	Prefix Data Types
	Next Hop Array Data Types
	Address Resolution Data Types
	Table Types
	Return Codes

	Unified Mode Data Types
	FIB Table Query Data Type
	Table Types

	Discrete Mode Data Types
	Prefix Table Query Data Type
	Next Hop Table Query Data Type
	Table Types

	Data Structures for Completion Callbacks
	Completion Callback Structures

	Data Structures for Event Notification
	Event Notification Types
	Event Notification Structures
	NPF_eventMask Bit Definitions

	Function Calls
	Completion Callback Function Calls
	NPF_IPv6UC_CallbackFunc
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values

	Event Notification Function Calls
	NPF_IPv6UC_EventCallFunc_t
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values

	Callback Registration/Deregistration Function Calls
	NPF_IPv6UC_Register
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes

	NPF_IPv6UC_Deregister
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes

	Event Registration/Deregistration Function Calls
	NPF_IPv6UC_EventRegister
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes

	NPF_IPv6UC_EventDeregister
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes

	Supported & Preferred Mode Query Function Calls
	NPF_IPv6UC_GetSupportedModes
	Syntax
	Description
	Input Argument
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_GetPreferredMode
	Syntax
	Description
	Input Argument
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	Unified FIB Table Function Calls
	NPF_IPv6UC_FibTableHandleCreate
	Syntax
	Description
	Input Argument
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_FibTableHandleDelete
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_FibEntryAdd
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_FibEntryDelete
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_FibTableFlush
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_FibTableAttributeQuery
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_FibEntryQuery
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	Discrete Prefix Table Function Calls
	NPF_IPv6UC_PrefixTableHandleCreate
	Syntax
	Description
	Input Argument
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_PrefixTableHandleDelete
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_PrefixEntryAdd
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_PrefixEntryDelete
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_PrefixTableFlush
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_PrefixTableAttributeQuery
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_PrefixEntryQuery
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Asynchronous Response

	NPF_IPv6UC_PrefixNextHopTableBind
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	Discrete Next Hop Table Function Calls
	NPF_IPv6UC_NextHopTableHandleCreate
	Syntax
	Description
	Input Argument
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_NextHopTableHandleDelete
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_NextHopEntryAdd
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_NextHopEntryDelete
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Asynchronous Response

	NPF_IPv6UC_NextHopTableFlush
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_NextHopTableAttributeQuery
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_NextHopEntryQuery
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Asynchronous Response

	Address Resolution Function Calls
	NPF_IPv6UC_AddResTableHandleCreate
	Syntax
	Description
	Input Argument
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_AddResTableHandleDelete
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_AddResEntryAdd
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Asynchronous Response

	NPF_IPv6UC_AddResEntryDelete
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Asynchronous Response

	NPF_IPv6UC_AddResTableFlush
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_AddResTableAttributeQuery
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Notes
	Asynchronous Response

	NPF_IPv6UC_AddResEntryQuery
	Syntax
	Description
	Input Arguments
	Output Arguments
	Return Values
	Asynchronous Response

	API Summary
	Common Function Calls
	Unified Mode Function Calls
	Discrete Mode Function Calls
	Events

	References
	Appendix A Header File: NPF_IPv6UC.h
	Appendix B List of companies belonging to NPF during approval process

