
NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 1 11/10/2003

Contribution Number: NPF2002.429.05

Working Group: Hardware

Task Group: Message Layer Task Group

TITLE: NPF Message Layer Implementation Agreement1

SOURCE: Erik Johnson

Technical Editor

Intel Research & Development
2111 NE 25th Avenue, M/S JF3-206
Hillsboro, OR 97124-5961
USA
Phone: +1 503 264 9950
Email: erik.j.johnson@intel.com

Mike Lerer
Message Layer Task Group Chair

Xilinx

Phone: +1 603-548-3704
Email: mlerer@fpga.com

DATE: November 11, 2003

ABSTRACT:
This specification defines the Network Processing Forum (NPF) message layer implementation
agreement. The message layer, or “messaging”, enables a system designer to configure the information
communicated between NPEs within a system without requiring proprietary extensions to the NPEs.
Messaging is suited to NPE-to-NPE communications over a range of conveyances, including streaming
and look aside. In-band messages are composed of a configured number of fixed-sized (1 byte) slots.
These slots are grouped into one or more consecutive message types, which, in a message header or
message trailer, carry the NPE-to-NPE information along with the message payload. An out-of-band
configuration mechanism is used to determine the meaning associated with the in-band messages for
both the sending and receiving NPEs. This document represents the final NPF message layer
implementation agreement as it will be published.

For additional information contact:
The Network Processing Forum, 39355 California Street,

Suite 307, Fremont, CA 94538
+1 510 608-5990 phone Φ info@npforum.org

© 2002-2003 Network Processing Forum

1 This document represents the final NPF message layer implementation agreement as it will be published

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 2 11/10/2003

Revision History

Version Date Details

00 07/29/ 2002
Baseline selected proposal from July 2002 NPF plenary

01 10/4/2002
Updates based on npf2002.484 (added message trailer and message payload
padding, message alignment restrictions), npf2002.523 (added message field
syntax graphs), npf2002.521 (clarified description of the standard NPE operation
configuration fields). Also includes several editorial updates including changing
“slot configuration ID” to “format ID”, “NPE Instruction” to “NPE Operation” and use
of the term “conveyance granule”. Refer to the associate editor’s notes document
for specific details (npf_msg_2002_429_editor_list.doc).

02 2/21/03
Version 01 was incorrectly uploaded to the NPF contribution website as version 02.
Thus, version 01 and 02 are identical

03
Edited for readability.

04 6/30/03
Added resolutions for comments from straw ballot (npf2003.285.00). Also modified
the settings on the Visio diagrams so that the PDF converter would stop losing text,
these figure replacements were not change tracked.

05 11/10/03
Removed references to DRAFT in the header and title

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 3 11/10/2003

Table of Contents

1. Overview ..4
1.1 Conventions Used ...4
1.2 Scope...4
1.3 Design Objectives ...5
1.4 Message Layer Reference Model ...5
1.5 Design Overview... 10

2. NPE Requirements ..15
2.1 Programmable and Configurable NPEs .. 15

3. SAE Operation ...15
3.1 Alignment of Fields and Payloads... 16
3.2 Multiple Message Header Formats for a Single Conveyance Channel 17

4. Formal Message Format Definition ...18
4.1 Basic Message Parts... 18
4.2 Containers .. 23
4.3 Data Types ... 24
4.4 Message Fields ... 27

Annexes ...39

A Glossary...39

B Syntax Graph Notation Guide (Informative) ..41

C In-band Configuration (informative) ...42

D NPE Capabilities Grammar (normative)..45

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 4 11/10/2003

1. Overview
The mission of the messaging task group is:

To enable multi-vendor interoperability between NPEs beyond the physical (i.e.,
streaming or look aside) interconnect level.

Unlike physical or link-layer interfaces, which simply enable NPEs to physically exchange ‘bits’ of data,
the goal of messaging is to define the meaning (e.g., configuration, status, flow identification, etc.) of
these bits of data so that two NPEs in a system can share work.

1.1 Conventions Used
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMEND", "MAY", and "OPTIONAL" in this document are to be interpreted as described by
the IETF's RFC 2119.

Footnotes used in this specification are informative only.

A reserved field or bit MUST be transmitted as zero and ignored on reception.

If there is a conflict between a state machine diagram or syntax graph and the text of this document
(including a table entry), the state machine takes precedence over the text.

Figures (except state diagrams or syntax graphs) are informative only.

1.2 Scope
This document is a definition for NPE-to-NPE messaging. Messaging standardizes the format and types
of information exchanged between NPEs, enabling a system integrator to construct a single network
element (i.e., a box) using NPEs from various vendors without requiring proprietary communication
mechanisms between different vendors’ NPEs. Messaging is applicable to both data and control plane
data exchanges within a network element, with the primary design focus being on data plane message
exchanges.

1.2.1 Scope of Underlying Conveyances
Messaging covers NPE-to-NPE communications within a single network element, over a range of
common NPE-to-NPE conveyances including streaming, look-aside, and switch fabrics. Messaging can
be layered on top of any conveyance that meets a minimal set of requirements, including, but not limited
to, those being developed within the NPF such as CSIX2 and SI. Message may be layered on top of
non-NPF conveyances such as Ethernet, for example. Wherever possible, messaging exposes and
does not duplicate the capabilities of the conveyance in which it is encapsulated.

Any conveyance used to carry NPF messages MUST:

• Support variable sized packets. This requirement can be accomplished in any manner but
MUST minimally include conveyance-level packet length as well as packet delineation (e.g.,
start and end of packet markers). The conveyance determines the granularity of packet lengths
(e.g., all packets are a multiple of 4-bytes long). The conveyance also determines the
maximum packet length with the following additional assumption:

o No fragmentation is performed at the messaging layer.

The system designer can deal with this assumption in any manner, including, but not limited to,
selecting a conveyance that supports segmentation and reassembly or by always configuring
the messages such that the total size of the message (i.e., message header, message payload
and message trailer) is never larger than the MTU of the selected conveyance.

2 CSIX support of messaging requires a currently non-ratified specification for an L2A header.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 5 11/10/2003

• Provide NPE-endpoint addressability. The conveyance provides the appropriate addressing
necessary to deliver packets to its NPE endpoints. For some conveyances (e.g., point-to-
point), this requirement may not physically result in the transmission of addressing information.
Messaging exposes and exploits the addressing of the underlying conveyance.

• Provide at least unidirectional operation. A interconnect that is physically bidirectional is an
acceptable conveyance, but is modeled as two unidirectional conveyances for the purposes of
messaging.

• Protect its resources. This requirement can be accomplished in any manner including, but not
limited to, providing a flow-control mechanism.

• Provide error detection. Packets that the conveyance detects are erroneous may either be
dropped, with or without notification to the messaging layer, or may be delivered to the
messaging layer with an indication of the error. Conveyances are not required to be reliable,
but any error correction in the conveyance MUST be transparent to the messaging layer.

1.3 Design Objectives
The design objectives are designated as:

1. To expose, and not to duplicate, the functionality of the underlying conveyance where possible.

2. Support simplex unidirectional traffic (i.e., “fire-and-forget”, connectionless) over any
conveyance, including, but not limited to, streaming, look aside and switch fabric style
conveyances between NPEs.

3. Support the pairing of two unidirectional connections to enable bidirectional communication
between two NPEs.

4. Define standard message types for out -of-the-box multi-vendor interoperability

5. Define a message header and trailer format that:

a. Can represent a wide range of message types

b. Is efficient to access, process, and transmit

1.4 Message Layer Reference Model
In order to describe the interface provided by the message layer to the application layer, as well as the
assumptions made by the messaging layer on the conveyance layer, this section presents a message
layer reference model. This reference model specifies the architectural services assumed by, and
provided by, the message layer, but does not imply any particular implementation of these services.

This reference model is only applicable in a system using messaging. Messaging is OPTIONAL for a
system, application, or conveyance.

Architecturally, one or more applications on an NPE use services provided by a message layer. A
message layer, in turn, relies on services provided by a conveyance layer. This architectural layering is
depicted in Figure 1, which shows the application, message, and conveyance layers for two NPEs using
messaging for unidirectional communications. Applications requiring bi-directional communications are
accomplished with two unidirectional models, as shown in Figure 2. It is acceptable (and reasonable)
for a bi-directional conveyance layer to be modeled as two unidirectional conveyance layers.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 6 11/10/2003

NPE 1

Application Layer (N)

Message Layer (1)

Conveyance Layer (1)

Application /
Message
Service
Interface

Conveyance /
Message
Service
Interface

AM_MsgData.
out

AM_Control.
out

AM_Status.
in

CM_Control.
out

CM_Status.
in

CM_MsgData.
out

NPE 2

Application Layer (N)

Message Layer (1)

Conveyance Layer (1)

Application /
Message
Service
Interface

Conveyance /
Message
Service
Interface

AM_MsgData.
in

AM_Control.
out

AM_Status.
in

CM_MsgData.
in

CM_Control.
out

CM_Status.
in

Conveyance

Conveyance
address

Figure 1 Unidirectional Message Layer Reference Model

NPE 1

Application Layer (N)

Message
Layer (1)

Conveyance
Layer (1)

Application /
Message
Service
Interface

Conveyance /
Message
Service
Interface

AM_MsgData.
out

AM_MsgData.
in

CM_MsgData.
in

CM_MsgData.
out

Message
Layer

Conveyance
Layer

* Status and Control primitives omitted for clarity

NPE 2

Application Layer (N)

Message
Layer (1)

Conveyance
Layer (1)

Application /
Message
Service
Interface

Conveyance /
Message
Service
Interface

AM_MsgData.
out

AM_MsgData.
in

CM_MsgData.
in

CM_MsgData .
out

Message
Layer

Conveyance
Layer

Conveyance

Conveyance
address

Conveyance

Conveyance
address

Figure 2 Bi-directional Message Layer Reference Model Using Two Unidirectional Models

As illustrated, the message layer reference model consists of three layers:

Conveyance layer This layer corresponds to specifications defined for the movement of
data. Examples within the NPF would include the streaming and look

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 7 11/10/2003

aside interfaces.

Message layer This layer corresponds to this implementation agreement.

Application layer This layer corresponds to specifications that describe a function
provided by an NPE. The use of the term "application" is not meant to
imply either a software or hardware implementation; The intent is to
imply a function that is a source or destination of messages that
provides some functionality as the result of its receipt of messages.

The message layer reference model specifies a one-to-one relationship between the conveyance layer
and the message layer. A one-to-many relationship is specified between the message layer and the
application layer.

For convenience, the layers are described as having an order. The conveyance layer is described
having the lowest order and the application layer described as the highest. The message layer is higher
than the conveyance layer but is lower than the application layer.

Between these three layers, two interfaces are defined:

• The application/message service interface (AM)

• The conveyance/message service interface (CM)

Each of these interfaces contains service primitives used for passing messages between different NPEs
(MsgData) as well as service primitives that are internal to the NPE (Control and Status). The internal
service primitives do not result in messages carried across the conveyance.

Several important details related to these interfaces are:

• Applications use the AM_MsgData service primitives to send and receive messages. For the
applications on NPE1 in Figure 1, the AM_MsgData.out primitive (provided by the message
layer) allows messages to be sent to NPE2. Similarly, for NPE2, the AM_MsgData.in primitive
delivers messages to the applications on NPE2.

• The message layer uses the CM_MsgData service primitives to send and receive messages on
the conveyance. For example, in response to an AM_MsgData. out primitive, the message layer
would use the CM_MsgData.out primitive to send the message on the appropriate conveyance.

• Both the AM_MsgData and CM_MsgData service primitives use conveyance addresses to
identify the incoming or outgoing message destination. A path between two conveyance end
points identified by a conveyance address is a conveyance channel. The message layer does
not define its own addressing scheme but instead uses the conveyance addresses directly (see
Section 1.2.1). Therefore, each conveyance address corresponds to a particular instance of the
message layer in a one-to-one or many-to-one relationship. When a conveyance receives a
packet, if the conveyance address indicates delivery to a message layer, the CM_MsgData.in
primitive MUST be used to deliver the message to the message layer. If a conveyance supports
multiple addresses, it is acceptable to have more than one conveyance address on the
conveyance mapped to the messaging layer. For example, two conveyance addresses could
send conveyance packets to the messaging layer. The conveyance layer addresses that are
used for directing packets to the message layer are defined by configuration. The intent is to
allow demultiplexing at both the messaging and application layer. In addition to using the
conveyance layer addressing, fields within the message are defined to allow for additional
demultiplexing in the application layer.

The following sections describe each of the service layer primitives, starting with a general syntax for
these descriptions.

1.4.1 Service Primitive Syntax
The syntax of a service primitive is:

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 8 11/10/2003

xx_unit.type [

operand 1

operand 2

]

where

xx The service interface. Valid values are

AM Application/message service interface

CM Conveyance/message service interface

unit Classification of the information being passed. Valid values are

MsgData Message data (NPE-to-NPE messages)

Control Flow control information (internal to an NPE)

Status Interface status, error conditions (internal to an NPE)

type Primitive type. Valid values are

out Service request to a lower reference model layer.

in Service request to a higher reference model layer.

Operand1 Conveyance address (Caddr)

Operand2 Service message

1.4.2 Conveyance/Message Service Primitives

1.4.2.1 CM_MsgData.in[
CAddr The destination conveyance layer address. This address is used as the primary method

for directing data to the message layer.

Msg Message (message header, message data, and message trailer).

]

Description: This primitive is used to move messages from the conveyance layer to the messaging
layer. Based on the value of the conveyance address operand (CAddr), the messaging layer passes the
message to the proper application layer using the AM_MsgData.in service primitive. The conveyance
layer MUST use this primitive and the message layer MUST support this primitive.

1.4.2.2 CM_Status.in[
CAddr Destination conveyance layer address. This address is used as the primary method for

directing data to the message layer.

Error Error details .

]

Description: This primitive is used to indicate that an error occurred in the conveyance layer during
reception of a message. Based on the value of the conveyance address operand (CAddr), the error is
reported to the proper application layer using the AM_Status.in service primitive. The conveyance layer
MAY use this primitive and the message layer MUST support this primitive.

This primitive is internal to a single NPE.

1.4.2.3 CM_MsgData.out[
CAddr Destination conveyance layer address. This is the address the conveyance layer uses

when sending the data, found in the Msg operand, on the conveyance layer interface.

Msg Message (message header, message data, and message trailer).

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 9 11/10/2003

]

Description: This primitive is used to pass messages from the message layer to the conveyance layer.
The message layer uses this primitive in response to an AM_MsgData.out service primitive received
from the application layer. The conveyance layer MUST support this primitive and the message layer
MUST use this primitive.

1.4.2.4 CM_Control.out[
CAddr Conveyance layer address corresponding to the application layer.

Status Flow control status for the conveyance layer address provided.

]

Description: This primitive is used to pass flow control information about a particular conveyance layer
address from the message layer to the conveyance layer. If the conveyance layer supports a flow
control status path, then the conveyance address is used to map into the conveyance layer's flow control
structure, and the status is mapped into the report types supported by the conveyance layer's flow
control status path. The message layer uses this service primitive to protect its own resources, or as a
response to an AM_Control.out service primitive received from the application layer. The conveyance
layer MAY use this primitive and the message layer MUST support this primitive.

This primitive is internal to a single NPE.

1.4.3 Application/Message Service Primitives

1.4.3.1 AM_MsgData.in[
CAddr Conveyance layer address. This address MAY be used by the application layer to

direct the message to the proper function within the application layer.

Msg Message (message header, message data, and message trailer).

]

Description: This primitive is used to pass message data from the message layer to the application
layer. This primitive is used in response to a CM_MsgData.in primitive received from the conveyance
layer. The application layer MUST support this primitive and the message layer MUST use this
primitive.

1.4.3.2 AM_Status.in[
CAddr Conveyance layer address. This address MAY be used by the application layer to

direct the message to the proper function within the application layer.

Error Error details .

]

Description: This primitive is used to indicate that an error occurred in the conveyance layer during
reception of a message. Based on the value of the conveyance address operand, the error is reported
to the proper function within the application layer. This primitive is used in response to a CM_Status.in
primitive. The application layer MUST support this primitive and the message layer MUST use this
primitive.

This primitive is internal to a single NPE.

1.4.3.3 AM_MsgData.out[
CAddr Destination conveyance layer address. This is the address the conveyance layer uses

when sending the data, found in the Msg operand, on the conveyance layer interface.

Msg Message (message header, message data, and message trailer).

]

Description: This primitive is used to pass message data from the application layer to the message
layer. The message layer uses the CM_MsgData.out service primitive in response to this service

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 10 11/10/2003

primitive. The application layer MUST use this primitive and the message layer MUST support this
primitive.

1.4.3.4 AM_Control.out[
CAddr Conveyance layer address corresponding to the function within the application layer.

Status Flow control status for the conveyance layer address provided.

]

Description: This primitive is used to pass flow control information from the application layer to the
message layer. This flow control information describes the status of the function within the application
layer indicated by the conveyance layer address. The application layer uses this primitive to protect its
own resources. The message layer MUST respond to this primitive by either using the CM_Control.out
primitive, or by using the status of its own resources to determine when the CM_Control.out primitive is
sent. The message layer could honor the status or it MAY rely on the conveyance layer to honor the
status. For the later case, the message layer MUST immediately respond by using the CM_Control.out
primitive. The application layer MAY use this primitive and the message layer MUST support this
primitive.

This primitive is internal to a single NPE.

1.5 Design Overview

1.5.1 Basic NPE-to-NPE Messaging Topologies
Figure 3 shows a basic system composed of multiple NPEs interconnected with streaming, look aside,
and switch fabric style conveyances, as examples. Other conveyance types are possible with
messaging. Messaging is appropriate for NPE-to-NPE communications across all of these
conveyances, with examples as follows:

• NPE1 to NPE2: Messaging is utilized across a unidirectional streaming conveyance channel to
pass packets with packet attributes to a specific destination NPE, enabling NPE2 to benefit from
the processing done in NPE1. A typical usage of messaging in this instance would be to
communicate the resulting tag from a classification coprocessor to an NPU, or a queue and
class of service from an NPU to a traffic management coprocessor.

• NPE2 to NPE3: Messaging is utilized across a look aside conveyance (represented with two
unidirectional conveyance channels) to pass some combination of commands, packet data and
headers, and attributes, enabling NPE3 to service a request from NPE2 and for NPE2 to accept
a response from NPE3. A typical usage of messaging in this instance would be to communicate
the lookup key and table identifier from an NPU to a TCAM, or a cryptographic key, or index,
and packet payload to an encryption coprocessor.

• NPE2 to NPE4: Messaging is utilized across a switch fabric conveyance (either unidirectional or
bi-directional) to pass packets with packet attributes to a specific destination NPE, enabling
NPE4 to benefit from the processing done in NPE2. Much like the streaming conveyance, this
usage of messaging might typically occur between an ingress and egress NPU to communicate
output port and quality-of-service metrics.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 11 11/10/2003

PHY Framer NPE1

Fabric

NPE3

NPE2

PHY Framer NPE4

Messaging

Messaging

Figure 3 NPE-to-NPE topologies appropriate for messaging

1.5.2 Messaging Design Elements
The messaging solution consists of the following key items:

• A format for in-band message headers and trailers (using slots) along with message payloads.

• A definition of common message fields and sizes.

• An out -of-band configuration mechanism, called the system architectural entity (SAE), which
gathers capabilities and requirements for the system and NPEs, and then, per-conveyance,
configures the conveyance and application (i.e., service access point, or SAP) information in
each NPE. Finally, the SAE determines and communicates message formats for each
conveyance by mapping message fields into slots.

As shown in Figure 4, NPF messaging begins with the SAE gathering both system information and, per-
conveyance, source and sink NPE capabilities. The system information, which may include details such
as physical topologies in the network element and required application support, is obtained in some
manner outside the scope of this implementation agreement. Each NPE’s capabilities, which include
supported message fi eld types and sizes, are communicated to the SAE in a standard format as
specified in normative Annex D.

Given this system and NPE information, the SAE determines and configures the service-access point
(SAP) information for both the source and sink NPE. This SAP configuration defines the mapping from
applications to the conveyance addressing scheme underneath messaging. The configuration
information, which is for both the source and sink NPEs, and which is likely different for the two NPEs, is
communicated to these NPEs in a manner specified conceptually in informative Annex C.

Following configuration, the SAE performs message mapping. Message mapping includes identification
of, and message format definition for, communicating SAPs. Message format definition entails the
assignment of standard message field types to slots in the message header and trailer and a description
of the message payload (e.g., fixed or variable size, padded or unpadded, etc.). The slot assignment
MUST honor alignment constraints of both the conveyance and NPE’s processing subsystem. Once
message mapping is complete, both source and sink NPEs are provided with the resulting message
formats in a manner specified conceptually in informative Annex C.

Finally, the NPEs can begin passing messages according to the configuration and message formats
established by the SAE.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 12 11/10/2003

Figure 4 The basic messaging design

This design enables message specifications to be optimized for processing and bandwidth efficiency,
while honoring any sending or receiving alignment constraints. This design also enables a wide range of
message formats. This design allows the message specification to be specific to an application, while
providing a lowest-common-denominator structure that allows simple messages to be passed with
minimal overhead.

The message header and trailer formats are specified as fixed-size (1 byte) slots that carry the NPE-to-
NPE message fields. This format supports messaging across all of the conveyances described in the
previous section. The SAE, an out-of-band configuration mechanism, is used to map the message fields
into specific slots.

The system illustrated by Figure 4 has the following advantages:

• No message bandwidth is consumed representing the length or positions of the message fields.
This information is part of the configuration performed by the SAE, and is thus under the control
of the system designer. This allows the system designer to control conveyance-layer over-
speed requirements, if present, by restricting the maximum size message header and trailer
added to any payload.

• Slot accesses are processing efficient (i.e., direct access to any slot).

• The message header and trailer (i.e., slot usage) MAY be defined differently for each
conveyance channel. This enables each conveyance channel to be optimized for the particular
communication performed across that conveyance channel. Furthermore, new message
specifications can be setup by the SAE at run-time, if both the sending and receiving NPE
support such run-time configuration.

• Each conveyance channel MAY support multiple, different, messages specifications, where the
first message field (the format-id) MUST be used to identify the message specification.

• The SAE MUST make slot assignments that maintain processing granule alignment of certain
fields for NPEs that incur costs for unaligned data access.

1.5.3 Message Format and Terminology Overview
This section provides a brief overview of the format of a message with the intention of quickly bringing
readers up to speed on the message format and terminology. Several examples are provided to

NPE

System Information

Sink SAP
Configuration

Source SAP
Configuration

Msg
Mapping

Msg Formats Msg Formats

Capabilities Capabilities

Message Flows

Configure

Per Instance of a Conveyance

System

NPE
Source

SAE
Sink

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 13 11/10/2003

illustrate the parts, and basic physical encoding, of a message within a conveyance layer. The formal
definition of a message, including all of the various standard field types, their orderings, and semantic
values, is covered in Section 4.

As shown in Figure 5, a message consists of three parts: a header, payload, and trailer. These parts
are physically encapsulated and delivered via an underlying conveyance. The message header comes
immediately after the conveyance header and MUST be of appropriate size to ensure the payload is
aligned3. The payload starts, if present, at the first byte following the message header. The payload
ends with either padding and a length field (as shown) or with opaque padding and no length field (not
shown). In either case, the payload is sized to ensure the message trailer, or start of the next message,
is aligned. The trailer starts, if present, at the first byte following the message payload and MUST be of
appropriate size to ensure the message is properly sized. The conveyance layer's mechanism for
delineating packets is used to determine the end of the message.

header slot 2header slot 1header slot 0

Conveyance header

bit
0

bit
31

 . . .

Addressing, packet
size, etc.

header slot 3

. header slot N
Message header

payload

Message payload
part

. . .) (opt pad) (opt. pad) Payload length

 . . .

. . .trailer slot 1trailer slot 0 trailer slot M Message trailer

Message

The data shown is transferred in left-to-right, top-to-bottom order at both the bit and byte level
Figure 5 Message format encapsulated in an example conveyance layer with 4-byte granule

In Figure 5, a generic conveyance header with a 4-byte conveyance granule is shown. The granule of a
conveyance is defined as the minimum, logical, allocation of bandwidth (in bytes) for the conveyance.
For example, CSIX has a 1-byte granule and SI has a 2-byte granule. Messaging uses the conveyance
granule (along with a processing granule that is explained later) to constrain the sizes of the header,
payload, and trailer. Specifically, the size of each part of a message MUST be an integral number of
conveyance granules. This requirement ensures the overall alignment of the message parts with
respect to the underlying conveyance. See Section 3 for more details, including the notion of a
processing granule that may impose stricter constraints on message parts than the conveyance granule.
For simplicity, the remaining figures illustrating the messaging layer in this document do not include the
conveyance layer content, even though the text refers to the notion of the conveyance granule.

The format of the message header and trailer are determined by the SAE during the design phase of the
network system. For any given format, the size and layout of the message header and trailer are fixed
and well-known.

Both the message header and trailer are divided into a series of fixed-sized slots. Each slot is 1 byte (8
bits) in length. By dividing the message header and trailer into fixed-sized slots, each slot can be
accessed directly. For example, referring to Figure 5, an NPE that needs to read the value in header slot
3 MUST simply read the 4th byte in the message header. Similarly, an NPE that needs to read the value
in trailer slot 2 MUST simply read the third byte from the start of the message trailer.

Slot numbering is always zero-based and relative to the start of the message part (i.e., header or trailer).
For the header, the slot number can be easily translated into a physical offset from the start of the
message (as explained above). However, due to the (potentially) variable size of the payload, the start
of the trailer cannot be computed from the start of the message. Instead, for an NPE to access a trailer
slot by number, the end of the message, along with the size of the trailer can be used. Again, note that

3 Alignment is described in detail in subsequent sections.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 14 11/10/2003

for any given format, the size of the trailer is fixed and known. Thus, a particular trailer slot can be
accessed directly by number using the following pseudo-code:

&trailer_start = message_ptr + length_of_message – size_of_trailer;
trailer_slot = trailer_start[trailer_slot_num];

A message header and trailer are comprised of a series of message fields4. The fields MAY be used to
provide information about the message payload5, or MAY indicate the type of processing and related
information (operands).

Certain message fields MUST be aligned on processing granules. A processing granule is defined as
the minimum, logical, computational access (in bytes) for the message. Each NPE endpoint
participating in messaging can specify its processing granule. Intuitively the processing granule is
computed using the natural size of an NPE-endpoints’ data paths. Messaging uses the processing
granule to align fields so as to make processing on NPEs most efficient. It should be noted that both the
conveyance granule and processing granule can be specified as 1-byte when conveyance overhead
(i.e., bandwidth) is the most desired system design feature to conserve.

A field is one or more consecutive slots that correspond to one type of information associated with the
message. For example, Figure 6 shows a streaming classification coprocessor communicating the
results of packet classification to an NPU using a 2-slot field of type flow-id6. No field is a priori bound
to any particular slot(s) except for the format-id (see Section 3.2), and only a few fields are
REQUIRED in any particular NPE-to-NPE communications (but even these fields can be implicit in that
they do not appear in the physical instantiation of the message). The fields do, however, have some
restrictions on when they may exist and on their relative ordering as explained in Section 4. The NPEs
(classification coprocessor and NPU) are both separately configured to reference the same size and
position of the flow-id field via the SAE.

NPE1

payload

. . .

flow-id

NPE2

Figure 6 Single, 2-slot header field per message

Multiple fields, including fields in the message trailer, are allowed within a single message, as shown in
Figure 7. In this example, an NPU communicates a 2-slot flow-id field and a 1-slot destination-
port field in the message header and a crc-32 field in the message trailer to a traffic management
coprocessor. Again, the SAE determines the order and size of the fields based on the system design.

NPE1

(pad) destination-port

payload

flow-id

crc32

NPE2

. . .) (opt pad) (opt. pad) Payload length

Figure 7 Multiple fields per message

4 Referred to as just fields in the remainder of this document
5 Referred to as just payload in the remainder of this document
6 flow-id is the type field identifier.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 15 11/10/2003

2. NPE Requirements
The two requirements for an NPE to enable messaging are:

• The NPE MUST be able to express its expected and generated message fields, alignment
requirements (i.e., processing granule), and any fixed slot assignments, for each conveyance
channel (see Annex B). The expression of expected and generated message fields MAY be as
simple as documentation associated with an NPE.

• The NPE MUST ignore any slot that it has not been configured to use.

Both of these requirements are aimed at enabling messaging within a system with minimal burden to
NPE designs. The first requirement is the minimum functionality for determining off-the-shelf
interoperability between NPEs. For example, it is possible for a fixed-function device to meet this
requirement with little or no modifications. The second requirement allows the SAE to properly align the
parts of the message (e.g., fields, header, trailer and payload). By requiring the NPE to ignore non-
configured slots, the SAE can control message field and message part alignments as well as total
system processing requirements.

2.1 Programmable and Configurable NPEs
While the first requirement enables determination of NPE interoperability, for programmable or
configurable NPEs, two additional capabilities can enable more messaging options for the system
designer. These capabilities are:

• An NPE SHOULD be able to accept a fixed-value (i.e., implicit value) for any field at
configuration time. This enables the SAE to eliminate fields that do not change (i.e., are
constant) from appearing in every message, and thus consuming bandwidth.

• An NPE SHOULD be able to read and write its properly-ordered message fields into any
properly aligned set of consecutive slots. A set of message fields is properly ordered if they
conform to the relative ordering set forth in Section 4. A set of consecutive slots of size N slots
is properly aligned if it starts on a slot number evenly divisible by the processing granule. For
maximum flexibility within the SAE, an NPE MAY support the ability to read and write its
message fields into any slot, regardless of alignment (i.e., an NPE MAY support a processing
granule of 1 for maximum flexibility).

These additional capabilities state that a programmable or configurable NPE SHOULD contain some
capability (e.g., slot offset register or table) to allow the system integrator to assign and refer to constant -
valued fields, and to position the explicit-value input and output fields of the NPE. With these
capabilities, the system designer has the flexibility to create off-the-shelf interoperability between NPEs.
Some existing NPEs might not be capable of meeting these additional requirements if their outputs have
been hard coded to certain offsets within the message. This does not preclude the use of these NPEs
within a system using messaging. Indeed, many systems could function quite well with such NPEs.
However, these NPEs could cause irresolvable system conflicts for a system designer. (E.g., one NPE
only writes information into slot 0 and the second only reads from slot 2).

3. SAE Operation
The SAE, a logical entity, is a human or a software-based allocation engine tool. The SAE is used by a
system designer, and, if implemented as software, is not required or expected to execute on any NPE.
The SAE determines the mapping of fields to one or more slots based on system-wide knowledge. This
mapping is determined once during initialization or infrequently as part of re-configuration.7 The SAE
has no performance requirements associated with it because it is irrelevant to the functionality and
performance of this design where or how the SAE is implemented.

At a high-level, the SAE performs roughly the following steps, in order:

7 This agreement does not cover the details of reconfiguration. In particular, the issue of atomically updating all NPEs with

the new configuration is an issue left open to the system designer.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 16 11/10/2003

1. Determine the SAP mappings using the system information.

2. Communicate the SAP mappings to each NPE.

3. Determine each NPEs input requirements and output capabilities on a per conveyance channel
basis.

4. Using the NPE conveyance channel topology and the values obtained from the previous step,
for each necessary input field for any NPE:

a. Ensure the sending NPE generates this field. If not, the system is inconsistent so report
a failure.

5. Following the formal message grammar, for each of the output-to-input mappings obtained in
the previous step, map the field communicated between the NPEs into the next available set of
slots of appropriate number. Compaction of different data types occurs automatically as a
result. For systems that include an NPE that is not configurable, the mapping of the fixed NPEs
determines the final mapping. For these devices it is possible that no system-wide slot mapping
exists. For configurable NPE mappings, the next available slot(s), within the constraints of the
message grammar, MAY be chosen.

6. For each programmable or configurable NPE, communicate the resulting field-to-slot -group
mapping for each conveyance channel of that NPE.

3.1 Alignment of Fields and Payloads
The SAE MUST honor any requirements from an NPE for field or payload alignment within the message.
In particular, the SAE MUST ensure that the message header, message trailer, and message payload
part of the message each are an integral number of message granules. The message granule is
defined as the larger of the processing or conveyance granule, when the message contains a trailer, and
simply the conveyance granule otherwise.

The SAE can ensure the message header and trailer meet this requirement through the use of ignored
slots. Since the SAE cannot determine the size of the payload, it MUST ensure the existence of
message payload padding if the payload is not guaranteed to be an integral number of conveyance
granules.

It is beyond the scope of the SAE to determine whether the message itself starts at a properly aligned
location in the conveyance channel. Instead, the SAE only ensures that alignment is enforced with
respect to the start of the message. Any use of the term ‘aligned’ in this specification is assumed to
carry this qualification unless explicitly noted otherwise. It is RECOMMENDED that the mapping of the
messaging layer into a conveyance do so in a manner that aligns the start of the message to the
conveyance granule.

Certain message fields 8 MUST also be aligned--according to the processing granule--if requested by
either the sending or receiving NPE. For example, when needed by an NPE, any 2-slot padded field
MUST be aligned on a 2-byte boundary with respect to the start of the message (i.e., start at an even
slot number), any 4-slot padded field would be aligned on a 4-byte boundary, and so on. For example,
Figure 7 contains aligned fields, where as the alternate arrangement of fields shown in Figure 8 makes
the flow-id field unaligned9. This alternate arrangement SHOULD be avoided and MUST NOT be
used if either NPE requires a processing granule larger than 1.

8 Those defined as containing ‘padding’
9 This configuration also violates the field ordering constraints specified in Section 4. The example here is intended to only

illustrate the field alignment issues and thus this point is ignored.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 17 11/10/2003

NPE1

destination-port payload

. . .

flow-id

NPE2

Figure 8 Unaligned fields SHOULD be avoided, and MUST be avoided if NPEs specify

In certain situations the SAE can insert ignored slots to provide either field or payload alignment. For
example, as shown in Figure 7, with a processing granule of 4-bytes, the SAE would be REQUIRED to
insert an empty slot, as shown. The empty slot is shown in slot 2 to align the payload on a 4-byte
boundary and to place the destination-port into the least-significant byte of a 2-byte field.

3.2 Multiple Message Header Formats for a Single Conveyance
Channel

At this point, only a single message header format per conveyance channel has been discussed.
However, some applications require different message header formats for the same conveyance
channel. For example, the system might need one set of fields for traffic of type A and a second set of
fields for traffic of type B. If both types of traffic were present on the same conveyance channel, then,
with the above solution, the system would need to be able to create a message header with fields for
both sets of traffic types. The receiving NPE would then pick and choose which attributes to use for any
given packet. Such a solution is both wasteful of bandwidth, and increases the processing necessary on
both of the NPEs involved.

Multiple message header formats per-conveyance channel is achieved by a field that represents the
format of both the message header and OPTIONAL trailer (called the format-id). For each packet
transmitted across a conveyance channel, a unique format-id MUST be placed in the first slot within
the message header. Note that for NPEs that support the ability to configure certain fields to a constant
value, the implicit format-id can be removed from the message for conveyances requiring only a
single message format.

For example, Figure 9 shows two NPEs communicating. Across the single conveyance channel
between NPE1 and NPE2 the majority of messages are small VoIP packets and only carry an 8-bit
flow-id. However, occasionally, larger HTTP packets are also sent across this same conveyance
channel. These HTTP packets require a larger 3 byte flow-id and a crc-32 field in the trailer.

NPE1

payloadflow-idformat-id . . .

Format for VoIP packets (example)

NPE2

format-id

payload

crc32

flow-id

. . .

Format for HTTP packets (example)

Figure 9 Multiple message header formats per conveyance channel

In order for NPE2 to discern the different types of message header and trailer formats arriving across
this single conveyance channel, the format-id field is inserted into all packets. Format-id is a 1-
byte quantity and MUST be placed into slot 0 when the format-id is not implicit in the message. Each
format-id value indicates the format of the remaining slots in the message header and trailer for these
messages.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 18 11/10/2003

So for example, for all VoIP packets, the first slot in the message header contains a configured value (as
determined by the SAE) that specifies that the remaining slots are formatted as follows: Slot 1
represents the flow-id. Likewise, a different configured format-id is given to all HTTP traffic and is
formatted as follows: Header slots 1 through 3 represent the flow-id and trailer slots 0 through 3
represent the crc-32.

The basic operation of NPE2 is to first read slot 0 (the format-id), and use this information to
reference configuration information provided by the SAE to correctly parse the message header and
trailer and determine the content of the remaining slots.

How certain types of traffic are mapped to different message header formats is beyond the scope of this
implementation agreement. The SAE is responsible for deciding when and how to use multiple
message header formats.

4. Formal Message Format Definition
This section contains the formal definition of message format, including standard message fields, their
relative ordering restrictions, sizes (number of slots), and semantic meanings. These standard message
fields have been grouped into categories for convenience of presentation. By restricting the possible
orderings of message fields, simpler NPE devices can be built. With a few limitations, the SAE can mix
any of these standard message fields for an individual message header or trailer. Thes e limitations are
illustrated in the syntax graphs and also listed within the description section of the affected standard
message fields.

Each vendor implementing this messaging specification MUST supply a score card (in the format of the
SAE grammar) indicating which of, and in what sizes, these standard message fields are supported by
their NPE. System designers can then use this information to determine compatibility between different
NPEs and design systems using NPEs from various vendors.

4.1 Basic Message Parts
This section presents the format of the message header, trailer, and payload using syntax graphs 10 to
graphically illustrate both field, as well as message part, ordering. This section does not describe the
semantic meaning of each field, rather each standard field type is described in Section 4.4.

Figure 10 shows the syntax graph for a message. A message is composed of either a message header
only, or a message header and payload with an OPTIONAL trailer. In all instances, a message header
SHOULD have at least one explicit field, the payload MUST have at least one explicit octet, and the
trailer, when present, MUST have at least one explicit field. Each of these message parts (header,
payload and trailer) MUST be an integral number of message granules (see Section 3.1). Each of these
parts is further refined in subsequent sections.

message header-only

header-part payload-part

trailer-part

message header-only

header-part payload-part

trailer-part

Figure 10 The syntax graph for a message

Figure 11 shows the syntax graph for the header-only portion of a message. All message headers
MUST contain a format-id, which, as shown later, can be implicit and thus MAY not physically be part
of the message. Following the format-id, messages with only headers contain either configuration or

10 A syntax graph notation guide is provided in Annex B.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 19 11/10/2003

operational fields, followed by a terminator. For the case of header-only, the terminator is for the entire
message.

header -only configuration-header

operation-header

format-id

message-end

header -only configuration-header

operation-header

format-id

message-end

Figure 11 The syntax graph for header-only (i.e., header without a payload or trailer)

Figure 12 shows the syntax graph for the header when included with a payload. Like the header-only
syntax graph, headers with payloads MUST contain a format-id, which can be implicit. Following the
format-id, headers with payloads contain either configuration or payload fields, followed by a
terminator. The header-part terminator is for the header itself. Notice the difference between the two
headers are in the terminators (one is for the message, the other for the header) and in the types of
fields that belong in the non-configuration header. Messages without payloads have a restricted number
of legal non-configuration header fields. Specifically, those fields not appropriate without a payload are
not part of the operation-header but are part of the payload-header.

header-part configuration-header

payload-header

format-id

header-end

header-part configuration-header

payload-header

format-id

header-end

Figure 12 The syntax graph for header-part (i.e., header with a payload and optional trailer)

Figure 13 shows the syntax graph for the payload-part of the message. A payload is a string (i.e., a
series of bytes whose values are unknown to the SAE) of length that MUST always be an integral
number of message granules (aligned-string), or is a string that contains padding and a length field in
which the total size MUST be an integral number of message granules (sized-string).

aligned-stringpayload-part

sized-string

aligned-stringpayload-part

sized-string

Figure 13 The syntax graph for payload-part

Finally, to complete the highest level of syntax graphs, Figure 14 shows the format of the tailer-part of a
message. A trailer has, OPTIONALLY, payload fields, much like the payload fields of a header-part, and
MUST contain the message terminator fields.

trailer-part payload-trailer

message-end

trailer-part payload-trailer

message-end

Figure 14 The syntax graph for trailer-part

4.1.1 Header and Trailer Formats
This section covers the legal constructions for the header and trailer parts of messages. Figure 15
shows the configuration-header syntax graph. As illustrated, a configuration header MUST contain an
npe-operation field, OPTIONALLY followed by either an npe-register or npe-table, and
OPTIONALLY one of the ordering attribute fields (e.g., timestamps or sequencing fields). In the case of
the configuration header specifying an npe-table access, the npe-record field MUST be specified to
indicate a particular entry within the table. Thus, when specifying a configuration operation, one can

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 20 11/10/2003

simply specify the operation to perform (e.g., reset), the operation to perform with respect to a particular
register (e.g., read register), or the operation to perform with respect to a particular table entry (e.g.,
modify the 5th element of a table).

npe-operationconfiguration-header

npe-register

order-attributes

npe-table npe-record

npe-operationconfiguration-header

npe-register

order-attributes

npe-table npe-record

Figure 15 The syntax graph for configuration-header

Figure 16 shows the syntax graph for the operation-header. Recall, a message containing only a
header consists of either a configuration-header or an operation-header. Operation-headers are used to
carry fields associated with network traffic (i.e., non-configuration traffic), but not necessarily associated
with the payload. All operation-headers MUST contain a service access point ID (sap-id), which
specifies an application on top of the messaging layer, and a context ID (context-id) which specifies
a SAP-specific state, or context. Like the format-id, these fields can be missing from the physical
message. For example, if only one implicit SAP endpoint is using the associated conveyance channel,
the sap-id MAY be implicit. Similarly, if the SAP has only one context-id, or the context-id is
available from the conveyance, then the context-id MAY be implicit. Following the sap-id, the
operational-header contains (individually optional, but in order) path, flow, and ordering attributes. For
example, path attributes include ingress and egress endpoint information, flow attributes include flow,
QoS, and state identifiers, and ordering attributes include timestamps and sequence numbers. Each of
these syntax graphs are covered in detail in subsequent sections.

sap-idoperation-header

flow-attributes

path-attributes

order-attributes

context-idsap-idoperation-header

flow-attributes

path-attributes

order-attributes

context-id

Figure 16 The syntax graph for operation-header

Figure 17 shows the syntax graph for the payload-header. Payload-headers are a super-set of
operational-headers. Payload-headers are an operational-header followed, optionally, by payload
attributes. Payload attributes contain fields that are only appropriate when the message contains a
payload.

operation-headerpayload-header

payload-attributes

operation-headerpayload-header

payload-attributes

Figure 17 The syntax graph for payload-header

Figure 18 shows the syntax graph for the payload-trailer. Legal trailer fields are restricted in comparison
to headers. In particular, configuration fields and operational fields MUST NOT be present in trailers.
Instead, payload-trailers contain, OPTIONALLY, payload attributes followed OPTIONALLY by order
attributes. Notice a trailer MUST NOT be empty. Instead the top-most message syntax graph allows
the entire trailer to be skipped. In this case, the trailer is referred to as not present as opposed to empty.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 21 11/10/2003

payload-attributes

order-attributes

payload-trailer payload-attributes

order-attributes

payload-trailer

Figure 18 The syntax graph for payload-trailer

4.1.1.1 Header Components
This section covers syntax graphs for attributes contained only in headers. The header syntax graphs
that correspond to standard message fields are covered in a subsequent section.

Figure 19 shows the path-attributes and related syntax graphs. If included in the operational header,
egress point fields MUST come before ingress point fields. Both egress and ingress points contain a
port ID and, optionally, a channel ID, in that order. As detailed later, path attributes correspond to the
path of the message through the system, not (necessarily) between two directly connected NPEs.

ingress-point port-id channel-idingress-point port-id channel-id

egress-point port-id channel-idegress-point port-id channel-id

egress-point

ingress-point

path-attributes egress-point

ingress-point

path-attributes

Figure 19 The syntax graphs for path-attributes, egress-point, and ingress-point

Figure 20 shows the flow-attributes syntax graph. Flow attributes MUST contain a flow-id, followed
OPTIONALLY by a flow-qos field and then OPTIONALLY by a flow-state field, in that order. The
meaning of each of these standard fields is provided in a subsequent section.

flow-idflow-attributes

flow-qos

flow-state

flow-idflow-attributes

flow-qos

flow-state

Figure 20 The syntax graph for flow-attributes

Figure 21 shows the syntax graph for header-end. The end of a header MUST contain OPTIONAL
padding as well as, OPTIONALLY, exactly one of two integrity checks: a 1’s compliment 16-bit
checksum (checksum-16), or a crc-32. In this figure the value z represents the message granule, in
bits.

checksum-16

crc-32

pad-to-(0 mod z)header-end

pad-to-(16 mod z)

pad-to-(32 mod z)

checksum-16

crc-32

pad-to-(0 mod z)header-end

pad-to-(16 mod z)

pad-to-(32 mod z)

Figure 21 The syntax graph for header-end (z is the message granule in bits)

4.1.1.2 Header and Trailer Components
This section covers syntax graphs for attributes contained in both headers and trailers.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 22 11/10/2003

Figure 22 shows the order-attributes syntax graph. Order attributes can contain sequencing fields
(send-sequence and ack-sequence) as well as a timestamp. Each of these fields can be
OPTIONALLY present in either a header or trailer. When order attributes are present, they are relative
to the flow-id, if present. Otherwise, the order attributes are relative to the context ID, SAP ID, and
OPTIONALLY the payload, as defined by the application. For configuration-headers, order attributes
implicitly apply to the single ‘flow’ of configuration. If the flow-id field is not present in a message with
order attributes, the exact relationship of the order attributes to other parts of the message is beyond the
scope of this agreement.

order-attributes

timestamp

send-sequence

ack-sequence

order-attributes

timestamp

send-sequence

ack-sequence

Figure 22 The syntax graph for order-attributes

As shown in Figure 23, both the send-sequence and ack-sequence non-terminal nodes contain
sequence numbers (with different semantic meanings, as defined in Section 4.4).

send-sequence sequence-numsend-sequence sequence-num

ack-sequence sequence-numack-sequence sequence-num

Figure 23 The syntax graphs for send-sequence and ack-sequence

Figure 24 shows the syntax graph for payload-attributes. Payload attributes consist of one or more
offsets and user-attributes. While it is likely that applications will associate semantic
meanings with offset/user-attribute pairs, it is beyond the scope of this specification to define
when an offset is associated with a preceding or following user-attribute field. Together these
fields represent some application-specific processing that should occur on the payload of the message.

payload-attributes offset

user-attribute

payload-attributes offset

user-attribute

Figure 24 The syntax graph for payload-attributes

Figure 25 shows the message-end syntax graph. Message-end is defined in a manner similar to
header-end, except the end of the message is padded to the conveyance granule in bits (x) instead of
the message granule. This padding scheme is used because no message processing occurs beyond
the end of the message so padding the end of the message to the message granule, which accounts for
the processing granule, is unnecessary.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 23 11/10/2003

checksum-16

crc-32

pad-to-(0 mod x)message-end

pad-to-(16 mod x)

pad-to-(32 mod x)

checksum-16

crc-32

pad-to-(0 mod x)message-end

pad-to-(16 mod x)

pad-to-(32 mod x)

Figure 25 The syntax graph for message-end (x is the conveyance granule in bits)

4.2 Containers
This section defines the three fundamental containers that compose all message parts. Containers
have the only non-null terminal entries in the syntax of a message and are used to construct the data
types (Section 4.3) and message fields (Section 4.4) of messages.

The three types of containers are slot, string and pad.

Slot containers, as shown in Figure 26, represent any values in the message header or trailer that are
specified by NPF messaging (i.e., the SAE determines the fields mapped into slot containers). The
maximum sized slot container is defined by the SAE and MUST be at least as large as the largest
specified field size. Currently this is 16.

octet-n

octet-(n - 1)

octetn = 1

n > 1 octet

octet-n

octet-(n - 1)

octetn = 1

n > 1 octet

octet-nslot-n octet-nslot-n

Figure 26 The syntax graph for slot containers

String containers, as shown in Figure 27, are transparent to NPF messaging, but contain application-
specified values. There are three types of strings: fixed, sized and aligned. Fixed-strings can be of any
length, but the length must be known at configuration time by the SAE. Both sized-string and aligned-
string MUST have a total length that is an integral multiple of the message granule (z). In the case of
sized-strings, this is ensured through the use of padding and a total length field. For aligned-string, the
enforcement of this requirement is outside the scope of this implementation agreement. However, it is
acceptable (and reasonable) for aligned strings to contain padding that is opaque to the messaging layer
but is known to the application implicitly, or explicitly through fields in the conveyance or messaging
headers.

The length field is the number of bytes in the payload of the message. The payload, in this definition,
does not include the message header or trailer, or any padding in the payload part. The sending NPE
must send the appropriate number of optional padding bytes after the message payload and before this
field to ensure the payload part (payload, padding, and this length field) are an integral number of
message granules.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 24 11/10/2003

string-1sized-string lengthstring-1sized-string length

string-1fixed-string string-1fixed-string

string-(2^n) octet-(2^n)string-(2^n) octet-(2^n)

string-zaligned-string string-zaligned-string

pad-z-unsignedlength pad-z-unsignedlength

Figure 27 The syntax graph for string containers

Pad containers, as shown in Figure 28, hold no data and their contents MUST be ignored by the
receiving NPE and SHOULD be set to zero by the sending NPE. The largest sized pad is determined by
the largest supported message granule. Padding itself is simply nothing (i.e., null) or a series of content -
unspecified octets. Pad-to containers are defined in terms of the input variables k and m (both in bits),
and the current number of octets in the message, i. Here k and m are typically specified in terms of the
system (z), processing (y), or conveyance (x) granules and i is added to ensure that the padding goes
up to the next given granule.

pad-n

octet-n

nulln = 0

n > 0

pad-n

octet-n

nulln = 0

n > 0

pad-((k - i) mod m)pad-to-(8k mod 8m) pad-((k - i) mod m)pad-to-(8k mod 8m)

Figure 28 The syntax graph for pad containers

4.3 Data Types
This section defines messaging data types. These data types are constructed out of containers and are
used in the construction of the message fields (Section 4.4). Data types are either numeric or bit
vectors.

4.3.1.1 Numeric Data Types
The numeric data types represent integers (both signed and unsigned) of various sizes, with and without
leading padding.

Figure 29 shows the unsigned, unpadded data types. These data types are used to support fields
requiring unsigned arithmetic, ordered comparisons, and fields which will typically be used as indices
into tables. Unsigned data types are either implicit or explicit. An implicit unsigned data type is
represented with a null terminator and thus does not physically appear in the message, but its value is
implicitly defined by the SAE or available from the conveyance (or another lower) layer. For example,
the format-id is always present in a message header, but may be implicitly defined if only one
message format is being used on the conveyance endpoint.

An explicit unsigned data type can be one of five different lengths, specifically 8, 16, 24, 32, and 64 bits.
Each of these explicit unsigned data types are held in slot containers of appropriate size.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 25 11/10/2003

 slot-nunsigned-(8n) slot-nunsigned-(8n)

implicit-unsigned nullimplicit-unsigned null

explicit-unsigned

unsigned-16

unsigned-32

unsigned-64

unsigned-8

unsigned-24

explicit-unsigned

unsigned-16

unsigned-32

unsigned-64

unsigned-8

unsigned-24

implicit-unsignedunsigned

explicit-unsigned

implicit-unsignedunsigned

explicit-unsigned

Figure 29 The syntax graph for unsigned, unpadded data types

Figure 30 shows the unsigned, padded data types. These data types are used to support aligned
unsigned data fields. Typically the padding is based on the processing granule to ensure natural
alignment for the processing of an unsigned, padded data type. For example, padding a 16-bit data type
to a 32-bit granule results in (potentially) an additional 16-bits of padding placed in front of the data type,
depending on where the start of the data type was with respect to the start of the message.

The padding for each of the possible unsigned data type sizes depends on both the data size and the
padding granule. The only case of interest is the padding of 24-bit data types to a given size m. In this
case, because 24 is not a power of two, the padding is based on the equation (m-24) mod m. Here mod
is defined in the traditional mathematical sense (as opposed to the common programming
representation of remainder), which is: the amount by which a number exceeds the largest integer
multiple of the divisor that is not greater than that number. This is critical to understand when dealing
with mod for negative numbers. For example, if (m-24) mod m was computed for m = 16, the result
would be (16 – 24) mod 16, or -8 mod 16 which is congruent to 8. The result would be up to 8-bits of
padding added to the front of the data type.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 26 11/10/2003

pad-m-unsigned

pad-m-unsigned-16

pad-m-unsigned-32

pad-m-unsigned-64

unsigned-8

pad-m-unsigned-24

pad-m-unsigned

pad-m-unsigned-16

pad-m-unsigned-32

pad-m-unsigned-64

unsigned-8

pad-m-unsigned-24

pad-to-(16 mod m)pad-m-unsigned-16 unsigned-16pad-to-(16 mod m)pad-m-unsigned-16 unsigned-16

pad-to-((m-24) mod m)pad-m-unsigned-24 unsigned-24pad-to-((m-24) mod m)pad-m-unsigned-24 unsigned-24

pad-to-(32 mod m)pad-m-unsigned-32 unsigned-32pad-to-(32 mod m)pad-m-unsigned-32 unsigned-32

pad-to-(64 mod m)pad-m-unsigned-64 unsigned-64pad-to-(64 mod m)pad-m-unsigned-64 unsigned-64

Figure 30 The syntax graph for unsigned, padded data types

Figure 31 shows the syntax graphs for the signed, unpadded data types.11 In a manner analogous to
the unsigned, unpadded data types, signed data types are used for signed arithmetic and comparison
operations. Similarly, signed data types are either implicit or explicit. However, unlike the unsigned
types, explicit signed types can either be 2’s compliment numbers (of three different sizes) or a 16-bit,
1’s compliment number. The 1’s compliment number is added to accommodate typical Internet-style
checksums.

slot-(2n)ones-complement-(16n) slot-(2n)ones-complement-(16n)

slot-(2n)twos-complement-(16n) slot-(2n)twos-complement-(16n)

implicit-integer nullimplicit-integer null

explicit-integer

twos-complement-32

twos-complement-64

twos-complement-16explicit-integer

twos-complement-32

twos-complement-64

twos-complement-16

integer

explicit-integer

ones-complement-16

implicit-integerinteger

explicit-integer

ones-complement-16

implicit-integer

Figure 31 The syntax graph for signed data types

11 Signed, padded data types are not defined in the specification because no field currently requires them, but such data

types could be trivially added to this specification.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 27 11/10/2003

4.3.1.2 Bit Vector Data Types
For data types that are not used for arithmetic, ordered comparisons, or indexing into tables, the bit
vector data types are defined. Bit vectors are used for bitwise logic operations as well as unordered
comparisons. Figure 32 shows the syntax graphs for the bit vector data types. Again, both implicit and
explicit bit vectors are supported. For the explicit bit vectors, seven different sizes are defined, including
a 48-bit length data type for Ethernet MAC addresses.

slot-nbit-vector-(8n) slot-nbit-vector-(8n)

implicit-bit-vector nullimplicit-bit-vector null

implicit-bit-vectorbit-vector

explicit-bit-vector

implicit-bit-vectorbit-vector

explicit-bit-vector

explicit-bit-vector

bit-vector-16

bit-vector-48

bit-vector-8

bit-vector-32

bit-vector-96

bit-vector-128

bit-vector-64

explicit-bit-vector

bit-vector-16

bit-vector-48

bit-vector-8

bit-vector-32

bit-vector-96

bit-vector-128

bit-vector-64

Figure 32 The syntax graph for bit vector data types

4.4 Message Fields
This section contains syntax graphs for the message fields as well as descriptions of the semantic
meanings associated with each field. Message fields are grouped and ordered within message headers
and trailers as defined in Section 4.1, and are constructed out of the data types in Section 4.3.

Figure 33 shows syntax graphs for all of the standard message fields. The following sections describe
each field in detail.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 28 11/10/2003

pad-y-unsignedflow-id pad-y-unsignedflow-id

bit-vector-8flow-qos bit-vector-8flow-qos

bit-vector-8flow-state bit-vector-8flow-state

implicit-unsignedformat-id

unsigned-8

implicit-unsignedformat-id

unsigned-8

implicit-unsignedsap-id

unsigned-8

implicit-unsignedsap-id

unsigned-8

pad-y-unsignedport-id pad-y-unsignedport-id

pad-y-unsignedchannel-id pad-y-unsignedchannel-id

implicit-unsignedcontext-id

unsigned-16

implicit-unsignedcontext-id

unsigned-16

unsigned-32npe-register unsigned-32npe-register

bit-vector-8npe-operation bit-vector-8npe-operation

unsigned-16npe-table unsigned-16npe-table

unsigned-32npe-record unsigned-32npe-record

ones-complement-16checksum-16 ones-complement-16checksum-16

bit-vector-32crc-32 bit-vector-32crc-32

pad-y-unsignedoffset pad-y-unsignedoffset

fixed-stringuser-attribute fixed-stringuser-attribute

pad-y-unsigned-32time-stamp

pad-y-unsigned-64

pad-y-unsigned-32time-stamp

pad-y-unsigned-64

pad-y-unsignedsequence-num pad-y-unsignedsequence-num

Figure 33 The syntax graph for all message fields

4.4.1 Identifiers

4.4.1.1 Format Identifier
SAE name: format-id

Data type: implicit-unsigned or unsigned-8

Valid settings: 0 – 255

Description: Specifies which format to use to parse the remaining slots of the message header and
trailer. For any given format-id value, the remaining message parts are in a known order and of
known fields (header and trailer).

The greater the number of formats supported, the greater the number of simultaneous message header
formats that can be supported across a single conveyance channel. Format-id MUST be explicit when
more than one message format is defined for a single conveyance channel. Format-id MUST be
assigned to slot 0 when explicitly defined. The value of 0 is reserved for the in-band configuration
message.

4.4.1.2 Service Access Point Identifier
SAE name: sap-id

Data type: implicit-unsigned or unsigned-8

Valid settings: 0 – 255

Description: Specifies the application endpoint of the message. Sap-id MAY be implicitly defined
when only a single application endpoint is using the conveyance channel. Sap-id MUST be explicit
when more than one application endpoint is using the conveyance channel, and sap-id MUST be the
first field in the operational header when present.

4.4.1.3 Context Identifier
SAE name: context-id

Data type: implicit-unsigned or unsigned-16

Valid settings: 0 – 65535

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 29 11/10/2003

Description: Specifies the application-endpoint-specific state of the message. Context-id
SHOULD be implicitly defined when the application endpoint does not require it, or when it is available
from the conveyance (or another lower) layer. Context-id MUST be explicit when the application
endpoint requires it to be so, and context-id MUST be the second field in the operational header
when the sap-id is not implict, and MUST be the first field in the operational header otherwise..

4.4.2 Flow Attribute Fields

4.4.2.1 Flow Identification Number
SAE name: flow-id

Data type: padded to processing granule, unsigned

Valid settings: 0 – n, where n is full magnitude of data types

Description: Specifies a value to map the message payload to a unique transfer of packets, a flow.
The determination of what constitutes a flow is outside the scope of this implementation agreement.

4.4.2.2 Flow Quality of Service Level
SAE name: flow-qos

Data type: bit-vector-8

Valid settings: Defined by the application

Description: Specifies the quality of service associated with the flow, as defined by the application.

4.4.2.3 Flow State / Status
SAE name: flow-state

Data type: bit-vector-8

Valid settings: Determined by interoperating vendors to meet the requirements of the system
architecture

Description: Specifies the known state or status of a flow. Provides a method to pass non-NPF
defined information about a flow within an NPF defined type. For example, two NPEs could use this
field to communicate the state (SYN received, established, FIN received, etc.) of a TCP stream, thus
enabling flow-based resources to be properly managed and reused between NPEs.

4.4.3 Order Attributes

4.4.3.1 Send Sequence Number
SAE name: send-sequence

Data type: padded to processing granule, unsigned

Valid settings: 0 – n, where n is full magnitude of the data type. Once the full magnitude of the field is
reached, the value rolls over to zero and continues counting for normal operation.

Description: Specifies an incrementing number of messages (starting from 0), relative to the flow,
that has been generated by the sending NPE. The receiving NPE can use the sequence number to look
for loss of packets (or duplication). When two messaging links are paired to build a bi-directional link,
this field allows for a windowing form of “flow control”.

4.4.3.2 Sequence Acknowledge Number
SAE name: ack-sequence

Data type: padded to processing granule, unsigned

Valid settings: 0 – n, where n is full magnitude of data type.

Description: Specifies the last Sequence Number processed by the receiving NPE relative to the
flow. All messages up to this sequence number were correctly received and processed. If the sending

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 30 11/10/2003

NPE receives a ack-sequence with a value less than the last value sent, the sender MUST assume
loss of messages. Any other messages beyond this sequence number were dropped by the receiving
NPE due to an error, buffer overflow or other problem. The sending NPE MAY continue to transfer
additional messages with the sequence number one past the sequence number returned in this field.
The sequence acknowledge field MUST be the same size as the corresponding sequence number.

4.4.3.3 Time Stamp
SAE name: time-stamp

Data type: padded to processing granule, unsigned-32 or unsigned-64

Valid settings: 0 – n, where n is full magnitude of data type.

Description: Specifies a “system tick” from the transmitting NPE at the time the packet was queued
for transmission. The unit of system ticks is vendor specific, but can be normalized by control plane
software. The system tick value rolls over and continues to increment from zero.

4.4.4 Path Attributes

4.4.4.1 Ingress Port Identifier
SAE name: ingress-port-id

Data type: padded to processing granule, unsigned

Valid settings: Determined by interoperating vendors to meet the requirements of the system
architecture.

Description: Specifies the physical system ingress port that the packet was received on. Thus, this
field typically corresponds to the ingress port of the network element on which the packet was received,
which might be many NPEs away from the NPE receiving this field.

4.4.4.2 Ingress Channel
SAE name: ingress-channel

Data type: padded to processing granule, unsigned

Valid settings: 0 – n, where n is the largest channel number.

Description: Specifies the physical ingress channel within the ingress-port-id. An ingress-
port-id field MUST be present when this field is present in a message header.

4.4.4.3 Egress Port Identifier
SAE name: egress-port-id

Data type: padded to processing granule, unsigned

Valid settings: Determined by interoperating vendors to meet the requirements of the system
architecture

Description: Specifies the physical system egress port that the packet is requested to be output on
by the transmitting NPE (i.e., final NPE in the system). Thus, this field typically corresponds to the
destination port of the network element on which the packet is to be transmitted, which might be many
NPEs away from the NPE receiving this field.

4.4.4.4 Egress Channel
SAE name: egress-channel

Data type: padded to processing granule, unsigned

Valid settings: 0 – n, where n is the largest channel number

Description: Specifies the physical egress channel within the egress-port-id. A egress-port-
id field MUST be present when this field is present in a message header.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 31 11/10/2003

4.4.5 Payload Attributes

4.4.5.1 Offset
SAE name: offset

Data type: padded to processing granule, unsigned

Valid settings: 0 – maximum network packet length supported by receiver.

Description: Specifies an offset, in bytes, into the message payload. Used either in isolation or in
conjunction with user-attribute to reference a particular starting location in the payload to operate on.

4.4.5.2 User-attribute
SAE name: user-attribute

Data type: fixed-string

Valid settings: Determined by interoperating vendors to meet the requirements of the system
architecture.

Description: Specifies an application-dependent value for the receiving NPE to OPTIONALLY utilize
in conjunction with the preceding offset field for processing the message payload. For example, the
user-attribute could be a “pointer” to a URL replacement string within the receiving NPE memory,
or a hash index value for the NPE to use in its lookup function. This field is a string since the contents
are of unknown format to the SAE. However, the size of each user-attribute must be fixed and
known to the SAE.

4.4.6 Configuration Fields
When configuration fields are used within a message transfer, the message MAY NOT contain “real”
network traffic. The data in a configuration message (both message header and message payload)
provides NPE in-band information (e.g., configuration, status, statistics, alarms, timeouts) either going
to, or coming from, an NPE. These configuration message transfers are peer-to-peer (i.e., neither NPE
is the master), “fire and forget” messages. The NPE on the “source” side of a conveyance MAY transmit
messages while the NPE of the “destination” side of the conveyance MUST receive the messages. The
format of any data used for configuration within the message payload of any in-band message transfer is
vendor dependant.

When a single (unidirectional) conveyance is used between two NPEs, the in-band message transfers
MUST contain an npe-operation of type unidirectional request (to the destination NPE), or
unidirectional event (from the source NPE). If a bi-directional message link (i.e., two unidreictional
conveyances) is available between two NPEs, then additional npe-operations types MAY be used.
These types include bi-directional request (to the destination NPE) and the various forms of bi-
directional responses (from the source NPE) providing a success, or one of four error, indications in
response to the originating request. While using bi-directional message links, the function of each
unidirectional conveyance remains fundamentally the same. The message transfers remain peer-to-
peer: either source MAY transmit in-band message transfers, and each destination MUST receive in-
band message transfers.

NPE configuration messages compete with non-configuration messages for bandwidth on the physical
data link. The factors influencing the impact of this competition include: the volume of NPE configuration
information sent to or generated from an NPE, the priority of these NPE configuration messages verses
“network traffic”, queuing of NPE configuration information, loss of configuration information messages,
or loss of “network traffic”. Information about how this bandwidth competition is handled is not covered
by this implementation agreement.

4.4.6.1 NPE Operation
SAE name: npe-operation

Data type: bit-vector-8

Valid settings: See Table 1 and Table 2

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 32 11/10/2003

Description: Specifies a common set of operations that an NPE can “execute”, “execute” and then
respond to, or asynchronously “execute/generate an event”. Npe-operation is a bit vector that
contains two pieces of information about the operation: the type and the code. The three high order bits
define the “type” of npe-operation and the low order five bits define the specific operation “code”.

The high order portion of the npe-operation bit vector has been broken up into four types covering
eight ranges: two for requests, one for events, and five for responses (see Table 1). When a single
unidirectional conveyance is used, the two permitted npe-operation types are the unidirectional
request (i.e., silently “execute” the received operation) and the unidirectional event (i.e.,
“execute/generate” an asynchronous event notification). When unidirectional conveyances are combined
to form a bi-directional message link, two additional npe-operation types are also permitted. These
types are: bi-directional request (i.e., “execute” and then respond to the received operation) and bi-
directional responses (i.e., transmit a response, either OK or one of four general errors after “executing”
the requested operation).

Table 1. npe-operation Types

NPE Operation Types (High Order 3 Bits) NPE Operation Type Range
Setting Range (low) Range (high)
Hex Binary Hex Binary Hex Binary

Unidirectional Request 0 000 00 00000000 1F 00011111
Unidirectional Event 1 001 20 00100000 3F 00111111
Bi-directional Request 2 010 40 01000000 5F 01011111
Bi-directional Response OK 3 011 60 01100000 7F 01111111
Bi-directional Response Error: Unsupported Operation 4 100 80 10000000 9F 10011111
Bi-directional Response Error: Invalid Setting 5 101 A0 10100000 BF 10111111
Bi-directional Response Error: Read Only Access 6 110 C0 11000000 DF 11011111
Bi-directional Response Error: Other 7 111 E0 11100000 FF 11111111

The low order portion of the npe-operation bit vector defines the code for the individual operation
(see Table 2). The codes that range from hello to remove (hexadecimal values 0 through 9, inclusive)
MUST only be used for requests and responses. The codes that range from reset_complete to statistics
(hexadecimal values 1C through 1F) MUST only be used for events. Each code is placed into one of
four groups: system, register, table, or event. An NPE messaging implementation that chooses to any
code from a particular group MUST implement all required codes for that group (see the status column
for each of the codes within the group). For example, to support the register group, the implementation
MUST support the codes read and write. The implementation for code read_and_init SHOULD be
supported. In addition, the format of the message MUST match the options available to the group. For
example, a message format that supports the register group MUST contain npe-register and MUST
NOT contain either npe-table or npe-record. If this type of error does occur, and a bi-directional
message link exists, the receiving NPE MUST respond with a bi-directional response error of
unsupported operation, otherwise the message MUST be dropped.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 33 11/10/2003

Table 2. npe-operation Codes and the Groups

NPE Operation Codes (Low Order 5 Bits)
Setting NPE Operation Group
Hex Binary Group Status

Hello 0 00000 System R Legend
Reset 1 00001 System R X NOT Permited

Read 2 00010 Register R O Optional
Read_and_Init 3 00011 Register O R Required
Write 4 00100 Register R

Initialize 5 00101 Table O
Get 6 00110 Table R
Set 7 00111 Table O
Insert 8 01000 Table R
Remove 9 01001 Table R

Reset_Complete 1C 11100 Event R
Alarm 1D 11101 Event R
Timeout 1E 11110 Event R
Statistics 1F 11111 Event O

Npe-operation codes are limited by the npe-operation type that is set in the bit vector. Tables 3
through 6 specify the valid npe-operation codes per type.

When an npe-operation is included in the message header, it may be followed by npe-table, npe-
record, or npe-register (see Figure 15). The optional message payload accompanying these fields
contains either the vendor specific data to write, insert, etc. to the NPE, the vendor specific data read,
etc. from the NPE, or the vendor specific asynchronous event data for an alarm, statistics, etc. sent by
the NPE. The payload columns of Table 3, Table 4, Table 5, and Table 6 also specify whether a vendor
specific message payload MUST exist (R), MAY exist (O), or MUST NOT exist (X). When a message
payload is present with an npe-operation, the payload MUST contain the vendor specific information
that supports the npe-operation. Several message payload contents examples include: a 144-bit key
followed by 32-bits of associated data for a TCAM to add an entry to a search table, one 16-byte record
of a configuration file (a table) to write, or the contents read from a 32-bit register.

Valid npe-operation codes for type unidirectional request MAY be sent at any time to the receiving
NPE and are listed in Table 3. The receiving NPE “executes” the operation using the remainder data in
the message header and message payload, if any. The receiving NPE MUST NOT respond to this
operation, even if a bi-directional message link is available. If the npe-operation fails to “execute” for
any reason (e.g., invalid message header/payload contents or lack of NPE resources) the message
MUST be discarded. Any error capabilities the NPE provides to record or report this error are not
covered by this implementation agreement.

Table 3. Npe-operation Codes for Types: Unidirectional Requests

Unidirectional Requests
Payload

Hello X Legend
Reset X X NOT Permited
Write R O Optional
Initialize X R Required
Set R
Insert R
Remove R

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 34 11/10/2003

Valid npe-operation codes for type unidirectional event MAY be sent at any time. Messages with
these codes are sent asynchronously from the source NPE to the destination NPE. These codes are
listed in Table 4. Vendor data associated with the event MAY be placed in the message payload.
Unidirectional vvent messages are sent as determined by the vendor-dependant
configuration/programming of the NPE and are not covered by this implementation agreement. The
receiving NPE MUST NOT respond to a unidirectional event, even if a bi-directional link exists.

Table 4. Npe-operation Codes for Types: Unidirectional Events

Unidirectional Events
Payload

Reset_Complete O Legend
Alarm R X NOT Permited
Timeout R O Optional
Statistics R R Required

Valid npe-operation codes for type Bi-directional Request MAY be sent at any time to the receiving
NPE. These codes are listed in Table 5. The receiving NPE “executes” the operation using the
remainder of the data in the message header and message payload, if any. After the operation
completes within the receiving NPE, the receiving NPE MUST send a response on the opposite
unidirectional message link back to the original sender.

Table 5. Npe-operation Codes for Types: Bi-directional Requests

Bi-directional Requests
Payload

Hello X Legend
Reset X X NOT Permited
Read X O Optional
Read_and_Init X R Required
Write R
Initialize X
Get X
Set R
Insert R
Remove R

Valid npe-operation codes for any one of the five types of bi-directional responses (see Table 1)
MUST only be sent back from the receiving NPE to the originating NPE in response to a bi-directional
request. Any of the five bi-directional responses MUST NOT be sent unsolicited or as a response to a
unidirectional request or a unidirectional event.

If the npe-operation completes successfully, the receiving NPE MUST return, to the originating NPE,
a npe-operation type bi-directional response OK code. If a successful response contains a message
payload, the message payload SHOULD contain the data read back after the operation completes.
Otherwise, the message payload MAY be a copy from the request, if available.

Otherwise, when an error occurs with the operation, the receiving NPE MUST return the most relevant
bi-directional response error code, as explained in the following list. If a failure response contains a
message payload, the message payload SHOULD contain additional vendor-specific error information to
help diagnose the problem.

1. Unsupported operation MUST be returned if the receiving NPE did not implement the requested
npe-operation. Unsupported operation MUST also be returned if the npe-operation is a
reserved setting. Unsupported (invalid) operation MUST also be returned if the npe-
operation requested does not match the other configuration fields (or lack there of) in the
remainder of the message format.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 35 11/10/2003

2. Invalid setting MUST be returned if the receiving NPE does not “have” the specified table,
record within the table, or register specified by the remaining information within the message
header.

3. Read-only access MUST be returned if the receiving NPE identifies the specified table, record
within the table, or register specified by the remaining information within the message header to
be a read-only “element” within the NPE. For example, a register read_and_init is requested on
a read-only register; or a table initialize is requested for a read-only table.

4. Other MUST be returned if the receiving NPE encounters an error that is not covered by the
prior three error cases. For example, the receiving NPE might have exhausted the number of
entries allowed for the specified table prior to the insert; or the table might already be empty
prior to the remove; or the entry data may not be valid for a set.

Table 6. Npe-operation Codes for Types: Bi-directional Responses

Bi-directional Responses
Payload

Hello X Legend
Reset X X NOT Permited
Read R O Optional
Read_and_Init R R Required
Write O
Initialize O
Get R
Set O
Insert O
Remove O

Hello (to the destination NPE) npe-operation code allows messages to be sent to the receiving NPE
without any request for “work” to be performed. The receiving NPE MUST interpret this message to
mean that the sending NPE is still functional. On a bi-directional message link, if a bi-directional request
- hello is sent, the receiving NPE MUST return a bi-directional response OK - hello. If the hello operation
round trip is completed, each NPE MUST interpret the messages to mean that the other NPE is alive
and functional. When the npe-operation code is set to hello, the remainder of the message header
MUST NOT contain any other configuration fields or a message payload.

Reset (to the destination NPE) npe-operation code allows the sending NPE to force the receiving
NPE to reset and initialize itself. When received, the destination NPE MUST discard all other “work” in
progress and then reset and initialize. If a bi-directional request - reset is sent, the receiving NPE MUST,
as its final effort, return a bi-directional response OK - reset on the bi-directional message link informing
the original sending NPE that the reset and initialize process is about to begin. When the npe-
operation code is set to reset, the remainder of the message header MUST NOT contain any other
configuration fields or a message payload.

Read (register) npe-operation code allows the sending NPE to request a copy of the register data
stored in the specified location to be returned from the receiving NPE. Read operations, when present,
MUST only be sent on a bi-directional message link. The requesting NPE sends a bi-directional request
- read to the receiving NPE. The message payload of the request MUST be empty. The receiving NPE
accesses the register data and returns a bi-directional response OK - read or the relevant bi-directional
response error back across the opposite message link to the originating NPE.

Read_and_Init (register) npe-operation code allows the same functionality as the read operations
plus the specified register data is returned to its initial value (usually zeros) once the current value is
copied into the message payload. The receiving NPE SHOULD perform an atomic read-and-set of the
requested data. If a failure occurs, and a bi-directional response error is returned and the specified data
SHOULD NOT be altered.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 36 11/10/2003

Write (register) npe-operation code allows the sending NPE to overwrite data stored in the specified
register location. The requesting NPE sends a unidirectional request or a bi-directional request to the
receiving NPE. The message payload MUST contain the vendor specific register data to be written. The
receiving NPE MUST use the data in the message payload to replace the current contents of the
specified register location, unless there is an error in the remaining contents of the message header or
payload.

Initialize (complete table, or single record within table) npe-operation code allows the sending NPE
to select an entry within the receiving NPE to be returned to its initial value and/or state. The behavior is
vendor dependant, but several examples include: if a record within a table is initialized, it is returned to
its initial value after reset. If a table is initialized, it may reserve several internal resources and then
initialize these resources to known values. A bi-directional response error: read-only access MUST be
returned on a bi-directional message link if the specified element can not be updated.

Get (table entry, or record within table) npe-operation code, when used on a table, allows an existing
entry to be read from the specified table. The receiving NPE is responsible to “find” the specified entry
within the table and to return its contents in the vendor-dependant data in the message payload. A get
npe-operation code, when used on a record in a table, allows the specified record to be read and
placed in the vendor-dependant data in the message payload. Get operations MAY only be sent on a bi-
directional message link. The requesting NPE sends a bi-directional request - get to the receiving NPE.
The message payload of the request MUST be empty. The receiving NPE accesses the table entry or
record data and returns a bi-directional response OK - get or the relevant bi-directional response error
back across the opposite message link to the originating NPE.

Set (table entry, or record within table) npe-operation code, when used on a table, allows an existing
entry (or some of the data within the existing entry) to be changed within the specified table. The
receiving NPE is responsible to “find” the specified entry within the table and to alter it according to the
vendor-dependant data in the message payload. A set npe-operation code, when used on a record
in a table, allows the specified record to be replaced with the vendor-dependant data in the message
payload. The behavior is vendor dependant, but several examples of failures where a bi-directional
response error - other SHOULD be returned on a bi-directional message link include: the data in the
message payload is not the same size as the table entry or the record within the table, or the new data
would cause the table entry to duplicate an existing entry in the table. Duplicate records within a table
MAY be an error, this is vendor dependant. A bi-directional response error - read-only access MUST be
returned on a bi-directional message link if the specified element can not be updated.

Insert (entry into table) npe-operation code allows new entries to be added to the specified table.
This is different from a set npe-operation code because the insert code does not specify a record
number within the table, just the table itself. The receiving NPE is responsible to find the “correct”
location for the entry within the table. The receiving NPE MUST allow redundant insert npe-
operations to be performed on the same table to provide a means for the sending NPE to retry
inserting an entry when it is not clear whether a prior attempt was successful. The error behavior is
vendor dependant, but several examples of failures where a bi-directional response error - other
SHOULD be returned on a bi-directional message link include: the table is full, or the entry contents are
invalid.

Remove (entry from table) npe-operation code allows existing entries to be deleted from the
specified table. The receiving NPE is responsible to “find” the specified entry within the table and
remove it. This SHOULD cause any associated vendor resources to be released for future use. The
receiving NPE MUST allow redundant remove npe-operations to be performed on the same table to
provide a means for the sending NPE to retry deleting an entry when it is not clear whether a prior
attempt was successful. The error behavior is vendor dependant, but several examples of failures where
a bi-directional response error - other SHOULD be returned on a bi-directional message link include: the
table is empty, or the entry contents are invalid.

Reset_Complete (from the source NPE) npe-operation code allows the reset NPE to provide an
indication that is initialized and is now fully functional. The NPE MUST NOT send a enidirectional event -
reset_complete code unless all of its vendor-specific self-diagnostics have passed. The NPE MUST

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 37 11/10/2003

NOT send a unidirectional event - reset_complete code after any other in-band messages have been
sent.

Alarm (from the source NPE) npe-operation code allows the NPE to send out an asynchronous
message to inform the destination NPE that an alarm condition has occurred. Examples of unidirectional
event - alarm conditions include: loss of signal on another interface, lack of internal resources, error
handler invocation, or an external memory failure. The message payload MUST contain detailed
information about the alarm. This information is vendor dependant.

Timeout (from the source NPE) npe-operation code allows the NPE to send notification of a timeout
to the destination NPE. Examples of a unidirectional event - timeout include: an entry in table n has
expired, or a bi-directional response from an earlier b-directional request has not been received. The
message payload MUST contain detailed information about the timeout. This information is vendor
dependant.

Statistics (from the source NPE) npe-operation code allows the NPE to send periodic statistics
information to the destination NPE. Examples of a unidirectional event - statistics include: table entry n
processed m packets during the last 60 seconds, or register x has recorded y packets dropped during
the last second. The message payload MUST contain detailed information about the statistics. This
information is vendor dependant.

Reserved operations (see Table 7) SHOULD not be used. These settings remain available for future
expansion of this implementation agreement. Reserved npe-operation use is outside of the scope of
this version of the implementation agreement. The NPF requests that vendors submit their use of these
settings to the NPF to allow future versions of this implementation agreement to convert excepted
operations to npe-operations, extending the capabilities of this implementation agreement while
allowing a greater degree of vendor interoperability.

Reserved NPE Operations
Range (low) Range (high)
Hex Binary Hex Binary
0A 00001010 1B 00011011
2A 00101010 3B 00111011
4A 01001010 5B 01011011
6A 01101010 7B 01111011
8A 10001010 9B 10011011
AA 10101010 BB 10111011
CA 11001010 DB 11011011
EA 11101010 FB 11111011

Table 7: Reserved npe-operation Ranges

4.4.6.2 NPE Table
SAE name: npe-table

Data type: unsigned-16

Valid settings: Determined by the NPE vendor

Description: Specifies the “table” within the NPE that the npe-operation is targeting. For
example, if the NPE supports a firmware load, table 100 might reference the NPEs firmware file, and a
following npe-record would specify which record within the table (file). The npe-table number alone
provides enough information for a receiving NPE to insert, remove, or get an entry within the table.

The message payload, when used without npe-record, is either the full table or one entry in the table.
The size, bit order, number of fields within a table entry, and meaning of each table entry is vendor
dependent.

4.4.6.3 NPE Record
SAE name: npe-record

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 38 11/10/2003

Data type: unsigned-32

Valid settings: Determined by the NPE vendor, but is relative to the npe-table.

Description: Specifies the “record” within an npe-table that the npe-operation is targeting. For
example, if the NPE supports a firmware load, record 0 might be the first 256 bytes of the firmware file.

The meaning of the message payload, which is the record, size, bit order, number of fields within the
record, is vendor dependent. To increase the depth of interoperability, the format of several “well known”
records could be defined, such as a 144-bit key and 32-bits of associated data.

4.4.6.4 NPE Register
SAE name: npe-register

Data type: unsigned-32

Valid settings: 0x0000_0000 through 0xFFEF_FFFF: Determined by the NPE vendor.

 0xFFFF_0000 through 0xFFFF_FFFF: Reserved by the NPF.

Description: Specifies the “register” within the NPE that the npe-operation is targeting. For
example, the specific register “address” or “number” within the receiving NPE to read, read_and_init, or
write.

The message payload is the contents of the register (when required). The size and bit-order are vendor
dependent. To increase the depth of interoperability, the format of several “well known” register formats
could be specified, such as a 32-bit, big-endian register format.

4.4.7 Integrity Checks

4.4.7.1 Integrity Checksum
SAE name: checksum-16

Data type: ones-complement-16

Description: A value used to determine the integrity of all bytes in the message up to the integrity
field. The algorithm used is the 1’s compliment checksum described in RFC1071 and RFC1141. When
present, this field always placed at the end of the message header or message trailer, or both

4.4.7.2 Integrity CRC32
SAE name: crc-32

Data type: bit-vector-32

Description: A value used to determine the integrity of all bytes in the message up to the integrity
field. The algorithm used is the cyclic-redundancy check defined in ISO 3309. When present, always
placed at the end of the message header or message trailer, or both.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 39 11/10/2003

Annexes

A Glossary
Term Definition

Conveyance
A NPE-to-NPE interconnect that carries messages.

Conveyance address
A field in the conveyance packet used to identify a service endpoint
of the conveyance. E.g., Conveyance addresses can be used to
identify destination or sources of conveyance payloads containing
messages.

Conveyance channel
A conveyance and conveyance address. An instance of a
conveyance channel is unidirectional.

Conveyance granule
The minimum, logical, allocation of bandwidth (in bytes) for a
particular conveyance

Implicit field
A message field which does not appear in the physical instantiation
of the message either because it has a constant value or because it
is available from the conveyance (or another lower) layer.

Message
A message header, message payload, and message trailer. The
message payload and message trailer are OPTIONAL.

Message field
One or more consecutive slots representing a single message
header or trailer attribute.

Message granule
The larger of the processing or conveyance granule, when the
message contains a trailer, and simply the conveyance granule
otherwise

Message header
One or more ordered message fields delivered together preceding
the message payload (if present) across a single conveyance using
a conveyance address associated with messages.

Message payload
Zero or more bytes of data relevant to the message header or trailer.

Message trailer
One or more ordered message fields delivered together after the
message payload across a single conveyance using a conveyance
address associated with messages.

Network Coprocessor
Element (NCE)

One type of NPE

Network Element
A single chassis, or box, containing one or more NPEs
interconnected via conveyances.

Network Processing
Element (NPE) A device that either consumes, produces, or consumes and

messages.
Network Processor
(NPU)

One type of NPE

Processing granule
The minimum, logical, computational access (in bytes) for a
message, as defined by the SAE based on the requirements of the
NPEs

Reserved
A reserved field, slot, or bit MUST be transmitted as zero and

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 40 11/10/2003

ignored on reception.
Service Access Point
(SAP) An application endpoint of NPF Messaging

Slot
One byte (8 bits) of a message field.

System architectural
entity (SAE)

A logical software-based entity that collects system and NPE
capabilities and then configures conveyance and SAP settings in
each NPE and finally defines message formats per-conveyance
assigns message fields to slots, .

x
The conveyance granule in bits

y
The processing granule in bits

z
The message granule in bits

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 41 11/10/2003

B Syntax Graph Notation Guide (Informative)
The syntax graphs, as used in this document, contain three elements as shown in Figure 34.

Legend: non - terminal

terminal

Syntax flow

non - terminal

terminal

Example: graph t1

t2 t2

Legal sequences:
t1
t2
t1, t2

Prohibited sequence:
t1, t1

t1

Figure 34 Syntax graph symbols and example

Non-terminal entries in the syntax are represented with square-corner rectangles. These symbols refer
to other syntax graphs.

Terminal entries in the syntax are represented with rounded-corner rectangles. Terminal symbols
represent tokens in the syntax.

Legal syntactic flow is represented with unidirectional lines. The “flow” is always unidirectional,
regardless of where a line is entered. For example, as shown in Figure 34, the syntax graph has two
non-terminal nodes, t1 and t2. The three legal interpretations of this graph are: t1, t1 followed by t2, and
t2. The sequence: t1 followed by t1 is not expressed by the syntax graph because that would require
the flow to traverse the line entering t2 in a direction opposite (“up” in this case) of its legal direction
(“down”).

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 42 11/10/2003

C In-band Configuration (informative)
When used with a format-id of zero (0), an npe-operation can be used for in-band configuration
by reading and writing the appropriate per-conveyance configuration tables. The format of the actual
messages for such configuration information is not currently specified in this document, but Figure 35
shows the conceptual format for said configuration information. This conceptual representation of in-
band configuration information does not imply any particular implementation. It is acceptable for an NPE
participating in in-band configuration to physically layout its configuration information in a manner
different from that shown in Figure 35. Indeed, the conceptual model was chosen specifically with a
maximum of information available (i.e., maximum flexibility) so that transformations to other
representations (e.g., direct mappings from conveyances to message formats) are trivial.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 43 11/10/2003

Conveyance ID

Conveyance 0
configuration

Table

1

2

N

. . .

sap info

1

255

Format ID
table

reference
records

Sap ID
records

0

M

255 sap info

sap info

Field P record

Field 1 record

Field Q record

Field 1 record

. . .

Field P record

Field 1 record

Contains
conveyance

address
fixed-string

Format Table IDs
defined by SAE,

within NPE
specification

reserved0

N is the number of
conveyances,
defined by the

NPE

Figure 35 In-band configuration per-conveyance table format (conceptual)

Conveyance IDs

At the outer-most level, all in-band configuration information is specified per-conveyance. An NPE
participating in in-band configuration has some number (N) of conveyances -- note, this includes both
input and output conveyances – and the configuration information is addressed via these conveyance
numbers, as determined by the NPE vendor.

Conveyance Configuration Tables

The configuration for each conveyance is represented with a Conveyance Configuration Table. Within
each conveyance configuration table are references to 255 message format specifications, one per valid
format-id (value zero is used for in-band configuration itself) and 256 SAP information records, one
per sap-id. The table layout has the message format specification references first, indexed by

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 44 11/10/2003

format-id including a reserved record for format-id with value of zero, followed by the SAP information
records, indexed by sap-id.

When a conveyance configuration table references a message format specification this indicates that
the conveyance will accept or transmit -- depending on direction of the conveyance – the referenced
message format. It is to be noted that an NPE MAY choose not to physically implement references to
these message format specifications but instead collapse and duplicate message format specifications
directly into the conveyance configuration table. Such a mapping is acceptable, but is an
implementation issue beyond the scope of this implementation agreement.

When a conveyance configuration table contains a valid SAP information record this indicates the
association between the conveyance-specific addressing scheme and the messaging sap-id.

Format ID Tables

Message format specifications, which are indirectly referred to in the conveyance configuration tables,
are represent ed with format ID tables . A format ID table contains one or more records; each record
contains enough information to identify a field in the message. For example, field type, field size, field
location and field value, each when appropriate.

Format ID table numbers are allocated by the SAE but will adhere to certain restrictions specified by the
NPE. For example, and NPE may restrict the legal values for format ID table numbers, or may restrict
the total number of format ID tables, and the SAE will honor such restrictions. Specifying the SAE as
the allocating entity for format ID tables allows maximum flexibility in this conceptual model. For
example, format ID tables can be shared across both format-ids within a single conveyance, and
across conveyances on a single NPE.

SAP Information Records

A conveyance configuration table contains 256 SAP information records . Each SAP record is indexed
by sap-id, i.e., with the values 0 through 255. Each SAP information record contains a string – a value
opaque to messaging – which is the conveyance’s address for the associated sap-id. The format of
this string is dependent on the conveyance and is beyond the scope of this implementation agreement.
The NPE can use this mapping to associate conveyance addresses with the messaging layer, or even
messaging layer applications, as appropriate.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 45 11/10/2003

D NPE Capabilities Grammar (normative)
To enable automated conformance checking tools, as well as universal SAE tools, a grammar is
specified for the messaging requirements (e.g., input fields and formats, and output fields and formats,
and conveyances) of an NPE. Each NPE vendor MUST supply an instance of this grammar along with
each conforming NPE. No NPE would ever be required to parse this grammar. Instead, the SAE, which
can be human or general-purpose software, would parse this grammar. Thus, this grammar is specified
in a human-readable format that MAY be parsed by a tool.

At a conceptual level, this grammar specifies the input or output (depending on direction of the
conveyance) message format capabilities for each conveyance of the NPE. Each format contains the
inputs that are necessary for the NPE to operate or the outputs that the NPE is capable of generating.
These inputs and outputs are represented by field name, size (in slots), and location within the message
(i.e., header or trailer). In addition to the system specification (not specified in this implementation
agreement), these input and output field names, sizes, and locations enable the SAE to match the
necessary inputs of downstream NPEs with the outputs of upstream NPEs. The system designer needs
to know (or be provided) which NPEs need to communicate, and what those NPEs need to
communicate. Such information is beyond the scope of this implementation agreement; the grammar
specified in this annex is local to a single NPE.

Top-level Grammar

The grammar has three parts as shown in Figure 36. First, a version number is provided. The version
number is specific to the version of the messaging specification supported by the NPE. The current
version number is 1.0. Second, the contents (i.e., field types) of one or more message formats are
provided. NPEs specify the fields of their message formats (i.e., what is either required on input or
possibly generated on output from the NPE), but not the exact format of the message (i.e., how these
fields are placed into the message). An exception to this rule is that fixed-function NPEs MAY specify
the actual format, thus restricting how the SAE places fields in the message. Each NPE has one or
more format-content-specifications , each of which can be restricted to only a subset of conveyances as
specified in the conveyance-specification. The format -content-specifications are separated from the
conveyance-specifications so that the same format can be easily re-used between two or more
conveyances.

scorecard format-content-specification conveyance-specificationversion-specification

version:version-
specification alphanumeric ;

Figure 36 Basic components of the SAE grammar

The third part of the top-level grammar is one or more conveyances specifications. Each conveyance-
specification consists of an identification of the conveyance, properties about the conveyance (e.g.,
conveyance granule), a list of format-content-specifications that are available on the conveyance, and
SAP configuration mappings.

Format Content Specification
Figure 37 shows the syntax graph for a single format-content-specification.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 46 11/10/2003

format-content-
specification

parts-and-
fields

format-name granule-
specification

{ }

Figure 37 Format-content-specification syntax graph

All format -content-specifications MUST contain the same three parts: a name, a (processing) granule
specification, and a message parts and fields specification. Each of these parts is explained as follows:

Format Name

As shown in Figure 38, the name of a format-content-specification is a string (represented by the
alphanumeric syntax graph shown in Figure 45), followed, optionally, by the string ‘fixed’. The name has
no meaning to the SAE except to match formats to those conveyances that support the format. The two
legal ways to form the name of a format are: fixed and non-fixed. The only difference between the two is
the additional ‘fixed’ string following the format name string. A fixed-format, as is explained later,
specifies the exact placement of fields within the message format.

format:format-name alphanumeric

fixed,

Figure 38 Format name syntax graph

Processing Granule Specification

Every format contains a processing granule specification, the syntax graph for which is shown in Figure
39. The processing granule is specified as a number with the unit of bytes.

granule-
specification

granule: number ;

Figure 39 Granule-specification syntax graph

Parts and Fields Specification

All format-content-specifications MUST specify the required parts of the message, as well as the fields in
the message. As shown in Figure 40, the parts include the header, payload, and trailer. For headers
and trailers, the fields that are used (i.e., required on input, generated on output) are provided. For the
payload, the type of payload—no present, aligned, or sized-- is specified.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 47 11/10/2003

parts-and-fields fields{ }header

payload-type{ }payload

fields{ }trailer

payload-type

aligned-payload

sized-payload

Figure 40 Parts-specification syntax graph

For the header and trailer parts, the list the message fields used by the specification is specified. As
shown in Figure 41, each field is specified by its SAE name (i.e., a string), the data type for that field
(see Figure 43), and the “necessity” of the field. The necessity of a field includes the ability to specify
whether the field is mandatory or optional in the message. A field is considered mandatory unless the
optional string is supplied, in which case the field is considered optional. For example, on input, and
NPE specifies message fields without which the function of the NPE would be rendered impossible.
Such fields are either mandatory, but never optional. On output from an NPE, however, some fields
might be possible to generate, but if the downstream NPE does not consume them, these fields do not
need to be generated. Such fields would be considered optional. Also, a field that may appear in both
the header or trailer can be specified in both the header and trailer fields and as optional in both places.

The specified fields within the format-content-specification MUST be able of forming a legal message as
defined by the syntax graphs of Section 4. If this specification is not a fixed-format, it is
RECOMMENDED that the list follows the ordering constraints specified in Section 4. If this specification
is a fixed-format, the specification of these fields MUST be in the order they appear in the message and
thus MUST follow the ordering constraints specified in Section 4.

field-name data-type

fields

necessity

necessity

;

optional,

Figure 41 Fields-specification and related syntax graphs

The field names are from the list of standard message fields in Section 4.4, which also specifies the
semantic meaning of each field. These names are shown in Figure 42.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 48 11/10/2003

field-name

sap-id

context-id

flow-id

flow-qos

flow-state

send-sequence

ack-sequence

time-stamp

ingress-port-id

ingress-channel

egress-port-id

egress-channel

offset

npe-operation

npe-table

npe-record

npe-register

crc-32

checksum-16

user-attribute

format-id

Figure 42 Field name syntax

The data type associated with each field is either implicit or explicit. The explicit data types come
directly from the containers available for message fields and are identified by name. Implicit data types
are identified by name as well, but include an additional fixed value (represented by a number). These
data types are enumerated in the data-type syntax graph shown in Figure 43.

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 49 11/10/2003

data-type-name

unsigned-8

unsigned-16

unsigned-24

unsigned-32

unsigned-64

ones-compliment-
16

twos-compliment-
16

twos-compliment-
32

twos-compliment-
64

bit-vector-8

bit-vector-16

bit-vector-32

bit-vector-48

bit-vector-96

bit-vector-128

fixed-string

bit-vector-64

number

data-type explicit-data-type

implicit-data-type

implicit-data-type data-type-name

explicit-data-type data-type-name

: number

Figure 43 Data-type syntax graph

Conveyance Specification

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 50 11/10/2003

As shown in Figure 44, each conveyance specification contains a conveyance identification, a
(conveyance) granule specification, a list of supported formats, and a list of SAP records.

conveyance-
identification

address: alphanumeric ,

conveyance-
specification

conveyance-
identification

supported-
formats

conveyance:

supported-
formats

sap-record

number ,

format-name

sap-record sap-id: number ,

supported-format: ;

granule-
specification

in

out

{ }

Figure 44 Conveyance-specification and related syntax graphs

Conveyance Identification

A conveyance is identified by number, which is local to the definition of the NPE, as well as the direction
(ingress or egress) of the conveyance. An interface supporting both directions is modeled as two
unidirectional conveyances within the scope of this implementation agreement, and, subsequently,
within this grammar.

Conveyance Granule Specification

Following the identification of a conveyance, the conveyance granule is defined. The conveyance
granule is specified as a number with the unit of bytes.

Supported Formats

Following the conveyance granule specification, the list of supported format-content -specifications is
provided. This list consists of one or more names (i.e., strings) from the format-content-specification list
presented previously.

SAP Record

Finally, for each SAP using messaging, a SAP-to-conveyance-address mapping MUST be supplied.
Each such mapping requires the sap-id, a number between 0 and 255, and a conveyance address, a
string, the format of which is beyond the scope of this implementation agreement.

Miscellaneous Syntax Graphs

Figure 45 shows several syntax graphs that support the previously discussed syntax graphs for NPE
capabilities. A number is simply a string of digits (i.e., 0 – 9). An alphanumeric is a series of digits,
letters (a – z, A – Z) and certain symbols (i.e., _, @, #, $, and %).

NPF Document: NPF2002.429.05 NPF Message Layer Implementation Agreement

NPF CONFIDENTIAL 51 11/10/2003

digit

0

1

alphanumeric

2

3

4

5

6

7

8

9

digit

letter

symbol

symbol

_

@

#

$

%

number

digit

letter

a

b

c

z

A

B

C

Z

. . .

. . .

Figure 45 Miscellaneous syntax graphs supporting the NPE Capabilities grammar

