Network Processing Forum Software Working Group

Network Processing Forum

MPLS Forwarding Service APlIs
with Diffserv and TE Extensions
Implementation Agreement

Revision 1.0
Editors:

Manikantan Srinivasan, manis@futsoft.com
Reda Haddad, reda.haddad@ericsson.com

Copyright © 2003 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THIS DOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED TO THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", “MAY", and "OPTIONAL" in the remainder of this
document are to be interpreted as described in the NPF Software API Conventions Implementation
Agreement revision 2.0.

For additional information contact:
The Network Processing Forum, 39355 California Street,
Suite 307, Fremont, CA 94538
+1 510 608-5990 phone info@npforum.org

MPLS Task Group 1

Network Processing Forum Software Working Group

Table of Contents

I REVISION HISTOTY .uuviiiiiieiiiie ettt ettt et e e e e et e e staeeessaeeenseeennseesnnseeennnes 3
B 113 (016 1011 510) DO OO SURTR PP 4
B B o0 o1 OO PSPS 5
2.2 Abbreviations and ACTONYIMIScccuuieuierieeiieriieetteriee et esteeeteesieeseeebeesaseebeesaeeeseesneeens 5
3 ASSUIMPLIONS .c..vteeeiiiieeiieeeiieeetteeeteeeeteeeeteeessteeeasteeessseeensseeesseeasseeansseeansseessseesnsseesnsaeennseeennses 6
4 External Requirements/Dependenciesc.eerieeiierieiiieniieeiiesiie ettt ettt 8
T B T T) o1 OSSPSR 9
5.1 NPF MPLS Common Data TYPeScccccecuieriiiiiiniieiierieeeeeeeeieesee et 9
5.2 NPF MPLS Label Data TYPES......ececiieeriiieiiieeeiieeeiieesieeesteeesiveeeiveeeiveestaeesaeeesneee e 10
5.3 NPF MPLS DiffServ Data TYPES ...c..ccoeeuerieriiriiniienieeieeiteteeitesie ettt 11
5.4 NPF MPLS TE Data TYPES ...veeeeiieeiiieeiiieeiieeeiiee et e eiteesteeesveeesiteeesiveesssaeesnsseesnnneeens 13
5.5 NPF MPLS NHLFE Data TYPES ..c..ceeoueeriiriieieiieenieeieeniie ettt 14
5.6 NPF MPLS FEC Data TyPES...ccccvieeiiieeriiieeiieeeiieeeiteesieeesreeesiveeesveesareesssaeesseesssseesnns 16
5.7 NPF MPLS Label Action Data TYPEScccuerierieriiniieiiinienieeienitesieeieeeesie e saeennenn 17
5.8 NPF MPLS ILM Data TYPES...cueeueruierierieniieieeiesieeieeiesteeteeieesieeniesiee s eeesneeseeeneesneens 18
5.9 NPF MPLS LSP Data TYPES ..ccueeeiiiiiiiiieiieeiteeeecee ettt 18
5.10 NPF MPLS LSP Statistics Data TYPeS......ccceeruieriiiiieriieiieeieeieeeieeree e ereeseveevee e 20
5.11 Data Structures for Completion Callbackscoceeveriiriiiiniiniiniiicneccecseeeene 21
512 EITOT COUCS...uiiniiiiiiieiieee ettt ettt st ettt e sbe e st esae e e b eees 25
5.13 Data Structures for Event NOtIfICationsccevviiiiieniiiiiieiieeieeeeeeee e 26
6 FUNCHION CallS ..utiiiiiiiiiiiie ettt ettt ettt et eanes 28
6.1 Completion Callback Function Calls.........c..cccueriiiiiiiniiniiiiiiieeicnececceeeeee e 28
6.2 Event Notification Function CallS...........cccoceeiiriiniiniiiiieeececeeeee e 28
6.3 Callback Registration/Deregistration Function Calls.........ccccceceeviriiiniininiinieneniennns 29
6.4 Event Registration/Deregistration Function Calls.............cccecoveviieiiiinciiiniieniieiecieeenn 31
6.5 MPLS Forwarding Service APL..........oooiiiiiieieee et 33
T RETEIEICES ...ttt sttt et sttt sb ettt e bt et et anes 61
Appendix A Header File: NPF MPLS.h ...ooooiiiiiie e 62
Appendix B MPLS QOS Parameters.ccceevieeiienieeiieniieeieesite ettt siee e seeesveesaeeeseenenes 75
Appendix C Relationship of MPLS SAPI with [Pv4/IPv6 SAPI for FTN Mapping................... 78
Appendix D List of companies belonging to NPF during approval processccccceevveerevennne. 79

Table of Figures

Figure 1 - MPLS Signaling Protocols - NP API architectural relationship..........ccccceveeieniencnnnn. 4
Figure 2 - Relationship / Dependency of MPLS NP API - data structures.........c.ccccceeceereenennennen. 9
Figure 3 - Label ENCOAINGccviiuiiiiiiiiieiieie ettt sttt s 10

MPLS Task Group 2

Network Processing Forum Software Working Group

1 Revision History

Revision

Date

Reason for Changes

1.0

09/23/2003

Created Rev 1.0 of the implementation agreement by taking the MPLS Forwarding

Service APIs with Diffserv and TE Extensions (npf2003.272.05) and making minor
editorial corrections.

MPLS Task Group

Network Processing Forum Software Working Group

2 Introduction

In MPLS networks, data transmission occurs on label-switched paths (LSPs). An LSP is a path through a
sequence of interconnected routers, which forward packets from the start to the end of the path based on
labels. LSPs are established prior to data transmission — driven by the control plane - or upon detection of
a certain flow of data — driven by the data plane. The labels, which are underlying protocol-specific
identifiers, are distributed using Label Distribution Protocol (LDP) or Resource Reservation Protocol
(RSVP) or piggybacked on routing protocols like Border Gateway Protocol (BGP).

Data forwarding or handling based on label information is carried out at the following types of devices:
e MPLS Ingress Label Edge Router (LER)
e MPLS Intermediate or Core Label Switching Router (LSR)
e MPLS Egress Label Edge Router (LER)

In the ingress LER, the MPLS forwarding engine/module classifies the data being forwarded into
Forwarding Equivalence Classes (FECs). Once the FEC to which a packet belongs is determined, the
LER uses the Next Hop Label Forwarding Entry (NHLFE) associated with that FEC to forward the packet
onto an LSP. The intermediate LSR and the egress LER use the Incoming Label Map (ILM) and the
associated Next Hop Label Forwarding Entry (NHLFE) for handling and forwarding the labeled packet.

Figure 1 depicts the typical architecture / relationship between MPLS signaling and NPF APIs.

MPLS Signaling Protocols

!

MPLS Forwarding Services NP
API

i

MPLS Forwarding Functional NP

API
NPE NPE NPE

Figure 1 - MPLS Signaling Protocols - NP API architectural relationship

The MPLS Forwarding Services API provides a generic interface for configuring and managing the
forwarding plane of the MPLS layer. The signaling protocols like LDP, RSVP-TE etc., use the function
calls of this API to configure and manage MPLS forwarding information.

MPLS Task Group 4

Network Processing Forum Software Working Group

2.1 Scope

The MPLS Forwarding Services API provides function calls for the control and management of data
transmission over MPLS label switched paths in the data/forwarding plane. The scope of this API defined
is restricted to LSPs associated with Ethernet (Generic), ATM, FR and POS (generic) interfaces /
networks.

2.2 Abbreviations and Acronyms

ATM Asynchronous Transfer Mode
DSCP Diffserv Code Point

FEC Forwarding Equivalence Class
FR Frame Relay

FTN FEC to NHLFE

ILM Incoming Label Map

LSP Label Switched Path

MPLS Multi Protocol Label Switching
NHLFE Next Hop Label Forwarding Entry
PHB Per Hop Behavior

PSC PHB Scheduling Class

SAPI Services API

TE Traffic Engineering

MPLS Task Group 5

3

Network Processing Forum Software Working Group

Assumptions

The following assumptions have been made in designing the MPLS forwarding APIs and the associated
data structures

1.

10.

11.

12.

Some MPLS forwarding designs might maintain an FTN and ILM database per interface to enable
faster and easy lookups.

An FTN entry is uniquely identified based on the FEC parameters. In basic MPLS forwarding, the
FEC parameter is either an [Pv4/IPv6 prefix or an [Pv4/IPv6 host address.

An FTN entry information might be stored as part of IP forwarding database, where the next hop
information will be an NHLFE Set.

An ILM entry is uniquely identified based on incoming label and incoming interface identifier pair. In
cases where the label is part of per-platform label space, the incoming interface identifier will have a
value 0.

An NHLFE entry is uniquely identified based on outgoing interface identifier, a next hop IP address
and an outgoing label Stack. The outgoing label will be the top label in the label stack information
associated with the NHLFE.

For an LSP there can be multiple NHLFEs. A policy may be defined to select between the NHLFEs.
The policy information and the associated NHLFEs are contained within an NHLFE Set.

As table or database information, the basic forwarding design assumes an LSP table/database, an
NHLFE table/database, and an NHLFE Set table/database.

An NHLFE/NHLFE Set can be created first in the NHLFE/NHLFE Set table/database. The creation
will result in a unique NHLFE/NHLFE Set handle. The NHLFE handle value will be passed along
with the LSP creation as part of the NHLFE Set information

An NHLFE/NHLFE Set can also be created along with a LSP, when the LSP is created. An NHLFE
Set will be created even if it is just one NHLFE.

An NHLFE/NHLFE Set can be shared by multiple LSPs, if the system can support label merging. We
assume a label space may be partitioned into multiple non-overlapping signaling protocol partitions.

An NHLFE Set can be modified with a updated set of NHLFE information. When an NHLFE Set is
modified, this modification is reflected on all the LSPs that are associated with the NHLFE Set that is
modified.

At an ingress of a LSP, (where the data forwarding is based on the FEC), it is possible to have
multiple NHLFEs. Forwarding data over different NHLFEs for providing priority handling of data
packets or for load balancing can be carried out at the LSP ingress. This will be based on suitable
policies (examples given below). Forwarding information will be maintained as an array of policy
information, consisting of NHLFE handles and weights associated with those Next Hops, as shown in
the weight policy example below. The set of NHLFEs, array of policy information are part of an
NHLFE Set.

Weight 1 3 10 16
NHLFE Handle 1 2 3 4

MPLS Task Group 6

13.

14.

Network Processing Forum Software Working Group

When using less than the number of bits in a variable (for example, 20 bits for generic or shim label)
we assume the least significant bits are used and the remainder of the bits are padded with Os, unless
otherwise specified.

NPF errorReporting t mplsErrorReporting — An input parameter that is passed in
most of the MPLS SAPI API function call, indicates the degree of error reporting desired from the
callbacks performed at the completion of that function. For more information, please refer section 5.2
in NPF Software API Conventions Implementation Agreement — Revision 1.0

Diffserv and TE Assumptions

1.
2.

10.

Compliance to RFC 2474, RFC 2475, RFC 3140, and RFC 3270.

The means used to forward packets from ingress to egress interfaces, or “fabric”, may have the
capability of differentiating services otherwise referred to as Fabric Classes of Services (FCoS).

If FCoS is supported, the FCoS to use for a particular packet is derived from and only from a DSCP
value; The MPLS label + EXP-bits inferring a PHB, have to be transformed into a DSCP equivalent
in order to cross the fabric on a particular FCoS. The setting of the platform wide “DSCP to FCoS”
map is beyond the scope of this document and assumed to be under the Differentiated Services
Control or SAPI.

Classification is not MPLS functionality and classifiers need to be configured by other SAPIs. More
specifically, extended FECs are not considered as part of the MPLS SAPI. For example, Diffserv may
configure a multi-field classifier to forward packets into an MPLS tunnel/LSP (PBR [reference NPF
2003.139]).

On an ingress LER, the DSCP extracted from a packet may be interpreted before being presented to
the MPLS subsystem (possibly remarked). The interpreted DSCP will be “trusted” and used as
needed by the MPLS subsystem. The interpretation of the DSCP is not the responsibility of MPLS,
rather the responsibility of Diffserv.

The interpreted DSCP, or the MPLS inferred DSCP is carried to the egress side as part of the packet
metadata. The MPLS inferred DSCP can be extracted from either the top or the inner label (or the
[Pv4 header) depending on the Diffserv LSP model.

A “DSCP to EXP” table is available per NHLFE. Multiple NHLFE entries can use the same “DSCP
to EXP” table.

An “EXP to DSCP” table is available per ILM entry. Multiple ILM entries can use the same “EXP to
DSCP” table.

At Egress LER, the choice of using the “LSP Diffserv information” from the top label or the
“tunneled Diffserv information” from the encapsulated packet can be configured. The Extracted
Diffserv information, either the LSP or tunneled, can then be used to determine the PHB. The
forwarded Diffserv information can either be the LSP or the tunneled information, and may be
different than the one used to determine the PHB.

At Egress interface, the choice of keeping the EXP from the encapsulated packet or overriding with
EXP in the NHLFE entry or overriding with EXP bits extracted from a DSCP to EXP table, can be
configured.

MPLS Task Group 7

Network Processing Forum Software Working Group

4 External Requirements/Dependencies

The current document scope does not cover the following

1.

Dependency, if any, for an LSP creation of type FTN entry being carried out with the help of IP
forwarding APIs.

Enabling an interface as MPLS data handling (receiving labeled packets and forwarding labeled
packets) interface. It is assumed this is done as part of the Interfaces Management API [4].

Enabling an MPLS Tunnel as a valid interface and making it visible to routing protocols for their
advertisements. It is assumed this is done as part of the Interfaces Management API [4].

MPLS Task Group

Network Processing Forum Software Working Group

5 Data Types

This section describes the MPLS SAPI data structure definitions. Figure 2 below gives the relationships

between the data structures defined in this document.

ILM
FEC label
ingresslf
labelAction
IspModify Type
LSP >
* * EXP to DSCP
FEC or ILM or NULL
-
Optional
IspType TE Params
Ispld
IspMTU
IspModel Y NHLFE Set
dsModel
ttDecrement NhifeSetHandle
OR
NhlfeSetParam MplsPolicy NHLFE
-
NhifeHandle
policyType "
numpPolicy : OR
array
NhlfeParam DSCP to EXP
-
-
egressinterface
nextHopAddr
labelStack

Figure 2 - Relationship / Dependency of MPLS NP API - Data Structures

5.1 NPF MPLS Common Data Types
5.1.1 NPF _MPLS IP Type t

This enumerated type definition is used to indicate whether the IP protocol is IPv4 or IPv6.

typedef enum {
NPF MPLS IPV4 = 1,
NPF MPLS IPV6 = 2
} NPF MPLS IP Type t;

5.1.2 NPF_MPLS_HostAddr t

This structure type definition is used to store either an IPv4 Host address or an IPv6 Host address.

MPLS Task Group

Network Processing Forum Software Working Group

typedef struct{
NPF MPLS IP Type t ipAddrType;
union {
NPF IPv4Address_ t ipv4DestHostAddr; /* IPv4 Host Address */
NPF IPv6Address t ipvé6DestHostAddr; /* IPv6 Host Address */
}ous
} NPF MPLS HostAddr t;

5.2 NPF MPLS Label Data Types
5.2.1 NPF_MPLS LabelType t

This enumerated type definition is used to indicate the label type as shim label (generic label), or an ATM
label or an FR label.

typedef enum {

NPF_MPLS_LABEL TYPE GENERIC = 1,
NPF_MPLS_LABEL TYPE ATM =2,
NPF_MPLS_LABEL TYPE FR =3

} NPF MPLS LabelType t;

5.2.2 NPF_MPLS_ShimLabel t

This structure type definition is used to store a MPLS Generic label value. A MPLS label, as used in this
specification, refers to a 32-bit Label Stack Entry encoding as specified in RFC 3032.

typedef NPF uint32 t NPF MPLS ShimLabel t;

0[1)2|3(4{5]6]7|8(9]0{1{2[3]|4]|5/6]7|8|9|0[1]2|3|4|5[6]7]8|9|0(1

Value EXP|S TTL
Subfield Usage Size (bits)
Value Label Value 20
EXP Experimental Use 3
S Bottom of Stack Indicator 1
TTL Time to Live 8

Figure 3 - Label Encoding

Note: This structure is specified as is to identify the position of the label bits within the 32-bit field. TTL,
S and EXP bits are not required to be defined as part of the shim label value. Implementer can make use
of the TTL, S and EXP bits in their implementation.

5.2.3 NPF_MPLS_ATM Label t

This structure type definition is used to store a MPLS ATM label value. This definition is based on the
ATM VC definition made in NP Forum — Interface Management API Implementation Agreement
Revision 1.0.

typedef NPF VccAddr t NPF_MPLS ATM Label t

MPLS Task Group 10

Network Processing Forum Software Working Group

5.2.4 NPF_MPLS DLCI Type t

This enumerated type definition is used to identify MPLS FR label value as 10 bits DLCI or 23-bit DLCI.

typedef enum {
NPF_MPLS DLCI 10 = 1,
NPF MPLS DLCI 23 = 2
} NPF_MPLS DLCI Type t;

5.2.5 NPF_MPLS_FR Label t

This structure type definition is used to store an MPLS FR label value.
typedef struct {

NPF MPLS DLCI Type dlciType; /* Length of the DLCI in bits */

NPF uint32 t dlci; /* DLCI */
} NPF_MPLS FR Label t;

5.2.6 NPF MPLS_Label t

This structure type definition is used to store an MPLS label value.

typedef struct {

NPF MPLS LabelType t labelType; /* Type of label
union {

NPF MPLS ShimLabel t shimLabel; /* Generic label

NPF MPLS ATM Label t atmLabel; /* ATM label

NPF MPLS FR Label t frLabel; /* Frame Relay Label
}ous

} NPF MPLS Label t;

5.2.7 NPF_MPLS_LabelStack_t

This structure type definition is used to store MPLS label stack information.

typedef struct {
NPF int32 t numLabels; /* Number of labels
NPF MPLS Label t* labelStack; /* Stack of labels
} NPF MPLS LabelStack t;

5.3 NPF MPLS Diffserv Data Types
5.3.1 NPF _MPLS DSCP_EXP Entry t

*/
*/

*/
*/
*/

This structure type definition relates a DSCP value to an EXP value that can be used as a map entry for a

DSCP to an EXP or vice versa.

typedef struct {
NPF uint8 t dscp; /*DSCP value */
NPF uint8 t exp; /*EXP value */
} NPF_MPLS DSCP EXP Entry t;

53.2 NPF_MPLS DSCP EXP_Param _t

This structure type definition contains information associated with a DSCP EXP map.

MPLS Task Group

11

Network Processing Forum Software Working Group

typedef struct {

NPF uint32 t tableld; /* unique id set by user */

NPF uint8 t numEntries; /* Number of entries in this map */

NPF MPLS DSCP_EXP Entry t *entries; /* DSCP to EXP entries array*/
} NPF_MPLS DSCP_EXP Param t;

53.3 NPF_MPLS _DSCP_EXP Handle t

This structure type definition holds DSCP EXP map handle information
typedef NPF uint32 t NPF MPLS DSCP_EXP Handle t;

5.3.4 NPF_MPLS DSCP EXP InfoType_t

This enumerated type definition is used to indicate whether a DSCP EXP map handle is provided or set of
parameters that is associated with a DSCP EXP map is provided during the DSCP EXP map creation.

typedef enum {
NPF_MPLS DSCPEXP HANDLE = 1,
NPF MPLS DSCPEXP PARAMS = 2
} NPF MPLS DSCP_EXP InfoType t;

53.5 NPF_MPLS DSCP EXP Type t

This enumerated type definition is used to indicate whether a DSCP EXP map is a DSCP to EXP or an
EXP to DSCP type.

typedef enum {
NPF MPLS DSCPEXP DTOE = 1,
NPF MPLS DSCPEXP ETOD = 2
} NPF_MPLS DSCP EXP Type t;

53.6 NPF_MPLS DSCP EXP t

This structure type definition is used to provide the information stored as part of a DSCP to EXP or an
EXP to DSCP map.

typedef struct {

NPF MPLS DSCP EXP Type t type; /* DSCP to Exp or Exp to DSCP*/
NPF MPLS DSCP_EXP InfoType t paramType; /* Handle or map information */
union {

NPF _MPLS DSCP_EXP Handle t mapHandle; /* Map Handle */
NPF MPLS DSCP_EXP Param t mapParam; /* Map Parameters */
}oug
} NPF_MPLS DSCP EXP t;

53.7 NPF_MPLS_PSC_ID ¢t

This structure type definition holds the PSC ID as defined in RFC3140 section 2.
typedef NPF uintl6 t NPF MPLS PSC ID t;

MPLS Task Group 12

Network Processing Forum Software Working Group

5.3.8 NPF_MPLS_PSC_ID Value t

This enumerated type definition is used to provide the PSC ID values. The only predefined PSC ID is for
Best Effort service.

typedef enum {
NPF MPLS PSCID BE = 0
} NPF MPLS PSC_ID Value t;

53.9 NPF_MPLS DS LSP Type t

This enumerated type definition is used to provide the LSP type as either ELSP or LLSP.

typedef enum {
NPF MPLS DS LSP TYPE NONE = 0, /* non-Diffserv type */
NPF MPLS DS LSP TYPE ELSP = 1, /* ELSP */
NPF MPLS DS LSP TYPE LLSP = 2 /* LLSP */

} NPF MPLS DS LSP Type t;

5.3.10 NPF_MPLS_DS_LSP Model t

This enumerated type definition is used to provide the LSP model as either pipe, short pipe or uniform as
defined in RFC 3270.

typedef enum {
NPF_MPLS DS LSP_MODEL NONE
NPF MPLS DS LSP MODEL PIPE =
NPF MPLS DS LSP MODEL SHORTPIPE =
NPF_MPLS DS LSP MODEL UNIFORM =
} NPF MPLS DS LSP Model t;

/* non-Diffserv model */
/* Pipe */

/* Short-pipe */

/* Uniform */

~

~

|
w N~ o
~

5.4 NPF MPLS TE Data Types
5.4.1 NPF MPLS TE Param t

This structure type definition is used to provide the parameters stored as part of a TE tunnel.

typedef struct {

NPF uint32 t maxRate; /*Max or Peak rate (bps)*/

NPF uint32 t meanRate; /*Mean rate (bps)*/

NPF uint32 t maxBurstSize; /*Max Burst size in bytes*/

NPF uint32 t meanBurstSize; /*Mean Burst size in bytes*/

NPF uint32 t exBurstSize; /*Excess Burst size in bytes*/
NPF uint32 t frequency; /*Frequency of token refresh*/
NPF uint8 t weight; /*Weight associated with tunnel*/
NPF uint8 t trafficClass; /*Derived from parameters above*/

} NPF_MPLS TE Param t;

Note: the traffic class table can be found in Appendix B.

MPLS Task Group 13

Network Processing Forum Software Working Group

5.5 NPF MPLS NHLFE Data Types

5.5.1 NPF_MPLS NHLFE_Handle t
This structure type definition holds NHLFE handle information.

typedef NPF uint32 t NPF MPLS NHLFE Handle t;

5.5.2 NPF_MPLS_NHLFE_Param_t

This structure type definition contains information associated with an NHLFE.

typedef struct {

NPF IfHandle t egressInterface; /*
NPF MPLS HostAddr t nextHopAddr; /*
NPF _MPLS LabelStack t labelStack; /*
NPF_MPLS DSCP EXP t *dscpToExp; /*

} NPF_MPLS NHLFE Param t;

Outgoing interface */

Next Hop IPv4/IPv6 address */
label stack to be pushed*/
DSCP to EXP map */

Note: If the value of the dscpToExp pointer is NULL then the NHLFE is non-DS enabled. If the pointer is

not NULL then the NHLFE is DS enabled.

5.53 NPF_MPLS NHLFE InfoType t Type

This enumerated type definition is used to indicate whether an NHLFE handle is provided or set of
parameters that is associated with a NHLFE is provided during the NHLFE creation.

typedef enum {
NPF MPLS NHLFE HANDLE = 1,
NPF_MPLS NHLFE PARAMS = 2
} NPF MPLS NHLFE InfoType t;

5.54 NPF_MPLS NHLFE t

This structure type definition is used to provide the information stored as part of an NHLFE.

typedef struct {

NPF MPLS NHLFE InfoType t paramType;

union {

NPF MPLS NHLFE Handle t nhlfeHandle;
NPF MPLS NHLFE Param t nhlfeParam;

}ou;
} NPF_MPLS NHLFE t;

/* Handle or NHLFE information */

/* NHLFE Handle */
/* NHLFE Parameters */

5.5.5 NPF_MPLS NHLFE_SET PolicyType t
This enumerated type definition specifies the NHLFE policy type associated with each NHLFE Set.

typedef enum {
NPF_MPLS POLICYTYPE NONE
NPF MPLS POLICYTYPE WEIGHT
NPF MPLS POLICYTYPE ELSP
NPF MPLS POLICYTYPE LLSP =

0
1
2
3
t

} NPF_MPLS NHLFE SET PolicyType t;

MPLS Task Group

14

Network Processing Forum Software Working Group

5.5.6 NPF_MPLS_ WeightPolicy t

This structure type definition specifies a weight policy table entry corresponding to a policy type.

typedef struct{
NPF uint32 t weight;
} NPF_MPLS WeightPolicy t;

5.57 NPF_MPLS_DS Policy t

This structure type definition specifies a Diffserv policy table entry corresponding to a policy type.

typedef struct{
NPF uint8 t dscp; /* incoming DSCP to select on */
} NPF MPLS DS Policy t;

Note: Use the 6 MSB for the dscp. The LSB conveys whether it is a PHB (0) or a PSC (1). The dscp
here can also infer a PSC as specified in RFC3140, where we may use the 3 MSB bits of the dscp to
convey the PSC.

5.58 NPF_MPLS_Policy t

This structure type definition specifies a policy entry.

typedef struct{
NPF MPLS NHLFE t *nhlfe;

union {
NPF MPLS WeightPolicy t weightPolicy;
NPF MPLS DS Policy t dsPolicy;
}ou;

} NPF_MPLS Policy t;

5.59 NPF_MPLS _NHLFE_SET Param t

This structure specifies the parameters used in an NHLFE Set to determine which NHLFE(s) are used.

The parameters consist of a number of policies of a particular policy type. For example, for the load
balancing case, the policy type would be set to NPF_ MPLS POLICYTYPE WEIGHT. The union
information inside the policy structure (NPF_MPLS Policy t) will be interpreted as weight policy

(NPF_MPLS WeightPolicy t). The weight policy field (NPF_MPLS WeightPolicy t) carry the weights

associated with each NHLFE, see section 5.5.6.

In the case of an EXP to NHLFE mapping, the policy array would have eight entries, indexed by the shim

exp bits and specifying the associated NHLFE (2 different exp values can map to the same NHLFE).
typedef struct {

NPF uint32 t setId;

NPF MPLS NHLFE SET PolicyType t policyType;
NPF uint32 t numPolicy;

NPF MPLS Policy t **policyArray;

} NPF_MPLS NHLFE SET Param t;

Note: the Setld uniquely identifies a NHLFE set per user context.

MPLS Task Group

15

Network Processing Forum Software Working Group

5.5.10 NPF_MPLS_NHLFE_SET Handle t

This structure type definition holds NHLFE Set handle information.
typedef NPF uint32 t NPF MPLS NHLFE SET Handle t;

5.5.11 NPF_MPLS_NHLFE_SET Type t

This enumerated type definition is used to indicate whether NHLFE Set handle or NHLFE Set
information are selected.

typedef enum {
NPF MPLS NHLFESET HANDLE =
NPF_MPLS NHLFESET PARAMS =
} NPF MPLS NHLFE SET Type t;

|
N -
~

5.5.12 NPF_MPLS _NHLFE SET t

This structure type definition specifies the information stored as part of an NHLFE Set.

typedef struct {
NPF MPLS NHLFE SET Type t setType; /* Handle or NHLFE Set information */

union {
NPF MPLS NHLFE SET Handle t nhlfeSetHandle;/* NHLFE Set Handle */
NPF MPLS NHLFE SET Param t nhlfeSetParam; /* NHLFE Set Parameters */
}ous

} NPF_MPLS NHLFE SET t;

5.6 NPF MPLS FEC Data Types
5.6.1 NPF MPLS FEC Param t

This structure type definition is used to store MPLS FEC parameter information. It stores one of the four
FEC parameters — IPv4 prefix, [Pv6 prefix, [Pv4host address or [Pv6 host address.

typedef struct{

union {
NPEF IPv4Prefix t ipv4DestNetPrefix; /* IPv4 prefix */
NPF IPv6Prefix t ipvéDestNetPrefix; /* IPv6 prefix */
NPF IPv4Address t ipv4DestHostAddr; /* IPv4 Host Address */
NPF IPv6Address t ipv6DestHostAddr; /* IPv6 Host Address */
}ous

} NPF MPLS FEC Param t;

Note: NPF_I Pv4Prefi x_t and NPF_I Pv6Pr ef i x_t are (to be) defined in the NPF Conventions
IA. Please refer to the informative Appendix C for the relationship of MPLS SAPI with IPv4/IPv6 SAPI
for FTN mapping.

5.6.2 NPF_MPLS_FEC Type t

This enumerated type definition specifies the FEC classification information.

typedef enum {
NPF_MPLS FEC IPV4 DEST PREFIX = 1, /* IPv4 prefix */
NPF MPLS FEC IPV4 HOSTADDR 2, /* IPv4 Host Address */

MPLS Task Group 16

Network Processing Forum Software Working Group

NPF_MPLS_FEC IPV6 DEST PREFIX
NPF_MPLS_FEC_IPV6 HOSTADDR
} NPF_MPLS FEC Type t;

3, /* IPv6 prefix */
4 /* IPv6 Host Address */

5.63 NPF_MPLS_FEC._t

This structure type definition contains the FEC information.

typedef struct{
NPF MPLS FEC Type t fecType;
NPF MPLS FEC Param t param;

} NPF MPLS FEC_t;

Note: Source Port and Destination port numbers have been added as elements in mplsFTN entry defined
in the MPLS FTN MIB. However, the basic MPLS signaling protocol — LDP does not have support for
TLVs to convey the Port information. Hence, the FEC definition here does not include Port numbers.

5.7 NPF MPLS Label Action Data Types
5.7.1 NPF_MPLS_Modifier t

This enumerated type definition specifies the additional processing to be done on a data packet as part of
the FTN or ILM handling.

typedef enum {

NPF MPLS REDIRECT

NPF MPLS COPY PROCESS OPCODE
} NPF MPLS Modifier t;

NPF_MPLS_REDI RECT : This indicates that a the data packet be redirected for further processing.
Example usage - Used for testing such as continuity checking of LSPs or sending test packets on LSPs
that should not be forwarded out to an LSP user.

NPF_MPLS COPY_PROCESS OPCODE : This indicates that data packets are to be duplicated and
redirected for further processing. Example usage - Used for LSP Ping and trace route, lawful intercept,
monitoring and debugging.

([l
N -
~

5.7.2 NPF_MPLS_LabelAction_t

This enumerated type definition specifies the FEC classification information.

typedef enum {
NPF MPLS POP AND LOOKUP
NPF MPLS POP AND FORWARD
NPF_MPLS NO POP_AND FORWARD
NPF MPLS DISCARD

} NPF _MPLS LabelAction t;

NPF_MPLS_POP_AND_LOCKUP: This indicates that the top label needs to be popped and lookup should
be done on the next header (either another label or an IPv4 header).

NPF_MPLS POP_AND_FORWARD: This indicates that the top label should be swapped or replaced with
the new label and the packet forwarded.

NPF_MPLS _NO_POP_AND_FORWARD: This indicates that the new label should be pushed onto the
packet.

(]
BwWw N

~ N~ 0~

MPLS Task Group 17

Network Processing Forum Software Working Group

NPF_MPLS_DI SCARD: This indicates that the packet should be discarded/dropped.

NOTE: To support Penultimate hop popping, the Penultimate node pops the incoming label and forwards
the packet based on the information in the popped label. The ILM entry with opcode

NPF_MPLS POP_AND_ FORWARD points to the NHLFE containing a label with a value of

I MPLI CI T_NULL(3). This indicates that no label is pushed at egress. If no labels remain in the
packet’s label stack, the packet is sent unlabeled on the egress interface with the appropriate L2
encapsulation for an IP packet, otherwise the packet is sent on the egress interface with the appropriate L2
encapsulation for an MPLS packet.

5.8 NPF MPLS ILM Data Types
5.8.1 NPF MPLS ILM t

This structure type definition specifies the information stored as part of an ILM.

typedef struct {

NPF MPLS Label t incomingLabel; /* Incoming label*/

NPF IfHandle t ingressInterface; /* Incoming interface */

NPF MPLS LabelAction t labelAction; /* Label action */

NPF MPLS Modifier t lspModifyType; /* Additional processing during
the handling of packet */

NPF MPLS DSCP_EXP t *expToDscp; /* EXP to DSCP table associated

with ELSP*/
} NPF_MPLS ILM t;

Note: the incomingLabel and ingressInterface are used to uniquely identify an ILM entry. Setting the
i ngressl nterface to NULL specifies a platform wide label.

5.9 NPF MPLS LSP Data Types

59.1 NPF_MPLS_LSP Type t

This enumerated type definition specifies the LSP type.

typedef enum{
NPF MPLS LSP FEC = 1, /*Associates FEC with NHLFE */
NPF_MPLS_LSP_ILM = 2 /*Associates ILM with NHLFE */
NPF MPLS LSP TUN = 3 /*Creates a tunnel endpoint */
} NPF MPLS LSP Type t;

59.2 NPF MPLS_LSP Id t

This structure type definition holds the LSP ID value. The LSPID parameter information is used with
CRLDP and RSVP-TE.

typedef NPF uint32 t NPF _MPLS_LSP_Id t;

59.3 NPF_MPLS_LSP t

This structure definition specifies the information required to create LSP. The structure is used to
associate incoming label with one or more NHLFE entries in an NHLFE SET or to associate an incoming
FEC to one or more NHLFE entries in an NHLFE SET. The NHLFE Set can be NULL in case of Egress
LER.

typedef struct {
NPF MPLS LSP Type t lspType; /* Type of LSP*/

MPLS Task Group 18

Network Processing Forum Software Working Group

NPF MPLS LSP Id t 1spId; /*LSP Tunnel Parameter - Identifier*/
NPF MPLS TE Param t *teParams; /*tunnel/LSP parameters*/
NPF uintl6 t lspMtu; /*LSP MTU */
union {

NPF_MPLS FEC_t *fec; /* FEC */

NPF_MPLS ILM t *ilm; /* ILM */
}ous
NPF MPLS DS LSP Model t dsModel; /*pipe, short pipe or uniform */
NPF MPLS DS LSP Type t dsLspType; /*E-LSP, L-LSP, none */
NPF uintlé6 t ttlDecrement; /*let SAPI or below figure out

where to decrement */

NPF MPLS NHLFE SET t *nhlfeSet; /* Associated NHLFE Set */

} NPF MPLS LSP t;

The key values used to uniquely identify an LSP are as follows:

e An FTN entry is uniquely identified based on the FEC parameters.

e An ILM entry is uniquely identified based on incoming label and incoming interface identifier pair.
e A tunnel is uniquely identified based on the LSP ID. In this case FEC and ILM will be NULL.

59.4 NPF MPLS_LSP Handle t

This structure type definition holds the LSP Handle value
typedef NPF uint32 t NPF MPLS LSP Handle t;

Note: The handle must be unique per platform, since other applications can access and use the LSP.

5.9.5 NPF_MPLS_LSP InfoType t

This enumerated type definition is used to indicate whether an LSP handle is provided or the parameters
that define an LSP is provided.

typedef enum {
NPF MPLS LSP HANDLE = 1,
NPF MPLS LSP PARAMS = 2
} NPF_MPLS LSP InfoType t;

5.9.6 NPF MPLS_LSP Info t

This structure type definition is used to identify an LSP either through the LSP handle returned by the
SAPI when the LSP was created or through the parameters used to create the LSP. In order to identify an
LSP, only the key values must be provided. Either the LSP handle or the LSP key values may be used to
retrieve the full NPF_MPLS_LSP_t from the SAPI.

typedef struct {
NPF MPLS LSP InfoType t paramType; /* Handle or LSP information */

union {

NPF MPLS LSP Handle t lspHandle; /* LSP Handle */

NPF MPLS LSP t lspParam; /* LSP key values */
bous

} NPF_MPLS LSP Info t;

MPLS Task Group 19

Network Processing Forum Software Working Group

5.10NPF MPLS LSP Statistics Data Types

5.10.1 NPF_MPLS_FEC_Stats_t

This structure type definition holds the statistics associated with a FEC (FTN — in segment).

typedef struct {

NPF uint64 t octetsRcvd; /* Total Rx Octets */

NPF uint64 t packetsRcvd; /* Total Rx Packets */

NPF uint64 t errors; /* Erroneous packets discarded */

NPF _uint64 t drops; /* Non erroneous packets discarded */
}NPF_MPLS FEC Stats t;

5.10.2 NPF_MPLS ILM_Stats_t

This structure type definition holds the statistics associated with an ILM — in segment.

typedef struct {

NPF uint64 t octetsRcvd; /* Total Rx Octets */
NPF uint64 t packetsRcvd; /* Total Rx Packets */
NPF uint64 t errors; /* Erroneous packets discarded */
NPF _uint64 t drops; /* Non erroneous packets discarded */

} NPF_MPLS ILM Stats t;

5.10.3 NPF_MPLS DSCP EXP_EntryStat t

This structure type definition is used to provide the information stored as part of a DSCP to EXP or an
EXP to DSCP map statistics.
typedef struct {
NPF uint64 t bytes; /* byte count */
NPF uint64 t packets; /* packet count */
} NPF_MPLS DSCP EXP EntryStat t;

Note: The statistics data held in this structure are dependant on the association (ILM or NHLFE) of the
NPF_MPLS DSCP_EXP t. Ifthe NPF_ MPLS DSCP_EXP tis associated with an ILM the statistics
reflect receive counters; If it's associated with a NHLFE it contains transmit counters.

5.10.4 NPF_MPLS_DSCP EXP_Stats_t

This structure type definition is used to provide the information for a set of “numEntries” of DSCP to
EXP or EXP to DSCP map statistics.

typedef struct {

NPF uint8 t numEntries;

NPF MPLS DSCP_EXP EntryStat t *stats; /*stats associated with entries*/
} NPF MPLS DSCP EXP Stats t;

5.10.5 NPF_MPLS _NHLFE_Stats t
This structure type definition holds the statistics associated with an NHLFE.

typedef struct {

NPF _MPLS NHLFE Handle t nhlfeHandle; /* NHLFE Handle */
NPF uint64 t octetsTxed; /* Total Tx Octets */
NPF uint64 t packetsTxed; /* Total Tx Packets */

MPLS Task Group

20

Network Processing Forum Software Working Group

NPF uint64 t errors; /* Erroneous packets discarded

*/

NPF uint64 t drops; /* Non erroneous packets discarded */

} NPF_MPLS NHLFE Stats t;

5.10.6 NPF_MPLS NHLFE StatsArray t

This structure type definition holds an array of NHLFE Statistics.

typedef struct {

NPF uint32 t nhlfeCount;

NPF MPLS NHLFE Stats t *nhlfeStatsArray;
}NPF MPLS NHLFE StatsArray t;

5.10.7 NPF_MPLS _NHLFE_SET Stats_t

This structure type definition holds the statistics associated with an NHLFE SET.

typedef struct {
NPF MPLS NHLFE SET Handle t nhlfeSetHandle; /* NHLFE Set Handle */
NPF MPLS NHLFE StatsArray t *nhlfeStatsArray /* Array of NHLFE
Statistics */
} NPF_MPLS NHLFE SET Stats t;

5.10.8 NPF_MPLS NHLFE_SET StatsArray_t

This structure type definition holds an array of NHLFE SET Statistics.

typedef struct {

NPF uint32 t nhlfeSetCount;

NPF MPLS NHLFE SET Stats t *nhlfeSetStatsArray;
} NPF_MPLS NHLFE SET StatsArray t;

5.10.9 NPF_MPLS LSP_Statisitics t

This structure type definition holds the statistics associated with an LSP.

typedef struct {
NPF MPLS LSP Type t lspType; /* Type of LSP */
NPF MPLS LSP Handle t lspHandle; /* LSP identifier */
union {
NPF MPLS FEC Stats t fecStatistics; /* FEC */
NPF MPLS ILM Stats t ilmStatistics; /* ILM */
}oug
NPF MPLS NHLFE StatsArray t nhlfeStatsArray; /* Associated NHLFEs*/
} NPF_MPLS LSP Stats t;

5.11Data Structures for Completion Callbacks

This section describes the completion callback functions and the associated data structures.

5.11.1 NPF_MPLS_CallbackType _t

This enumerated type definition specifies the call back types.
typedef enum NPF MPLSCallbackType {

MPLS Task Group

21

Network Processing Forum Software Working Group

NPF_MPLS_LSP_ENTRY CREATE =1,
NPF_MPLS_LSP_ENTRY DELETE =2,
NPF_MPLS_LSP_ENTRY MODIFY = 3,
NPF_MPLS_LSP_ATTRIBUTE QUERY 4,
NPF_MPLS_LSP_ENTRY QUERY =5,
NPF_MPLS_LSP_STATS QUERY = 6,
NPF_MPLS_NHLFE ENTRY CREATE =17,
NPF_MPLS_NHLFE ENTRY DELETE = 8,
NPF_MPLS_NHLFE ENTRY MODIFY =9,
NPF_MPLS_NHLFE ATTRIBUTE QUERY = 10,
NPF_MPLS_NHLFE ENTRY QUERY = 11,
NPF_MPLS_NHLFE_ STATS QUERY =12,
NPF_MPLS_NHLFE_ SET CREATE = 13,
NPF_MPLS_NHLFE_ SET DELETE = 14,
NPF_MPLS_NHLFE_ SET MODIFY = 15,
NPF_MPLS_NHLFE SET ATTRIBUTE QUERY = 16,
NPF_MPLS_NHLFE SET ENTRY QUERY =17,
NPF_MPLS_NHLFE SET STATS QUERY = 18,
NPF_MPLS_DSCPEXP ENTRY CREATE =19,
NPF_MPLS_DSCPEXP ENTRY DELETE = 20,
NPF_MPLS_DSCPEXP_ENTRY MODIFY = 21,
NPF_MPLS_DSCPEXP ATTRIBUTE QUERY = 22,
NPF_MPLS_DSCPEXP _ENTRY QUERY = 23,
NPF_MPLS_DSCPEXP_STATS QUERY 24

} NPF MPLS CallbackType t;

5.11.2 NPF_MPLS LSP CreateResp t

This structure type definition holds response/return information provided by the API implementation
during an LSP creation callback.

typedef struct {

NPF uint32 t lspArrayIndex;
NPF MPLS ReturnCode t returnCode;
NPF MPLS LSP Handle t lspHandle;

NPF MPLS NHLFE SET CreateResp t nhlfeSetResp;
NPF MPLS DSCP_EXP Handle t expDscpHandle;

} NPF MPLS LSP CreateResp t;

5.11.3 NPF_MPLS LSP EntryResp t

This structure type definition holds response/return information provided by the API implementation
during LSP API callbacks.

typedef struct {

NPF uint32 t arrayIndex;
NPF MPLS ReturnCode t returnCode;
NPF MPLS LSP Handle t lspHandle;
NPF MPLS LSP t lspEntry;

NPF MPLS DSCP_EXP Handle t expDscpHandle;
} NPF MPLS LSP EntryResp t;

5.11.4 NPF_MPLS_DSCP EXP CreateResp_t

This structure type definition holds response/return information provided by the API implementation
during an Diffserv LSP creation callback.

MPLS Task Group

22

Network Processing Forum Software Working Group

typedef struct {
NPF uint32 t
NPF MPLS ReturnCode t

arraylIndex;
returnCode;

NPF MPLS DSCP EXP Handle t expDscpHandle;
} NPF MPLS DSCP EXP CreateResp t;

5.11.5 NPF_MPLS DSCP_EXP EntryResp t

This structure type definition holds response/return information provided by the API implementation

during Diffserv LSP API callbacks.
typedef struct {

NPF uint32 t arraylIndex;
NPF MPLS ReturnCode t returnCode;
NPF MPLS DSCP_EXP Handle t expDscpHandle;
NPF MPLS DSCP EXP Type t type;

NPF MPLS DSCP_EXP Param t dscpExpEntry;

} NPF_MPLS DSCP EXP EntryResp t;

5.11.6 NPF_MPLS NHFLE CreateResp t

This structure type definition holds response/return information provided by the API implementation
during an NHLFE creation callback.

typedef struct {

NPF uint32 t arrayIndex;
NPF MPLS ReturnCode t returnCode;
NPF MPLS NHFLE Handle t nhlfeHandle;

NPF MPLS DSCP EXP Handle t dscpExpHandle;
} NPF MPLS NHFLE CreateResp t;

5.11.7 NPF_MPLS NHLFE_ EntryResp_t

This structure type definition holds response/return information provided by the API implementation
during NHLFE API callbacks.

typedef struct {

NPF uint32 t arraylndex;
NPF MPLS ReturnCode t returnCode;
NPF MPLS NHLFE Handle t nhlfeHandle;
NPF MPLS NHLFE Param t nhlfeEntry;

NPF MPLS DSCP_EXP Handle t dscpExpHandle;
} NPF MPLS NHLFE EntryResp t;

5.11.8 NPF_MPLS NHLFE SET CreateResp t

This structure type definition holds response/return information provided by the API implementation
during an NHLFE SET creation callback.

typedef struct {

NPF uint32 t arrayIndex;

NPF MPLS ReturnCode t returnCode;

NPF MPLS NHLFE SET Handle t nhlfeSetHandle;
NPF uint32 t numNhlfeResp;

NPF MPLS NHLFE CreateResp t **numNhlfeResp;
} NPF MPLS NHLFE SET CreateResp t;

MPLS Task Group

23

Network Processing Forum Software Working Group

5.11.9 NPF_MPLS _NHLFE_SET EntryResp t

This structure type definition holds response/return information provided by the API implementation
during NHLFE SET API callbacks.

typedef struct {
NPF uint32 t arrayIndex;
NPF MPLS ReturnCode t returnCode;
NPF MPLS NHLFE SET Handle t nhlfeSetHandle;
NPF MPLS NHLFE SET Param t nhlfeEntry;
} NPF MPLS NHLFE SET EntryResp t;

5.11.10NPF_MPLS_ AsyncResponse t

This structure type definition holds asynchronous response/return information provided by the MPLS API
implementation for an MPLS API during a callback.

typedef struct {
NPF _MPLS ReturnCode t returnCode; /* Return code for the call */

union {
NPF MPLS LSP CreateResp t lspCreateResp;
NPF MPLS LSP EntryResp t lspEntryResp;
NPF MPLS LSP Handle t lspHandle;
NPF MPLS LSP Stats t lspStatsResp;
NPF MPLS NHLFE CreateResp t nhlfeCreateResp;
NPF MPLS NHLFE EntryResp t nhlfeEntryResp;
NPF MPLS NHLFE Handle t nhlfeHandle;
NPF MPLS NHLFE Stats t nhlfeStatsResp;
NPF MPLS NHLFE SET Handle t nhlfeSetHandle;

NPF MPLS NHLFE SET CreateResp t nhlfeSetCreateResp;
NPF MPLS NHLFE SET EntryResp t nhlfeSetEntryResp;
NPF MPLS NHLFE SET Stats t nhlfeSetStatsResp;
NPF MPLS DSCP EXP CreateResp t dscpExpCreateResp;
NPF MPLS DSCP EXP EntryResp t dscpExpEntryResp;

NPF MPLS DSCP_EXP Stats t dscpExpStats;
NPF MPLS DSCP_EXP Handle t dscpExpHandle;
NPF uint32 t tableSpaceRemaining;
NPF uint32 t unused;
bous

} NPF _MPLS AsyncResponse t;

Note: This structure type contains a return code for the call and an embedded return code for each
structure within it. The embedded return codes are used for further investigation of the cause of the error
(for debugging purposes). For example, if the NPF_MPLS_AsyncResponse_t structure was a
response for a failed LSP create (where we are creating the LSP from scratch i.e. full NHLFE, NHLFE
SET and ILM params), then the r et ur nCode in the NPF_MPLS_AsyncResponse_t structure can
be NPF_MPLS_E | NVALI D_LSP_PARAMwhere further investigation of the
NPF_MPLS_AsyncResponse_t structure can lead to which LSP param failed (an error in the
NHLFE, ILM, ...). The NPF_MPLS LSP_Cr eat eResp_t structure contains an

NPF_MPLS _NHLFE_SET_Cr eat eResp_t structure that contains an array of

NPF_MPLS NHLFE Creat eResp_t structures which in turn contain an error code for the cause of a
particular NHLFE entry error (the NHLFE causing the error can now be identified as the cause of the
bundled LSP create error and further debugged if needed).

MPLS Task Group 24

Network Processing Forum Software Working Group

5.11.11NPF_MPLS_ CallbackData t

This structure type definition holds the call back data information.

typedef struct {

NPF_MPLS Cal | backType_ t type;
NPF_bool ean_t al | C;
NPF_ui nt 32_t nunResp;
NPF_MPLS _AsyncResponse_t *resp;

} NPF MPLS CallbackData t;

CALL BACK TYPE

/*
/*
/*

/* Cal | back function type

functions conpleted OK
responses in array

to response structures

TRUE if all
Nurmber of
Poi nt er

Field associated

NPF_MPLS LSP_ENTRY CREATE
NPF_MPLS LSP_ENTRY_DELETE
NPF_MPLS LSP_ENTRY_MODI FY
NPF_MPLS LSP_ATTRI BUTE_QUERY
NPF_MPLS LSP_ENTRY_QUERY
NPF_MPLS LSP_ENTRY_STATS QUERY
NPF_MPLS NHLFE_ENTRY_ CREATE
NPF_MPLS NHLFE_ENTRY DELETE
NPF_MPLS NHLFE_ENTRY_MODI FY
NPF_MPLS NHLFE_ATTRI BUTE_QUERY
NPF_MPLS NHLFE_ENTRY_QUERY
NPF_MPLS NHLFE_STATS QUERY
NPF_MPLS NHLFE_SET_CREATE
NPF_MPLS NHLFE SET_DELETE
NPF_MPLS NHLFE SET MODIFY
NPF_MPLS NHLFE_SET_ATTRI BUTE_QUERY
NPF_MPLS NHLFE_SET_ENTRY_QUERY
NPF_MPLS NHLFE_SET_STATS QUERY
NPF_MPLS DSCPEXP_ENTRY CREATE
NPF_MPLS DSCPEXP_ENTRY DELETE
NPF_MPLS DSCPEXP_ENTRY_MODI FY
NPF_MPLS DSCPEXP_ATTRI BUTE_QUERY
NPF_MPLS DSCPEXP_ENTRY_QUERY
NPF_MPLS DSCPEXP_STATS QUERY

5.12Error Codes

LspCr eat eResp
LspHandl e

LspHandl e

Tabl eSpaceRenai ni ng
LspEntryResp
LspSt at sResp

Nhl f eCr eat eResp

Nhl f eHandl e

Nhl f eHandl e

Tabl eSpaceRenai ni ng
Nhl f eEnt r yResp

Nhl f eSt at sResp

Nhl f eSet Cr eat eResp
Nhl f eSet Handl e

Nhl f eSet Handl e

Tabl eSpaceRenai ni ng
Nhl f eSet Ent r yResp
Nhl f eSet St at sResp
DscpExpCr eat eResp
DscpExpHandl e
DscpExpHandl e

Tabl eSpaceRenai ni ng
DscpExpEnt ryResp
DscpExpSt at s

The following are asynchronous error codes returned in function callbacks.

#define NPF _MPLS E ALREADY REGISTERED

(NPF_MPLS_BASE ERR+1)

MPLS Task Group

Network Processing Forum Software Working Group

#define NPF_MPLS E BAD CALLBACK HANDLE
#define NPF_MPLS E BAD CALLBACK FUNCTION
#define NPF_MPLS E_INVALID LSP PARAM
#define NPF_MPLS E_INVALID LSP HANDLE
#define NPF_MPLS E_INVALID LSP TYPE
#define NPF_MPLS E INVALID NHLFE PARAM NPF_MPLS_BASE_ERR+7)
#define NPF_MPLS E INVALID NHLFE HANDLE NPF_MPLS_BASE_ERR+8)

(NPF_MPLS BASE ERR+2)
(
(
(
(
(
(
#define NPF MPLS E INVALID NHLFESET PARAM (NPF_MPLS BASE ERR+9)
(
(
(
(
(
(
(
(

NPF MPLS BASE ERR+3)
NPF MPLS BASE ERR+4)
NPF MPLS BASE ERR+5)
NPF MPLS BASE ERR+6)

#define NPF_MPLS E INVALID NHLFESET HANDLE NPF_MPLS_BASE ERR+10)
#define NPF_MPLS E_INVALID FEC NPF_MPLS_BASE ERR+11)
#define NPF_MPLS E INVALID IN LABEL NPF_MPLS_BASE ERR+12)
#define NPF_MPLS E_INVALID OUT LABEL NPF_MPLS_BASE_ERR+13)
#define NPF_MPLS E INVALID LABEL STACK NPF_MPLS_BASE ERR+14)
#define NPF_MPLS E_INVALID NEXT HOP IP NPF_MPLS_BASE ERR+15)
#define NPF_MPLS E_INVALID NEXT HOP L2MEDIA NPF_MPLS_BASE ERR+16)
#define NPF_MPLS E INVALID NHLFE FWD POLICY NPF_MPLS_BASE ERR+17)

#define NPF_MPLS_E_| NVALI D_I NTERFACE (NPF_MPLS_BASE_ERR+18)
#define NPF_MPLS _E_UNKNOWN (NPF_MPLS_BASE ERR+19)
#define NPF_MPLS E INVALID DSCPEXP_ HANDLE (NPF_MPLS_BASE_ERR+20)
#define NPF_MPLS _E ENTRY ALREADY EXIST (NPF_MPLS_ BASE ERR+21)
#define NPF_MPLS_E_|I NSUFFI Cl ENT_STORAGE (NPF_MPLS_BASE_ERR+22)
#define NPF_MPLS_E_FUNCTI ON_NOT_SUPPORTED (NPF_MPLS_BASE_ERR+23)

5.13Data Structures for Event Notifications
All MPLS events are optional.

Note: Even if an implementation does not generate any of these events, it still needs to implement the
event register and deregister function for interoperability.

5.13.1 NPF_MPLS EventType t

This enumerated type definition specifies the different MPLS events that can be generated by the MPLS
API implementation.

typedef enum {
NPF_MPLS EV ILM MISS
NPF_MPLS EV ILM NHLFE
NPF MPLS EV FTN NHLFE =

, /* No ILM entry for label */
, /* Packet matches ILM without NHLFE */
, /* Packet matches FTN without NHLFE */
NPF MPLS EV NHLFE MTU ’ /* Labeled packet exceeds MTU */
NPF MPLS EV NHLFE L2 = 5, /* Need next hop resolution */
NPF_MPLS EV _PKT TTL = 6, /* Exceeded TTL */
NPF_MPLS EV NHLFE MISS EVENT = 7 /* When NHLFE/NHLFE SET does not exist */
} NPF MPLS EventType t;

g W N

The event data always includes the offending packet. It also specifies the event type, which identifies the
event, and indicates how to interpret the entity identifier and locate the associated entity (if relevant). The
combination of these three items (event type, associated entity and packet) is sufficient to handle the
event.

Event Associated Entity
NPF_MPLS EV I LM M SS Ingress Interface
NPF_MPLS_EV_| LM NHLFE LSP Entry
NPF_MPLS_EV_FTN_NHLFE LSP Entry

MPLS Task Group 26

Network Processing Forum Software Working Group

NPF_MPLS_EV_NHLFE_MTU LSP Entry
NPF_MPLS EV_NHLFE L2 NHLFE

NPF_MPLS EV_PKT_TTL LSP Entry
NPF_MPLS_EV_NHLFE_M SS LSP Entry

NOTE: The frequency NPF_MPLS EV | LM M SSand NPF_MPLS EV_NHLFE_M SS generation is
implementation dependent. Since the event can be generated per packet, which will be an overhead to the
processor, the implementation can generate the MISS events per specified time interval or rate limit for a

group of packets.

5.13.2 NPF_MPLS EventData t

This structure type definition holds information associated with an event, generated by the MPLS API

implementation.

typedef struct {
NPF MPLS Event t eventType; /* Event type */
union {
NPF MPLS LSP Handle t lspHandle;
NPF MPLS NHLFE Handle t nhlfeHandle;
}ou;
NPF IfHandle t ingressInterface;
NPF uint32 t packetLength; /* Length of packet */
void *packetData; /* Location of packet */
} NPF MPLS EventData t;

5.13.3 NPF_MPLS EventArray t

This structure type definition holds an array of MPLS Event information.

typedef struct {
NPF uintlé6 t nData; /* Number of events in array */
NPF MPLS EventData t *eventData; /* Array of event notifications */
} NPF MPLS EventArray t;

MPLS Task Group

27

Network Processing Forum Software Working Group

6 Function Calls

6.1 Completion Callback Function Calls

This callback function is for the application to register an asynchronous response handling routine to the
MPLS API implementation. This callback function is to be implemented by the application, and to be
registered to the MPLS API implementation through the NPF. MPLS Register function.

For more information regarding the design and usage of completion callbacks, please refer to Section 7,
“Function Invocation Model, Events and Completion Callbacks”, of the Network Processing Forum
Software API Conventions Implementation Agreement [2].

6.1.1 NPF_MPLS CallbackFunc t

Syntax
typedef void (*NPF_MPLS Cal | backFunc_t) (
NPF_I N NPF_user Cont ext _t user Cont ext,
NPF I N NPF _correlator_t correlator,
NPF I N NPF_MPLS Cal | backData_t *cal | backDat a) ;
Description
This function is a registered completion callback routine for handling MPLS asynchronous responses.
This is a required function.

Input Arguments
e userContext - The context item that was supplied by the application when the completion callback
function was registered.

e correlator - The correlator item (or call ID) that was supplied by the application when the MPLS
API function call was invoked.

e callbackData - Pointer to a structure containing an array of response information related to the
particular MPLS API function call, which is identified by the type field in the call back data.

Output Arguments
None
Return Values

None

6.2 Event Notification Function Calls

This event notification function is for the application to register an event handler routine to the MPLS
API implementation. This handler function is intended to be implemented by the application, and to be
registered to the MPLS API implementation through the NPF_ MPLS EventRegister function.

6.2.1 NPF _MPLS EventCallFunc t

Syntax
typedef void (*NPF_MPLS Event Cal |l Func_t) (
NPF_I N NPF_user Cont ext _t user Cont ext
NPF I N NPF_MPLS EventArray t npl sEvent Array);

MPLS Task Group 28

Network Processing Forum Software Working Group

Description

This function is registered event notification routine for handling MPLS events. One or more events
can be notified to the application through a single invocation of this event handler function.
Information on each event is represented in an array in the mplsEventArray structure, where the
application can traverse through the array and process each of the events.

This is a required function. This function may be called any time after NPF. MPLS EventRegister()

is called for it.

Input Arguments

o userContext -The context item that was supplied by the application when the event handler

function was registered.

o mplsEventArray -Data structure that contains an array of event information. See
NPF_MPLS_EventArray_t definition for details.

Output Arguments
None
Return Values

None

6.3 Callback Registration/Deregistration Function Calls

This section defines the registration and de-registration functions used to install and remove an
asynchronous response callback routine.

6.3.1 NPF_MPLS Register

Syntax
NPF_error_t NPF_MPLS Regi ster(
NPF_I N NPF_user Cont ext _t user Cont ext,
NPF_I N NPF_MPLS_FwCal | backFunc_t cal | backFunc,
NPF_OUT NPF_cal | backHandl e_t *cal | backHandl e) ;
Description

This function is used by an application to register its completion callback function for receiving
asynchronous responses related to MPLS API function calls. Applications MAY register multiple
callback functions using this function. The callback function is identified by the pair of userContext
and callbackFunc, and for each individual pair, a unique callbackHandle will be assigned for future
reference.

Since the callback function is identified by both userContext and callbackFunc, duplicate registration
of the same callback function with different userContext is allowed. In addition, the same
userContext can be shared among different callback functions. Duplicate registration of the same
userContext and callbackFunc pair has no effect, will output a handle that is already assigned to the
pair, and will return NPF_MPLS_E_ALREADY_REQ STERED.

This is a required function.

Input Arguments

e userContext - A context item for uniquely identifying the context of the application registering
the completion callback function. The exact value will be provided back to the registered

MPLS Task Group 29

Network Processing Forum Software Working Group

completion callback function as its first parameter when it is called. Application can assign any
value to the userContext and the value is completely opaque to the API implementation.

e callbackFunc - Pointer to the completion callback function to be registered.

Output Arguments
e callbackHandle - A unique identifier assigned for the registered userContext and callbackFunc
pair. This handle will be used by the application to specify which callback to be called when
invoking asynchronous API functions. It will also be used when de-registering the userContext
and callbackFunc pair.

Return Values
e NPF_NO_ERROR- The registration completed successfully.

e NPF MPLS E BAD CALLBACK FUNCTION — The callback function is NULL, or otherwise
invalid.

e NPF MPLS E ALREADY REGISTERED- No new registration was made since the
userContext and callback Function pair was already registered.

Notes
e This API function MUST be invoked by any application interested in receiving asynchronous
responses for MPLS API function calls.

e This function operates in a synchronous manner, providing a return value as listed above.

6.3.2 NPF_MPLS Deregister

Syntax
NPF_error_t NPF_MPLS Deregister(
NPF_I N NPF_cal | backHandl e_t cal | backHandl e) ;

Description

This function is used by an application to de-register a completion callback function, which was
previously registered to handle asynchronous callbacks related to MPLS API invocations.

This is a required function.
Input Arguments

e callbackHandle - The unique identifier returned to the application when the completion callback
routine was registered. It represents a unique user context and callback function pair.

Output Arguments
None

Return Values
e NPF_NO_ERROR - The de-registration completed successfully.

e NPF MPLS E BAD CALLBACK HANDLE — The de-registration did not complete
successfully due to problems with the callback handle provided.

Notes
e This API function may be invoked by any application no longer interested in receiving
asynchronous responses for MPLS API function calls.

o This function operates in a synchronous manner, providing a return value as listed above.

MPLS Task Group 30

Network Processing Forum Software Working Group

e There may be a timing window where outstanding callbacks continue to be delivered to the
callback routine after the de-registration function has been invoked. It is the implementation’s
responsibility to guarantee that the callback function is not called after the deregister function has
returned.

6.4 Event Registration/Deregistration Function Calls

This section defines the registration and de-registration functions used to install and remove an event
handler routine.

6.4.1 NPF_MPLS EventRegister

Syntax
NPF_error_t NPF_MPLS Event Regi st er (
NPF_IN NPF_user Cont ext _t user Cont ext,
NPF_IN NPF_MPLS Event Handl er Func_t event Cal | Func,
NPF_QUT NPF_cal | backHandl e_t *event Cal | Handl e) ;
Description

This function is used by an application to register its event handling routine for receiving notifications
of MPLS events. Applications MAY register multiple event handling routines using this function.
The event handling routine is identified by the pair of userContext and eventCallFunc, and for each
individual pair, a unique eventCallHandle will be assigned for future reference.

Since the event handling routine is identified by both userContext and eventCallFunc, duplicate
registration of same event handling routine with different userContext is allowed. In addition, same
userContext can be shared among different event handling routines. Duplicate registration of the same
userContext and eventCallFunc pair has no effect, and will output a handle that is already assigned to
the pair, and will return NPF_E_ ALREADY REGISTERED.

This is a required function.
Input Arguments

o userContext - A context item for uniquely identifying the context of the application registering
the event handler function. The exact value will be provided back to the registered event handler
function as its first parameter when it is called. Application can assign any value to the
userContext and the value is completely opaque to the API implementation.

o cventCallFunc - Pointer to the event handler function to be registered.
Output Arguments

o cventCallHandle - A unique identifier assigned for the registered userContext and eventCallFunc
pair. This handle will be used by the application de-registering the userContext and
mplsEventHandlerFunc pair.

Return Values
e NPF NO ERROR - The registration completed successfully.

e NPF MPLS E BAD CALLBACK FUNCTION - mplsEventHandlerFunc is NULL or not
recognized.

e NPF_MPLS E ALREADY REGISTERED - No new registration was made since the
userContext and mplsEventHandlerFunc pair was already registered.

MPLS Task Group 31

Network Processing Forum Software Working Group

Notes
e This API function may be invoked by any application interested in receiving MPLS events.

e This function operates in a synchronous manner, providing a return value as listed above.

e Even if an implementation does not support events, the implementation needs to implement the
function to enable interoperability.

6.4.2 NPF _MPLS EventDeregister

Syntax

NPF_error_t NPF_MPLS Event Deregi ster(
NPF_I N NPF_cal | backHandl e _t event Cal | Handl e) ;

Description

This function is used by an application to de-register an event handling routing, which was previously
registered to receive notification of MPLS events. It represents a unique user context and event
handling routine pair.

This is a required function.
Input Arguments

e cventCallHandle - The unique identifier representing the pair of user context and event handler
function to be de-registered.

Output Arguments
None
Return Values
e NPF NO_ERROR - The de-registration completed successfully.

e NPF MPLS E BAD CALLBACK HANDLE — The deregistration did not complete
successfully due to problems with the callback handle provided.

e This API function may be invoked by any application no longer interested in receiving MPLS
events.

o This function operates in a synchronous manner, providing a return value as listed above.

e There may be a timing window where outstanding events continue to be delivered to the event
routine after the de-registration function has been invoked. It is the implementation’s
responsibility to guarantee that the event handling function is not called after the deregister
function has returned.

e Even if an implementation does not support events, the implementation needs to implement the
function to enable interoperability.

MPLS Task Group 32

Network Processing Forum Software Working Group

6.5 MPLS Forwarding Service API

6.5.1
Syntax

NPF_MPLS LSP EntryCreate

NPF_error_t NPF_MPLS LSP EntryCreat e(

NPF_I N NPF_cal | backHandl e_t cal | backHandl e,

NPF_IN NPF_correl ator _t correl ator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_I N NPF_ui nt32_t nMpl sLsp,

NPF_I N NPF_MPLS LSP_t **npl sLspArray);

Description

This function creates one or more MPLS LSP entries. The callback function will receive as many
handles as NPF_MPLS LSP EntryCreate() could successfully create, and error codes for the rest.
NPF_MPLS LSP EntryCreate function call creates and updates the NHLFE Set and NHLFE related
information in case when the NHLFE set and NHLFE were not created prior to the LSP creation.

If one of the embedded structures fails, the LSP entry creation should fail without partial installation.

This is a required function.

Input Arguments

callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

nMplsLsp - Number of elements in the mplsLspArray, i.e. number of LSP entries to be created.

mplsLspArray - An array of LSP information pointers that are to be used when creating the LSP
entries.

Output Arguments

None

Return Values

NPF_NO _ERROR - The operation is in progress.

NPF_MPLS E INVALID LSP PARAM — The LSPs were not created due to problems
encountered when handling the input parameters.
NPF MPLS E BAD CALLBACK HANDLE — The callback handle is not valid.

Asynchronous Response

A total of nMplsLsp asynchronous responses (NPF_ MPLS AsyncResponse t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of

NPF_MPLS LSP_ENTRY_CREATE type. Each response contains one or more LSP handles that
uniquely identify the LSP entry or a possible error code. Possible return codes are

NPF_NO _ERROR - The operation completed successfully.

MPLS Task Group 33

Notes

6.5.2
Syntax

Network Processing Forum Software Working Group

NPF MPLS E INSUFFICIENT STORAGE - LSP entry could not be created due to lack of
memory/space.

NPF_MPLS E INVALID NHLFESET PARAM - LSP entry could not be created due to
problem with NHLFE Set Param.

NPF _MPLS E INVALID NHLFESET HANDLE - LSP entry could not be created due to
problem with NHLFE Set handle.

NPF MPLS E INVALID NHLFE PARAM - LSP entry could not be created due to problem
with NHLFE Param.

NPF_MPLS _E INVALID NHLFE HANDLE - LSP entry could not be created due to problem
with NHLFE handle.

NPF MPLS E INVALID IN LABEL - LSP entry could not be created due to problem with the
incoming label value.

NPF_MPLS E INVALID LSP TYPE - LSP entry could not be created due to problem with
LSP type.

NPF MPLS E INLVALD OUT LABEL - LSP entry could not be created due to problem with
the outgoing label value(s) in the label stack.

NPF_MPLS _E INVALID NEXT HOP_IP - LSP entry could not be created due to problem
with the next hop IP address.

NPF_MPLS E INVALID NHLFE FWD POLICY — LSP entry could not be created due to
problem with NHLFE forwarding policy.

NPF MPLS E ENTRY ALREADY EXIST — LSP entry to be added already exists.

When determining whether an LSP entry has been created, the parameters that uniquely identify
an LSP entry based on the LSP type will be used. For an ILM type LSP entry the Incoming label
and incoming interface will be used for identification. For a tunnel type LSP entry, the LSP ID
will be used for identification.

NPF_MPLS_LSP_ EntryDelete

NPF_error_t NPF_MPLS LSP_EntryDel et e(

NPF_I N NPF_cal | backHandl e_t cal | backHandl e,

NPF_I N NPF_correl ator _t correl ator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_I N NPF_ui nt 32_t nHandl es,

NPF_I N NPF_MPLS LSP Handl e_t *npl sLspHandl eArr ay);

Description

This function deletes one or more MPLS LSP Entries. This function call will not delete the NHLFE
Set or NHLFEs associated with the LSP entry. NHLFE Set or NHLFE deletion is to be done
explicitly with the function calls associated with NHLFE Set and NHLFE.

This is a required function.

Input Arguments

MPLS Task Group 34

Network Processing Forum Software Working Group

e callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

e correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

e crrorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

e nHandles - The number of LSP entries to be deleted.

e mplsLspHandleArray - Pointer to an array of handles of the LSP entries to be deleted.
Output Arguments

None
Return Values

e NPF NO _ERROR - The operation is in progress.

e NPF_MPLS E UNKNOWN - The LSP entries were not deleted due to problems encountered
when handling the input parameters.

e NPF MPLS E BAD CALLBACK HANDLE — The callback handle is not valid.
Asynchronous Response

A total of nHandles asynchronous responses (NPF_ MPLS AsyncResponse t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of type

NPF MPLS LSP ENTRY DELETE. Each response contains the handle of the deleted LSP, or a
possible error code and the handle of the LSP entry that is to be deleted. Possible return codes are

e NPF NO _ERROR - The operation completed successfully.

e NPF_MPLS E INVALID LSP HANDLE — LSP entry could not be deleted due to problem with
the LSP handle.

Notes
None

6.53 NPF_MPLS_LSP EntryModify

Syntax

NPF _error _t NPF_MPLS LSP EntryMdi fy(
NPF_I N NPF_cal | backHandl e_t cal | backHandl e,

NPF I N NPF_correl ator _t correl ator,

NPF I N NPF_errorReporting t error Reporting,
NPF_I N NPF_ui nt 32_t nHandl es,

NPF_IN NPF_MPLS LSP Handl e t *npl sLspHandl eArray,
NPF I N NPF_MPLS LSP t *npl sLspArray);

Description

This function modifies the LSP entry information. For a given ILM entry the associated NHLFE Set
information is updated.

This function call does not create or modify the information of an NHLFE Set or an NHLFE. NHLFE
Set or NHLFE creation is to be done with the APIs associated with NHLFE Set and NHLFE or as

MPLS Task Group 35

Network Processing Forum Software Working Group

part of LSP entry creation. NHLFE Set or NHLFE modification is to be done with the APIs
associated with NHLFE Set and NHLFE.

This is a required function.
Input Arguments

e callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

e correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

e errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

e nHandles - The number of LSP entries to be modified.
o mplsLspHandleArray - Pointer to an array of handles of the LSP entries to be modified.

e mplsLspArray - Pointer to an array LSP entry information associated with the handles to be
modified.

Output Arguments
None
Return Values
e NPF NO ERROR - The operation is in progress.

e NPF MPLS E UNKNOWN - The LSP entries were not modified due to problems encountered
when handling the input parameters.

e NPF MPLS E BAD CALLBACK_ HANDLE — The callback handle is not valid.
Asynchronous Response

A total of nHandles asynchronous responses (NPF. MPLS AsyncResponse t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of type

NPF_MPLS LSP ENTRY_ MODIFY. Each response contains the handle of the modified LSP entry,
or a possible error code and the handle of the LSP entry that was to be modified. Possible return
codes are

e NPF_NO_ERROR - Operation successful.

e NPF_MPLS E INVALID LSP HANDLE — LSP entry could not be modified due to invalid
LSP handle.

e NPF MPLS E INVALID NHLFESET HANDLE - LSP entry could not be modified due to
invalid NHLFESET handle.

Notes

None

MPLS Task Group 36

Network Processing Forum Software Working Group

6.5.4 NPF _MPLS LSP EntryQuery

Syntax
NPF _error _t NPF_MPLS LSP EntryQuery(

NPF_|I N NPF_cal | backHandl e_t cal | backHandl e,

NPF_I N NPF_correl ator _t correl ator,
NPF I N NPF_errorReporting t errorReporting,
NPF_IN NPF_ui nt32_t num nf o,

NPF_IN NPF_MPLS LSP_Info_t *npl sLspl nfoArray);

Description

This function returns, via a callback, a pointer to one or more MPLS LSP entry response structures
(NPF_MPLS_LSP EntryResp_t) containing the settings and handle for a specified LSP entry. The
LSP entry may be specified by either the LSP Handle or the key values, which make the LSP unique.
In either case, the full LSP entry will be returned from the SAPI.

This is a required function.

Input Arguments

callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

numlInfo - The number of LSP entries to retrieve.

mplsLspInfoArray - Pointer to an array of LSP entry Information structures.

Output Arguments

None

Return Values

NPF _NO_ ERROR - The operation is in progress.

NPF_E UNKNOWN — The LSPs were not queried due to problems encountered when handling
the input parameters.

NPF_E BAD CALLBACK HANDLE — The callback handle is not valid.

Asynchronous Response

A total of numlInfo asynchronous responses (NPF_ MPLS AsyncResponse t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of type

NPF MPLS LSP ENTRY QUERY. Each successful response contains the pointer to the MPLS
LSP entry structure and the LSP Handle or a possible error code. Possible return codes are

NPF_NO_ERROR - Operation successful.
NPF_MPLS_E INVALID HANDLE - AnNPF_MPLS LSP Handle tis null or invalid.

NPF_MPLS _E UNKNOWN — The LSP entry could not be located based on the unique key
values.

MPLS Task Group 37

Network Processing Forum Software Working Group

Notes

None

6.5.5 NPF_MPLS_LSP_ StatsGet

Syntax

NPF error t NPF MPLS LSP StatsGet (
NPF_I N NPF_cal | backHandl e_t cal | backHandl e,

NPF_I N NPF_correl ator _t correl ator,
NPF I N NPF_errorReporting t errorReporting,
NPF_I N NPF_ui nt 32_t nHandl es,

NPF_I N NPF_MPLS LSP_Handl e_t *npl sLspHandl eArray);
Description

This function returns, via a callback, a pointer to one or more MPLS LSP entry statistics structures
(NPF_MPLS LSP_Statistics_t) containing the current counter values for one or more indicated LSP
entry.

This is a required function.

Input Arguments

e callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

e correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

e errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

e nHandles - The number of LSP entries to get statistics for.

o mplsLspHandleArray - Pointer to an array of LSP entry handles.
Output Arguments
None

Return Values
e NPF NO ERROR - The operation is in progress.

e NPF_MPLS E UNKNOWN — The LSP entries statistics were not obtained due to problems
encountered when handling the input parameters.

e NPF MPLS E BAD CALLBACK HANDLE — The callback handle is not valid.
Asynchronous Response

A total of nHandles asynchronous responses (NPF_ MPLS AsyncResponse t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of type

NPF MPLS LSP ENTRY STATS QUERY. Each successful response contains the pointer to the
MPLS LSP statistics structures or a possible error code. Possible return codes are

e NPF_NO_ERROR - Operation successful.
e NPF_MPLS E INVALID LSP HANDLE — An NPF_MPLS LSP_ Handle is null or invalid.

Notes

None

MPLS Task Group 38

Network Processing Forum Software Working Group

6.5.6 NPF MPLS LSP AttributeQuery
Syntax

NPF _error _t NPF_MPLS LSP Attri but eQJer (
NPF_I N NPF_cal | backHandl e_ cal | backHandl e,
NPF_I N NPF_correl ator _t correl ator,

NPF_I N NPF_errorReporting_t error Reporting);

Description

This call will provide information about the characteristics of the LSP table/database. Currently, the
attributes available are:

An estimate of how many free entries are in this table/database.

This is an optional function. Implementations that do not support queries MUST implement a stub of
this function and MUST either immediately return NPF_ MPLS FUNCTION NOT_ SUPPORTED
when called or MUST return NPF_ MPLS FUNCTION _NOT_SUPPORTED in the returnCode field
of the asynchronous callback structure.

Input Arguments

callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

Output Arguments

None

Return Values

NPF NO ERROR - The operation is in progress.

NPF MPLS E UNKNOWN - The table was not queried due to problems encountered when
handling the input parameters.

NPF_MPLS_E FUNCTION NOT_SUPPORTED - The attribute query capability is not
supported by this implementation.

Asynchronous Response

A return code will be returned asynchronously along with an approximation of the number of free
entries left in the LSP table/database. The callback structure returned is of type
NPF MPLS LSP ATTRIBUTE QUERY. Possible return codes are

Notes

NPF NO ERROR - The operation completed successfully.

NPF MPLS E FUNCTION NOT SUPPORTED - The attribute query function for the LSP
entry table is not supported by this implementation.

Applications may use this query API function to obtain information useful in maintaining the LSP
table/database. For example, prior to creating new LSP entries, the application might query the

MPLS Task Group 39

6.5.7
Syntax

Network Processing Forum Software Working Group

available free space of the LSP table/database and, therefore, be able to know when it cannot add
any more LSP entries.

The implementation SHOULD be conservative in what it returns. In other words, the value
should be the amount of free space under the worst-case conditions, so that the application can be
assured that at least this many “Create” requests will succeed.

The errorReporting parameter, included for the sake of consistency, is ignored. This function
generates an asynchronous response, regardless of the value given in the errorReporting
parameter.

NPF_MPLS DSCP_EXP Create

NPF error t NPF MPLS DSCP EXP Create(
NPF_I N NPF_cal | backHandl e_t cal | backHandl e,
NPF I N NPF _correl ator t correl ator,
NPF_ I N NPF_errorReporting t error Reporting,
NPF IN NPF MPLS DSCP EXP Type t type,
NPF IN NPF uint32 t nTables,

NPF IN NPF MPLS DSCP EXP Param t **dscpExptablesArray);

Description

This function creates one or more DSCP to EXP or EXP to DSCP tables. The callback function will
receive as many handles as NPF. MPLS DSCP_EXP_Create() could successfully create, and error
codes for the rest. If a table id already exists an error is returned.

This is a required function.

Input Arguments

callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

type - Either NPF. MPLS DSCPEXP DTOE or NPF. MPLS DSCPEXP ETOD.
nTables - Number of tables to create.

dscpExptablesArray - An array of DSCPEXP tables.

Output Arguments

None

Return Values

NPF _NO_ERROR - The operation is in progress.

NPF_MPLS_E UNKNOWN - The LSPs were not created due to problems encountered when
handling the input parameters.

NPF_MPLS E BAD CALLBACK HANDLE — The callback handle is not valid.

MPLS Task Group 40

Network Processing Forum Software Working Group

Asynchronous Response

A total of nTables asynchronous responses (NPF_MplsAsyncResponse t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of type
NPF_MPLS DSCPEXP_ENTRY_CREATE. Each response contains one or more table handles,
embedded in NPF. MPLS DSCP_EXP CreateResp t structures, that uniquely identifies the table or
a possible error code. Possible return codes are

NPF NO ERROR - Operation successful.
NPF_MPLS E ENTRY_ALREADY_ EXIST - Table already exist.

NPF MPLS E INSUFFICIENT STORAGE - Table could not be created due to lack of
memory/space.

Notes
None
6.5.8 NPF MPLS DSCP_EXP Delete
Syntax
NPF error t NPF MPLS DSCP EXP Delete(
NPF_I N NPF_cal | backHandl e_t cal | backHandl e,
NPF I N NPF_correl ator _t correl ator,
NPF_IN NPF_errorReporting t error Reporting,
NPF IN NPF uint32 t nHandles,

NPF_IN NPF MPLS DSCP _EXP Handle t *dscpExpHandleArray);

Description

This function deletes one or more DSCPEXP tables. The tables indicated by the nHandles will be
removed. When a table is removed, there is no predefined behavior except for Best Effort.

This is a required function.

Input Arguments

callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

nHandles - The number of tables to be deleted.

dscpExpHandleArray - Pointer to an array of handles of the tables to be deleted.

Output Arguments

None

Return Values

NPF_NO ERROR - The operation is in progress.

NPF_MPLS E UNKNOWN - The tables were not deleted due to problems encountered when
handling the input parameters.

MPLS Task Group 41

Network Processing Forum Software Working Group

e NPF MPLS E BAD CALLBACK HANDLE — The callback handle is not valid.

Asynchronous Response

A total of nHandles asynchronous responses (NPF_ MPLS AsyncResponse t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of type
NPF_MPLS DSCPEXP _ENTRY_ DELETE. Each response contains the handle of the deleted table,

ora

possible error code and the handle of the table that is to be deleted. Possible return codes are

NPF_NO _ERROR - The operation completed successfully.
NPF_MPLS E INVALID DSCPEXP HANDLE — DSCPEXP table could not be deleted due to

problem with the handle.
Notes
None
6.5.9 NPF MPLS DSCP_EXP Modify
Syntax
NPF error t NPF MPLS DSCP EXP Modify (
NPF_I N NPF_cal | backHandl e_t cal | backHandl e,
NPF I N NPF _correl ator t correl ator,
NPF_ I N NPF_errorReporting t error Reporting,
NPF IN NPF uint32 t nHandles,

NPF IN NPF MPLS DSCP EXP Handle t *dscpExpHandleArray,
NPF IN NPF MPLS DSCP_EXP Param t *dscpExpArray);

Description

This function modifies the tables pointed at by the passed handles to their corresponding
dscpExpArray param entry. The dscpExpArray entries will override the existent tables.

This is a required function.

Input Arguments

callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

nHandles - The number of tables to be modified.
dscpExpHandleArray - Pointer to an array of handles of the tables to be modified.

dscpExpArray - Pointer to an array of tables associated with the table handles to be modified.

Output Arguments

None

Return Values

NPF_NO _ERROR - The operation is in progress.

MPLS Task Group 42

Network Processing Forum Software Working Group

NPF MPLS E UNKNOWN - The tables were not modified due to problems encountered when
handling the input parameters.

NPF_MPLS_E BAD CALLBACK_HANDLE — The callback handle is not valid.

Asynchronous Response

A total of nHandles asynchronous responses (NPF. MPLS AsyncResponse t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of type

NPF _MPLS DSCPEXP ENTRY MODIFY. Each response contains the handle of the modified
table, or a possible error code and the handle of the table that is to be modified. Possible return codes

arc
°

NPF_NO_ERROR - Operation successful.
NPF_MPLS E INVALID DSCPEXP HANDLE - The DSCPEXP handle is not valid.

Notes
None
6.5.10 NPF_MPLS DSCP_EXP_StatsGet
Syntax
NPF error t NPF MPLS DSCP EXP StatsGet (
NPF_I N NPF_cal | backHandl e_t cal | backHandl e,
NPF I N NPF _correl ator t correl ator,
NPF_ I N NPF_errorReporting t error Reporting,
NPF IN NPF uint32 t nHandles,

NPF IN NPF MPLS DSCP EXP Handle t *dscpExpHandleArray);

Description

This function returns, via a callback, a pointer to one or more MPLS DSCPEXP statistics
structures(NPF_ MPLS DSCP_EXP_Stats t) containing the current counter values for one or more

indi

cated table information.

This is a required function.

Input Arguments

callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

nHandles - The number of tables to that needs to be queried.

dscpExpHandleArray - Pointer to an array of handles of the tables to be queried.

Output Arguments

None

Return Values

NPF_NO ERROR - The operation is in progress.

MPLS Task Group 43

Network Processing Forum Software Working Group

e NPF MPLS E UNKNOWN - The DSCP-EXP table entries statistics were not obtained due to
problems encountered when handling the input parameters.

e NPF MPLS E BAD CALLBACK_ HANDLE — The callback handle is not valid.
Asynchronous Response

A total of nHandles asynchronous responses (NPF. MPLS AsyncResponse t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of type

NPF MPLS DSCPEXP_STATS QUERY. Each response contains the

NPF MPLS DSCP_EXP_Stats t structure of the queried table, or a possible error code and the
handle of the table that is to be modified. Possible return codes are

e NPF NO _ERROR - Operation successful.
e NPF_MPLS E INVALID DSCPEXP_HANDLE - The DSCPEXP handle is not valid.
Notes

None

6.5.11 NPF_MPLS_DSCP EXP_AttributeQuery

Syntax

NPF error t NPF MPLS DSCP EXP AttributeQuery(
NPF_I N NPF_cal | backHandl e_t cal | backHandl e,
NPF I N NPF_correl ator _t correl ator,
NPF_I N NPF_errorReporting_t error Reporting);
Description

This call will provide information about the characteristics of the DSCPEXP table/database.
Currently, the attributes available are:

e An estimate of how many free entries are in this table/database.

This is an optional function. Implementations that do not support queries MUST implement a stub of
this function and MUST either immediately return NPF. MPLS FUNCTION NOT SUPPORTED
when called or MUST return NPF_ MPLS FUNCTION_NOT_SUPPORTED in the returnCode field
of the asynchronous callback structure.

Input Arguments

e callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

e correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

e errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

Output Arguments
None
Return Values

e NPF NO _ERROR - The operation is in progress.

MPLS Task Group 44

Network Processing Forum Software Working Group

e NPF MPLS E UNKNOWN - The table was not queried due to problems encountered when
handling the input parameters.

e NPF MPLS FUNCTION NOT SUPPORTED - The attribute query capability is not supported
by this implementation.

Asynchronous Response

A return code will be returned asynchronously along with an approximation of the number of free
entries left in the DSCPEXP table/database. The callback structure returned is of type
NPF _MPLS DSCPEXP ATTRIBUTE QUERY. Possible return codes are

e NPF NO ERROR - The operation completed successfully.

e NPF MPLS FUNCTION NOT SUPPORTED - The attribute query capability is not supported
by this implementation.

Notes

Applications may use this query API function to obtain information useful in maintaining the
DSCPEXP table/database. For example, prior to creating new tables, the application might query the
available free space of the table/database and, therefore, be able to know when it cannot add any more
tables.

The implementation SHOULD be conservative in what it returns. In other words, the value should be
the amount of free space under the worst-case conditions, so that the application can be assured that at
least this many “Create” requests will succeed.

The errorReporting parameter, included for the sake of consistency, is ignored. This function
generates an asynchronous response, regardless of the value given in the errorReporting
parameter.

6.5.12 NPF_MPLS_DSCP_EXP EntryQuery

Syntax

NPF error t NPF_MPLS_DSCP_EXP_EntryQuery(
NPF_I N NPF_cal | backHandl e_t cal | backHandl e,

NPF_I N NPF_correl ator _t correl ator,
NPF I N NPF_errorReporting t errorReporting,
NPF IN NPF uint32 t numTables,
NPF IN NPF MplsDscpExp t *dscpExpArray) ;

Description

This function returns, via a callback, a pointer to one or more MPLS DSCPEXP tables response
structures (NPF_MplsDscpExpResp t) containing the settings and handle for a specified DSCP EXP
table. The table may be specified by either the table Handle or the table id, which make the table
unique. In either case, the full DSCP EXP table will be returned from the SAPI.

This is a required function.
Input Arguments

e callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

e correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

MPLS Task Group 45

Network Processing Forum Software Working Group

e errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

e numTables - the number of tables to retrieve.

e dscpExpArray - pointer to an array of DSCPEXP tables.
Output Arguments

None
Return Values

e NPF_NO_ERROR - The operation is in progress.

e NPF MPLS E UNKNOWN — The DSCP-EXP tables were not queried due to problems
encountered when handling the input parameters.

e NPF MPLS E BAD CALLBACK HANDLE — The callback handle is not valid.
Asynchronous Response

A total of numTables asynchronous responses (NPF_MPLS AsyncResponse_t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of type
NPF_MPLS DSCPEXP_ENTRY_QUERY. Each successful response contains the DSCPEXP table
structure and the table Handle embedded in a NPF. MPLS DSCP_EXP EntryResp t structure or a
possible error code. Possible return codes are

e NPF NO ERROR - Operation successful.

e NPF MPLS E INVALID HANDLE - An NPF MPLS DSCP EXP Handle tis null or
invalid.

Notes

None

6.5.13 NPF_MPLS_NHLFE_Create

Syntax

NPF _error_t NPF_MPLS NHLFE Creat e(
NPF I N NPF_cal | backHandl e _t cal | backHandl e,

NPF I N NPF _correl ator t correl ator,

NPF IN NPF_errorReporting t errorReporting,
NPF_IN NPF_ui nt32_t nNhl f e,

NPF_I N NPF_MPLS NHLFE t **npl sNhl f eArray) ;

Description

This function creates one or more MPLS NHLFEs. The callback function will receive as many
handles as NPF_ MPLS NHLFE Create() could successfully create, and error codes for the rest.

This is a required function.
Input Arguments

e callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

e correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

MPLS Task Group 46

Network Processing Forum Software Working Group

errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

nNhlfe - Number of NHLFE:s to create.
mplsNhlfeArray - An array of NHLFE pointers.

Output Arguments

None

Return Values

NPF_NO ERROR - The operation is in progress.

NPF MPLS E UNKNOWN — The NHLFEs were not created due to problems encountered
when handling the input parameters.

NPF MPLS E BAD CALLBACK HANDLE — The callback handle is not valid.

Asynchronous Response

A total of nNhlfe asynchronous responses (NPF_ MPLS AsyncResponse_t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of type
NPF_MPLS NHLFE ENTRY_ CREATE. Each response contains one or more NHLFE handles that
uniquely identify the NHLFE or a possible error code. Possible return codes are

Notes

NPF_NO _ERROR - operation successful.

NPF MPLS E INSUFFICIENT STORAGE - NHLFE could not be created due to lack of
memory/space.

NPF MPLS E INLVALD OUT LABEL - NHLFE entry could not be created due to problem
with the outgoing label value(s) in the label stack.

NPF_MPLS E INVALID LABEL STACK - NHLFE entry could not be created due to invalid
value(s) in the label stack.

NPF _MPLS E INVALID NEXT HOP_IP - NHLFE entry could not be created due to problem
with the next hop IP address.

NPF_MPLS E INVALID INTERFACE - NHLFE entry could not be created due to invalid
outgoing interface.

NPF_MPLS E ENTRY_ ALREADY_ EXIST — NHLFE entry to be added already exists.

None

6.5.14
Syntax

NPF_MPLS_NHLFE_Delete

NPF _error _t NPF_MPLS NHLFE Del et ¢(

NPF_I N NPF_cal | backHandl e_t cal | backHandl e,

NPF_I N NPF_correl ator _t correl ator,
NPF_ I N NPF_errorReporting t error Reporting,
NPF_I N NPF_ui nt 32_t nHandl es,

NPF_I N NPF_MPLS_NALFE_Handl e_t *npl sNhl f eHandl eArr ay) ;

MPLS Task Group 47

Network Processing Forum Software Working Group

Description

This function deletes one or more NHLFEs. If an entry exists in the NHLFE table/database as
indicated by the NHLFE Handle, then it will be removed.

If an NHLFE is removed, a reference to the removed entry by the forwarding plane MAY generate an
NPF_MPLS EV_NHLFE MISS event.

This is a required function.
Input Arguments

e callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

e correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

e errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

e nHandles - The number of NHLFEs to delete.

o mplsNhlfeHandleArray - Pointer to an array of handles of the NHLFEs to be deleted.
Output Arguments

None
Return Values

e NPF NO_ERROR - The operation is in progress.

e NPF MPLS E UNKNOWN — The NHLFEs were not deleted due to problems encountered
when handling the input parameters.

e NPF MPLS E BAD CALLBACK HANDLE — The callback handle is not valid.
Asynchronous Response

A total of nHandles asynchronous responses (NPF_ MPLS AsyncResponse t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of type

NPF_MPLS NHLFE ENTRY_ DELETE. Each response contains the handle of the deleted NHLFE,
or a possible error code and the handle of the NHLFE that is to be deleted. Possible return codes are

e NPF NO_ERROR - Operation successful.

e NPF MPLS E INVALID NHLFE HANDLE - NHLFE entry could not be deleted due to
invalid NHLFE handle.

Notes

None

6.5.15 NPF_MPLS _NHLFE_Modify

Syntax

NPF_error _t NPF_MPLS NHLFE Modi f y(
NPF_I N NPF_cal | backHandl e_t cal | backHandl e,

NPF_I N NPF_correl ator _t correl ator,
NPF_I N NPF_error Reporting_t error Reporting,
NPF_I N NPF_ui nt32_t nHandl es,

MPLS Task Group 48

Network Processing Forum Software Working Group

NPF_I N NPF_MPLS NHLFE_Handl e_t *npl sNhl f eHandl eArray,
NPF_I N NPF_MPLS_NHLFE t “mpl sNhl f eArr ay) ;
Description

This function modifies the NHLFE information. For a given NHLFE entry the associated DSCPEXP
table handle is updated (key fields can not be modified). This function cannot modify the content nor
create the DSCPEXP table.

This is a required function.
Input Arguments

e callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

e correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

e errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

e nHandles - The number of NHLFEs to be modified.
o mplsNhlfeHandleArray - Pointer to an array of handles of the NHLFEs to be modified.

e mplsNhlfeArray - Pointer to an array NHLFE information associated with the handles to be
modified.

Output Arguments
None
Return Values
e NPF NO_ERROR - The operation is in progress.

e NPF MPLS E UNKNOWN — The NHLFEs were not modified due to problems encountered
when handling the input parameters.

e NPF MPLS E BAD CALLBACK HANDLE — The callback handle is not valid.
Asynchronous Response

A total of nHandles asynchronous responses (NPF_ MPLS AsyncResponse t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of type

NPF_MPLS NHLFE ENTRY_ MODIFY. Each response contains the handle of the modified LSP, or
a possible error code and the handle of the LSP that was to be modified. Possible return codes are

e NPF NO_ERROR - Operation successful.

e NPF MPLS E INVALID DSCPEXP HANDLE - NHLFE entry could not be modified due to
problem with DSCPEXP handle.

e NPF MPLS E INVALID NHLFE HANDLE - NHLFE entry could not be modified due to
problem with NHLFE handle.

Notes

None

MPLS Task Group 49

6.5.16
Syntax

Network Processing Forum Software Working Group

NPF_MPLS _NHLFE_StatsGet

NPF _error _t NPF_MPLS NHLFE St at sGet (

NPF_| N NPF_cal | backHandl e_t cal | backHandl e,

NPF_I N NPF_correl ator _t correl ator,
NPF_ I N NPF_errorReporting t error Reporting,
NPF_IN NPF_ui nt32_t nHandl es,

NPF_I N NPF_MPLS_NALFE_Handl e_t *npl sNhl f eHandl eArr ay) ;

Description

This function returns, via a callback, a pointer to one or more the MPLS NHLFE statistics
structures(NPF_ MPLS NHLFE _Statistics_t)containing the current counter values for one or more

indi

cated NHLFE information.

This is a required function.

Input Arguments

callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

Correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

nHandles - The number of NHLFEs to get statistics for.
mplsNhlfeHandleArray - Pointer to an array of NHLFE handles.

Output Arguments

None

Return Values

NPF_NO _ERROR - The operation is in progress.

NPF MPLS E UNKNOWN — The NHLFEs Statistics were not obtained due to problems
encountered when handling the input parameters.

NPF_MPLS_E BAD CALLBACK_HANDLE — The callback handle is not valid.

Asynchronous Response

A total of nHandles asynchronous responses (NPF. MPLS AsyncResponse t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of type
NPF_MPLS NHLFE STATS QUERY. Each successful response contains the pointer to the MPLS
NHLEFE statistics structures or an error code. Possible return codes are

Notes

NPF_NO_ERROR - Operation successful.

NPF_MPLS E INVALID NHLFE HANDLE — An NPF_MPLS NHLFE Handle is null or
invalid.

None

MPLS Task Group 50

Network Processing Forum Software Working Group

6.5.17 NPF_MPLS_NHLFE_AttributeQuery

Syntax
NPF_error _t NPF_MPLS NHLFE_Attri but eQuery(
NPF_I N NPF_cal | backHandl e_t cal | backHandl e,
NPF_IN NPF_correl ator _t correl ator,
NPF_I N NPF_error Reporting_t error Reporting);
Description

This call will provide information about the characteristics of the NHLFE table/database. Currently,
the attributes available are:

An estimate of how many free entries are in this table/database.

This is an optional function. Implementations that do not support queries MUST implement a stub of
this function and MUST either immediately return NPF_ MPLS FUNCTION_NOT_SUPPORTED
when called or MUST return NPF. MPLS FUNCTION NOT_SUPPORTED in the returnCode field
of the asynchronous callback structure.

Input Arguments

e callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

e correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

e ecrrorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

Output Arguments
None
Return Values
e NPF NO ERROR - The operation is in progress.

e NPF MPLS E UNKNOWN - The table was not queried due to problems encountered when
handling the input parameters.

e NPF_MPLS E FUNCTION NOT_SUPPORTED - The attribute query capability is not
supported by this implementation.

Asynchronous Response

A return code will be returned asynchronously along with an approximation of the number of free
entries left in the NHLFE table/database. The callback structure returned is of type
NPF MPLS NHLFE ATTRIBUTE QUERY. Possible return codes are

e NPF NO ERROR - The operation completed successfully.

e NPF MPLS E FUNCTION NOT SUPPORTED - The attribute query function for the address
resolution table is not supported by this implementation.

Notes

Applications may use this query API function to obtain information useful in maintaining the NHLFE
table/database. For example, prior to creating new LSPs, the application might query the available

MPLS Task Group 51

Network Processing Forum Software Working Group

free space of the NHLFE table/database and, therefore, be able to know when it cannot add any more
NHLFEs.

The implementation SHOULD be conservative in what it returns. In other words, the value should be
the amount of free space under the worst-case conditions, so that the application can be assured that at
least this many “Create” requests will succeed.

The errorReporting parameter, included for the sake of consistency, is ignored. This function
generates an asynchronous response, regardless of the value given in the errorReporting parameter.

6.5.18 NPF_MPLS_NHLFE_EntryQuery

Syntax

NPF _error _t NPF_MPLS NHLFE EntryQuery(
NPF_I N NPF_cal | backHandl e_t cal | backHandl e,

NPF I N NPF _correl ator t correl ator,

NPF I N NPF_errorReporting t errorReporting,
NPF_IN NPF_ui nt32_t numihl f e,

NPF_I N NPF_MPLS NHLFE t *npl sNhl f eArray) ;

Description

This function returns, via a callback, a pointer to one or more MPLS NHLFE entry response
structures (NPF_ MPLS NHLFE EntryResp_t) containing the settings and handle for a specified
NHLFE. The NHLFE may be specified by either the NHLFE Handle or the key values, which make
the NHLFE unique. In either case, the full NHLFE entry will be returned from the SAPI.

This is a required function.
Input Parameters

e callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

e correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

e crrorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

e numNhlfe - The number of NHLFEs to retrieve.

o mplsNhlfeArray - Pointer to an array of NHLFE structures.
Output Arguments

None
Return Values

e NPF NO ERROR - The operation is in progress.

e NPF _MPLS E UNKNOWN - The NHLFE Entries were not queried due to problems
encountered when handling the input parameters.

e NPF MPLS E BAD CALLBACK HANDLE — The callback handle is not valid.
Asynchronous Response

A total of numNhlfe asynchronous responses (NPF. MPLS AsyncResponse t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of type

MPLS Task Group 52

Network Processing Forum Software Working Group

NPF_MPLS NHLFE ENTRY_QUERY. Each successful response contains the pointer to the MPLS
NHLFE entry structure and the NHLFE Handle or an error code. Possible return codes are

Notes

NPF_NO_ERROR - Operation successful.

NPF_MPLS E INVALID NHLFE HANDLE — An NPF_ MPLS NHLFE Handle t is null or
invalid.

NPF MPLS E UNKNOWN — The NHLFE could not be located based on the unique key values.

None

6.5.19 NPF_MPLS NHLFE SET_Create

Syntax

NPF_error _t NPF_MPLS_NHLFE_SET Creat e(

NPF_I N NPF_cal | backHandl e_t cal | backHandl e,

NPF_IN NPF_correl ator _t correl ator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_I N NPF_ui nt 32_t nNhl f eSet ,

NPF_I N NPF_MPLS NHLFE_SET t **npl sNnl f eSet Array);

Description

This function creates one or more MPLS NHLFE SETs. The callback function will receive as many
handles as NPF. MPLS NHLFE Create() could successfully create, and error codes for the rest.
NPF_MPLS NHLFE SET Create API creates the NHLFE related information in case when the
NHLFE were not created prior to the NHLFE SET creation.

If an NHLFE Set has an array of NHLFEs, then all NHLFEs have to be successfully installed or else
the NHLFE Set will not be created.

This is a required function.

Input Arguments

callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

nNhlfe - Number of NHLFE SETs to create.
mplsNhlfeSetArray - An array of NHLFE SET information pointers.

Output Arguments

None

Return Values

NPF_NO ERROR - The operation is in progress.

NPF_MPLS E UNKNOWN — The NHLFE SETs were not created due to problems encountered
when handling the input parameters.

MPLS Task Group 53

Network Processing Forum Software Working Group

e NPF MPLS E BAD CALLBACK HANDLE — The callback handle is not valid.
Asynchronous Response

A total of nNhlfeSet asynchronous responses (NPF_ MPLS AsyncResponse t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of type

NPF_MPLS NHLFE SET_CREATE. Each response contains one or more NHLFE SET handle that
uniquely identifies the NHLFE SET or a possible error code. Possible return codes are

e NPF NO_ERROR - Operation successful.

e NPF MPLS E INSUFFICIENT STORAGE - NHLFE could not be created due to lack of
memory/space.

e NPF MPLS E INLVALD OUT LABEL — NHLFE Set entry could not be created due to
problem with the outgoing label value(s) in the label stack.

e NPF_MPLS E INVALID LABEL STACK - NHLFE Set entry could not be created due to
invalid value(s) in the label stack.

e NPF _MPLS E INVALID NEXT HOP_IP - NHLFE Set entry could not be created due to
problem with the next hop IP address.

e NPF MPLS E INVALID NHLFE HANDLE - NHLFE Set entry could not be created due to

invalid NHLFE handle.
Notes
None
6.5.20 NPF_MPLS NHLFE_SET Delete
Syntax
NPF_error _t NPF_MPLS NHLFE_SET_Del et e(
NPF_I N NPF_cal | backHandl e_t cal | backHandl e,
NPF_IN NPF_correl ator _t correl ator,
NPF_ I N NPF_errorReporting t error Reporting,
NPF_I N NPF_ui nt32_t nHandl es,
NPF_I N NPF_MPLS NHLFE SET Handl e_t *npl sNhl f eSet Handl eArr ay) ;
Description

This function deletes one or more NHLFE Sets. If an entry exists in the NHLFE SET table/database

as indicated by the NHLFE SET Handle, then it will be removed. This function call will not delete the

NHLFEs associated with the NHLFE Set. NHLFE deletion is to be done explicitly with the function
calls associated with NHLFE.

If an NHLFE SET is removed, a reference to the removed entry by the forwarding plane MAY
generate an NPF. MPLS EV_NHLFE MISS EVENT.

This is a required function.
Input Arguments

e callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

e correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

MPLS Task Group

Network Processing Forum Software Working Group

e errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

e nHandles - The number of NHLFE Sets to be deleted.

e MplsNhlfeSetHandleArray - Pointer to an array of handles of the NHLFE Sets to be deleted.
Output Arguments

None
Return Values

e NPF_NO_ERROR - The operation is in progress.

e NPF MPLS E UNKNOWN — The NHLFE Sets were not deleted due to problems encountered
when handling the input parameters.

e NPF MPLS E BAD CALLBACK HANDLE — The callback handle is not valid.
Asynchronous Response

A total of nHandles asynchronous responses (NPF_ MPLS AsyncResponse t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of type
NPF_MPLS NHLFE SET DELETE. Each response contains the handle of the deleted NHLFE SET,
or a possible error code and the handle of the NHLFE SET that is to be deleted. The possible return
codes are:

e NPF NO ERROR - Operation successful.

e NPF MPLS E INVALID NHLFESET HANDLE - NHLFE Set entry could not be deleted due
to invalid NHLFE Set handle.

Notes
None
6.5.21 NPF_MPLS NHLFE SET Modify
Syntax
NPF_error _t NPF_MPLS NHLFE_SET_Mbdi f y(
NPF_I N NPF_cal | backHandl e_t cal | backHandl e,
NPF I N NPF _correl ator t correl ator,
NPF_ I N NPF_errorReporting t error Reporting,
NPF_IN NPF_ui nt32_t nNhi f e,
NPF_| N NPF_MPLS NHLFE _SET Handl e_t *npl sNhl f eSet Handl eArr ay,
NPF_| N NPF_MPLS NHLFE_SET t *nmpl sNhl f eSet Arr ay) ;
Description

This function modifies the NHLFE SET information. For a given NHLFE SET the policy based
forwarding information and the associated NHFLE information are updated.

This API does not create or modify the information of an NHLFE. NHLFE modification is to be done
with the APIs associated with NHLFE.

This is a required function.
Input Parameters

e callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

MPLS Task Group 55

Network Processing Forum Software Working Group

correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

nNhlfe - The number of NHLFE Sets to be modified.
mplsNhlfeSetHandleArray - Pointer to an array of handles of the NHLFE SETs to be modified.

mplsNhlfeSetArray - Pointer to an array NHLFE Set pointers - information associated with the
NHLFE handles to be modified.

Output Arguments

None

Return Values

NPF _NO_ERROR - The operation is in progress.

NPF_MPLS _E UNKNOWN - The NHLFE SETs were not modified due to problems
encountered when handling the input parameters.

NPF_MPLS E BAD CALLBACK HANDLE — The callback handle is not valid.

Asynchronous Response

A total of nHandles asynchronous responses (NPF_ MPLS AsyncResponse t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of type

NPF MPLS NHLFE SET MODIFY. Each response contains the handle of the modified NHLFE
SET, or a possible error code and the handle of the NHLFE SET that was to be modified. Possible
return codes are

Notes

NPF_NO_ERROR - Operation successful.

NPF_MPLS E INVALID NHLFE SET HANDLE - NHLFE Set entry could not be modified
due to invalid NHLFE Set handle.

NPF_MPLS E INVALID NHLFE HANDLE - NHLFE Set entry could not be modified due to
invalid NHLFE handle.

NPF_MPLS _E INLVALD NHLFE FWD POLICY - NHLFE Set entry could not be modified
due to problem with NHLFE forwarding policy.

None

6.5.22
Syntax

NPF_MPLS NHLFE_SET EntryQuery

NPF _error _t NPF_MPLS NHLFE SET_EntryQuery(

NPF_|I N NPF_cal | backHandl e_t~ cal | backHandl e,

NPF_I N NPF_correl at or _t correl ator,
NPF IN NPF_errorReporting t errorReporting,
NPF_I N NPF_ui nt 32_t nuni\nl f eSet ,

NPF_I N NPF_MPLS_NFALFE_SET_t *nhl feSet Array);

MPLS Task Group 56

Network Processing Forum Software Working Group

Description

This function returns, via a callback, a pointer to one or more MPLS NHLFE Set entry response
structures (NPF. MPLS NHLFE SET EntryResp t) containing the settings and handle for a
specified NHLFE Set. The NHLFE Set may be specified by either the NHLFE Set Handle or the key
values, which make the NHLFE Set unique. In either case, the full NHLFE Set entry will be returned
from the SAPI.

This is a required function.

Input Arguments

callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

errorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

numNhlfeSet - The number of NHLFE Sets to retrieve.
nhlfeSetArray - Pointer to an array of NHLFE Set structures.

Output Arguments

None

Return Values

NPF NO ERROR - The operation is in progress.

NPF MPLS E UNKNOWN — The NHLFE SETs were not queried due to problems encountered
when handling the input parameters.

NPF_MPLS_E BAD CALLBACK_HANDLE — The callback handle is not valid.

Asynchronous Response

A total of numNhlfeSet asynchronous responses (NPF_MPLS AsyncResponse t) will be passed to
the callback function, in one or more invocations. The callback structure returned is of type

NPF MPLS NHLFE SET ENTRY_ QUERY. Each successful response contains the pointer to the
MPLS NHLFE Set entry structure and the NHLFE Set Handle. Possible return codes are

Notes

NPF NO ERROR - Operation successful.

NPF MPLS E INVALID NHLFESET HANDLE — An NPF MPLS NHLFESET Handle tis
null or invalid.

NPF_MPLS _E UNKNOWN - The NHLFE Set could not be located based on the unique key
values.

None

6.5.23 NPF_MPLS NHLFE_SET StatsGet

Syntax

NPF _error _t NPF_MPLS NHLFE St at sCet (

MPLS Task Group 57

Network Processing Forum Software Working Group

NPF_I N NPF_cal | backHandl e_t cal | backHandl e,
NPF I N NPF _correl ator t correl ator,
NPF I N NPF_errorReporting t error Reporting,
NPF_I N NPF_ui nt 32_t nHandl es,

NPF_I N NPF_MPLS_NALFE_SET_Handl e_t *npl sNhl f eSet Handl eArr ay) ;

Description

This function returns, via a callback, a pointer to one or more MPLS NHLFE SET statistics structures
(NPF_MPLS NHLFE SET Statistics_t) containing the current counter values for one or more
indicated NHLFE SET information. The NHLFE SET does not contain any counters, but rather the
counters associated with the set of NHLFEs - bundled under the SET - will be returned.

Note: In case an NHLFE is used by multiple NHLFE SETs the counters returned are for the shared
NHLFE meaning that this call will not separate the information relative to the queried NHLFE SET
handle.

This is an Optional function, since NHLFE stats can be queried individually.
Input Arguments

e callbackHandles - The unique identifier provided to the application when the completion callback
routine was registered..

e correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

e crrorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

e nHandles - The number of NHLFE SETs to get statistics for.

o mplsNhlfeSetHandleArray - Pointer to an array of NHLFE SET handles.
Output Arguments

None
Return Values

e NPF NO ERROR - The operation is in progress

e NPF MPLS E UNKNOWN — The NHLFE SETs Statistics were not obtained due to problems
encountered when handling the input parameters.

e NPF MPLS E BAD CALLBACK HANDLE — The callback handle is not valid.
Asynchronous Response

A total of nHandles asynchronous responses (NPF_ MPLS AsyncResponse t) will be passed to the
callback function, in one or more invocations. The callback structure returned is of type

NPF MPLS NHLFE SET STATS QUERY. Each successful response contains the pointer to the
MPLS NHLFE SET statistics structures or an error code. Possible return codes are

e NPF NO ERROR - Operation successful.

e NPF MPLS E INVALID NHLFESET HANDLE - An NPF_MPLS NHLFE SET Handle is
null or invalid.
Notes

None

MPLS Task Group 58

Network Processing Forum Software Working Group

6.5.24 NPF_MPLS _NHLFE_SET AttributeQuery

Syntax

NPF _error _t NPF_MPLS NHLFE SET Attri buteQuery(
NPF_I N NPF_cal | backHandl e_t cal | backHandl e,
NPF_IN NPF_correl ator _t correl ator,
NPF_ I N NPF_errorReporting t error Reporting);

Description

This call will provide information about the characteristics of the NHLFE SET table/database.
Currently, the attributes available are:

e An estimate of how many free entries are in this table/database.

This is an optional function. Implementations that do not support queries MUST implement a stub of
this function and MUST either immediately return NPF. MPLS FUNCTION_NOT_SUPPORTED
when called or MUST return NPF. MPLS FUNCTION NOT_SUPPORTED in the returnCode field
of the asynchronous callback structure.

Input Arguments

e callbackHandle - The unique identifier provided to the application when the completion callback
routine was registered.

e correlator - A unique application invocation value that will be supplied to the asynchronous
completion callback routine.

e crrorReporting - An indication of whether the application desires to receive an asynchronous
completion callback for this API function invocation.

Output Arguments
None
Return Values
e NPF NO_ERROR - The operation is in progress.

e NPF MPLS E UNKNOWN - The NHLFE SET table was not queried due to problems
encountered when handling the input parameters.

e NPF MPLS E BAD CALLBACK HANDLE — The callback handle is not valid.

e NPF MPLS E FUNCTION NOT SUPPORTED - The attribute query capability is not
supported by this implementation.

Asynchronous Response

A return code will be returned asynchronously along with an approximation of the number of free
entries left in the NHLFE SET table/database. The callback structure returned is of type
NPF MPLS NHLFE SET ATTRIBUTE QUERY. Possible return codes are

e NPF NO_ERROR - The operation completed successfully.

e NPF MPLS E FUNCTION NOT_SUPPORTED — The attribute query function for the NHLFE
Set table is not supported by this implementation.

Notes

MPLS Task Group 59

Network Processing Forum Software Working Group

Applications may use this query API function to obtain information useful in maintaining the NHLFE
SET table/database. For example, prior to creating new NHLFE Sets, the application might query the
available free space of the NHLFE SET table/database and, therefore, be able to know when it cannot
add any more NHLFE SETs.

The implementation SHOULD be conservative in what it returns. In other words, the value should be
the amount of free space under the worst-case conditions, so that the application can be assured that at
least this many “Create” requests will succeed.

The errorReporting parameter, included for the sake of consistency, is ignored. This function
generates an asynchronous response, regardless of the value given in the errorReporting parameter.

6.5.25 Recovery APIs

The recovery API function calls are yet to be determined and are subject for further studies and
discussions with the Foundations Group.

MPLS Task Group 60

Network Processing Forum Software Working Group

7 References

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]

NP Forum - Software API Framework Lexicon Implementation Agreement Revision 1.0
NP Forum — Software API Conventions Implementation Agreement Revision 2.0

NP Forum — Software API Framework Implementation Agreement Revision 1.0

NP Forum — Interface Management API Implementation Agreement Revision 1.0

NP Forum - IPv4 Unicast forwarding API Implementation Agreement Revision 1.0
Multiprotocol Label Switching Architecture (MPLS) RFC3031

MPLS Label Stack encoding RFC 3032

Requirements for Traffic engineering over MPLS RFC 2702

Constraint-Based LSP Setup using LDP RFC 3212

RSVP-TE: Extensions to RSVP for LSP Tunnels RFC 3209

Multi-Protocol Label Switching (MPLS) Support of Differentiated Services — RFC 3270

Definition of the Differentiated Services Field (DS Field) in IPv4 and IPv6 Headers — RFC 2474

An Architecture for Differentiated Services — RFC 2475
Per Hop Behavior Identification Codes — RFC 3140

MPLS Task Group

61

Network Processing Forum Software Working Group

Appendix A Header File: NPF_MPLS.h

/*
* This header file defines typede

*/

typedef enum {
NPF_MPLS IPV4
NPF MPLS IPV6 =

} NPF MPLS IP Type t;

N -
~

typedef struct{

fs, constants, and functions
* that apply to the NPF MPLS forwarding service API*/

NPF MPLS IP Type t ipAddrType;

union {

NPF IPv4Address t ipv4DestHostAddr; /*
NPF IPv6Address t ipv6DestHostAddr; /*

}ou;
} NPF MPLS HostAddr t;

typedef enum {
NPF MPLS LABEL TYPE GENERIC =
NPF MPLS LABEL TYPE ATM
NPF_MPLS LABEL TYPE FR =3
} NPF MPLS LabelType t;

|
N =

typedef NPF uint32 t NPF MPLS ShimLabel t;

typedef NPF VccAddr t NPF MPLS ATM Label t

typedef enum {
NPF_MPLS DLCI 10 = 1,
NPF_MPLS DLCI 23 = 2
} NPF MPLS DLCI Type t;

typedef struct {

IPv4 Host Address */
IPv6 Host Address */

NPF MPLS DLCI Type dlciType; /* Length of the DLCI in bits */

NPF uint32 t dlci; /*
} NPF_MPLS FR Label t;

typedef struct {
NPF MPLS LabelType t labelType;
union {

NPF MPLS ShimLabel t shimLabel;

DLCI */

/* Type of label */

NPF_MPLS ATM Label t atmLabel; /* ATM
; /* Frame Relay Label */

NPF MPLS FR Label t frLabel
}ou;
} NPF MPLS Label t;

typedef struct {
NPF int32 t numLabels;
NPF MPLS Label t* labelStack;

/* Generic label */

label */

/* Number of labels */
/* Stack of labels */

MPLS Task Group

62

Network Processing Forum Software Working Group

} NPF MPLS LabelStack t;

typedef struct {
NPF uint8 t dscp; /*DSCP value */
NPF uint8 t exp; /*EXP value */
} NPF MPLS DSCP EXP Entry t;

typedef struct {

NPF uint32 t tableId; /* unique id set by user */

NPF uint8 t numEntries; /* Number of entries in this map */

NPF MPLS DSCP_EXP Entry t *entries; /* DSCP to EXP entries array*/
} NPF MPLS DSCP EXP Param t;

typedef NPF uint32 t NPF MPLS DSCP_EXP Handle t;

typedef enum {
NPF MPLS DSCPEXP HANDLE =
NPF MPLS DSCPEXP PARAMS =
} NPF MPLS DSCP_EXP InfoType t;

|
N =
~

typedef enum {
NPF MPLS DSCPEXP DTOE = 1,
NPF MPLS DSCPEXP ETOD = 2
} NPF MPLS DSCP_EXP Type t;

typedef struct {

NPF MPLS DSCP_EXP Type t type; /* DSCP to Exp or Exp to DSCP*/
NPF MPLS DSCP EXP InfoType t paramType; /* Handle or map information */
union {

NPF _MPLS DSCP_EXP Handle t mapHandle; /* Map Handle */
NPF MPLS DSCP_EXP Param t mapParam; /* Map Parameters */
bous
} NPF_MPLS DSCP EXP t;

typedef NPF uintlé t NPF MPLS PSC_ID t;

typedef enum {
NPF_MPLS PSCID BE = 0
} NPF MPLS PSC ID Value t;

typedef enum {
NPF MPLS DS LSP TYPE NONE = /* non-Diffserv type */
NPF MPLS DS LSP TYPE ELSP = 1, /* ELSP */

|
o
~

NPF MPLS DS LSP TYPE LLSP = 2 /* LLSP */

} NPF MPLS DS LSP Type t;

typedef enum {
NPF_MPLS DS LSP_MODEL NONE 0, /* non-Diffserv model */
NPF MPLS DS LSP MODEL PIPE =1, /* Pipe */
NPF MPLS DS LSP MODEL SHORTPIPE = 2, /* Short-pipe */
NPF_MPLS DS LSP MODEL UNIFORM 3 /* Uniform */

} NPF_MPLS DS _LSP _Model t;

MPLS Task Group

Network Processing Forum Software Working Group

typedef struct {

NPF uint32 t maxRate; /*Max or Peak rate (bps)*/
NPF_uint32 t meanRate; /*Mean rate (bps)*/

NPF uint32 t maxBurstSize; /*Max Burst size in bytes*/

NPF uint32 t meanBurstSize; /*Mean Burst size in bytes*/

NPF uint32 t exBurstSize; /*Excess Burst size in bytes*/
NPF uint32 t frequency; /*Frequency of token refresh*/
NPF uint8 t weight; /*Weight associated with tunnel*/
NPF uint8 t trafficClass; /*Derived from parameters above*/

} NPF MPLS TE Param t;

typedef NPF uint32 t NPF MPLS NHLFE Handle t;

typedef struct {

NPF IfHandle t egressInterface; /* Outgoing interface */

NPF MPLS HostAddr t nextHopAddr; /* Next Hop IPv4/IPv6 address */
NPF MPLS LabelStack t labelStack; /* label stack to be pushed*/
NPF_MPLS DSCP_EXP t *dscpToExp; /* DSCP to EXP map */

} NPF_MPLS NHLFE Param t;

typedef enum {
NPF MPLS NHLFE HANDLE = 1,
NPF MPLS NHLFE PARAMS = 2
} NPF_MPLS NHLFE InfoType t;

typedef struct {
NPF MPLS NHLFE InfoType t paramType; /* Handle or NHLFE information */
union {
NPF _MPLS NHLFE Handle t nhlfeHandle; /* NHLFE Handle */
NPF MPLS NHLFE Param t nhlfeParam; /* NHLFE Parameters */
}oug
} NPF MPLS NHLFE_ t;

typedef enum {
NPF_MPLS POLICYTYPE NONE =
NPF MPLS POLICYTYPE WEIGHT =
NPF MPLS POLICYTYPE ELSP
NPF MPLS POLICYTYPE LLSP =
} NPF_MPLS NHLFE SET PolicyType

4

14

0
1
2,
3
ot

’

typedef struct{
NPF uint32 t weight;
} NPF _MPLS WeightPolicy t;

typedef struct{
NPF uint8 t dscp; /* incoming DSCP to select on */
} NPF MPLS DS Policy t;

typedef struct{
NPF MPLS NHLFE t *nhlfe;
union {

MPLS Task Group

Network Processing Forum Software Working Group

NPF MPLS WeightPolicy t weightPolicy;
NPF MPLS DS Policy t dsPolicy;
}ou;
} NPF_MPLS Policy t;

typedef struct {

NPF uint32 t setId;

NPF MPLS NHLFE SET PolicyType t policyType;
NPF uint32 t numPolicy;

NPF MPLS Policy t **policyArray;

} NPF_MPLS NHLFE SET Param t;

typedef NPF uint32 t NPF _MPLS NHLFE SET Handle t;

typedef enum {
NPF MPLS NHLFESET HANDLE =
NPF MPLS NHLFESET PARAMS = 2
} NPF MPLS NHLFE SET Type t;

|
=
~

typedef struct {
NPF MPLS NHLFE SET Type t setType; /* Handle or NHLFE Set information */

union {
NPF MPLS NHLFE SET Handle t nhlfeSetHandle;/* NHLFE Set Handle */
NPF MPLS NHLFE SET Param t nhlfeSetParam; /* NHLFE Set Parameters */
}ou;

} NPF_MPLS NHLFE SET t;

typedef struct{

union {
NPF IPv4Prefix t ipv4DestNetPrefix; /* IPv4 prefix */
NPF IPv6Prefix t ipvé6DestNetPrefix; /* IPv6 prefix */
NPF IPv4Address t ipv4DestHostAddr; /* IPv4 Host Address */
NPF IPv6Address t ipv6DestHostAddr; /* IPv6 Host Address */
}oug

} NPF_MPLS FEC Param t;

typedef enum {

NPF_MPLS FEC _IPV4 DEST PREFIX = 1, /* IPv4 prefix */
NPF MPLS FEC IPV4 HOSTADDR = 2, /* IPv4 Host Address */
NPF_MPLS FEC_IPV6 DEST PREFIX = 3, /* IPv6 prefix */
NPF MPLS FEC IPV6 HOSTADDR = 4 /* IPv6 Host Address */

} NPF MPLS FEC Type t;

typedef struct{
NPF MPLS FEC Type t fecType;
NPF MPLS FEC Param t param;

} NPF_MPLS_FEC_t;

typedef enum {
NPF MPLS REDIRECT =
NPF_MPLS COPY PROCESS OPCODE =

|
N -
~

MPLS Task Group

Network Processing Forum Software Working Group

} NPF_MPLS Modifier t;

typedef enum {

NPF _MPLS POP AND LOOKUP =1,
NPF MPLS POP AND FORWARD =2,
NPF_MPLS NO_ POP_AND FORWARD = 3,
NPF MPLS DISCARD =4

} NPF MPLS LabelAction t;

typedef struct {
NPF MPLS Label t incomingLabel; /*
NPF IfHandle t ingressInterface; /*
NPF MPLS LabelAction t labelAction; /*
NPF MPLS Modifier t lspModifyType; /*
NPF_MPLS DSCP EXP t *expToDscp; /*

} NPF_MPLS ILM t;

typedef enum{
NPF MPLS LSP_FEC 1, /*Associates FEC with
NPF MPLS LSP ILM = 2 /*Associates ILM with

Incoming label*/

Incoming interface */

Label action */

Additional processing during
the handling of packet */
EXP to DSCP table associated
with ELSP*/

NHLFE */
NHLFE */

NPF MPLS LSP TUN = 3 /*Creates a tunnel endpoint */

} NPF_MPLS LSP Type t;

typedef NPF uint32 t NPF _MPLS LSP Id t;

typedef struct {

NPF MPLS LSP Type t lspType; /* Type of LSP*/
NPF MPLS LSP Id t 1lspId; /*LSP Tunnel Parameter - Identifier*/
NPF _MPLS TE Param t *teParams; /*tunnel/LSP parameters*/
NPF uintl6é t 1spMtu; /*LSP MTU */
union {

NPF _MPLS FEC t *fec; /* FEC */

NPF_MPLS ILM t *ilm; /* ILM */
bous
NPF MPLS DS LSP Model t dsModel; /*pipe, short pipe or uniform */
NPF MPLS DS LSP Type t dsLspType; /*E-LSP, L-LSP, none */
NPF uintl6 t ttlDecrement; /*let SAPI or below figure out

where to decrement */

NPF MPLS NHLFE SET t *nhlfeSet; /* Associated NHLFE Set */

} NPF MPLS LSP t;
typedef NPF uint32 t NPF MPLS LSP Handle t;

typedef enum {
NPF_MPLS LSP_HANDLE = 1,
NPF MPLS LSP PARAMS = 2
} NPF MPLS LSP InfoType t;

typedef struct {

NPF MPLS LSP InfoType t paramType; /* Handle or LSP information */

union {

NPF MPLS LSP Handle t lspHandle; /* LSP Handle */

MPLS Task Group

66

Network Processing Forum Software Working Group

NPF MPLS LSP t lspParam;

}ous
} NPF MPLS LSP Info t;

typedef struct {
NPF uint64 t octetsRcvd;
NPF uint64 t packetsRcvd;
NPF uint64 t errors;
NPF uint64 t drops;

}NPF MPLS FEC Stats t;

typedef struct {
NPF uint64 t octetsRcvd;
NPF uint64 t packetsRcvd;
NPF uint64 t errors;
NPF uint64 t drops;

} NPF MPLS ILM Stats t;

typedef struct {

NPF uint64 t bytes; /* byte count
NPF uint64 t packets; /* packet count */
} NPF MPLS DSCP EXP EntryStat t;

typedef struct {
NPF uint8 t numEntries;

NPF MPLS DSCP_EXP EntryStat t *stats;

} NPF_MPLS DSCP EXP Stats t;

typedef struct {

/*
/*
/*
/*

/*
/*
/*
/*

/* LSP key values */

Total Rx Octets */

Total Rx Packets */

Erroneous packets discarded */

Non erroneous packets discarded */

Total Rx Octets */
Total Rx Packets */
Erroneous packets discarded */
Non erroneous packets discarded */

*/

/*stats associated with entries*/

NPF MPLS NHLFE Handle t nhlfeHandle; /* NHLFE Handle */
NPF uint64 t octetsTxed; /* Total Tx Octets */
NPF uint64 t packetsTxed; /* Total Tx Packets */
NPF uint64 t errors; /* Erroneous packets discarded */
NPF uint64 t drops; /* Non erroneous packets discarded */
} NPF_MPLS NHLFE Stats t;
typedef struct {
NPF uint32 t nhlfeCount;
NPF MPLS NHLFE Stats t *nhlfeStatsArray;
}NPF_MPLS NHLFE StatsArray t;
typedef struct {
NPF MPLS NHLFE SET Handle t nhlfeSetHandle; /* NHLFE Set Handle */
NPF MPLS NHLFE StatsArray t *nhlfeStatsArray /* Array of NHLFE
Statistics */
} NPF MPLS NHLFE SET Stats t;
typedef struct {
NPF uint32 t nhlfeSetCount;
NPF MPLS NHLFE SET Stats t *nhlfeSetStatsArray;
} NPF MPLS NHLFE SET StatsArray t;
typedef struct {
MPLS Task Group 67

Network Processing Forum Software Working Group

NPF MPLS LSP Type t lspType; /* Type of LSP */
NPF MPLS LSP Handle t lspHandle; /* LSP identifier */
union {

NPF MPLS FEC Stats t fecStatistics; /* FEC */
NPF _MPLS ILM Stats t ilmStatistics; /* ILM */
bous
NPF MPLS NHLFE StatsArray t nhlfeStatsArray; /* Associated NHLFEs*/
} NPF_MPLS LSP_Stats t;

typedef enum NPF MPLSCallbackType {

NPF_MPLS_LSP_ENTRY CREATE =1,
NPF_MPLS_LSP_ENTRY DELETE =2,
NPF_MPLS_LSP_ENTRY MODIFY = 3,
NPF_MPLS_LSP_ATTRIBUTE QUERY 4,
NPF_MPLS_LSP_ENTRY QUERY =5,
NPF_MPLS_LSP_STATS QUERY = 6,
NPF_MPLS_NHLFE ENTRY CREATE =17,
NPF_MPLS_NHLFE ENTRY DELETE = 8,
NPF_MPLS_NHLFE ENTRY MODIFY =9,
NPF_MPLS_NHLFE ATTRIBUTE QUERY = 10,
NPF_MPLS_NHLFE ENTRY QUERY = 11,
NPF_MPLS_NHLFE_ STATS QUERY =12,
NPF_MPLS_NHLFE_ SET CREATE = 13,
NPF_MPLS_NHLFE SET DELETE = 14,
NPF_MPLS_NHLFE SET MODIFY = 15,
NPF_MPLS_NHLFE SET ATTRIBUTE QUERY = 16,
NPF_MPLS_NHLFE SET ENTRY QUERY =17,
NPF_MPLS_NHLFE SET STATS QUERY = 18,
NPF_MPLS_DSCPEXP ENTRY CREATE = 19,
NPF_MPLS_DSCPEXP ENTRY DELETE = 20,
NPF_MPLS_DSCPEXP_ENTRY MODIFY = 21,
NPF_MPLS_DSCPEXP ATTRIBUTE QUERY = 22,
NPF_MPLS_DSCPEXP _ENTRY QUERY 23,

NPF_MPLS DSCPEXP_ STATS QUERY = 24
} NPF MPLS CallbackType t;

typedef struct {

NPF uint32 t lspArrayIndex;
NPF MPLS ReturnCode t returnCode;
NPF MPLS LSP Handle t lspHandle;
NPF MPLS NHLFE SET CreateResp t nhlfeSetResp;
NPF MPLS DSCP_EXP Handle t expDscpHandle;

} NPF MPLS LSP CreateResp t;

typedef struct {

NPF uint32 t arraylIndex;
NPF MPLS ReturnCode t returnCode;
NPF MPLS LSP Handle t lspHandle;
NPF MPLS LSP t lspEntry;

NPF MPLS DSCP_EXP Handle t expDscpHandle;
} NPF MPLS LSP EntryResp t;

typedef struct {
NPF uint32 t arraylndex;
NPF MPLS ReturnCode t returnCode;

MPLS Task Group

68

Network Processing Forum Software Working Group

NPF _MPLS_DSCP_EXP Handle t

expDscpHandle;

} NPF _MPLS DSCP EXP CreateResp t;

typedef struct {
NPF uint32 t
NPF MPLS ReturnCode t
NPF MPLS DSCP EXP Handle t
NPF MPLS DSCP_EXP Type t
NPF MPLS DSCP_EXP Param t
} NPF_MPLS DSCP EXP EntryResp

typedef struct {
NPF uint32 t
NPF MPLS ReturnCode t
NPF MPLS NHFLE Handle t
NPF MPLS DSCP EXP Handle t
} NPF _MPLS NHFLE CreateResp t;

typedef struct {
NPF uint32 t
NPF MPLS ReturnCode t
NPF MPLS NHLFE Handle t
NPF MPLS NHLFE Param t
NPF MPLS DSCP_EXP Handle t
} NPF_MPLS NHLFE EntryResp t;

typedef struct {
NPF uint32 t
NPF MPLS ReturnCode t
NPF MPLS NHLFE SET Handle t
NPF uint32 t
NPF MPLS NHLFE CreateResp t
} NPF MPLS NHLFE SET CreateRes

typedef struct {
NPF uint32 t
NPF MPLS ReturnCode t
NPF_MPLS NHLFE SET Handle t
NPF_MPLS NHLFE SET Param t
} NPF_MPLS NHLFE SET EntryResp

typedef struct {
NPF MPLS ReturnCode t retur
union {

NPEF MPLS LSP CreateResp t

NPF MPLS LSP EntryResp t
NPF MPLS LSP Handle t
NPF MPLS LSP Stats t

NPF MPLS NHLFE CreateRes
NPF MPLS NHLFE EntryResp
NPF_MPLS NHLFE Handle t
NPF MPLS NHLFE Stats t
NPF MPLS NHLFE SET Handl
NPF MPLS NHLFE SET Creat

arraylndex;

returnCode;

expDscpHandle;

type;

dscpExpEntry;
t;

arrayIndex;
returnCode;
nhlfeHandle;
dscpExpHandle;

arraylIndex;
returnCode;
nhlfeHandle;
nhlfeEntry;
dscpExpHandle;

arrayIndex;
returnCode;
nhlfeSetHandle;
numNhlfeResp;
**numNhl feResp;
p_t;

arraylIndex;
returnCode;
nhlfeSetHandle;
nhlfeEntry;

t;

nCode; /* Return code for the call

lspCreateResp;

lspEntryResp;

lspHandle;
lspStatsResp;

p_ t nhlfeCreateResp;

t nhlfeEntryResp;
nhlfeHandle;
nhlfeStatsResp;

e t nhlfeSetHandle;

eResp t nhlfeSetCreateResp;

*/

MPLS Task Group

69

Network Processing Forum Software Working Group

NPF MPLS NHLFE SET EntryResp t nhlfeSetEntryResp;
NPF MPLS NHLFE SET Stats t nhlfeSetStatsResp;
NPF MPLS DSCP EXP CreateResp t dscpExpCreateResp;
NPF MPLS DSCP EXP EntryResp t dscpExpEntryResp;
NPF MPLS DSCP EXP Stats t dscpExpStats;
NPF MPLS DSCP_EXP Handle t dscpExpHandle;
NPF uint32 t tableSpaceRemaining;
NPF uint32 t unused;
}ous
} NPF _MPLS AsyncResponse t;
typedef struct {
NPF_MPLS Cal | backType_t type; /* Cal | back function type
NPF_bool ean_t al | C; /* TRUE if all functions conpleted OK
NPF_ui nt 32_t nurResp; /* Nunber of responses in array
NPF_MPLS AsyncResponse_t *resp; /* Pointer to response structures

} NPF MPLS CallbackData t;

#define NPF_MPLS E ALREADY REGISTERED
#define NPF_MPLS E BAD CALLBACK HANDLE
#define NPF_MPLS E BAD CALLBACK FUNCTION
#define NPF_MPLS E INVALID LSP PARAM
#define NPF_MPLS E_INVALID LSP HANDLE
#define NPF_MPLS E INVALID LSP TYPE
#define NPF_MPLS E_INVALID NHLFE PARAM
#define NPF_MPLS E _INVALID NHLFE HANDLE
#define NPF_MPLS E INVALID NHLFESET PARAM
#define NPF_MPLS E_INVALID NHLFESET HANDLE
#define NPF_MPLS E_INVALID FEC

#define NPF_MPLS E INVALID IN LABEL
#define NPF_MPLS E_INVALID OUT LABEL
#define NPF_MPLS E INVALID LABEL STACK
#define NPF_MPLS E_INVALID NEXT HOP IP
#define NPF_MPLS E INVALID NEXT HOP L2MEDIA
#define NPF_MPLS E_INVALID NHLFE FWD POLICY
#define NPF_MPLS_E_|I NVALI D_| NTERFACE
#define NPF_MPLS_E_UNKNOWN

#define NPF_MPLS E_INVALID DSCPEXP_ HANDLE
#define NPF_MPLS E ENTRY ALREADY EXIST
#define NPF_MPLS_E_I NSUFFI Cl ENT_STORAGE
#define NPF_MPLS_E_FUNCTI ON_NOT_SUPPORTED

typedef enum {

(NPF_MPLS BASE ERR+1)
(NPF_MPLS BASE ERR+2)
(NPF_MPLS BASE ERR+3)
(NPF_MPLS BASE ERR+4)
(NPF_MPLS BASE ERR+5)
(NPF_MPLS BASE ERR+6)
(NPF_MPLS BASE ERR+7)
(NPF_MPLS BASE ERR+8)
(NPF_MPLS BASE ERR+9)
(NPF_MPLS BASE ERR+10)
(NPF_MPLS BASE ERR+11)
(NPF_MPLS BASE ERR+12)
(NPF_MPLS BASE ERR+13)
(NPF_MPLS BASE ERR+14)
(NPF_MPLS BASE ERR+15)
(NPF_MPLS BASE ERR+16)
(NPF MPLS BASE ERR+17)
(NPF_MPLS BASE_ERR+18)
(NPF_MPLS BASE ERR+109)
(NPF_MPLS BASE ERR+20)
(NPF_MPLS BASE ERR+21)
(NPF_MPLS_BASE_ERR+22)
(NPF_MPLS_BASE_ERR+23)

NPF MPLS EV ILM MISS
NPF MPLS EV ILM NHLFE
NPF MPLS EV _FTN NHLFE
NPF MPLS EV NHLFE MTU
NPF MPLS EV NHLFE L2 = 5,
NPF MPLS EV PKT TTL = 6,
NPF MPLS EV NHLFE MISS EVENT
} NPF MPLS EventType t;

~

~

4

Il
g w N

14

typedef struct {
NPF MPLS Event t eventType;
union {
NPF MPLS LSP Handle t

/*
/*
/*
/~k
/*
/*

/*

No ILM entry for label */

Packet matches ILM without NHLFE */
Packet matches FTN without NHLFE */
Labeled packet exceeds MTU */

Need next hop resolution */
Exceeded TTL */

*/
*/

*/

7 /* When NHLFE/NHLFE SET does not exist */

Event type */

lspHandle;

MPLS Task Group

70

Network Processing Forum Software Working Group

NPF MPLS NHLFE Handle t nhlfeHandle;
}oug
NPF IfHandle t ingressInterface;
NPF uint32 t packetLength; /* Length of packet */
void *packetData; /* Location of packet */
} NPF MPLS EventData t;

typedef struct {
NPF uintl6 t nData; /* Number of events in array */
NPF MPLS EventData t *eventData; /* Array of event notifications */
} NPF MPLS EventArray t;

/* MPLS SAPI Function Prototypes */

typedef void (*NPF_MPLS Cal | backFunc_t) (
NPF_I N NPF_user Cont ext _t user Cont ext,
NPF _IN NPF_correlator_t correl ator,
NPF_IN NPF_MPLS Cal | backData_t *cal | backDat a) ;

typedef void (*NPF_MPLS Event Cal |l Func_t) (

NPF_| N NPF_user Cont ext _t user Cont ext
NPF_I N NPF_MPLS Event Array_t npl sEvent Array);

NPF_error_t NPF_MPLS Regi ster(

NPF IN NPF_user Cont ext _t user Cont ext
NPF_I N NPF_MPLS FwCal | backFunc_t callbackFunc
NPF_OUT NPF_cal | backHandl e_t *callbackkhndle);

NPF_error_t NPF_MPLS Deregister(
NPF_I N NPF_cal | backHandl e_t cal | backHandl e) ;

NPF_error_t NPF_MPLS Event Regi st er (

NPF_I'N NPF_user Cont ext _t user Cont ext ,
NPF_IN NPF_MPLS Event Handl er Func_t event Cal | Func,
NPF_OUT NPF_cal | backHandl e_t *event Cal | Handl e) ;

NPF_error_t NPF_MPLS Event Der egi st er(
NPF_I N NPF_cal | backHandl e_t event Cal | Handl e) ;

NPF _error _t NPF_MPLS LSP EntryCreat g
NPF_I N NPF_cal | backHandl e_t cal | backHandl e,

NPF_I N NPF_correl ator _t correl ator,

NPF_I N NPF_errorReporting t errorReporting,
NPF_I N NPF_ui nt 32_t nMpl sLsp,
NPF I N NPF_MPLS LSP t **mpl sLspArray);

NPF _error _t NPF_MPLS LSP EntryDel et e(
NPF_I N NPF_cal | backHandl e_t cal | backHandl e,

NPF_I N NPF_correl ator _t correl ator,
NPF_I N NPF_errorReporting_t errorReporting,
NPF_I N NPF_ui nt 32_t nHandl es,

NPF_I N NPF_MPLS LSP Handl e_t *npl sLspHandl eArr ay);

NPF_error_t NPF_MPLS LSP_EntryModi fy(
NPF_I N NPF_cal | backHandl e_t cal | backHandl e,
NPF_I N NPF_correl ator _t correl ator,
NPF_I N NPF_errorReporting_t error Reporting,

MPLS Task Group

Network Processing Forum Software Working Group

NPF_I N NPF_ui nt 32_t
NPF_I N NPF_MPLS_LSP_Handl e_t
NPF_I N NPF_MPLS_LSP t

NPF_error_t NPF_MPLS LSP Entrpr
NPF_I N NPF_cal | backHandl e
NPF_I N NPF_correl ator _t
NPF_I N NPF_errorReporting_t
NPF_I N NPF_ui nt 32_t

NPF_I N NPF_MPLS_LSP I nfo_t

NPF error t NPF MPLS LSP StatsGet(
NPF_I N NPF_cal | backHandl e_t
NPF_I N NPF_correl ator _t
NPF_I N NPF_errorReporting_t
NPF_I N NPF_ui nt 32_t
NPF_I N NPF_MPLS_LSP Handl e_t

NPF_error _t
NPF_I N NPF_cal | backHandl e_t
NPF_I N NPF_correl at or _t

NPF_I N NPF_errorReporting_t

NPF error t NPF MPLS DSCP EXP Create(
NPF_I N NPF_cal | backHandl e_t
NPF_I N NPF_correl ator _t
NPF_I N NPF_errorReport|ng_t

nHandl es,
*npl sLspHandl eArr ay,
*npl sLspArray);

callbackkhndle,
correl ator,

error Reporting,
num nf o,

*npl sLspl nf 0Array);

cal | backHandl e,
correl ator,

error Reporting,
nHandl es,

*npl sLspHandl eArray) ;

NPF_MPLS_LSP_Attri but eQuer y(

cal | backHandl e,
correl ator,
error Reporting);

cal | backHandl e,
correl ator,
error Reporting,

NPF_IN NPF MPLS DSCP EXP Type t type,

NPF IN NPF uint32 t nTables,

NPF IN NPF MPLS DSCP EXP Param t **dscpExptablesArray);

NPF error t
NPF_I N NPF_cal | backHandl e_t
NPF_I N NPF_correl ator _t
NPF_I N NPF_errorReport|ng_t
NPF IN NPF uint32 t

NPF MPLS DSCP EXP Delete(

cal | backHandl e,
correl ator,
error Reporting,
nHandles,

NPF_IN NPF MPLS DSCP_EXP Handle t *dscpExpHandleArray);

NPF error t
NPF_I N NPF_cal | backHandl e_t
NPF_I N NPF_correl ator _t
NPF_IN NPF_errorReport|ng_t

NPF MPLS DSCP EXP Modify(

cal | backHandl e,
correl ator,
error Reporting,

NPF error t

NPF IN NPF uint32 t nHandles,
NPF IN NPF MPLS DSCP EXP Handle t *dscpExpHandleArray,
NPF IN NPF MPLS DSCP_EXP Param t *dscpExpArray);

NPF MPLS DSCP EXP StatsGet (

cal | backHandl e,
correl ator,
error Reporting,

NPF_I N NPF_cal | backHandl e_t
NPF_I N NPF_correl ator _t
NPF_ I N NPF_errorReporting t
NPF IN NPF uint32 t nHandles,
NPF IN NPF MPLS DSCP EXP Handle t *dscpExpHandleArray);

NPF error t NPF MPLS DSCP EXP AttributeQuery (

NPF_I N NPF_cal | backHandl e_t
NPF_I N NPF_correl ator _t
NPF_I N NPF_errorReporting_t

cal | backHandl e,
correl ator,
error Reporting);

MPLS Task Group

Network Processing Forum Software Working Group

NPF error t NPF MPLS DSCP_ EXP EntryQuery (

NPF_I N
NPF_I N
NPF_I N
NPF_IN

NPF_IN

NPF_error_t NPF_
NPF_IN
NPF_I N
NPF_I N
NPF_I N
NPF_I N

NPF_cal | backHandl e_t
NPF _correl ator _t
NPF_errorReporting_t
NPF uint32 t

NPF MplsDscpExp t

MPLS NHLFE_Creat e(
NPF_cal | backHandl e_t
NPF_correl at or _t
NPF_error Reporting_t
NPF_ui nt 32_t
NPF_MPLS_NHLFE t

NPF _error _t NPF_MPLS NHLFE Del et ¢(

NPF_I N
NPF_I N
NPF_I N
NPF_I N

NPF_I N NPF_MPLS_NALFE_Handl e_t *npl sNhl f eHandl eAr r ay) ;

NPF_cal | backHandl e_t
NPF_correl ator _t
NPF_ errorReport| ng_t
NPF_ui nt 32_t

NPF _error _t NPF_MPLS NHLFE Modi fy(

NPF_IN
NPF_I N
NPF_I N
NPF_I N

NPF_cal | backHandl e_t
NPF _correl ator _t
NPF_error Reporting t
NPF ui nt 32 t

cal | backHandl e,
correl ator,
error Reporting,
numTables,
*dscpExpArray) ;

cal | backHandl e,
correl ator,

error Reporting,
nNhl f e,

**mpl sNnl f eArray) ;

cal | backHandl e,
correl ator,
error Reporting,
nHandl es,

cal | backHandl e,
correl ator,
error Reporting,
nHandl es,

NPF_I N NPF_MPLS NHLFE_Handl e_t *npl sNnl f eHandl eArr ay,

NPF_I N

NPF _error _t NPF_MPLS NHLFE St at sGet (

NPF_I N
NPF_I N
NPF_I N
NPF_I N

NPF_I N NPF_MPLS_NALFE_Handl e_t *npl sNhl f eHandl eArr ay) ;

NPF_MPLS_NHLFE _t

NPF_cal | backHandl e_t
NPF_correl ator _t
NPF_ errorReport| ng_t
NPF_ui nt 32_t

*npl sNhl f eArray) ;

cal | backHandl e,
correl ator,
error Reporting,
nHandl es,

NPF_error_t NPF_MPLS_NHLFE Attri buteQuery(

NPF_I N
NPF_I N
NPF_I N

NPF_error_t NPF_MPLS_NHLFE_EntryQuery

"NPF_cal | backHandl e_t
NPF _correl ator _t
NPF_error Reporting_t

cal | backHandl e,
correl ator,
errorReporting);

NPF_I N NPF_cal | backHandl e_t cal | backHandl e,

NPF_I N
NPF_I N
NPF_I N
NPF_I N

NPF_correl at or _t
NPF_error Reporting t
NPF_ui nt 32_t
NPF_MPLS_NHLFE t

correl ator,
errorReporti ng,
numihl f e,

*npl sNhl f eArray) ;

NPF _error _t NPF_MPLS NHLFE SET Creat e(

NPF_I'N
NPF_I N
NPF_I N
NPF_I N
NPF_I N

NPF_cal | backHandl e_t
NPF correl ator _t
NPF_ errorReport| ng_t
NPF_ui nt 32_t
NPF_MPLS NHLFE_SET t

cal | backHandl e,
correl ator,

error Reporting,

nNhl f eSet ,

**mpl sNhl f eSet Array) ;

NPF_error_t NPF_MPLS NHLFE_SET_Del et e(

NPF_IN
NPF_I N

NPF_cal | backHandl e_t
NPF _correl ator _t

cal | backHandl e,
correl ator,

MPLS Task Group

73

Network Processing Forum Software Working Group

NPF_I N NPF_errorReporting_t error Reporting,
NPF_I N NPF_ui nt 32_t nHandl es,
NPF_I N NPF_MPLS NHLFE_SET Handl e_t *npl sNnl f eSet Handl eArray) ;

NPF_error _t NPF_MPLS_NHLFE_SET Mbdi f y(

NPF_I N NPF_cal | backHandl e_t cal | backHandl e

NPF_I N NPF_correl ator _t correl ator

NPF_I N NPF_errorReporting_t error Reporting,

NPF_I N NPF_ui nt 32_t nNhl f e,

NPF_I N NPF_MPLS NHLFE_SET_Handl e_t *npl sNnl f eSet Handl eArr ay,
NPF_I N NPF_MPLS NHLFE_SET t *npl sNhl f eSet Array) ;

NPF_error_t NPF_MPLS NHLFE_SET_EntryQuery
NPF_I N NPF_cal | backHandl e_t callbackkhndle,

NPF_I N NPF_correl at or _t correl ator,
NPF_I N NPF_errorReporting_t errorReporting,
NPF_I N NPF_ui nt 32_t num\hl f eSet ,

NPF_I N NPF_MPLS NHLFE SET t *nhl feSet Array);

NPF_error _t NPF_MPLS_NHLFE_St at sGet (

NPF_I N NPF_cal | backHandl e_t cal | backHandl e
NPF_I N NPF_correl ator _t correl ator
NPF_I N NPF_errorReporting_t error Reporting,
NPF_I N NPF_ui nt 32_t nHandl es,

NPF_I N NPF_MPLS_NALFE_SET_Handl e_t *npl sNhl f eSet Handl eArr ay) ;

NPF_error_t NPF_MPLS NHLFE SET Attri buteQuery(
NPF_I N NPF_cal | backHandl e_t cal | backHandl e,
NPF_I N NPF_correl ator _t correl ator,
NPF_I N NPF_errorReporting t error Reporting);

MPLS Task Group

Network Processing Forum Software Working Group

Appendix B MPLS QoS Parameters

typedef struct {
NPF uintlé t
NPF uint32 t
NPF uint32 t
NPF uint32 t
NPF uint32 t
NPF uint32 t
NPF uint32 t
NPF uint8 t
NPF uint8 t

} NPF MPLS TE Param t;

flag;
maxRate;
meanRate;
maxBurstSize;

meanBurstSize;

exBurstSize;
frequency;
weight;
trafficClass;

maxRate = PDR

meanRate = CBR

maxBurst = PBS

meanBurst = CBS

exBurst = EBS

frequency = service frequency
weight = weight

trafficClass: derived from table 1.

/*specifies valid params*/

/*Max or Peak rate (bps)*/

/*Mean rate (bps)*/

/*Max Burst size in bytes*/
/*Mean Burst size in bytes*/
/*Excess Burst size in bytes*/
/*Frequency of token refresh*/
/*Weight associated with tunnel*/
/*Derived from parameters above*/

The following chart is taken from [RFC 3212] and gives examples of services and what the corresponding

CR-LDP parameters would be.

The key parameter to providing QoS, as opposed to bandwidth management, is the Service Frequency.
This has the most effect on queuing delay and delay variation. As can be seen from the table, Unspecified
is enough to provide most services. Real-time traffic would require support of Frequent. Very Frequent
need only be supported, to provide circuit emulation (e.g., DS1 and DS3 service) and real-time layer 2
transport services (e.g., ATM CBR, VBR nrt, low delay Frame Relay services). QoS is necessary to
support [draft-martini-12circuit-trans-mpls-06], and perhaps some Diffserv classes.

NOTE: Unspecified frequency is adequate. Phase II allows all but Very Frequent.

Service PDR ([PBS CDR (|CBS EBS (|Service Freq Coqdltlonlng Diffsery
Example Action Class
Delay drop > PDR EF
Sensitive S S =PDR |[=PBS 0 Frequent
(DS)
Throughput drop > PDR, AF
Sensitive . PBS;
(TS) S S S S 0 Unspecified mark > CDR,

CBS
Best Effort - BE
(BE) Inf ||inf inf inf 0 Unspecified
Frame Relay drop > AF
Service S S CIR |[Bc Be ||Unspecified IP;EFI(’EBS;

CDR,CBS,EBS
ATM-CBR |[PCR |[CDVT |[=PCR |[=CDVT [[0 |[VeryFrequent |drop>PCR |N/A

MPLS Task Group 75

Network Processing Forum Software Working Group

Service PDR ||PBS ||CDR [[CBS | EBS ||Service Freq [Conditioning Diffserv
Example Action Class
ATM- drop > PCR; EF
VBR.3 (rt) ||PCR [[CDVT [|SCR |MBS 0 Frequent mark > SCR,
MBS
ATM- drop > PCR; AF
VBR.3 (nrt) ||PCR ||CDVT ||SCR |[MBS 0 Unspecified mark > SCR,
MBS
IATM-UBR |PCR |CDVT [-0) [-0) |[0 |/Unspecified |drop>PCR |BE
ATM- PCR [[cDVT [MCR MBS |lo |Unspecifica [9°P 7 PCR AF
GFR.1
ATM- drop > PCR; AF / higher
GFR.2 PCR ([CDVT |[MCR (MBS 0 Unspecified mark drop
>MCR,MFS precedence
int-serv- drop > p; EF
Control P m r b 0 Frequent drop >1,b
Load (CL)
NOTES:
S User Specified
inf interface
CIR Committed Information Rate
Be Committed Burst Size
Be Excess Burst Size
PDR Peak Data Rate
PBS Peak Burst Size
PCR Peak Cell Rate
SCR Sustainable Cell Rate
MBS Maximum Burst Size
CDVT Cell Delay Variation Tolerance
CDR Committed Data Rate
CBS Committed Burst Size
EBS Excess Burst Size
p peak rate of the CL (Controlled Load) service
m min. packet size
r data rate of the CL service
b burst
Table 1 “CRLDP Parameter Mapping to Traffic Class” below covers most of the cases from CRLDP.
CRLDP Parameters ATM
Type
Traffic
Class
PDR, PBS > 0; CDR, CBS = PDR, PBS; frequency=veryfrequent CBR
PDR, PBS > 0; PDR, PBS >= CDR, CBS > 0; EBS >= 0; frequency=frequent; | VBR.3-

MPLS Task Group

76

Network Processing Forum Software Working Group

weight >=0 RT
PDR, PBS > 0; PDR, PBS >= CDR, CBS > 0; EBS >= 0; VBR.3-
frequency=unspecified; weight >= 0 NRT
PDR, PBS > 0; CDR, CBS = 0; EBS >= 0; frequency=unspecified; weight >= | UBR

0

Table 2 - CRLDP Parameter Mapping to Traffic Class

MPLS Task Group

77

Network Processing Forum Software Working Group

Appendix C Relationship of MPLS SAPI with IPv4/IPv6 SAPI
for FTN Mapping

The MPLS SAPI relies on the function of the IPv4 and IPv6 route entries to construct an FTN mapping.
The FEC is the route entry prefix. It is assumed that the MPLS application has informed the routing
application of an NHLFE Set that can be used as a next hop for a given prefix, i.e., FEC. The IPv4 or
IPv6 SAPI is used to install a NHLFE Set as a possible next hop for the prefix. The route entry reflecting
the prefix may point to an NHLFE Set as the active next hop. If a received unlabeled packet matches the
route entry, and the active next hop is an NHFLE Set, the unlabeled packet is associated with that NHLFE
Set. The system then forwards the packet to the egress interface where the packet is labeled from the
selected NHLFE and transmitted.

MPLS Task Group 78

Network Processing Forum Software Working Group

Appendix D List of companies belonging to NPF during

approval process

Agere Systems

Alcatel

Altera

AMCC

Analog Devices

Avici Systems

Azanda Network Devices
Cypress Semiconductor
Ericsson

Erlang Technologies

EZ Chip

Flextronics

Fujitsu Ltd.

FutureSoft

HCL Technologies

Hi/fn

IBM

IDT

Intel

IP Infusion
Kawasaki LSI
LSI Logic
Modelware
Mosaid
Motorola
NEC
NetLogic
Nokia

Paion Co., Ltd.

PMC Sierra
RadiSys

Samsung Electronics
Sandburst Corporation
Silicon & Software Systems
Silicon Access

Sony Electronics
STMicroelectronics
Sun Microsystems
Teja Technologies
TranSwitch

U4EA Group

Xelerated

Xilinx

Zettacom

ZTE

MPLS Task Group

79

