

Implementation Agreement for CFP2-<u>Analogue</u> <u>Coherent</u> <u>Optics</u> Module

IA # OIF-CFP2-ACO-01.0

January 22nd 2016

Implementation Agreement created and approved by the Optical Internetworking Forum www.oiforum.com

IA # OIF-CFP2-ACO-01.0 IA for CFP2 Analog Coherent Optics Module

The OIF is an international non-profit organization with over 90 member companies, including the world's leading carriers and vendors. Being an industry group uniting representatives of the data and optical worlds, OIF's purpose is to accelerate the deployment of interoperable, cost-effective and robust optical internetworks and their associated technologies. Optical internetworks are data networks composed of routers and data switches interconnected by optical networking elements.

With the goal of promoting worldwide compatibility of optical internetworking products, the OIF actively supports and extends the work of national and international standards bodies. Working relationships or formal liaisons have been established with IEEE 802.1, IEEE 802.3ba, IETF, IP-MPLS Forum, IPv6 Forum, ITU-T SG13, ITU-T SG15, MEF, ATIS-OPTXS, ATIS-TMOC, TMF and the XFP MSA Group.

For additional information contact: The Optical Internetworking Forum, 48377 Fremont Blvd., Suite 117, Fremont, CA 94538 510-492-4040, info@oiforum.com

www.oiforum.com

Working Group: Physical and Link Layer (PLL) Working Group

TITLE: Implementation Agreement for a CFP2 Analogue Coherent Optics Module IA OIF-CFP2-ACO-01.0

SOURCE: TECHNICAL EDITOR

Ian Betty, Ph.D. Ciena 3500 Carling Ave Ottawa, ON K2H 8E9, Canada Phone: +1-613-670-2160 Email: <u>ibetty@ciena.com</u>

PLL WORKING GROUP CHAIR

David R. Stauffer, Ph.D. Kandou Bus, SA QI-I 1015 Lausanne, Switzerland Phone: +1.802.316.0808 Email: <u>david@kandou.com</u>

PLL WORKING GROUP - OPTICAL VICE CHAIR

Karl Gass Qorvo Phone: +1-505-301-1511 Email: <u>iamthedonutking@mac.com</u>

ABSTRACT: Implementation Agreement created and approved by the Optical Internetworking Forum for a CFP2 Analog Coherent Optics Module. The project start was approved at the Q2 Technical Meeting, April 2013 (Albuquerque, USA). OIF2013.130.01 is the original project start document for this project.

IA # OIF-CFP2-ACO-01.0 IA for CFP2 Analog Coherent Optics Module

Notice: This Technical Document has been created by the Optical Internetworking Forum (OIF). This document is offered to the OIF Membership solely as a basis for agreement and is not a binding proposal on the companies listed as resources above. The OIF reserves the rights to at any time to add, amend, or withdraw statements contained herein. Nothing in this document is in any way binding on the OIF or any of its members.

The user's attention is called to the possibility that implementation of the OIF implementation agreement contained herein may require the use of inventions covered by the patent rights held by third parties. By publication of this OIF implementation agreement, the OIF makes no representation or warranty whatsoever, whether expressed or implied, that implementation of the specification will not infringe any third party rights, nor does the OIF make any representation or warranty whatsoever, whether expressed or implied, with respect to any claim that has been or may be asserted by any third party, the validity of any patent rights related to any such claim, or the extent to which a license to use any such rights may or may not be available or the terms hereof.

© 2016 Optical Internetworking Forum

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such as by removing the copyright notice or references to the OIF, except as needed for the purpose of developing OIF Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted above are perpetual and will not be revoked by the OIF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE OIF DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY, TITLE OR FITNESS FOR A PARTICULAR PURPOSE.

OFFICAL INTERNETWORKING FORUM IA # OIF-CFP2-AC IA for CFP2 Analog Coherent Optics M	lodule
LIST OF FIGURES	8
LIST OF TABLES	8
 Document Revision History Reference Documents 2.1 Normative References 3 Introduction 4 CFP2-ACO Module Functions 4.1 Transmit (Tx) Coherent Optics Function Block Diagrams 	10 10 11 12
4.2 Receive (Rx) Coherent Optics Function Block Diagrams	15
4.3 Laser Sources (Tx and Rx LO)	17
4.4 Integrated Polarization Multiplexed Quadrature Mach-Zehnder Modulator (PMQ Modulator)	18
4.5 Intradyne Coherent Receiver (ICR)	
4.6 MZ Modulator RF Drivers	19
4.7 Optical Power Monitoring and Control	
4.8 MDIO Management Interface Specification4.9 Electronics	
5 CFP2-ACO Module Classification by Electrical Interface	
6 CFP2-ACO Module Mechanicals and Power	
6.1 Overview	
6.2 Mechanical Dimensions	
6.3 Optical Connector	
6.4 Module Power Dissipation Classes6.5 Module Bail Latch Color	
7 CFP2-ACO Module Thermal Interface Requirements	
7.1 Data Requirements	
7.2 Thermal Environment	24
7.3 Thermal Interface Area	
7.4 Module Thermal Interface Surface Requirements	
 7.5 Thermal Sensor Calibration 8 CFP2-ACO Electrical Connector Interface 	
8.1 104-Pin Electrical Connector	
8.1.1 Background	
8.1.2 Photographs of Connector: Plug and Host	26
8.1.3 Suppliers and Example Part Numbers	
8.1.4 Reliability and Environmental Test Documentation	
8.1.5 Connector Ratings	
8.1.6 RF Path S-Parameters	
8.1.7 Connector Cross Mating	27
8.1.8 Related CFP2 Cage Products	
8.2 Electrical Pin Maps	
8.2.1 Class 1 and Class 2 Electrical Pin Map	

8.2.2 Class 3 Electrical Pin Map with the Full Superset Analog Control
Interface (ACI)
8.3 Allowed Tx and Rx RF Channel Mappings
9 CFP2-ACO Tx and Rx RF Electrical Interfaces
9.1 Introduction
9.2 Tx and Rx Electrical Interface Specification Compliance Points33
9.3 Compliance Board Suppliers and Example Part Numbers
9.4 Compliance Board S Parameter Requirements
9.5 Class 1: RF Electrical Interface Specifications
9.5.1 Class 1: Tx RF Interface Specifications
9.5.2 Class 1: Rx RF Interface Specifications
9.6 Class 2/3: RF Electrical Interface Specifications
9.6.1 Class 2/3: Tx RF Interface Specifications
9.6.2 Class 2/3: Rx RF Interface Electrical Specifications40
10 Class 3 Analogue Control Interface (ACI) Requirements
10.1 Tx MZ Arm Phase Control Dither Inputs44
10.2 Tx X-Pol. and Y-Pol. Power Control Dither Inputs45
10.3 Tx Optical Power Monitor Taps
10.4 Rx TIA/VGA Gain Control Inputs
10.5 PM_SYNC Input
10.6 TX_DIS Input and RX_LOS Output Configurability
11 MDIO Register Interface
11.1 Implementation Overview
11.3 CFP2-ACO User Private Use Registers
12 OIF Requested CFP MSA MIS V2.4 R06b Extensions and Modifications
Supporting the CFP2-ACO Module (<i>Informative</i>)
12.1 OIF Requested Changes to Existing CFP MSA MIS V2.4 R06b
Content
12.2 New MDIO Registers for Tx Subsystem Control
12.3 New MDIO Registers for Rx Subsystem Control
12.4 CFP2-ACO Fault, Alarm, Warning and Status (FAWS) Registers67
12.5 CFP2-ACO Wavelength Change Operation
12.6 CFP2-ACO Wavelength Selection Registers
12.6.1 Use of the High Resolution Tuning Registers
12.7 CFP2-ACO Module Characteristic Data Registers
13 Relevant 0xB000 MDIO Registers in CFP MSA MIS V2.4 R06b
(Informative)
 13.1 Tx and Rx Laser Source Control
 13.2 Tx and Rx Laser Source Performance Monitoring
13.4 Tx Output Power and Monitoring (VOA Control)
13.5 Modulator Bias Voltages
13.6 FAWS Registers

14	Glossary	85
	Annex A: HCB and MCB Differential Insertion Losses	
16	Annex B: Mated HCB and MCB S-Parameters	.87
17	Appendix I: Electrical Connector S-Parameters (Informative)	.90
18	Appendix II: Beat Frequency Skew Measurement Method (Informativ	e)
	91	

- 19
- 20

List of Figures

FIGURE 1: CFP2-ACO MODULE ILLUSTRATION ¹	12
FIGURE 2 CFP2-ACO MODULE HIGH LEVEL BLOCK DIAGRAM	13
FIGURE 3: SUPERSET TRANSMIT FUNCTION BLOCK DIAGRAM WITH AN MDIO ONLY CONTROL INTERFACE	14
FIGURE 4: SUPERSET TRANSMIT FUNCTION BLOCK DIAGRAM WITH AN MDIO PLUS FULL SUPERSET ANALOG CONTROL	
INTERFACE (ACI)	15
FIGURE 5: SUPERSET RECEIVE FUNCTION BLOCK DIAGRAM WITH AN MDIO ONLY CONTROL INTERFACE	16
FIGURE 6: SUPERSET RECEIVE FUNCTION BLOCK DIAGRAM WITH AN MDIO PLUS FULL SUPERSET ANALOG CONTROL INTERF	ACE
(ACI)	17
FIGURE 7: CFP2-ACO ALLOWED CONNECTOR POSITIONS (CENTERED, LEFT JUSTIFIED, AND RIGHT JUSTIFIED) WITH	
DIMENSIONAL TOLERANCES	23
FIGURE 8 : (A) PLUG BOTTOM SIDE SHOWING SEQUENCED CONNECTION CONTACTS, (B) PLUG TOP SIDE SHOWING GSSG	
FORMAT RF CONTACT GROUPS, (C) HOST CONNECTOR REAR VIEW – PINS CONNECTED TO HOST PCBS, (D) HOST	
CONNECTOR FRONT VIEW – ACCEPTS THE PLUG	
FIGURE 9: SINGLE CFP2 CAGE ILLUSTRATION (INFORMATIVE).	
FIGURE 10 (A) CLASS 1 AND 2 ELECTRICAL PIN MAP, (B) CLASS 3 FULL SUPERSET ACI INTERFACE ELECTRICAL PIN MAP	
FIGURE 11: I AND Q PHASE DEFINITIONS	
FIGURE 12: HIGH-SPEED I/O FOR DATA	32
FIGURE 13: INFORMATIVE RF CHANNEL IMPLEMENTATION EXAMPLE	33
FIGURE 14: TX AND RX ELECTRICAL INTERFACE COMPLIANCE POINTS. THE PROVIDED HCB AND MCB IMPLEMENTATION	
Pictures are <i>Informative</i> Examples Only.	
FIGURE 15: CLASS 1 TX RF INTERFACE DRIVE SIGNAL EYE-MASK @ TP1A	
FIGURE 16: NORMALIZED TX EO MAG(S21) COMPLIANCE MASK	40
FIGURE 17: NORMALIZED RX OE CG MAG(S21) COMPLIANCE MASK	
FIGURE 18: TX ANALOG CONTROL INTERFACE (ACI) SCHEMATIC	
FIGURE 19: RX ANALOG CONTROL INTERFACE (ACI) SCHEMATIC	
FIGURE 20: WAVELENGTH CHANGE SEQUENCE (A) CLASS 1 AND 2, (B) CLASS 3.	
FIGURE 21: ACCESS METHODOLOGY TO OBTAIN CLASS 2 AND CLASS 3 MODULE CHARACTERISTIC DATA	75
FIGURE 22: REFERENCE DIFFERENTIAL INSERTION LOSSES FOR THE PCB TRACES ON TWO MODULE COMPLIANCE BOARDS	
[MCB SDD21]	86
FIGURE 23: REFERENCE DIFFERENTIAL INSERTION LOSSES FOR THE PCB TRACES ON A HOST COMPLIANCE BOARD [HCB	
SDD21]	
FIGURE 24: MATED HCB-MCB SDD11, SDD22	
FIGURE 25: MATED HCB-MCB SCD21, SCD12	
FIGURE 26: MATED HCB-MCB SCD11, SCD22 AND SDC11, SDC22	
FIGURE 27: MATED HCB-MCB SDD21, SDD12	
FIGURE 28: MATED CFP2 CONNECTOR SI PERFORMANCE MEASUREMENT CONDITIONS	
FIGURE 29: TYPICAL MATED CFP2 CONNECTOR SI PERFORMANCE	
FIGURE 30: BEAT FREQUENCY SKEW MEASUREMENT METHOD	91

List of Tables

9
21
22
26
27
27
28
31
34

IA # OIF-CFP2-ACO-01.0 IA for CFP2 Analog Coherent Optics Module

TABLE 10: CLASS 1 CFP2-ACO MODULE TX RF INTERFACE ELECTRICAL SPECIFICATIONS	
TABLE 11: CLASS 1 CFP2-ACO MODULE RX RF INTERFACE ELECTRICAL SPECIFICATIONS	
TABLE 12: CLASS 2/3 CFP2-ACO MODULE TX RF INTERFACE ELECTRICAL SPECIFICATIONS FOR A MODULE CONTROL	led PMQ
TRANSMITTER	
TABLE 13: CLASS 3 CFP2-ACO MODULE TX RF INTERFACE ELECTRICAL SPECIFICATIONS FOR A HOST CONTROLLED PI	MQ
TRANSMITTER	40
TABLE 14: CLASS 2/3 CFP2-ACO MODULE RX RF INTERFACE ELECTRICAL SPECIFICATIONS	42
TABLE 15 REQUESTED CHANGES TO CFP MSA MIS V2.4 R06B REGISTERS	51
TABLE 16: TX SUBSYSTEM MDIO REGISTERS	60
TABLE 17: RX SUBSYSTEM MDIO REGISTERS	65
TABLE 18: RX SUBSYSTEM MDIO REGISTERS CONTINUED	
TABLE 19: CFP MSA MIS V2.4 R06B LASER CONTROL REGISTERS	
Table 20: Tx Minimum Laser Frequency Registers	
TABLE 21: TX TUNED LASER FREQUENCY REGISTERS	
Table 22: Rx Minimum Laser Frequency Registers	72
TABLE 23: RX TUNED LASER FREQUENCY REGISTERS	72
TABLE 24: MDIO MODULE CHARACTERISTIC DATA REGISTERS	75
TABLE 25: GLOSSARY	85

1 **Document Revision History**

Table 1 provides the OIF-CFP2-ACO-1.0 IA document revision history.

Document	Date	Revisions/Comments	
OIF2013.130.01	April 19 th 2013	Project Start: CFP2 Coherent Optics Transceiver Module	
OIF-CFP2-ACO-01.0	January 22 nd 2016	Release created from OIF2014.006.19	

Table 1: IA Document Revision History

2 **Reference Documents**

2.1 Normative References

[1] <u>www.cfp-msa.org</u>

[2] CFP MSA Management Interface Specification, Version 2.4 R06b (June 8th 2015)

[3] CFP MSA CFP2 Hardware Specification Revision 1.0, 31 July 2013

[4] CFP MSA CFP/CFP2/CFP4 Pin Allocation Rev. 25

[5] OIF-MSA-100GLH-EM-01.1 - Multisource Agreement for 100G Long-Haul DWDM Transmission Module - Electromechanical (September 2011)

[6] OIF-PMQ-TX-01.2 - Implementation Agreement for Integrated Polarization Multiplexed Quadrature Modulated Transmitters (May 2015)

[7] OIF-DPC-RX-01.2 - Implementation Agreement for Integrated Dual Polarization Intradyne Coherent Receivers (November 2013)

[8] OIF-microITLA-01.1 – Implementation Agreement for Micro Integrable Tunable Laser Assembly (July 2015)

[9] OIF-ITLA-MSA-01.3 - Integrable Tunable Laser Assembly Multi Source Agreement (July 2015)

[10] OIF-CEI-03.1 - Common Electrical I/O (CEI) - Electrical and Jitter Interoperability agreements for 6G+ bps, 11G+ bps, 25G+ bps I/O (February 2014)

[11] CFP2 Hardware Baseline Design Rev. 1L

[12] Implementation Agreement for Thermal Interface Specification for Pluggable Optics Modules (May 2015)

[13] OIF-DPC-MRX-01.0 - Implementation Agreement for Integrated Dual Polarization Micro-Intradyne Coherent Receivers (March 2015)

[14] Telcordia NEBSTM Requirements: Physical Protection, Telcordia Technologies Generic Requirements, GR-63-CORE Issue 3, March 2006.

3 Introduction

Faceplate density of optical IO is a key metric for switching and line-side transport applications. The industry experience is that this faceplate density is maximized when high power electronics are removed from optical modules [e.g. CFP \rightarrow CFP2 \rightarrow CFP4 for 100GbE client modules.]

Faceplate density improvements can be realized for line-side optical transport by placing coherent DSP engines on the Host board and the E-to-O conversion functions within a CFP2 <u>A</u>nalog <u>C</u>oherent <u>O</u>ptics (CFP2-ACO) module. This architecture for line cards, that broadly separates optical and electronic DSP functions, offers the following additional benefits:

- Margin stacking of the coherent DSP engine in the supply chain is removed.
- Coherent DSP engine development is decoupled from the electro-optics development, which is beneficial since they have different supply chains and development cadences. This decoupling also enables specialization within the supply chain and reduces duplication of development efforts.
- Optimal cooling of the optical and electronic DSP functions is possible, enabling higher performance line-side applications. Shared heat sinking between low temperature optics and high temperature electronics is avoided and there is no inefficient "box"-in-"box" thermal stacking:
 - A Host board coherent DSP engine can have a permanently attached full slot height heat sink with excellent thermal interface conductivity. The DSP engine can operate with high junction temperatures.
 - A faceplate pluggable module has limited space available for a riding heat sink and the interface thermal conductivity is limited by both the maximum spring force that can be applied to the module and the module surface roughness. A pluggable module is best suited to relatively low power E-to-O conversion functionality.
- The dominant coherent modem Bill of Material (BOM) cost along with the main contributors to reliability FITs (Failures in Time) become hot-pluggable within the CFP2-ACO module. This addresses the problem of the modem first-in install cost in multi-port line cards. It also allows the selection of the best-fit CFP2-ACO module for each system application at the time of deployment (price/performance/power/etc.)

Figure 1 shows a CFP2-ACO module for illustration purposes only¹. The CFP2-ACO module contains all the required functions to perform bi-directional

¹ Do not use Figure 1 for design detail or scale.

dual polarization coherent optical signaling over a pair of single mode optical fibers and its definition is the topic of this implementation agreement.

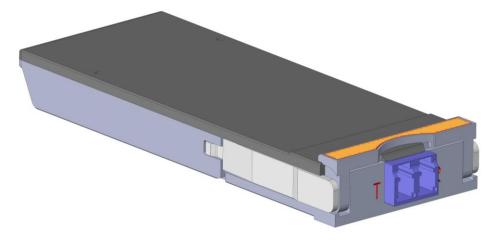


Figure 1: CFP2-ACO Module Illustration¹

Data rate agnostic CFP2 Analog Coherent Optics (CFP2-ACO) modules will be defined sufficiently in this IA to enable their use for *Metro-to-Regional* reach line-side transport applications and to allow them to interwork with multiple Host coherent DSP engine implementations. These modules are also expected to be used across *multiple* coherent DSP ASIC generations. The CFP2-ACO module is *not* a Metro-only reach transport solution. Different Classes of CFP2-ACO modules are defined in Section 5.

The CFP2-ACO provides a sufficient level of functional abstraction, within a "large enough" electromechanical envelope, to enable multiple optical technology choices to deliver competitive modules compatible with this IA. In addition, the CFP2 form factor provides a good physical match between optical and CMOS integration capabilities for coherent applications enabling the maximum practical medium term faceplate density for coherent optical transport.

The broad application space available to the CFP2-ACO provides a large enough addressable market for the optical module vendors to amortize significant investments in the development of the module. A long life-span for the CFP2-ACO solution is expected to provide the necessary runway and unit volumes required to spur significant innovation and cost reduction in the coherent optics solutions for *Metro-to-Regional* reach line-side transport.

4 **CFP2-ACO Module Functions**

In this Section an overview is provided on the functions contained within the CFP2-ACO module to provide E-to-O and O-to-E conversions for dual

polarization (DP) coherent optical signaling. The high level block diagram for the CFP2-ACO module is given in Figure 2.

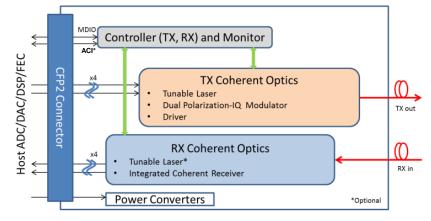


Figure 2 CFP2-ACO Module High Level Block Diagram

4.1 Transmit (Tx) Coherent Optics Function Block Diagrams

The CFP2-ACO transmit function block diagram for an "MDIO² only" control interface is shown in Figure 3. The CFP2-ACO transmit function block diagram for an "MDIO plus Analog Control Interface (ACI)" is shown in Figure 4. In both Figures the Tx superset module functionality available on the MDIO control interface is shown. Not all this Tx functionality is required for an IA compatible module. The **BB01** *Tx Optical Features* register, the **BB02** *Tx Analog Control Interface Availability* register and the **BB04** *Tx Driver Features* register provide the user feedback on the functionality available within a given module vendor's implementation.

² Management Data Input/Output

IA # OIF-CFP2-ACO-01.0 IA for CFP2 Analog Coherent Optics Module

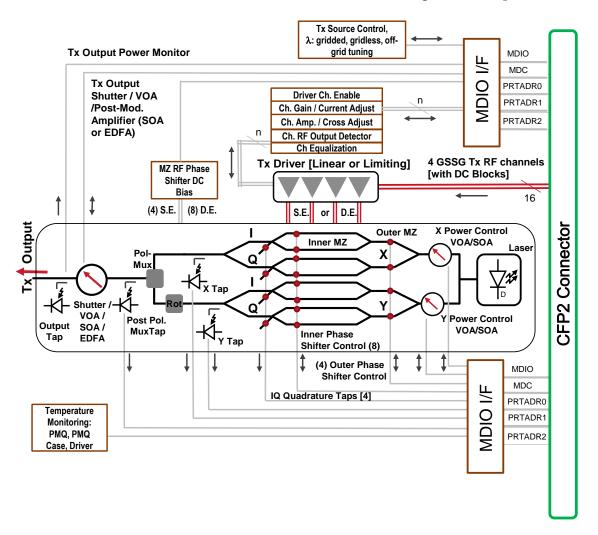


Figure 3: Superset Transmit Function Block Diagram with an MDIO Only Control Interface

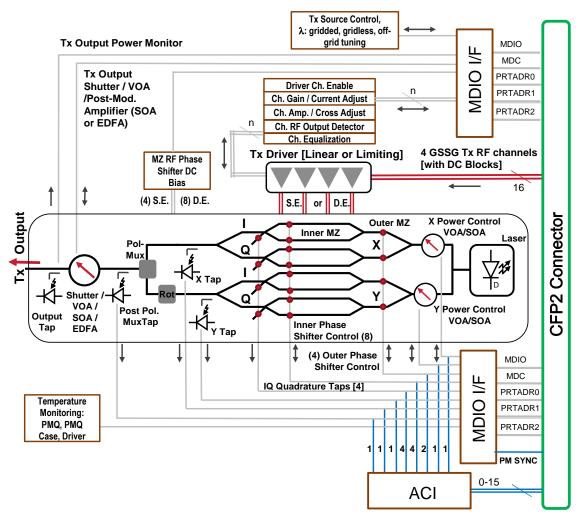


Figure 4: Superset Transmit Function Block Diagram with an MDIO plus Full Superset Analog Control Interface (ACI)

4.2 Receive (Rx) Coherent Optics Function Block Diagrams

The CFP2-ACO receive function block diagram for an MDIO only control interface is shown in Figure 5. The CFP2-ACO receive function block diagram for an MDIO plus Analog Control Interface (ACI) is shown in Figure 6. In both Figures the Rx superset module functionality available on the MDIO control interface is shown. Not all this Rx functionality is required for an IA compatible module. The **BB8B** *Rx Subsystem Features* register and the **BB8C** *Rx TIA/VGA Features* register provide the user feedback on the functionality available within a given module vendor's implementation.

IA # OIF-CFP2-ACO-01.0 IA for CFP2 Analog Coherent Optics Module

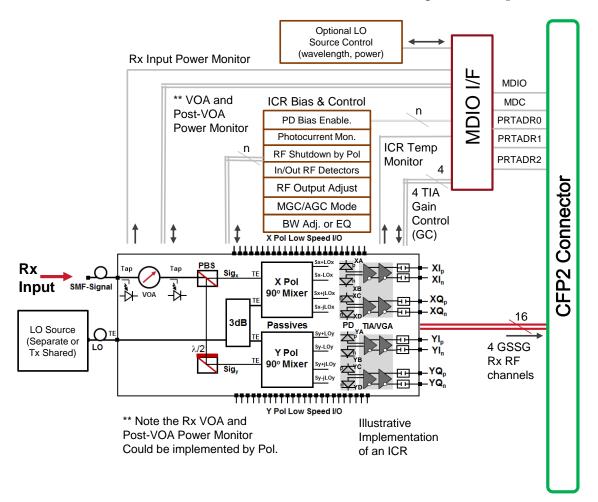


Figure 5: Superset Receive Function Block Diagram with an MDIO Only Control Interface

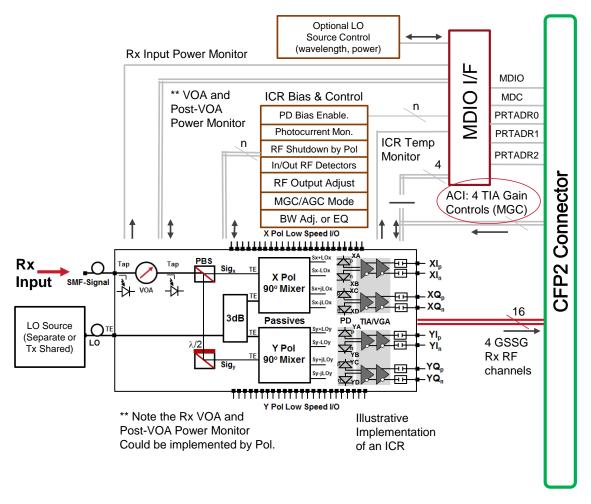


Figure 6: Superset Receive Function Block Diagram with an MDIO plus Full Superset Analog Control Interface (ACI)

4.3 Laser Sources (Tx and Rx LO)

The CFP2-ACO module may contain a single laser source whose optical power is shared between the transmit signal and LO functions, or it may contain two laser sources. The laser source(s) may be integrated with other electro-optics such as the ICR or the PMQ modulator, or be stand-alone components derived from the Ref. [8] µITLA. The number of laser sources in the module will depend on the technology available to the manufacturer along with design trade-offs such as CFP2-ACO module power dissipation or the physical space available.

The laser source(s) will require a narrow optical linewidth that is consistent with operation of coherent optical systems. Lorentzian components of the Tx and LO sources are expected to be below 500 kHz linewidth.

The channelization of the Tx and LO sources is expected to vary by application, with the most demanding applications requiring compatibility with arbitrary wavelength channel grids having a 6.25 GHz channel spacing.

To enable these applications in Section 12.1, the OIF is requesting registers to implement arbitrary settable Tx/Rx first channel frequencies with a 1 MHz resolution from the CFP2-MSA. The **B430** and **B440** *Fine Tune Frequency* registers are also required in the CFP2-ACO (they are not optional.)

4.4 Integrated Polarization Multiplexed Quadrature Mach-Zehnder Modulator (PMQ Modulator)

The PMQ modulator impresses the optical phase modulation onto the Tx CW source output. Electrical drive signals are provided from four modulator RF drivers and may be differential or single-ended, depending on the material and/or design of the optical modulators.

The modulator comprises X and Y polarization paths which are orthogonally polarization multiplexed prior to coupling into the single mode fiber output. Power in the two polarization paths may be balanced by the action of variable optical attenuator (VOA) or semiconductor amplifier (SOA) functions. Prior to launch into the output fiber the total power shall be controlled by a shutter, variable optical attenuator (VOA), or optical amplifier (SOA or EDFA) using associated tap monitoring photodiodes.

The individual Mach-Zehnder (MZ) modulator elements have electrodes that allow the phase imbalance between their arms to be adjusted to maintain optimum system performance over life, wavelength and temperature. Control is facilitated using various in-line and complimentary optical tap monitoring points. CFP2-ACO operating Classes are introduced in Section 5. For Class 1 and Class 2 operation it is expected that all control for bias and imbalance of the MZ elements will be controlled by the module itself, or via the management interface (MDIO). For Class 3 operation the imbalance of the MZ elements can optionally be controlled by the Host using both the MDIO interface and the Analogue Control Interface.

4.5 Intradyne Coherent Receiver (ICR)

The ICR function may be a stand-alone function within the CFP2-ACO or it may be physically integrated with other functions such as an LO source. The Ref. [7] ICR and the Ref. [13] μ ICR are anticipated implementations for this function. The Rx optical input signal may be monitored and controlled by optical photodiode tap and VOA functions before or after the polarization demultiplexing occurs within the ICR.

The ICR function shall provide Rx optical input polarization demultiplexing, LO splitting, and 90-degree mixer hybrids feeding eight photodiodes in 4 balanced pairs. Four differential transimpedance amplifiers (TIAs) shall amplify the received X and Y polarization quadrature signals (XI,XQ,YI,YQ) and AC couple them to the CFP2 connector Rx differential signal pairs for return to the Host.

The TIAs in the ICR function enable multiple signal monitors and control methods. The most notable TIA control choice is between an automatic or manual gain control operating mode (AGC or MGC). The TIAs may also facilitate a bandwidth equalization function and provide various input signal strength and/or output level monitors.

In the AGC operating mode there is RF output level adjust control available on the management interface and in the MGC operating mode an external signal is used to control the gain of each differential amplifier. The MGC external gain control can be provided via management interface registers or via the Analogue Control Interface (ACI).

4.6 MZ Modulator RF Drivers

The MZ modulator RF drivers amplify the signals from the Host that are delivered across the CFP2 transmit-side connector interface. They drive the optical MZ modulators at a chosen fraction of 2×Vpi, dependent on the CFP2-ACO operating class and modulation format.

RF drivers are likely to be one of the more highly power dissipative components within the CFP2-ACO module, so they require appropriate heatsinking for long term operation.

The RF drivers may be controlled from the management interface registers and/or their output drive level may be actively controlled. To assist with accurate drive level control the driver function may include output side RF detectors which return mean or peak signal levels.

RF drivers shall provide either a limiting or linear drive transfer characteristic in order to deliver the Class 1 or Class 2&3 operating regimes respectively.

4.7 Optical Power Monitoring and Control

Optical power monitoring and control are key parts of the functionality in the CFP2-ACO module. The electronics within the module must process the various monitoring signals and make them available over the management interface (MDIO) or send them via the Analogue Control Interface (ACI). Example requirements for the power monitoring and control functions include the following:

- Maintain stable total output power.
- Adjust output power to match the use situation.
- Shutter Tx output power during tuning and set up operations.
- Balance X and Y polarization optical powers.
- Monitor or adjust modulation depth to suit modulation type.
- Maintain modulator imbalance and bias point over time, temperature and wavelength.
- Control receiver optical signal level.
- Adjust receiver output voltage swing.
- Adjust receiver bandwidth or peaking function, if available.
- Indicate received signal strength
- Alarm on LOS.

4.8 MDIO Management Interface Specification

The Management Data Input/Output interface is the main way of communicating with the CFP2-ACO module. The interface implements a clause 45 compliant IEEE Std. 802.3TM-2012 [8] management data interface that allows control information to be sent to the CFP2-ACO module as required. The MDIO bus carries bidirectional data and the MDC signal is the associated clock. Three hardware port address lines (PRTADR0 to PRTADR2) allow multiple modules to be controlled from a single Host. The MDIO Management Interface Specification (MIS) is detailed in Section 11.

4.9 Electronics

The CFP2-ACO needs to include the necessary electronics to realize communications and control functions for all the electro-optic elements. These electronics will include power supplies with appropriate filtering, control elements such as micro-processors or FPGAs, and bias circuitry for modulator elements and photodiodes. The cumulative power dissipation of all the electronics and electro-optic functions need to be within the specified power dissipation limits for the CFP2-ACO module, provided in Section 6.4.

5 **CFP2-ACO Module Classification by Electrical Interface**

Three broad classes of operation for the CFP2-ACO module are necessary to meet the requirements of users, as shown in Table 2. These operation classes may be realized by a single configurable module or in optimized module types,

depending on the technical feasibility and the cost of providing a single module solution.

For the implementer of the CFP2-ACO module these operation classes vary in the choice of Tx RF drive condition (linear/limiting) and in the presence of a possible Analog Control Interface (ACI) on the connector pin map.

Class	Application	Control Interface	Connector Pin Map
1	DP-BPSK and DP-QPSK with Limiting Tx RF Driver	Control via MIS/MDIO instruction set.	See Section 8.2.1.
2	Enhanced DP-BPSK, DP-QPSK and DP- xQAM with Linear Tx RF Driver	Control via MIS/MDIO instruction set.	See Section 8.2.1.
3	Enhanced DP-BPSK, DP-QPSK and DP- xQAM with Linear Tx RF Driver	Control via MIS/MDIO instruction set plus an Analog Control Interface (ACI) .	See Section 8.2.2.

Table 2: CFP2-ACO Module Classification by Electrical Interface

Note for a Class 3 CFP2-ACO the level of implementation coverage for the ACI is at the discretion of the vendor. Any ACI function identified in the pin map of Figure 10b that is not implemented by the module shall be left as not-connected (N.C.) within the module. The available ACI functionality can be queried from the **BB02** *Tx Analog Control Interface Availability* register and Bit 6 of the **BB8B** *Rx Subsystem Features* register.

6 **CFP2-ACO Module Mechanicals and Power**

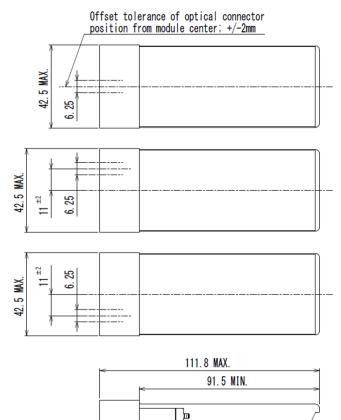
6.1 Overview

The CFP2 form factor was designed by the CFP MSA to be hot-pluggable into a faceplate slot on a packet optical switch or line-side transport card. Surface mounted cages (see Section 8.1.8) on the card provide physical alignment between the CFP2 modules and Host PCB surface mounted electrical connectors (see Section 8). The cages also provide riding heat sinks through which the majority of dissipated power is removed from the CFP2. Ensuring the thermal interface between a CFP2 module and the riding heat sink is made in a repeatable manner is critical to ensure the CFP2 module does not exceed its upper operating temperature (See Section 7).

6.2 Mechanical Dimensions

Normative engineering drawings of the CFP2 form factor, cages and connectors are given in Ref. [11]. Further detail on the mechanical characteristics of the CFP2 housing are given in Ref. [3], which should be read in conjunction with this IA for a successful CFP2-ACO implementation. Table 3 outlines the CFP2-ACO relevant sections in the Ref. [3] CFP-MSA Hardware Specification.

CFP MSA Hardware Specification [Ref 3.]	Topic	Comment	
Section 5.3 CFP2 Module Dimensions		Simple mechanical outline.	
Section 5.3.1 CFP2 Mechanical Surface Characteristics		In addition see Section 7.3 and 7.4 below for recommendations on the CFP2-ACO thermal interface area dimensions, as well as surface flatness and roughness.	
Section 5.3.2 CFP2 Insertion & Extraction		Details insertion, extraction and retention forces.	


6.3 Optical Connector

The optical port connections on the front of the CFP2 are detailed in Ref. [3] and Ref. [11]. While the CFP2 MSA allows for MPO12 and MPO24 connector options, the CFP2-ACO application uses only the duplex LC connector configuration.

In addition to the centered duplex LC connector location specified by the CFP MSA, the CFP2-ACO IA also optionally allows the optical port position on the front of the module to be either left or right-justified if needed to enable a certain vendor-specific implementation technology. The centered, left-justified and right-justified connector positions with dimensional tolerances are provided in Figure 7.

The bail latch dimensions are not specified, for consistency with the CFP2 MSA specification in Ref. [3].

Figure 7: CFP2-ACO Allowed Connector Positions (Centered, Left Justified, and Right Justified) with Dimensional Tolerances.

6.4 Module Power Dissipation Classes

The *Power Dissipation Classes* for CFP2 modules are defined in Section 4.2 of Ref. [3]. The CFP2-ACO shall use these same definitions that range from a maximum total power dissipation of 3 Watts (*Power Dissipation Class* 1) in 3W increments up to 18 Watts (*Power Dissipation Class* 6).

Register **807E** bits 6-7 provide the *Power Dissipation Class* for the CFP2-ACO module.

Class 1 CFP2-ACO modules shall be *Power Dissipation Class* 4 or better, i.e. <12W.

6.5 Module Bail Latch Color

The CFP2-ACO bail latch color shall be a pale orange. One possible implementation would be Pantone 1575C.

7 CFP2-ACO Module Thermal Interface Requirements

7.1 Data Requirements

The basic thermal data reporting requirements for the CFP2 ACO module, following Ref. [12], are as follows:

- a) Maximum Power Dissipation at EOL Long Term Operating Case Temperature
- b) Maximum Power Dissipation at EOL Short-Term Operating Case Temperature
- c) Minimum Power Dissipation at BOL Short-Term Operating Case Temperature
- d) Monitor Point Location within the Thermal Interface Area
- e) Maximum Long-Term Operating Temperature at the Monitor Point
- f) Maximum Short-Term Operating Temperature at the Monitor Point
- g) Minimum Operating Temperature at the Monitor Point
- h) Thermal Interface Resistance
- i) Surface Flatness of the Thermal Interface Area
- j) Surface Roughness across the Thermal Interface Area

7.2 Thermal Environment

To define the thermal interface requirements, the CFP2-ACO thermal environment is assumed to be that of a shelf level product, as defined by Telcordia NEBS requirements in Ref. [14], with 55°C ambient air, corresponding to a 70°C or greater *Monitor Point* maximum temperature for short-term operation.

7.3 Thermal Interface Area

For a *Power Dissipation Class* 4 CFP2-ACO module (<12W) the *Power Density Class* of the module is pd05 (<0.5W/cm²), as defined in Ref. [12].

The top surface of the CFP2-ACO module that lies directly under the cage opening shall be dimensionally controlled to enable a good thermal interface with the riding heat sink. The thermal interface area is defined in Section 7.2 of Ref. [12] as the heat transfer contact area between the module and heat sink, centered with respect to the cage opening, but typically at most 0.5 mm less in width, and 2 mm less in depth.

In Ref. [3] an example cage opening of 37.8 mm wide x 71 mm deep is provided for the generic CFP2 module. It is recommended that this cage opening be maximized for the CFP2-ACO application using the cage design principles implemented for the CFP4 Baseline Design Rev. R available at Ref. [1].

The normal force between the heat sink and the CFP2 ACO module is limited to 15N as specified in Ref [3].

7.4 Module Thermal Interface Surface Requirements

To ensure good repeatable heat sink performance it is recommended that the CFP2-ACO thermal interface area have flatness ≤ 0.08 mm and a surface finish $\leq 0.8 \mu$ m Ra. This is to ensure that system designers can provide adequate cooling for modules with similar or better heat sink contact surface preparation. The goal is to have an overall thermal interface resistance of $<2 \text{ °C-cm}^2/W$, as defined in Ref. [12].

7.5 Thermal Sensor Calibration

The CFP2 ACO internal temperature sensor is to be calibrated to report the temperature at the monitor point with >95% of the heat removed through the heat sink. This implies that the CFP2 module is in thermal equilibrium with the cage and PCB so that little net heat is transferred in or out of locations other than the thermal interface area.

8 CFP2-ACO Electrical Connector Interface

8.1 104-Pin Electrical Connector

8.1.1 Background

The Plug and Host connector parts for the CFP2 are detailed in the CFP MSA Ref. [3]. The Plug is the male connector part attached to the CFP2-ACO module PCB. The Host Connector is the female connector part that is located at the rear of the CFP2 cage, attached to the line or switch card. The female Host Connector is covered by a Host Connector Cover Assembly that includes gaskets around the opening for the Plug connector to provide electromagnetic shielding.

Both connector parts are of a molded polymer construction with plated metal contact inserts. The contact pitch is 0.6mm and there are 104 contacts.

Performance characterization of several connector implementations in provided in Appendix I.

8.1.2 Photographs of Connector: Plug and Host

Representative examples of both the Plug and Host Connector parts are provided in Figure 8.

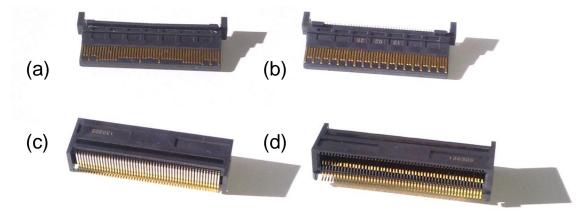


Figure 8 : (a) Plug bottom side showing sequenced connection contacts, (b) Plug top side showing GSSG format RF contact groups, (c) Host Connector rear view – pins connected to Host PCBs, (d) Host Connector front view – accepts the Plug.

8.1.3 Suppliers and Example Part Numbers

At the time of publication there are three suppliers of the connector for the CFP2-ACO. The suppliers listed in alphabetical order and example connector part numbers are given in Table 4 for reference. It is the responsibility of the connector users to ensure that an appropriate part and plating finish is specified for their requirements.

Supplier	Example Plug Part Number	Example Host Part Number	Comments
Amphenol	P-U56-B104-XXXX	P-U99-B104-XXXX	-XXXX represents plating thickness, packaging and other options
TE Connectivity	2274844-1	2274845-1	
Yamaichi Electronics	CN121P-104-0003 CN121P-104-1003	CN121S-104-0001 CN121S-104-1001	-000X are the Standard Performance version (28G). -100X are the High Performance version (56G). These part numbers come with tray packaging. Different packaging option and plug PCB thickness options are available.
Other			Add details when available

8.1.4 Reliability and Environmental Test Documentation

At the time of publication the reliability documents given in Table 5 are available from the respective suppliers. The listed suppliers have completed and passed the mixed flowing gas test requirements of GR-1217-CORE.

Supplier	Document	Date	Qualification Target
Amphenol	QTP9300537	28 th February 2014	GR-1217-CORE
Yamaichi Electronics	RE-5354. CN121 Series Evaluation Test Report	31 st January 2013	GR-1217-CORE
Other 1			
Other 2			

Table 5: CFP2 Connector Reliability Documents

8.1.5 Connector Ratings

The current rating per contact pin for the various connectors is given in Table 6 along with the voltage rating and the allowed number of mating cycles.

Supplier	Current Capacity per Pin (mA)	Voltage Rating per pin (V)	Rated Mating Cycles
Amphenol	1875	TBC	<=200
Yamaichi	1250	120	<=200
Electronics			
Other 1			
Other 2			

Table 6: CFP2 Connector Ratings

8.1.6 **RF Path S-Parameters**

Informative reference data is provided in Appendix I (Section 17).

8.1.7 Connector Cross Mating

This is the subject of further study at the time of publication.

8.1.8 Related CFP2 Cage Products

Manufacturers supply the hardware for single and/or dual CFP2 PCB mounting cages to facilitate the manufacture of line cards, switch cards, or module compliance boards (MCB).

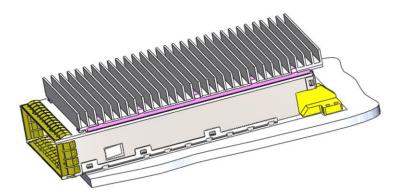


Figure 9: Single CFP2 Cage Illustration (informative).

Some *informative* part numbers are given in Table 7 and an example of a single CFP2 mounting cage is shown in Figure 9. It is left to the user to ensure that they specify the correct part variant and options for their requirements.

Supplier	Single Slot Cage	Dual Slot Cage	Comments
Amphenol	P-U98-B1XX-X0XX	P-U98-B2XX-X0XX	
Yamaichi Electronics	CN121A-104-0003	CN121A-104-0004	
TE Connectivity	2274842-1	2287075-1	Cage kits including cage/receptacle/cover
Other 1			

Table 7: Related CFP2 Cage Part Numbers

8.2 Electrical Pin Maps

8.2.1 Class 1 and Class 2 Electrical Pin Map

The Class 1 and Class 2 CFP2-ACO module electrical pin map is given in Figure 10a. The pin-out changes in Figure 10a relative to the "Top/Bottom" pin allocation in Ref. [4] are identified by an asterisk on the pin number. These changes include the following: MCLK outputs shall be N.C. within the module; REFCLK inputs shall be appropriately terminated inside the CFP2-ACO, although for Class 2 these inputs can be optionally N.C in the module; the CFP2 4x25G RX0-3 and TX0-3 data pins shall be mapped to the coherent Tx/Rx channels as outlined in Section 8.3. In Figure 10a the [0,0,0] Tx/Rx channel mapping is used for illustrative purposes.

The Class 1 and Class 2 CFP2-ACO module electrical pin map **does not** impede the Host implementing a CFP2 "universal slot" compatible with both the CFP2-ACO **and** any selected set of the CFP2 client module electrical interfaces given in Ref. [4].

8.2.2 Class 3 Electrical Pin Map with the Full Superset Analog Control Interface (ACI)

The Class 3 CFP2-ACO module electrical pin map with the full superset Analog Control Interface (ACI) is given in Figure 10b. Any ACI pin in Figure 10b whose function is not implemented by the module shall be left as N.C. within the module. The pin-out changes in Figure 10b relative to the "Top/Bottom" pin allocation in Ref. [4] are identified by an asterisk on the pin number. In Figure 10b the CFP2 4x25G RX0-3 and TX0-3 data pins have also been mapped for illustrative purposes to coherent Tx/Rx channels using the [0,0,0] Tx/Rx channel mapping defined in Section 8.3.

The superset ACI has been implemented using the RF data pins un-used by the 4x25G CFP2 client modules (N.C. in Ref. [4] "Top/Bottom" pin allocations), and the optional MCLK output pins. These are all 4th engagement category³ connector pins. The detailed ACI I/O requirements are given in Section 10. Note there shall be a one-to-one physical correspondence between any Tx/Rx ACI pin and its associated RF Signal pins regardless of the Tx/Rx channel mapping used. For example, pin 67 is physically mapped to the RF hardware driving pins 72-73, and similarly for all other ACI input/output connections. Note also that all connector pins used for the analog control interface are N.C. pins on the Class 1 and 2 CFP2-ACO electrical connector interfaces.

When the ACI is used, the Host is **limited** to implementing a CFP2 "universal slot" that is compatible with **only** the 4X25G CFP2 client (Ref. [4] "Top/Bottom" pin allocations) and the CFP2-ACO. This is an acknowledged and accepted limitation of the Host using the ACI.

³ As defined by Section 5.2.3 of Ref. [3].

IA # OIF-CFP2-ACO-01.0 IA for CFP2 Analog Coherent Optics Module

CFP2-ACO CFP2-ACO Bottom: Class 1/2 Top: Class 1/2 1 GND 104 GND 2* N.C. 103 N.C. 3* N.C. 102 N.C. 4 GND 101 GND 5 N.C. 102 N.C. 6 N.C. 99* TX_Xlp (RF Mapping [0,0,0]) 6 N.C. 99* TX_Xln (RF Mapping [0,0,0]) 7 3.3V_GND 98 GND 8 3.3V_GND 97* TX_XQp (RF Mapping [0,0,0]) 9 3.3V 96* TX_XQn (RF Mapping [0,0,0]) 10 3.3V 95 GND 11 3.3V 94 N.C. 12 3.3V 94 N.C. 13 3.3V_GND 92 GND 14 3.3V_GND 91 N.C. 15 VN_LIO_A 90 N.C. 16 VND_IO_A 90 N.C. 17 <th>GND GND GND RF Signal 3.3V Supply Vendor IO pi MSA Pins ACI-Input</th>	GND GND GND RF Signal 3.3V Supply Vendor IO pi MSA Pins ACI-Input
1 GND 104 GND 2* N.C. 103 N.C. 3* N.C. 102 N.C. 4 GND 101 GND 5 N.C. 100* TX_Xlp (RF Mapping [0,0,0]) 6 N.C. 99* TX_Xln (RF Mapping [0,0,0]) 7 3.3V_GND 98 GND 8 3.3V_GND 97* TX_XQp (RF Mapping [0,0,0]) 9 3.3V 96* TX_XQn (RF Mapping [0,0,0]) 10 3.3V_GND 97* TX_XQn (RF Mapping [0,0,0]) 10 3.3V 96* TX_XQn (RF Mapping [0,0,0]) 11 3.3V 94 N.C. 12 3.3V 94 N.C. 12 3.3V 93 N.C. 13 3.3V_GND 91 N.C. 14 3.3V_GND 92 GND 14 3.3V_GND 91 N.C. 15 VND_IO_A 90 N.C. 16 VND_IO_B 89 GND 17 PRG_CNTL2	view from top RF Signal 3.3V Supply Vendor IO pi MSA Pins ACI-Input
2* N.C. 103 N.C. 3* N.C. 102 N.C. 4 GND 101 GND 5 N.C. 100* TX_Xlp (RF Mapping [0,0,0]) 6 N.C. 99* TX_Xln (RF Mapping [0,0,0]) 7 3.3V_GND 98 GND 8 3.3V_GND 98 GND 10 3.3V_GND 97* TX_XQp (RF Mapping [0,0,0]) 10 3.3V 96* TX_XQn (RF Mapping [0,0,0]) 10 3.3V 95 GND 11 3.3V 94 N.C. 12 3.3V 94 N.C. 13 3.3V_GND 91 N.C. 13 3.3V_GND 91 N.C. 13 3.3V_GND 91 N.C. 14 3.3V_GND 91 N.C. 15 VND_IO_A 90 N.C. 16 VND_IO_A 90 N.C. 18 PRG_CNTL2	view from top RF Signal 3.3V Supply Vendor IO pi MSA Pins ACI-Input
4 GND 101 GND 5 N.C. 100* TX_XIp (RF Mapping [0,0,0]) 6 N.C. 99* TX_XIn (RF Mapping [0,0,0]) 7 3.3V_GND 98 GND 8 3.3V_GND 97* TX_XQp (RF Mapping [0,0,0]) 9 3.3V_GND 97* TX_XQp (RF Mapping [0,0,0]) 10 3.3V 96* TX_XQn (RF Mapping [0,0,0]) 10 3.3V 96* TX_XQn (RF Mapping [0,0,0]) 10 3.3V 95 GND 11 3.3V 94 N.C. 12 3.3V_GND 92 GND 14 3.3V_GND 91 N.C. 13 3.3V_GND 91 N.C. 14 3.3V_GND 91 N.C. 15 VND_IO_A 90 N.C. 16 VND_IO_B 89 GND 17 PRG_CNTL2 87* TX_YIp (RF Mapping [0,0,0]) 18 PRG_CNTL3 86 GND <td>top RF Signal 3.3V Supply Vendor IO pi MSA Pins ACI-Input</td>	top RF Signal 3.3V Supply Vendor IO pi MSA Pins ACI-Input
5 N.C. 100* TX_XIp (RF Mapping [0,0,0]) 6 N.C. 99* TX_XIn (RF Mapping [0,0,0]) 7 3.3V_GND 98 GND 8 3.3V_GND 97* TX_XQp (RF Mapping [0,0,0]) 9 3.3V_GND 97* TX_XQp (RF Mapping [0,0,0]) 9 3.3V_GND 97* TX_XQp (RF Mapping [0,0,0]) 10 3.3V 96* TX_XQn (RF Mapping [0,0,0]) 11 3.3V 94 N.C. 12 3.3V 94 N.C. 13 3.3V_GND 91 N.C. 14 3.3V_GND 91 N.C. 15 VND_IO_A 90 N.C. 16 VND_IO_B 89 GND 17 PRG_CNTL1 88* TX_YIp (RF Mapping [0,0,0]) 18 PRG_CNTL2 87* TX_YIp (RF Mapping [0,0,0]) 19 PRG_CNTL3 86 GND 20 PRG_ALRM1 85* TX_YQn (RF Mapping [0,0,0]) 21	GND RF Signal 3.3V Supply Vendor IO pi MSA Pins ACI-Input
6 N.C. 99* TX_XIn (RF Mapping [0,0,0]) 7 3.3V_GND 98 GND 8 3.3V_GND 97* TX_XQp (RF Mapping [0,0,0]) 9 3.3V 96* TX_XQp (RF Mapping [0,0,0]) 9 3.3V 96* TX_XQp (RF Mapping [0,0,0]) 10 3.3V 95 GND 11 3.3V 94 N.C. 12 3.3V 94 N.C. 12 3.3V 93 N.C. 13 3.3V_GND 92 GND 14 3.3V_GND 91 N.C. 15 VND_IO_A 90 N.C. 16 VND_IO_B 89 GND 17 PRG_CNTL1 88* TX_Ylp (RF Mapping [0,0,0]) 18 PRG_CNTL2 87* TX_Ylp (RF Mapping [0,0,0]) 19 PRG_CNTL3 86 GND 20 PRG_ALRM1 85* TX_YQp (RF Mapping [0,0,0]) 21 PRG_ALRM3 83 GND	RF Signal 3.3V Supply Vendor IO pi MSA Pins ACI-Input
7 3.3V_GND 98 GND 8 3.3V_GND 97* TX_XQp (RF Mapping [0,0,0]) 9 3.3V 96* TX_XQp (RF Mapping [0,0,0]) 10 3.3V 96* TX_XQn (RF Mapping [0,0,0]) 11 3.3V 95 GND 12 3.3V 94 N.C. 12 3.3V_GND 92 GND 14 3.3V_GND 91 N.C. 15 VND_IO_A 90 N.C. 16 VND_IO_B 89 GND 17 PRG_CNTL1 88* TX_YIp (RF Mapping [0,0,0]) 18 PRG_CNTL2 87* TX_YIn (RF Mapping [0,0,0]) 19 PRG_CNTL3 86 GND 20 PRG ALRM1 85* TX YQp (RF Mapping [0,0,0]) 21 PRG_ALRM2 84* TX YQn (RF Mapping [0,0,0]) 22 PRG_ALRM3 83 GND 23 GND 82 N.C. 24 TX_DIS 81	RF Signal 3.3V Supply Vendor IO pi MSA Pins ACI-Input
8 3.3V GND 97* TX_XQp (RF Mapping [0,0,0]) 9 3.3V 96* TX_XQn (RF Mapping [0,0,0]) 10 3.3V 95 GND 10 3.3V 95 GND 91 N.C. 11 3.3V 94 N.C. 93 N.C. 12 3.3V_GND 92 GND 91 N.C. 13 3.3V_GND 91 N.C. 91 N.C. 14 3.3V_GND 91 N.C. 91 N.C. 15 VND_IO_A 90 N.C. 91 N.C. 16 VND_IO_B 89 GND 91 N.C. 17 PRG_CNTL1 88* TX_YIp (RF Mapping [0,0,0]) 18 PRG_CNTL2 87* TX_YQp (RF Mapping [0,0,0]) 19 18 PRG_CNTL3 86 GND 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9	RF Signal 3.3V Supply Vendor IO pi MSA Pins ACI-Input
9 3.3V 96* TX_XQn (RF Mapping [0,0,0]) 10 3.3V 95 GND 11 3.3V 94 N.C. 12 3.3V 93 N.C. 12 3.3V 93 N.C. 13 3.3V_GND 92 GND 14 3.3V_GND 91 N.C. 15 VND_IO_A 90 N.C. 16 VND_IO_B 89 GND 17 PRG_CNTL1 88* TX_YIp (RF Mapping [0,0,0]) 18 PRG_CNTL2 87* TX_Yun (RF Mapping [0,0,0]) 19 PRG_CNTL3 86 GND 20 PRG_ALRM1 85* TX_YQp (RF Mapping [0,0,0]) 21 PRG_ALRM2 84* TX_YQn (RF Mapping [0,0,0]) 22 PRG_ALRM3 83 GND 23 GND 82 N.C. 24 TX_DIS 81 N.C. 25 RX_LOS 80 GND	3.3V Supply Vendor IO pi MSA Pins ACI-Input
10 3.3V 95 GND 11 3.3V 94 N.C. 12 3.3V 93 N.C. 13 3.3V_GND 92 GND 14 3.3V_GND 91 N.C. 15 VND_IO_A 90 N.C. 16 VND_IO_B 89 GND 17 PRG_CNTL1 88* TX_YIp (RF Mapping [0,0,0]) 18 PRG_CNTL2 87* TX_YIn (RF Mapping [0,0,0]) 19 PRG_CNTL3 86 GND 20 PRG_ALRM1 85* TX_YQP (RF Mapping [0,0,0]) 21 PRG_ALRM2 84* TX_YQN (RF Mapping [0,0,0]) 22 PRG_ALRM3 83 GND 23 GND 82 N.C. 24 TX_DIS 81 N.C. 25 RX_LOS 80 GND	Vendor IO pi MSA Pins ACI-Input
11 3.3V 94 N.C. 12 3.3V 93 N.C. 13 3.3V_GND 92 GND 14 3.3V_GND 91 N.C. 15 VND_IO_A 90 N.C. 16 VND_IO_B 89 GND 17 PRG_CNTL1 88* TX_YIp (RF Mapping [0,0,0]) 18 PRG_CNTL2 87* TX_YIn (RF Mapping [0,0,0]) 19 PRG_CNTL3 86 GND 20 PRG_ALRM1 85* TX_YQn (RF Mapping [0,0,0]) 21 PRG_ALRM2 84* TX_YQn (RF Mapping [0,0,0]) 22 PRG_ALRM3 83 GND 23 GND 82 N.C. 24 TX_DIS 81 N.C. 25 RX_LOS 80 GND	MSA Pins ACI-Input
12 3.3V 93 N.C. 13 3.3V_GND 92 GND 14 3.3V_GND 91 N.C. 15 VND_IO_A 90 N.C. 16 VND_IO_B 89 GND 17 PRG_CNTL1 88* TX_YIp (RF Mapping [0,0,0]) 18 PRG_CNTL2 87* TX_YIn (RF Mapping [0,0,0]) 19 PRG_CNTL3 86 GND 20 PRG_ALRM1 85* TX_YQp (RF Mapping [0,0,0]) 21 PRG_ALRM2 84* TX_YQn (RF Mapping [0,0,0]) 22 PRG_ALRM3 83 GND 23 GND 82 N.C. 24 TX_DIS 81 N.C. 25 RX_LOS 80 GND	ACI-Input
13 3.3V_GND 92 GND 14 3.3V_GND 91 N.C. 15 VND_IO_A 90 N.C. 15 VND_IO_B 89 GND 17 PRG_CNTL1 88* TX_YIp (RF Mapping [0,0,0]) 18 PRG_CNTL2 87* TX_Yin (RF Mapping [0,0,0]) 19 PRG_CNTL3 86 GND 20 PRG_ALRM1 85* TX_YQp (RF Mapping [0,0,0]) 21 PRG_ALRM2 84* TX_YQn (RF Mapping [0,0,0]) 22 PRG_ALRM3 83 GND 23 GND 82 N.C. 24 TX_DIS 81 N.C. 25 RX_LOS 80 GND	
14 3.3V_GND 91 N.C. 15 VND_IO_A 90 N.C. 16 VND_IO_B 89 GND 17 PRG_CNTL1 88* TX_Ylp (RF Mapping [0,0,0]) 18 PRG_CNTL2 87* TX_Yln (RF Mapping [0,0,0]) 19 PRG_CNTL3 86 GND 20 PRG_ALRM1 85* TX_YQp (RF Mapping [0,0,0]) 21 PRG_ALRM2 84* TX_YQn (RF Mapping [0,0,0]) 22 PRG_ALRM3 83 GND 23 GND 82 N.C. 24 TX_DIS 81 N.C. 25 RX_LOS 80 GND	ACI-Output
16 VND_IO_B 89 GND 17 PRG_CNTL1 88* TX_YIp (RF Mapping [0,0,0]) 18 PRG_CNTL2 87* TX_YIn (RF Mapping [0,0,0]) 19 PRG_CNTL3 86 GND 20 PRG_ALRM1 85* TX_YQn (RF Mapping [0,0,0]) 21 PRG_ALRM2 84* TX_YQn (RF Mapping [0,0,0]) 22 PRG_ALRM3 83 GND 23 GND 82 N.C. 24 TX_DIS 81 N.C. 25 RX_LOS 80 GND	Aor-output
16 VND_IO_B 89 GND 17 PRG_CNTL1 88* TX_YIp (RF Mapping [0,0,0]) 18 PRG_CNTL2 87* TX_YIn (RF Mapping [0,0,0]) 19 PRG_CNTL3 86 GND 20 PRG_ALRM1 85* TX_YQn (RF Mapping [0,0,0]) 21 PRG_ALRM2 84* TX_YQn (RF Mapping [0,0,0]) 22 PRG_ALRM3 83 GND 23 GND 82 N.C. 24 TX_LOIS 81 N.C. 25 RX_LOS 80 GND	
17 PRG_CNTL1 88* TX_YIp (RF Mapping [0,0,0]) 18 PRG_CNTL2 87* TX_YIn (RF Mapping [0,0,0]) 19 PRG_CNTL3 86 GND 20 PRG_ALRM1 85* TX_YQn (RF Mapping [0,0,0]) 21 PRG_ALRM2 84* TX_YQn (RF Mapping [0,0,0]) 22 PRG_ALRM3 83 GND 23 GND 82 N.C. 24 TX_DIS 81 N.C. 25 RX_LOS 80 GND	
18 PRG_CNTL2 87* TX_Yin (RF Mapping [0,0,0]) 19 PRG_CNTL3 86 GND 20 PRG_ALRM1 85* TX_YQp (RF Mapping [0,0,0]) 21 PRG_ALRM2 84* TX_YQn (RF Mapping [0,0,0]) 22 PRG_ALRM3 83 GND 23 GND 82 N.C. 24 TX_DIS 81 N.C. 25 RX_LOS 80 GND	
19 PRG_CNTL3 86 GND 20 PRG_ALRM1 85* TX_YQp (RF Mapping [0,0,0]) 21 PRG_ALRM2 84* TX_YQn (RF Mapping [0,0,0]) 22 PRG_ALRM3 83 GND 23 GND 82 N.C. 24 TX_DIS 81 N.C. 25 RX_LOS 80 GND	
20 PRG_ALRM1 85* TX_YQp (RF Mapping [0,0,0]) 21 PRG_ALRM2 84* TX_YQn (RF Mapping [0,0,0]) 22 PRG_ALRM3 83 GND 23 GND 82 N.C. 24 TX_DIS 81 N.C. 25 RX_LOS 80 GND	
21 PRG_ALRM2 84* TX_YQn (RF Mapping [0,0,0]) 22 PRG_ALRM3 83 GND 23 GND 82 N.C. 24 TX_DIS 81 N.C. 25 RX_LOS 80 GND	
22 PRG_ALRM3 83 GND 23 GND 82 N.C. 24 TX_DIS 81 N.C. 25 RX_LOS 80 GND	
23 GND 82 N.C. 24 TX_DIS 81 N.C. 25 RX_LOS 80 GND	
24 TX_DIS 81 N.C. 25 RX_LOS 80 GND	
26 MOD_LOPWR 79* REFCLKn-Terminated in ACO [^]	
27 MOD_ABS 78* REFCLKp-Terminated in ACO^	
28 MOD_RSTn 77 GND	
29 GLB_ALRMn 76 N.C.	
30 GND 75 N.C.	
31 MDC 74 GND	
32 MDIO 73* RX_XIp (RF Mapping [0,0,0])	
33 PRTADR0 72* RX_XIn (RF Mapping [0,0,0])	
34 PRTADR1 71 GND	
35 PRTADR2 70* RX_XQp (RF Mapping [0,0,0])	
36 VND_IO_C 69* RX_XQn (RF Mapping [0,0,0])	
37 VND_IO_D 68 GND	
38 VND_IO_E 67 N.C.	
39 3.3V_GND 66 N.C.	
40 3.3V_GND 65 GND	
41 3.3V 64 N.C.	
42 3.3V 63 N.C.	
43 3.3V 62 GND	
44 3.3V 61* RX_YIp (RF Mapping [0,0,0])	
45 3.3V_GND 60* RX_YIn (RF Mapping [0,0,0])	
46 3.3V_GND 59 GND	
47 N.C. 58* RX_YQp (RF Mapping [0,0,0])	
48 N.C. 57* RX_YQn (RF Mapping [0,0,0])	
49 GND 56 GND	
50* N.C. 55 N.C.	
51* N.C. 54 N.C.	
52 GND 53 GND	

Toward Host		CFP2-ACO		CFP2-ACO
\rightarrow		Bottom: Class 3		Top: Class 3
pin	1	GND	104	GND
view	2*	X OUTER PHASE DITHER (RF Mapping [0,0,0])	103*	XI PHASE DITHER (RF Mapping [0,0,0])
from	3*	Y OUTER PHASE DITHER (RF Mapping [0,0,0])	102	N.C.
top	4	GND	101	GND
	5*	TX X POL. TAP (RF Mapping [0,0,0])	100*	TX_XIp (RF Mapping [0,0,0])
	6*	TX Y POL. TAP (RF Mapping [0,0,0])	99*	TX_XIn (RF Mapping [0,0,0])
GND	7	3.3V_GND	98	GND
RF Signal	8	3.3V_GND	97*	TX_XQp (RF Mapping [0,0,0])
3.3V Supply	9	3.3V	96*	TX_XQn (RF Mapping [0,0,0])
Vendor IO pins	10	3.3V	95	GND
MSA Pins	11	3.3V	94	N.C.
ACI-Input	12	3.3V	93*	XQ PHASE DITHER (RF Mapping [0,0,0])
ACI-Output	13	3.3V_GND	92	GND
	14	3.3V_GND	91*	YI PHASE DITHER (RF Mapping [0,0,0])
	15	VND_IO_A	90	N.C.
	16	VND_IO_B	89	GND
	17	PRG_CNTL1	88*	TX_YIp (RF Mapping [0,0,0])
	18	PRG_CNTL2	87*	TX_YIn (RF Mapping [0,0,0])
	19	PRG_CNTL3	86	GND
	20	PRG_ALRM1	85*	TX_YQp (RF Mapping [0,0,0])
	21	PRG_ALRM2	84*	TX_YQn (RF Mapping [0,0,0])
	22	PRG_ALRM3	83	GND
	23	GND	82	N.C.
	24*	TX_DIS (PRG_CNTL)	81*	YQ PHASE DITHER (RF Mapping [0,0,0])
	25*	RX_LOS (PRG_ALRM)	80	GND
	26	MOD_LOPWR	79*	REFCLKn - N.C. in ACO
	27	MOD_ABS	78*	REFCLKp - N.C. in ACO
	28	MOD_RSTn	77	GND
	29	GLB_ALRMn	76*	TX X-POL POWER DITHER (RF Mapping [0,0,0])
	30	GND	75*	TX Y-POL POWER DITHER (RF Mapping [0,0,0])
	31	MDC	74	GND
	32	MDIO	73*	RX_XIp (RF Mapping [0,0,0])
	33	PRTADR0	72*	RX_XIn (RF Mapping [0,0,0])
	34	PRTADR1	71	GND
	35	PRTADR2	70*	RX_XQp (RF Mapping [0,0,0])
	36	VND_IO_C	69*	RX_XQn (RF Mapping [0,0,0])
	37	VND_IO_D	68	GND
	38		67*	Rx MGC XI (RF Mapping [0,0,0])
		3.3V_GND	66*	Rx MGC XQ (RF Mapping [0,0,0])
	40	3.3V_GND	65	GND
	41	3.3V	64*	Rx MGC YI (RF Mapping [0,0,0])
	42	3.3V	63*	Rx MGC YQ (RF Mapping [0,0,0])
	43	3.3V	62	GND
	44	3.3V	61*	RX_YIp (RF Mapping [0,0,0])
	45	3.3V_GND	60*	RX_YIn (RF Mapping [0,0,0])
	46	3.3V_GND	59	GND
	47*	TX XI TAP (RF Mapping [0,0,0])	58*	RX_YQp (RF Mapping [0,0,0])
	48*	TX XQ TAP (RF Mapping [0,0,0])	57*	RX_YQn (RF Mapping [0,0,0])
	49	GND	56	GND
	50*	TX YI TAP (RF Mapping [0,0,0])	55*	N.C.
	51*	TX YQ TAP (RF Mapping [0,0,0])	54*	TX POST POL. MUX TAP
	52	GND	53	GND
	-			

^ For Class 2 Modules the Host REFCLK inputs can be optionally N.C. within the CFP2-ACO.

The (RF Mapping [0,0,0]) label on all ACI pins means that a one-to-one physical correspondence is maintained between a Tx/Rx ACI pin and its associated RF Signal pins regardless of the Tx/Rx channel mapping used. -E.g. pin 67 is physically mapped to the RF hardware driving pins 72-73 and similarly for all other Tx/Rx ACI connections.

Figure 10 (a) Class 1 and 2 Electrical Pin Map, (b) Class 3 Full Superset ACI Interface Electrical Pin Map.

8.3 Allowed Tx and Rx RF Channel Mappings

X and Y indicate a pair of mutually orthogonal polarizations of any orientation and I and Q are mutually orthogonal phase channels in each polarization. The four data path channels are therefore labeled XI, XQ, YI, and YQ. The complementary electrical outputs for each channel are labeled 'p' and 'n'.

All coherent channel mappings provided in Table 8 are independent possible mappings for the Tx and Rx RF connector interfaces. The user can identify the mapping used by the module through the **BB00** *Tx RF Channeling Mapping* register and the **BB8A** *Rx RF Channel Mapping* register.

A Tx or Rx mapping is specified in Table 8 by three designations: [X:Y; I,Q; p/n], where a ":" is used to separate X&Y, a "," is used to separate I&Q, and a "/" is used to separate p&n. In Table 8 red text shows where the mapping flips occur relative to the 1st row in each group. Tx coherent channel mappings read left-to-right in Table 8 correspond to electrical connector pins 100, 99, 97, 96, 88, 87, 85, and 84. Rx coherent channel mappings read left-to-right in Table 8 correspond to electrical connector pins: 73, 72, 70, 69, 61, 60, 58, and 57. It is important to highlight that Table 8 *does not* allow interleaving of the channels by polarization since this would add a non-essential level of complexity to the Tx and Rx digital processing. Except for **BB00** and **BB8A**, all MDIO register name and register bit definitions for the XI, XQ, YI, and YQ channels are independent of and unaffected by the channel-to-connector pin mappings in Table 8.

Mapping	X:Y	I,Q	p/n	Notes
[0,x,x]	X:Y			Pol. <i>cannot</i> be interleaved
[1,x,x]	Y:X			
[x,0,x]		I,Q:I,Q		Same across Pol.
[x,1,x]		Q,I:Q,I		
[x,2,x]		l,Q: <mark>Q,l</mark>		Flip across Pol.
[x,3,x]		<mark>Q,I</mark> :I,Q		
[x,x,0]			p/n,p/n:p/n,p/n	Same across Pol. and I,Q
[x,x,1]			n/p,n/p:n/p,n/p	
[x,x,2]			p/n,p/n: <mark>n/p,n/p</mark>	Flip across Pol.
[x,x,3]			n/p,n/p:p/n,p/n	
[x,x,4]			p/n <mark>,n/p</mark> :p/n, <mark>n/p</mark>	Flip across I,Q
[x,x,5]			n/p,p/n:n/p,p/n	
[x,x,6]			p/n, <mark>n/p:n/p</mark> ,p/n	Flip across Pol. and I,Q
[x,x,7]			<mark>n/p</mark> ,p/n:p/n, <mark>n/p</mark>	

Table 8: Tx and Rx RF Channel Mappings on the Electrical Connector Interface

I and Q are established by the heterodyne technique, with the frequency of the Signal input to the receiver greater than the frequency of the LO input. The I and Q channel outputs are measured in the time domain.

Under these conditions the Signal Q channel phase **lags** by nominally +90 degrees the Signal I channel phase, as shown in Figure 11.

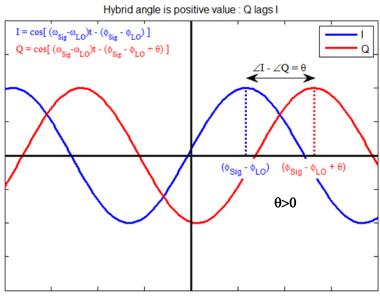


Figure 11: I and Q Phase Definitions

Outputs 'p' and 'n' are the complementary outputs for each channel and are such that the output voltage for 'p' increases as the Signal and Local Oscillator approach the in-phase condition to form constructive interference, and the output voltage for 'n' decreases under the same condition.

9 CFP2-ACO Tx and Rx RF Electrical Interfaces

9.1 Introduction

The Tx and Rx RF interfaces on the CFP2 connector are each GSSG X4 RF

interfaces on a 0.6 mm pin pitch. The CFP2 client 4x25G RX0-3 and the 4x25G TX0-3 data lanes are mapped in the CFP2-ACO to the coherent channels as specified in Section 8.3.

DC blocking capacitors shall be present on the RF signal lanes within the CFP2-ACO module, as required by Figure 4-1 in Ref. [3], and reproduced here as Figure 12.

RF signals must be carried differentially across

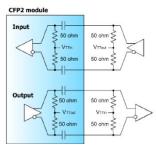


Figure 12: High-Speed I/O for Data

the CFP2 connector interface to achieve acceptable levels of crosstalk. The Host is therefore agnostic to the PMQ modulator RF drive design (differential or series push-pull). The CFP2-ACO RF electrical interface requirements **do not** limit modulator technology choices.

For reference an informative RF channel implementation is shown in Figure 13. Note that the transmission line construction and lengths will vary among implementations (both Host and module.) *Optimal performance with Class 2 and Class 3 ACO modules will be obtained by minimizing the trace loss in the Host board design.*

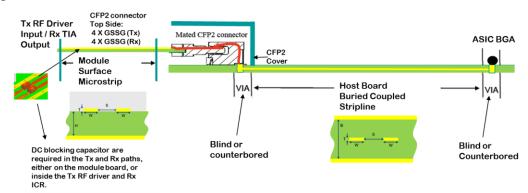
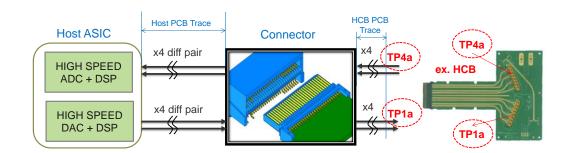
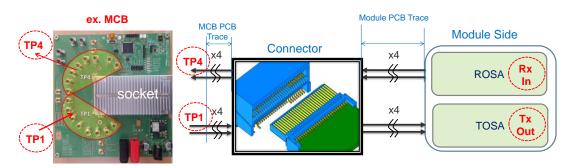


Figure 13: Informative RF Channel Implementation Example

Three classes for the electrical interfaces on the CFP2-ACO module have been introduced in Section 5. In Section 9.5 and 9.6 the Tx and Rx RF interfaces for these CFP2-ACO classifications will be fully specified.

9.2 Tx and Rx Electrical Interface Specification Compliance Points


Reference test fixtures, called "Compliance Boards," are used to access the electrical specification parameters. The interface specification compliance points are identified in Figure 14 and are defined as per Ref [10] OIF-CEI-03.1 Section 13.3.1,


"The output of the Host Compliance Board (HCB⁴) provides access to the host-to-module electrical signal (host electrical output) defined at TP1a. Additional module electrical input specifications, for host-to-module communication, are defined at TP1, the input of the Module Compliance Board (MCB⁵). The output of the Module Compliance Board (MCB⁵). The output of the Module Compliance Board (MCB) provides access to the module to host electrical signal (module electrical output) defined at TP4. Additional host electrical input specifications, for module-to-host communication, are defined at TP4a, the input of the Host Compliance Board (HCB)."

⁴ HCB: Host Compliance Board (represents Module side, tests Host compliance)

⁵ MCB: Module Compliance Board (represents Host side, tests Module compliance)

Figure 14: Tx and Rx Electrical Interface Compliance Points. The Provided HCB and MCB Implementation Pictures are *Informative* Examples Only.

9.3 Compliance Board Suppliers and Example Part Numbers

Informative example part numbers for the Host Compliance Board (HCB) and the CFP2-ACO Module Compliance Board (MCB) are given in Table 9.

Supplier	Example HCB Part Number	Example MCB Part Number	Comments
MultiLane SAL	ML4028-ACO	ML4027-ACO	ML4028-ACO uses Tx and Rx matched differential RF lines with 17mils trace width that are 4487mils in length. The PCB is RO3003 with OSP plating. The RF connectors are Huber+Suhner 1X8 MXP connectors. Note: MXP40 MXP-K connector adapter cable assemblies or equivalent are required to interface with the HCB. ⁶ ML4027-ACO uses Tx and Rx matched differential RF lines with 16mils trace width that are 1500mils in length. The PCB is RO3003 with OSP plating. The RF connectors are Bo- Jiang 40GHz K connectors.
Other 1			Add details when available

Table 9: Compliance Board Suppliers and Part Numbers

⁶ The HCB does not include DC blocks. For proper operation and to avoid possible damage, wide-band external DC blocks are required when connecting to external test equipment.

9.4 Compliance Board S Parameter Requirements

Use of compliance boards for testing is assumed for the electrical interface specifications given in Section 9.5 and 9.6.

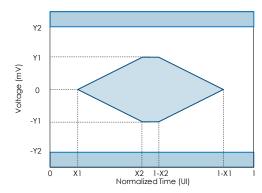
The mated compliance boards used to measure the CFP2-ACO Module and Host should conform to the S parameter requirements of Annex B (Section 16), with the individual reference MCB and HCB compliance board PCB traces in the mated pair conforming to the differential insertion loss equations provided by Annex A (Section 15).

If compliance boards do not meet the specified S-parameters in Annex A then test results shall be corrected for the difference. The mated MCB-HCB compliance boards S-parameters provided in Annex B are defined between the reference planes of the RF coax connectors.

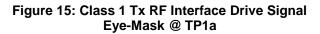
9.5 Class 1: RF Electrical Interface Specifications

9.5.1 Class 1: Tx RF Interface Specifications

The Tx RF interface electrical specifications for a Class 1 CFP2-ACO module are given in Table 10.


A Class 1 CFP2-ACO module shall meet all operational requirements when driven by Tx RF electrical signals that conform to the eye-mask shown in Figure 15, for a scope bandwidth of at least 33 GHz, a CDR bandwidth of 10 MHz, and a mask hit ratio of 5E-5 with a 2³¹-1 PRBS pattern, measured at the TP1a compliance point. Note the HCB insertion loss (IL), as shown in Figure 23, is expected to be larger than the module's internal PCB loss to the Tx RF driver.

ID	Parameter	Conditions	Test Point	Min	Мах	Units
TxC101	Differential Voltage from Host	Differential output voltage from Host measured at the TP1a compliance point and at 1.0GHz. Values include Host de- emphasis required to meet the eye-mask shown in Figure 15.	TP1a	250	500	mVppd
TxC102	Small Signal Tx EO MAG(S21) -3dBe Bandwidth	Small signal Tx EO MAG(S21) -3dBe bandwidth measured from TP1 to Tx Out. Inner MZ modulators operating at quadrature and under small signal RF drive conditions relative to the limiting amplitude. MAG(S21) normalized to 1.0GHz.	TP1	14		GHz
TxC103	Differential Electrical Return Loss	Differential electrical return loss at the TP1a and TP1 compliance points: $1MHz < f \le 16GHz$ $16GHz < f \le 24GHz$ $24GHz < f \le 32GHz$	TP1a TP1	10 8 6		dBe dBe dBe
TxC104	Low corner cutoff frequency	-3dBe low corner cutoff frequency. AC coupled. TP1 to Tx Out. MAG(S21) normalized at 1GHz.	TP1		1000	kHz
TxC105	IQ Timing Skew	Time difference ⁷ up to 16GHz of the Q channel relative to the I channel within a polarization. The time for a channel is defined as the mean of P and N. Includes TxC107. TP1 to Tx Out.	TP1	-3	+3	ps
TxC106	XY Timing Skew	Time difference ⁷ up to 16GHz of the Y polarization relative to the X polarization, defined as $(XI+XQ)/2 - (YI+YQ)/2$, where the time for an individual I or Q channel is the mean of P and N. Includes TxC107. TP1 to Tx Out.	TP1	-8	+8	ps
TxC107	Skew Variation	Temporal variation up to 16GHz among any two channels due to module temperature, wavelength, amplifier gain, and aging ⁷ . TP1 to Tx Out. Time for channel defined as mean of P and N.	TP1		2	ps
TxC109	PN Intrapair Timing Skew	Informative: Time difference ⁷ up to 16GHz between any P and N pair over the module operating temperature and life. TP1 to RF driver input.	TP1		1	ps


Table 10: Class 1 CFP2-ACO Module Tx RF Interface Electrical Specifications

⁷ Time can be calculated using the Electrical Delay (ED) method outlined in TxC305.

Symbol	Parameter	Value	Units
X1	Time Left Bound	0.13	UI
X2	Time Right Bound	0.48	UI
Y1	Voltage Lower Bound	125mV	mV
Y2	Voltage Upper Bound	250mV	mV

9.5.2 Class 1: Rx RF Interface Specifications

The Rx RF interface electrical specifications for a Class 1 CFP2-ACO module are given in Table 11.

ID	Parameter	Conditions	Test Point	Min	Max	Units
RxC101	Differential Output Voltage Range (VOUT)	Differential output voltage range (VOUT) at the TP4 compliance point and at 1GHz. The necessary Rx optical input power will be provided at the Rx In.	TP4	300	700	mVppd
RxC102	Rx Channel Output Total Harmonic Distortion (THD)	Rx channel output total harmonic distortion (THD) = = sqrt(V2^2 + V3^2 + + Vinf^2) / V1. Measured at the TP4 compliance point and at 1GHz over the full range of differential output voltage VOUT in RxC101, with the necessary Rx optical input power at the Rx In.	TP4		5	% THD
RxC103	Small Signal Rx OE MAG(S21) Bandwidth	Small signal Rx OE MAG(S21) bandwidth measured from Rx In to the TP4 compliance point. MAG(S21) normalized to 1GHz with the operating TIA/VGA gain at the point of minimum RF peaking: -3dBe -10dBe	TP4	14 28		GHz GHz
RxC104	Differential Electrical Return Loss	Differential electrical return loss at the TP4 and TP4a compliance points: $1MHz < f \le 16GHz$ $16GHz < f \le 24GHz$ $24GHz < f \le 32GHz$	TP4 TP4a	10 8 6		dBe dBe dBe
RxC105	Low corner cutoff frequency	-3dBe low corner cutoff frequency. AC coupled. Rx In to TP4. MAG(S21) normalized to 1GHz.	TP4		1000	kHz
RxC106	IQ Timing Skew	Time difference of the Q channel relative to the I channel within a polarization. The time for a channel is defined as the mean of P and N. Includes RxC108. Rx In to TP4. The time difference could be extracted from the Beat Frequency skew measurement method ⁸ .	TP4	-5	+5	ps
RxC107	XY Timing Skew	Time difference of the Y polarization relative to the X polarization, defined as (XI+XQ)/2 - (YI+YQ)/2, where the time for an individual I or Q channel is the mean of P and N. Includes RxC108. Rx In to TP4. The time difference could be extracted from the Beat Frequency skew measurement method ⁸ .	TP4	-10	+10	ps
RxC108	Skew Variation	Temporal variation up to 16GHz between any two channels. Rx In to TP4. Time for channel defined as mean of P and N.	TP4		2	ps
RxC109	PN Intrapair Timing Skew	Informative: Time difference up to 16GHz between any P and N pair over the module operating temperature and life. Rx In to TP4.	TP4		1	ps

Table 11: Class 1 CFP2-ACO Module Rx RF Interface Electrical Specifications

⁸ The Beat Frequency skew measurement method is defined in Appendix II.

9.6 Class 2/3: RF Electrical Interface Specifications

9.6.1 Class 2/3: Tx RF Interface Specifications

The Tx RF interface electrical specifications for a Class 2/3 CFP2-ACO with a *Module controlled* PMQ transmitter are given in Table 12. The Tx RF interface electrical specifications for a Class 3 CFP2-ACO with a Host controlled PMQ transmitter are given in Table 13.

ID	Parameter	Conditions	Test Point	Min	Max	Units
TxC201	Differential Voltage from Host	Differential output voltage from Host measured at the TP1a compliance point and at 1.0GHz ⁹ . The voltage must include the effects of equalization required to compensate the Host and the module portion of the TxC203 channel. Compensation is defined as the wave shaping required to obtain the desired system performance when carrying traffic. It is assumed the CFP2-ACO module will also support sufficient phase modulation to achieve the Host defined module performance (optical power, linearity, power dissipation, etc.) In addition, registers BB54 to BB74 can be used for driver amplitude control by the Host.	TP1a	200	450	mVppd
TxC202	Tx Modulator Driver Linearity	Parameter is <i>not measurable at the module level.</i> It is evaluated in a test fixture representative of the application environment and at output voltage levels representative of in service operating conditions. Test frequencies are 2GHz, 5GHz, and 10GHz. THD = sqrt(V2^2 + V3^2 + + Vinf^2)/V1.	NA		6	% THD
TxC203	Tx EO S21 Magnitude Mask	Normalized Tx EO MAG(S21) compliance mask measured from TP1 to Tx Out. Inner MZ modulator operating at quadrature and under small signal conditions (i.e. RF drive $\leq 0.3V\pi$). MAG(S21) is normalized to 1GHz.	TP1	EO MA Mask i	nalized AG(S21) n Figure 6.	dBe
TxC204	Tx EO Group Delay Variation	Group Delay Variation Magnitude from 1GHz to 16GHz with 1GHz span smoothing. TP1 to Tx Out.	TP1	0	30	ps
TxC205	Electrical Return Loss	Electrical Return Loss at the TP1a and TP1 compliance points. This is a differential specification. $1MHz < f \le 16GHz$ $16GHz < f \le 20GHz$ 20GHz < f < 28GHz	TP1a TP1	14 10 6		dBe dBe dBe
TxC206	Low corner cutoff frequency	-3dBe low corner cutoff frequency. AC coupled. TP1 to Tx Out. S21 is normalized at 1GHz.	TP1		1000	kHz
TxC207	IQ Timing Skew	Time difference ¹⁰ up to 16GHz of the Q channel relative to the I channel within a polarization. The time for a channel is defined as the mean of P and N. Includes TxC209. TP1 to Tx Out.	TP1	-5	+5	ps
TxC208	XY Timing Skew	Time difference ¹⁰ up to 16GHz of the Y polarization relative to the X polarization, defined as (XI+XQ)/2 - (YI+YQ)/2, where the time for an individual I or Q channel is the mean of P and N. Includes TxC209. TP1 to Tx Out.	TP1	-8	+8	ps
TxC209	Skew Variation	Temporal variation up to 16GHz among any two channels due to module temperature, wavelength, amplifier gain, and aging ¹⁰ . TP1 to Tx Out. Time for channel defined as mean of P and N.	TP1		2	ps
TxC210	PN Intrapair Timing Skew	Informative: Time difference ¹⁰ up to 16GHz between any P and N pair over the module operating temperature and life. TP1 to RF driver input. Applies only to modules using RF drivers with a differential input stage.	TP1		1	ps

Table 12: Class 2/3 CFP2-ACO Module Tx RF Interface Electrical Specifications for a Module Controlled PMQ Transmitter

⁹ A square wave data pattern that is as close to 1.0 GHz as can be achieved at the operating symbol rate is acceptable, e.g., 16 ones and 16 zeros at 32 GBaud NRZ. The amplitude is defined as the difference between the two primary peaks in a vertical histogram that encompasses a full cycle of the 1.0 GHz waveform. The transmitter must be otherwise in a mode that includes all skew, de-emphasis, spectral shaping, and other operational settings and functions. ¹⁰ Time can be calculated using the Electrical Delay (ED) method outlined in TxC305.

ID	Parameter	Conditions	Test	Min	Max	Units
		Input-referred RF $V\pi$ is defined as the differential voltage level	Point			
TxC301	Input-Referred RF Vπ: Class 3 (Host Controlled PMQ)	required for a π phase shift from the two arms in each of the high speed inner MZ modulators when they are biased for minimum optical output. Measured at Tx Out with a 1GHz sine wave injected at compliance point TP1 ¹¹ . The CFP2-ACO module <i>can require</i> that any specific voltage swing within the Min/Max range must be delivered at TP1 to obtain V π modulation . This specification does <i>not</i> define a dynamic range requirement since any valid input swing can be specified by the CFP2- ACO module as the requirement to obtain V π modulation.	TP1	300	800 ¹²	mVppd
TxC302	Achievable Phase Modulation	Phase modulation level achievable from the two arms of the high speed inner MZ modulators when they are biased for minimum optical output. Measured at Tx Out with sine waves at 2GHz, 5GHz, and 10GHz injected at compliance point TP1. Driver compliance to TxC303 is also required. <i>The Host board shall be capable of supplying the necessary voltage.</i>	TP1	1.8π		Radians
TxC303	Tx Modulator Driver Linearity	Parameter is not measurable at the module level. It is evaluated in a test fixture representative of the application environment and at output voltage levels representative of TxC302. Test frequencies are 2GHz, 5GHz, and 10GHz. THD = $sqrt(V2^2 + V3^2 + + Vinf^2)/V1$.	NA		6	% THD
TxC304	Tx EO S21 Magnitude Mask	Normalized Tx EO MAG(S21) compliance mask measured from TP1 to Tx Out. Inner MZ modulator operating at quadrature and under small signal conditions (i.e. RF drive $\leq 0.3V\pi$). MAG(S21) is normalized to 1GHz.	TP1	MA	alized EO G(S21) in Figure 16.	dBe
TxC305	Tx EO S21 Deviation from Linear Phase	Deviation from linear phase (DLP) is obtained by removing the electrical delay (ED) in seconds from the unwrapped phase $\phi: ED = -AVG\left(\frac{1}{360}\frac{\partial \phi}{\partial f}\right)$ for 1GHz \leq f \leq 16GHz, and then DLP is given by DLP = ϕ + 360 * f * ED. The DLP specification frequency range is 1MHz-20GHz. TP1 to Tx Out.	TP1	-40	40	Degrees
TxC306	Electrical Return Loss	Electrical Return Loss at the TP1a and TP1 compliance points. This is a differential specification. $1MHz < f \le 16GHz$ $16GHz < f \le 20GHz$ 20GHz < f < 28GHz	TP1a TP1	14 10 6		dBe dBe dBe
TxC307	Low corner cutoff frequency	-3dBe low corner cutoff frequency. AC coupled. TP1 to Tx Out. S21 is normalized at 1GHz.	TP1		1000	kHz
TxC308	IQ Timing Skew	Time difference ¹³ of the Q channel relative to the I channel within a polarization at Start of Life (SOL). The time for a channel is defined as the mean of P and N. TP1 to Tx Out.	TP1	-50	+50	ps
TxC309	XY Timing Skew	Time difference ¹³ of the Y polarization relative to the X polarization at SOL. Defined as (XI+XQ)/2 - (YI+YQ)/2, where the time for an individual I or Q channel is the mean of P and N TP1 to Tx Out.	TP1	-50	+50	ps
TxC310	IQ Skew Variation	Deviation of IQ Timing Skew (TxC308) from the SOL value, over module operating temperature range and life with the amplifier gains fixed running open loop ¹³ . TP1 to Tx Out.	TP1	-1	+1	ps
TxC311	XY Skew Variation	Deviation of XY Timing Skew (TxC309) from the SOL value, over module operating temperature range and life with the amplifier gains fixed running open loop ¹³ . TP1 to Tx Out.	TP1	-2	+2	ps
TxC312	PN Intrapair Timing Skew	Informative: Time difference ¹³ between any P and N pair over the module operating temperature and life. TP1 to Tx Out. Applies only to modules using RF drivers with a differential input stage.	TP1		1	ps

¹¹ Example derivation of Tx RF driver gain requirement: A CFP2-ACO with an input referred RF V π specified at 300mVppd at 1GHz that uses a PMQ modulator with a 2.5V V π requires a Tx RF driver gain of 20 log₁₀(2.5/0.3)=18.5dBe at 1GHz. Tx302 and Tx303 require the Tx driver to produce a linear output swing of 4.5V (1.8*2.5V π) when the Host supplies a 540mVppd (1.8*0.3mVppd) input swing at 1GHz. The 1GHz

normalized driver gain frequency response should then be optimized to enable Figure 16. ¹² Not all coherent ASICs can provide a Maximum Input-Referred RF V π as high as 800mVppd.

¹³ Time is calculated using the Electrical Delay (ED) method outlined in TxC305.

TxC313	CMRR	Common Mode Rejection Ratio CMRR is the 20·log ₁₀ ratio of the Common Mode RF electrical drive Modulation Efficiency to the Differential RF electrical drive Modulation Efficiency to the Differential RF electrical drive Modulation Efficiency. = 20°log ₁₀ [(Common Mode RF ME)/(Differential RF ME)]. Modulation Efficiency (ME) = voltage level required for at most a $\pi/10$ peak to peak phase shift in the high speed inner MZ modulators when they are biased at quadrature optical output. Measured at Tx Out with a 1GHz sine wave injected at compliance point TP1. Knowing the exact optical phase modulation is not important for this specification, what is important is that the optical phase modulation be the same when both the <i>Common Mode</i> and <i>Differential</i> RF electrical Modulation Efficiencies are determined. CMRR does not apply for single-end amplifiers used in conjunction with single-ended high speed inner MZ modulators.	TP1	20		dBe	
--------	------	---	-----	----	--	-----	--

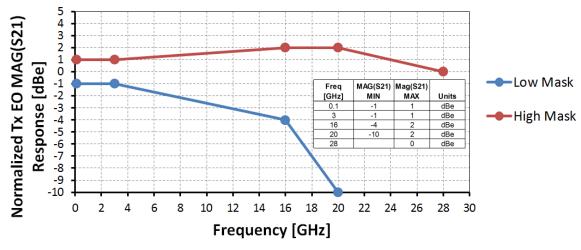


Figure 16: Normalized Tx EO MAG(S21) Compliance Mask

9.6.2 Class 2/3: Rx RF Interface Electrical Specifications

The Rx RF interface electrical specifications for a Class 2/3 CFP2-ACO module are given in Table 14.

Table 14 makes use of the following related parameter definitions: *CG* is the Rx OE Conversion Gain for a channel expressed in $\frac{V}{\sqrt{W}}$, *VOUT*(*t*) is the *differential* electrical output AC signal for a channel from the CFP2-ACO receiver, $\sqrt{P_{SIG}}$ is the mean power of the CFP2-ACO input optical signal that beats with the LO, and $\cos(\theta(t))$ is the received channel phase modulated AC signal. The parameters are related for a channel by the following:

$$VOUT(t) = CG \cdot \sqrt{P_{SIG}} \cdot \cos(\theta(t)).$$

In Table 14 CGmin and CGmax are the minimum and maximum OE Conversion Gains for an Rx channel in the CFP2-ACO, agreed between the vendor and user. For a given CGmin and CGmax there is a corresponding range of values for the TIA GC voltage used in specifications RxC2308-RxC2310.

ID	Parameter	Conditions	Test Point	Min	Max	Units
Rx C2301a	Rx AGC Mode: Differential Output Voltage Range (VOUT)	Differential output voltage (VOUT) range at the TP4 compliance point and at 1GHz with the Rx electrical output <i>not</i> in shutdown. The necessary Rx In power will be provided for the agreed upon CGmin and CGmax.	TP4	300	700	mVppd
Rx C2301b	Rx MGC Mode: Differential Output Voltage Range (VOUT)	Differential output voltage (VOUT) range at the TP4 compliance point and at 1GHz with the Rx electrical output <i>not</i> in shutdown. The necessary Rx In power will be provided for the agreed upon CGmin and CGmax.	TP4	Small Value	1000	mVppd
RxC2302	Rx Channel Output Total Harmonic Distortion (THD)	Rx channel output total harmonic distortion (THD) = sqrt(V2^2 + V3^2 + + Vinf^2) / V1. Measured from Rx In to the TP4 compliance point and at 1GHz over the full range of differential output voltage VOUT in RxC2301: VOUT ≤ 400 mVppd 400mVppd < VOUT ≤ 1000 mVppd	TP4		2.5 4	% %
RxC2303	Rx OE CG S21 Magnitude Mask	Compliance mask for the normalized Rx OE Conversion Gain MAG(S21) response, measured from Rx In to TP4, over the CG range CGmin \leq CG \leq CGmax. CG MAG(S21) is normalized to 1GHz.	TP4	Normali MAG(S2 in Fig	1) Mask	dBe
RxC2304	Rx OE CG S21 Magnitude Response, Variation over CG	Allowed variation in the CG MAG(S21) response determined in RxC2303, relative to the midpoint CG response, over the CG range CGmin <u>< CG < CGmax</u> : f < 15GHz 15 < f < 20GHz	TP4	-1.5 -3.0	+1.5 +3.0	dBe dBe
RxC2305	OE S21 Deviation from Linear Phase	Deviation from linear phase (DLP) is obtained by removing the electrical delay (ED) in seconds from the unwrapped phase ϕ : $ED = -AVG\left(\frac{1}{360}\frac{\partial\theta}{\partial f}\right)$ for 1GHz $\leq f \leq 16$ GHz, and then DLP is given by DLP = ϕ + 360 * f * ED. The DLP specification applies over the CG range CGmin \leq CG \leq CGmax, and for the frequency range from 0-20GHz. This parameter is acknowledged to be <i>difficult to measure at the module level</i> . ICR only verification testing acceptable.	TP4	-40	40	Degrees
RxC2306	Differential Electrical Return Loss	Differential electrical return loss at the TP4 and TP4a compliance points: 100kHz < f \leq 16GHz 16GHz < f \leq 24GHz 24GHz < f \leq 32GHz	TP4 TP4a	10 8 6		dBe dBe dBe
RxC2307	Low corner cutoff frequency	3dB low corner cutoff frequency. AC coupled. Rx In to TP4. CG MAG(S21) is normalized to 1GHz.	TP4	10	1000	kHz
RxC2308	IQ Timing Skew	Time difference of the Q channel relative to the I channel within a polarization ¹⁴ . Rx In to TP4. The time for a channel is defined as the mean of P and N. Applies for TIA GC_I = TIA GC_Q, over the TIA GC range, and at start of life and room temperature. The time difference could be extracted from the Beat Frequency skew measurement method ¹⁵ .	TP4	-3	+3	ps
RxC2309	XY Timing Skew	Time difference of the Y polarization relative to the X polarization ¹⁴ . Rx In to TP4. The time for a polarization is defined as $(XI+XQ)/2 - (YI+YQ)/2$ where the time for an individual I or Q channel is the mean of P and N. Applies for TIA GC_XI = TIA GC_XQ = TIA GC_YI = TIA GC_YQ, over the TIA GC range, and at start of life and room temperature. Time difference could be extracted from the Beat Frequency Skew measurement method ¹⁵ .	TP4	-8	+8	ps
RxC2310	Channel Timing Variation with GC	Temporal variation of a channel over the TIA GC range. Rx In to TP4. Time for channel defined as mean of P and N.	TP4	-5	+5	ps
RxC2311	IQ Skew Variation	Deviation of IQ Timing Skew (RxC2308) from the SOL room temperature value, over the module operating temperature range and life.	TP4	-2	+2	ps

¹⁴ If Rx channel skew data is provided with the ACO module (Register **BB8A** (bit 9) =1b) then increased *IQ Timing Skew* might be tolerated (Host specific.) ¹⁵ The Beat Frequency skew measurement method is defined in Appendix II.

RxC2312	XY Skew Variation	Deviation of XY Timing Skew (RxC2309) from the SOL room temperature value, over the module operating temperature range and life.	TP4	-3	+3	ps
RxC2313	P/N Intrapair Timing Skew	Informative: Time difference between any P and N pair over the module operating temperature and life. Rx In to TP4. Applies over the CG range CGmin \leq CG \leq CGmax.	TP4		1	ps
RxC2314	Tx to Rx Crosstalk	Rx electrical noise power is computed by integrating the 0.2- 20GHz Rx RF output power spectrum on an ESA including the tones. Rx electrical noise power is measured with no light on the Rx In, for CG = CGmax, <i>with and without</i> PRBS-11 signals on the 4 Tx RF inputs [uncorrelated to each other.] The Tx to Rx Crosstalk is defined as 10log ₁₀ (((Rx electrical noise power:Tx On) - (Rx electrical noise power:Tx Off)) / (Rx electrical noise power:Tx Off)).	TP4		20	dB

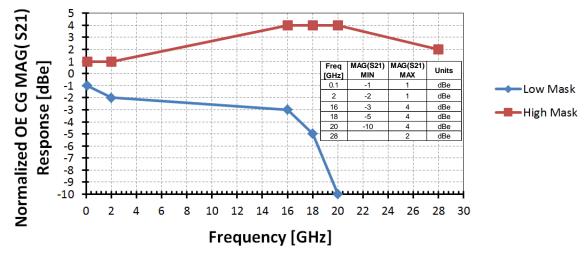


Figure 17: Normalized Rx OE CG MAG(S21) Compliance Mask

10 Class 3 Analogue Control Interface (ACI) Requirements

The requirements in this section shall apply only to a Class 3 CFP2-ACO module with the analog control interface (ACI) on the electrical connector pin map as shown in Figure 10b. Note that all connector pins used for the analog control interface are N.C. pins on the Class 1 and 2 CFP2-ACO electrical connector interfaces.

The MDIO **BB02** *Tx Analog Control Interface Availability* and **BB8B** *Rx Subsystem Features* registers define the level of support offered against the maximal ACI interface for the Class 3 CFP2-ACO module implementation. Independent granular Tx and Rx ACI enable bits have also been defined in the MDIO **BB03** *Tx Analogue Control Interface (ACI) Select* and **BB8D** *Rx Subsystem Control* registers. These granular ACI enable bits could allow a vendor to produce a single CFP2-ACO module to addresses multiple Host applications having various degrees of support requirements for the maximal ACI interface.

The maximal Tx ACI is shown schematically in Figure 18 and discussed in Sections 10.1-10.4.

Gain adjustments may be required in the circuitry used to deliver dither control signals to MZ phase adjustment and optical power adjustment elements, as shown in Figure 18, because the actuator slope of those elements may vary significantly across operating conditions. These controls can be implemented as required by vendors to achieve the required dither amplitudes on each control element. MDIO register **BB36** *Tx Analog Control Interface Dither Gains* has been defined in Table 16 for the read/write of up to a maximum of 4 vendor specific gain settings per dither signal.

Analog buffers delivering outputs of the optical power monitor taps may also require gain adjustment to achieve appropriate dynamic range to support different operating conditions. MDIO register **BB37** *Tx Analog Control Interface Power Monitor Gains* has been defined in Table 16 for the read/write of up to a maximum of 4 vendor specific gain settings per monitor signal.

The Rx ACI interface is detailed in Section 10.4 and shown schematically in Figure 19.

The PM_SYNC function of the ACI is defined in Section 10.5 and the addition of configurability to the TX_DIS input and RX_LOS output is discussed in Section 10.6.

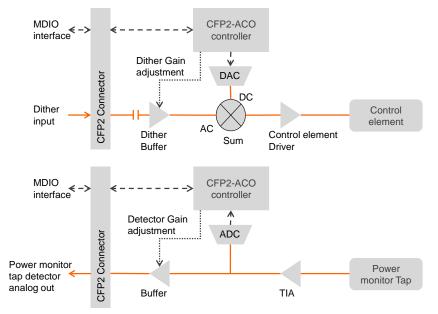


Figure 18: Tx Analog Control Interface (ACI) Schematic

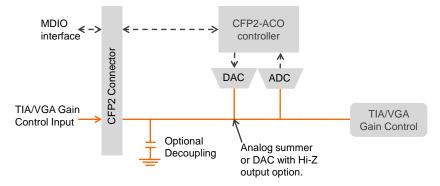


Figure 19: Rx Analog Control Interface (ACI) Schematic

10.1 Tx MZ Arm Phase Control Dither Inputs

Connector pins 2, 3, 103, 93, 91, and 81 can be allocated on the ACI, as indicated in Figure 10b, to enable the Host to inject dithers on the Tx MZ arm phase control electrodes. These inputs are required to support small-signal low frequency control dithers enabling the Host to implement active MZ phase-biasing methods on each of the 6 MZ interferometers.

Phase control dither ACI inputs shall be internally AC coupled inside the CFP2-ACO. The AC phase control dither signal of each MZ shall be combined with the associated DC MZ arm phase control setting from the **BB38-BB43** *PMQ Inner/Outer MZ Phase Controller Drive Signal* MDIO registers in Table 16.

The recommended passband of the phase control dither inputs is 1 kHz to 500 kHz. Phase control dither input pins on the ACI should have a minimum impedance of 500 Ω .

The phase control dither input signal generated by the Host shall have a peak-to-peak voltage swing of up to 3.3 Volts at the ACI connector pin. Phase control dither inputs must be capable of providing up to 10% of π radians peak-to-peak on each of the MZ relative phase. For each MZ the dithers must either modulate only one arm of the MZ ($\alpha = 1$) or be differentially balanced across the two arms ($\alpha = 0$).

The Host shall be capable of enabling/disabling the input dither signals. The Host circuitry should ensure that the phase control dither signal at the ACI pin has exactly the same DC offset whether the dither inputs are enabled or disabled, in order to prevent MZ bias glitch injection.

10.2 Tx X-Pol. and Y-Pol. Power Control Dither Inputs

Connector pins 76 and 75 may be allocated on the ACI, as indicated in Figure 10b, to enable the Host to inject input power control dither signals independently on the X-Pol. and Y-Pol. power control elements [VOA and SOA are anticipated implementations]. The generated X-Pol and Y-Pol optical amplitude dithers may be used, for example, as polarization power balancing control dithers, or for arbitrary small-signal modulation if required for system-level signaling.

Power control dither ACI inputs shall be internally AC coupled inside the CFP2-ACO. The AC power control dither signal of each polarization shall be combined with the associated DC power control element setting from the MDIO register interface in Table 16.

The recommended passband of the phase control dither inputs is 1 kHz to 300 kHz. Phase control dither input pins on the ACI should have a minimum impedance of 500 Ω .

The power control dither input signal generated by the Host can have a peak-to-peak voltage swing of up to 3.3 Volts at the ACI connector pin. Power control dither inputs should produce a corresponding optical output amplitude power dither with a modulation depth up to 5%.

The Host shall be capable of enabling/disabling the input dither signals. The Host circuitry should ensure that the power control dither signal at the ACI pin has exactly the same DC offset whether the dither inputs are enabled or disabled, in order to prevent optical power glitch injection.

10.3 Tx Optical Power Monitor Taps

Connector pins 5, 6, 47, 48, 50, 51, and 54 have been allocated on the ACI, as shown in Figure 10b, to X-Pol, Y-Pol, XI, XQ, YI, YQ, and post Pol-Mux Tx optical power monitor outputs, respectively.

Available optical power monitor outputs are to be used to detect the outcomes of control dither inputs described in Sections 10.1-10.2, thereby providing feedback to the associated control loops. Each available optical power monitor tap must be provided to the connector using a TIA element with appropriate gain and bandwidth to support detection of control dither outcomes.

The Tx optical power monitor tap output signals at the ACI connector are DC-coupled, with a peak-to-peak voltage between 0.0 and 3.3 Volts. They may be used by the Host to detect both DC and AC signals so the monitor signals have a recommended passband from DC to 500 kHz. The optical power monitor ACI outputs should be capable of driving a Host board with a minimum 1 k Ω load and a maximum of 1 nF input capacitance.

10.4 Rx TIA/VGA Gain Control Inputs

Connector pins 63, 64, 66, and 67 have been allocated on the ACI, as indicated in Figure 10b, to enable the Host to directly control the TIA/VGA transimpedance Gain Control (GC) on all 4 Rx RF channels. The Host shall be capable of enabling/disabling the GC ACI inputs (i.e. High-Z option).

The GC input operating range shall be confined to a subset of 0 to 3.3 V. The absolute min/max voltage on the GC input shall be allowed between -0.5 V and 4 V. The ACI GC connector input bandwidth shall be >1 MHz. Decoupling capacitance to ground on the GC connections inside the CFP2-ACO is optional.

If a vendor choses to do so, it is feasible to have the TIA/VGA GC input driven from two sources as shown in Figure 19. Anticipated implementations include an internal GC DAC with a Hi-Z option or an analog summer circuit to prevent signal contention. In this scenario **enabling the Rx ACI bit (bit 8) and setting the TIA into MGC mode (bit 15-14) using the MDIO BB8D** *Rx Subsystem Control* **register shall activate the GC ACI inputs**. The ADC is present on the GC line in Figure 19 to allow the controller to read the GC value if the TIA/VGA is operating in an AGC mode.

10.5 PM_SYNC Input

For the CFP2-ACO module the PRG_CNTL2 has been allocated for an external Performance Monitoring Synchronization input (PM_SYNC.) This input enables a rising edge synchronization pulse from the Host time reference source to synchronize the CFP2-ACO performance monitoring data collection with the Host data collection.

The CFP2-ACO PM_SYNC input shall share requirements with, and operate equivalently to, the PM_SYNC input on pin B13 in the Ref. [5] OIF-MSA-100GLH-EM-01.1 IA. The PM_SYNC function is detailed in Section 8.4.1.4, Table

4 and Table 9 of Ref. [5], and in Section 6.2.5 of Ref. [2]. The LVCMOS input has a default period=1 second; min high/low time = 100msec.

10.6 TX_DIS Input and RX_LOS Output Configurability

TX_DIS on connector pin 24 of the ACI can be optionally configurable as a PRG_CNTL (programmable control) after Reset. This functionality is equivalent to that introduced on the CFP4 pin map in Ref. [4].

RX_LOS on connector pin 25 of the ACI can be optionally configurable as a PRG_ALRM (programmable alarm) after Reset. This functionality is equivalent to that introduced on the CFP4 pin map in Ref. [4].

11 MDIO Register Interface

11.1 Implementation Overview

The CFP2 module utilizes MDIO IEEE Std. 802.3TM-2012 clause 45 [8] for its management interface. The CFP2 MDIO implementation is defined in Ref. [2], "CFP MSA Management Interface Specification." When multiple CFP2 modules are connected via a single bus, a particular CFP2 module can be selected by using the Physical Port Address pins.

An overview of the **0xB000** register page allocations that were added previously in the CFP MSA MIS to support the OIF MSA-100GLH coherent module application are given in Table 36 of Ref. [2].

To enable support of the CFP2-ACO module, *informative* Section 12 specifies new Ref. [2] **0xB000** register page extensions and Ref. [2] content modifications. Section 12 has been liaised to the CFP MSA Spokesperson and the CFP MSA Technical Editor for inclusion in the future CFP MSA MIS V2.6 release following the CFP MSA review process. These extensions and modifications further re-enforce a common Host-module management interface implementation for both high-speed client and line-side optical transmission module applications.

The CFP2-ACO shall utilize the expanded **0xB000** register page definition in the upcoming V2.6 of the CFP MSA MIS. Revision authority and document control for the CFP2-ACO MDIO interface resides with the CFP MSA MIS Editor. Any and all revisions to the *normative* Ref. [2] "CFP MSA Management Interface Specification" *shall take precedence* over the *informative* content in Section 12 and Section 13 of this IA. The current *normative* MIS reference for implementing the CFP2-ACO MDIO interface can be found at the Ref. [1] CFP MSA webpage.

The CFP MSA MIS Section 6.2.3 [2] specifies MDIO write flow control for the **0xB000** register page. Note that writing to unimplemented registers shall have no effect and shall not raise any errors, i.e. **B050 bit 14** shall return 0: No Error.

The CFP2-ACO module shall have the capability to use a *Performance Monitor Tick*, as detailed in the Performance Monitoring Subsystem Section 6.2.5.1 of Ref [2]. This PM Tick can be generated internally or be provided by the Host through a PM_SYNC input on PRG_CNTL2.¹⁶ For performance monitored variables, in addition to the *current* value, the Host has access to *average*, *minimum*, *and maximum* values over the PM Tick interval.

¹⁶ The Host is free to reprogram the usage of the *PRG_CNTLn* input pins and change their values at any time after the module exits the *Initialize State*.

For clarity CFP2-ACO relevant **0xB000** registers in CFP MSA MIS V2.4 R06b have been collected in *informative* Sections 13.1-13.6.

The existing **0xB000** tunable source control and performance monitoring registers are reproduced for reference in Section 13.1-13.2, and they shall be used for the CFP2-ACO module application.

11.2 CFP2-ACO Calibration Data

It is anticipated that CFP2-ACO module calibration data, subject to agreement between CFP2-ACO module users and vendors, could be stored in the existing CFP MSA MIS vendor specific registers:

- Unused registers in the range **BAE0 BAFF** shall be requested from the register fields allocated for *MSA-100GLH Network Lane VR2* to be used to store the ACO module calibration data defined in Section 12.7.
- Read-Only Vendor Non-Volatile Registers (NVR) are available between 8400-847F [Vendor NVR 1: 1 Table=128 registers, 8-bit] and 8480-84FF [Vendor NVR 2: 1 Table=128 registers, 8-bit.]
- The OIF shall request from the MIS Editor that two additional Tables of Read-Only Vendor Non-Volatile Registers (NVR) be provided from the *MSA Reserved* space between **8500-87FF**.
- A Read-Only page [9000-9FFF] of registers [4096] is reserved for vendor private use. This space is reserved exclusively for module vendors' development and implementation needs; it is assumed however that, subject to agreement between a CFP2-ACO module user and vendor, a subset of this space can be made non-volatile to contain additional calibration data.

11.3 CFP2-ACO User Private Use Registers

It is anticipated that CFP2-ACO module users will require private use registers. The existing CFP MSA MIS user registers shall be used for this purpose:

- Read/Write User Non-Volatile Registers (NVR) are available between 8800-887F [User NVR 1: 1 table=128 registers, 8-bit] and 8880-88FF [User NVR 2: 1 table=128 registers, 8-bit.]
- The OIF shall request from the MIS Editor that two additional 16-bit Tables of Read/Write User Non-Volatile Registers (NVR) be provided from the *MSA Reserved* space between **8900-8EFF**.
- Starting at **8F00h**, two additional tables [2x128 registers] are allocated for "User private use". The CFP MSA MIS does not specify nor restrict

the use of these tables; however, the use of these User Private Use Registers is subject to additional agreement between CFP2-ACO module users and vendors. It is assumed that these registers can be defined as non-volatile as part of any such additional agreement.

12 OIF Requested CFP MSA MIS V2.4 R06b Extensions and Modifications Supporting the CFP2-ACO Module (*Informative*)

The OIF requested changes to existing CFP MSA MIS V2.4 R06b content is given in Section 12.1.

The two MSA reserved tables between **BB00-BBFF** shall be requested for the new CFP2-ACO module specific Tx and Rx registers given in Section 12.2-12.3. MSA reserved registers between **BAE0-BAFF** shall also be requested for the ACO module characteristic data provided in Section 12.7. Note however, the final authority for allocation resides with the CFP MSA MIS Editor.

New CFP2-ACO FAWS registers are provided in Section 12.4.

The CFP2-ACO wavelength change operation is outlined in Section 12.5.

The CFP2-ACO wavelength selection registers are discussed in Section 12.6.

The CFP2-ACO characteristic data registers are provided in Section 12.7.

12.1 OIF Requested Changes to Existing CFP MSA MIS V2.4 R06b Content

The OIF shall request that Chapter 6 in CFP MSA MIS be renamed from "MSA-100GLH Module Management Interface" to "Coherent Module Management Interface". This emphasizes commonality in the registers used for coherent technology across various optical module types.

The OIF shall request from the MIS Editor that two additional Tables of Read-Only Vendor Non-Volatile Registers (NVR) be provided from the *MSA Reserved* space between **8500-87FF.**

The OIF shall request from the MIS Editor that two additional 16-bit Tables of Read/Write User Non-Volatile Registers (NVR) be provided from the *MSA Reserved* space between **8900-8EFF**.

When the LO source is shared with the Tx source, i.e. **BB8B** *Rx Subsystem Features* register bit 10:9=00, the Rx laser source registers in the **0xB000** register set are *not supported*, and should behave like unimplemented registers in the CFP MSA MIS for consistency.

The OIF shall request from the MIS Editor that Section 6.2.2.2 (page 111) lines 7-8 in Ref. [2] clarify the different use cases for the fine tune frequency registers. The **B430** and **B440** *Fine Tune Frequency* registers shall be available in the CFP2-ACO (they are not optional.) When the **B430** and **B440** *Fine Tune*

Frequency registers are called from the *Ready-State* the corresponding laser source output shall remain on and the CFP2-ACO shall remain in the *Ready-State* as outlined in Section 12.5.

The OIF shall request the changes in Table 15 to the MDIO registers as defined in Ref. [2].

Hex Add	Size	Access Type	Bit	Register Name Bit Field Name	Description of Change	Init Value
					100GLH Module	
B006	1	RW	7~0	PRG_CNTL2 Function Select	Add Performance Monitor Tick [Section 6.2.5.1] (PM- SYNC) as an allowed control function. Request Description be changed as follows: ["2: Assign Performance Monitor Tick (PM-SYNC) to PRG_CNTL2 pin. 3 ~ 127: Reserved."]	N/A
B00B	1		10	Module Operating Control	Bit 10, Performance Monitor Tick Source. Change Description to "0: Internal, 1: External (PM_SYNC pin). Note that for CFP2-ACO module, the external PM_SYNC is provided on PRG_CNTL2."	
B410	16	RW		Tx Output Power	Request Description be changed as follows: "Values at - 99dBm or less indicate the module shall shutter to its maximal capability. There are anticipated modules that will contain only a shutter function."	
B400/ B420	16	RW		Tx Channel Control / Rx Channel Control	Request in 12-10 Reserved bits that bit 10 be defined as "Arbitrary Settable Tx/Rx Minimum Laser Frequency Registers Enabled" with 1:Enabled, 0: Disabled. With bit set to 1:Enabled the high resolution registers detailed in Section 12.6 shall be used. With the bit set to 0:Not Enabled wavelength tuning is compatible with the Ref. [2] MIS.	
B490- B49B	1	6 RW and 6 RO	15~0	Tx Minimum Laser Frequency 1 [High Resolution] Tx Minimum Laser Frequency 2 [High Resolution] Tx Minimum Laser Frequency 3 [High Resolution] Rx Minimum Laser Frequency 1 [High Resolution] Rx Minimum Laser Frequency 2 [High Resolution] Tx Frequency 3 [High Resolution] Tx Frequency 2 [High Resolution] Tx Frequency 2 [High Resolution] Tx Frequency 3 [High Resolution] Tx Frequency 1 [High Resolution] Tx Frequency 2 [High Resolution] Rx Frequency 3 [High Resolution] Rx Frequency 3 [High Resolution] Rx Frequency 3 [High Resolution]	We request 3 Tx and 3 Rx RW registers to implement arbitrary settable first channel frequency with a 1MHz resolution. If these new minimum frequency registers are implemented and are written to by the Host when allowed by B400/B420 then the laser frequency calculation will use these new minimum frequency registers. This change will introduce a compatibility issue with the B450-B480 registers that give the current Tx and Rx module frequency-An additional register in each channel is required to obtain 1MHz resolution reading. We recommend taking 6 more Read-Only registers from the B490 Reserved space and implement current frequency registers with 1MHz resolution for only 1 Tx and 1 Rx laser. We believe this solution will be backward compatible with current implementations. We have assumed that B490 through B49B will be assigned to the requested 12 registers of unsigned 16 bit integers. See Section 12.6 for details on how these registers are used.	
8074	1	RO	7~0	Host Lane Signal Spec	Add 10h: ACO Class 1; 11h: ACO Class 2; 12h: ACO Class 3.	

Table 15 Requested Changes to CFP MSA MIS V2.4 R06b Registers

12.2 New MDIO Registers for Tx Subsystem Control

The new MDIO registers required to support the CFP2-ACO module Tx Subsystem are defined in Table 16. The Table 16 registers are organized by function: Tx Subsystem General; Tx Subsystem Output-Referred Optical Power Monitoring; Tx Subsystem Power Control; PMQ Operation Control; Limiting/Linear Tx Driver Control.

In Table 16 the "Hex Add" field for each register contains the Hex address followed by the MIS revision where the register first appeared in the interface [2.4], and ends with three identifiers within square brackets where the allowed identifiers being **'R'** for *Required*, **'O'** for *Optional* and **'N'** for *Not Supported*. These identifiers are the requirement on the register for each of the Classes of CFP2-ACO, i.e. [Class1; Class2; Class3]. *Not Supported* registers should behave like unimplemented registers in the CFP MSA MIS for consistency.

Tx total output power control registers already exists in the **0xB000** page. They have been reproduced for reference in Section 13.4 and shall be used for CFP2-ACO module control.

The current **0xB000** registers for MZ bias monitors, reproduced in Section 13.5 for reference, are not generic enough to account for all the expected InP or silicon MZ implementations. Alternative registers, fit for purpose, are provided in the Table 16 definitions for the CFP2-ACO module application.

Note all Tx subsystem optical power monitoring is CFP2-ACO outputreferred.

Hex Add	Size	Access Type	Bit	Register Name Bit Field Name	Description	Init Value
Tx Sub	syster	n General				
BB00 [2.6] [RRR]	1	RO		Tx RF Channel Mapping and Characteristic Data Availability		
			15	X:Y mapping	0 = X:Y 1 = Y:X As defined in CFP2-ACO IA Section 8.3 and Table 8.	0b
			14-13	I,Q mapping	00 = I,Q:I,Q 01 =Q,I:Q,I 10 = I,Q:Q,I 11 = Q,I:I,Q As defined in CFP2-ACO IA Section 8.3 and Table 8.	00b
			12-10	P/N mapping	000 = p/n,p/n:p/n,p/n 001 = n/p,n/p:n/p,n/p 010 = p/n,p/n:n/p,n/p 011 = n/p,n/p:p/n,p/n 100 = p/n,n/p:p/n,n/p 101 = n/p,p/n:n/p,p/n 110 = p/n,n/p:n/p,p/n 111 = n/p,p/n:p/n,n/p As defined in CFP2-ACO IA Section 8.3 and Table 8.	000b
			9	Tx Skew Values	0 = Not stored on device	0b
			8 7	Tx frequency response amplitude data	1 = Stored on device (see CFP2-ACO	0b
			-	Tx frequency response phase data	IA Section 12.7 for details on storage format.)	0b
			6-0	Reserved		0b

BB01 [2.6] [RRR]	1	RO		Tx Optical Features	Summary of available PMQ features in the CFP-ACO.	
Innd		I	15	Post Tx Power Control In-Line Power Monitor	1: Available, 0: Not Available.	
			14	Post Pol. Mux (and Pre Tx Power Control) In-Line Power Monitor		
			13-12	X Pol. Power Monitor Options	00 = None, 01 = In-Line, 10 =	
			11-10	Y Pol. Power Monitor Options	Complementary, 11 = Reserved.	
			9-8	Post Pol. Mux. Total Tx Power Control	00 = None, 01 = Shutter Only,	
				Options	10 = VOA, 11 = SOA or EDFA	
			7-6	X-Pol. Power Control Options	00 = None, 01 = VOA, 10 = SOA,	
			5-4	Y-Pol. Power Control Options	11 = Reserved.	
			3	[XI, XQ, YI, YQ] Complementary Power Monitors	1: Available, 0: Not Available.	
			2	Tx. Total Power Control to Target		
			1	Tx. X-Pol. Power Control to Target		
		1	0	Tx. Y-Pol. Power Control to Target		
BB02 [2.6] [NNR]	1	RO		Tx Analog Control Interface (ACI) Availability		
[]			15	[XI, XQ, YI, YQ] Complementary Power Monitors	1: Available, 0: Not Available.	0b
			14	X-Pol. Power Monitor	1	0b
			13	Y-Pol. Power Monitor]	0b
			12	Post Pol-Mux Total Tx Power Monitor]	0b
			11	MZ Arm Phase Control Dither Inputs		0b
			10	X-Pol. Power Control Dither Inputs		0b
			9	Y-Pol. Power Control Dither Inputs		
			8-0	Reserved		
BB03 [2.6] [NNR]	1	RW		Tx Analog Control Interface (ACI) Select		
[mint]			15	ACI Tx All Monitors	1: Enable	1b
			14	ACI Tx Phase Control Dither Inputs	0: Disable.	1b
			13	ACI Tx Power Control Dither Inputs		1b
			12	X-Pol. Outer MZ Dither Input Arm	1: Positive Arm	0b
			11	Select Y-Pol. Outer MZ Dither Input Arm	0: Negative Arm	0b
				Select		
			10	XI MZ Dither Input Arm Select	4	0b
			09	XQ MZ Dither Input Arm Select	4	0b
			08	YI MZ Dither Input Arm Select	4	0b
			07	YQ MZ Dither Input Arm Select		0b
			06-0	Reserved		+
BB04 [2.6] [RRR]	1	RO		Tx Driver Features	Summary of available Tx Driver features in the CFP-ACO.	
			15-14	Tx RF Driver Type	00 = Limiting, 01 = Linear, 10 = Reserved, 11 = Reserved.	
			13	Tx RF Driver Enable/Disable (BB5F) by Channel	1: Available, 0: Not Available.	
			12	Tx RF Driver Adjustable Gain (BB64) / Amplitude (BB6C) by Channel		
			11	Tx RF Driver Adjustable Current (BB68) / Crossing (BB70) by Channel		
			10	Tx RF Driver Transfer Function Equalization (BB74) by Channel		
			9	Tx RF Driver Output Detector (BB75) by Channel		
			8	Tx RF Driver Control to Target (BB5B) by Channel		
			7-6	Tx RF Driver Output Detector Type	00: Peak 01: Average	

					10: Reserved 11: Reserved	
			5-0	Reserved		
BB05 [2.6] [RRO]	1	RO		Modulation Format - Availability	Modulation format availability in the CFP2-ACO. If 0x8000 is 14h (module identifier is CFP2-ACO), this register is active and 0x801A is not active.	
			15-14	DP-QPSK	00 = Unsupported, 01 = NRZ, 10 = RZ,	00b
			13-12	DP-BPSK	11 = Both.	00b
			11-10	DP-8QAM		00b
			9-8	DP-16QAM		00b
			7-6	DP-32QAM		00b
			5-4	DP-64QAM		00b
			3-0	Reserved		
BB06 [2.6] [RRO]	1	RW		Modulation Format - Select	Modulation format select in the CFP2- ACO. If 0x8000 is 14h (module identifier is CFP2-ACO), this register is active and 0x801A is not active.	
			15-14	RZ/NRZ Encoding	00 = Undefined, 01 = NRZ, 10 = RZ, 11 = Reserved.	
			13	Differential Encoding Status	0: Non-Differentially Encoded	
				, , , , , , , , , , , , , , , , , , ,	1: Differentially Encoded	
			12-10	Nyquist Spectral Shaping Factor	000: None 001: Beta = 0.1 010: Beta = 0.2 011: Beta = 0.3 100: Beta = 0.4 101: Beta = 0.5 110: Beta = 0.6	
					111: Beta = Unspecified	
			9	Transmit Path Electrical Equalization	1: Enabled, 0: None	
			8	Reserved		
			7-0	Modulation Format	00h – DP-QPSK 01h – DP-BPSK 02h – DP-8QAM 03h – DP-16QAM 04h – DP-32QAM 05h – DP-64QAM 06h – FFh – Reserved	
BB07 [2.6] [000]	1	RW	15~0	Baud Rate	Set register for CFP2-ACO Baud Rate. An unsigned 16-bit integer with 1 LSB=0.001GBaud	0000h
BB08	2	RO		Reserved		
BB0A	1	RO		Module Tx Hardware		
[2.6] [RRR]				Response Pending Flags		
			15	Tx Fine Tune Frequency (B430) In Progress	0: de-asserted 1: asserted	
			14~0	Reserved		
BB0C	5	RO		Reserved		
Tx Sub	syster	n Output-	Referred	Optical Power Monitoring		
BB10 [2.6] [OOO]	1	RO	15~0	Tx Optical Power Monitor, Current Post Pol-Mux In-Line	A signed 16-bit integer with 1 LSB = 0.01dBm. The raw ADC value is reported if BB37 Bit 1-0 is set to 01.	0000h
BB11 [2.6] [000]	1	RO	15~0	Tx Optical Power Monitor, Average Post Pol-Mux In-Line over PM interval	A signed 16-bit integer with 1 LSB = 0.01dBm. The raw ADC value is reported if BB37 Bit 1-0 is set to 01.	0000h
BB12 [2.6] [000]	1	RO	15~0	Tx Optical Power Monitor, Minimum Post Pol-Mux In- Line over PM interval	A signed 16-bit integer with 1 LSB = 0.01dBm. The raw ADC value is reported if BB37 Bit 1-0 is set to 01.	0000h
BB13 [2.6] [000]	1	RO	15~0	Tx Optical Power Maximum Post Pol-Mux In-Line over PM interval	A signed 16-bit integer with 1 LSB = 0.01dBm. The raw ADC value is reported if BB37 Bit 1-0 is set to 01.	0000h
BB14 [2.6] [NOO]	1	RO	15~0	Tx Optical Power Monitor, Current X-Pol.	A signed 16-bit integer with 1 LSB = 0.01dBm. The raw ADC value is reported if BB37 Bit 1-0 is set to 01.	0000h

BB15	1	RO	15~0	Tx Optical Power Monitor,	A signed 16-bit integer with 1 LSB =	0000h
[2.6]				Average X-Pol. over PM	0.01dBm. The raw ADC value is	
[NOO]				interval	reported if BB37 Bit 1-0 is set to 01.	
BB16	1	RO	15~0	Tx Optical Power Monitor,	A signed 16-bit integer with 1 LSB =	0000h
[2.6]				Minimum X-Pol. over PM	0.01dBm. The raw ADC value is	
[NOO]			45.0	interval	reported if BB37 Bit 1-0 is set to 01.	00001
BB17	1	RO	15~0	Tx Optical Power Monitor,	A signed 16-bit integer with 1 LSB =	0000h
[2.6]				Maximum X-Pol. over PM	0.01dBm. The raw ADC value is	
[NOO]				interval	reported if BB37 Bit 1-0 is set to 01.	
BB18	1	RO	15~0	Tx Optical Power Monitor,	A signed 16-bit integer with 1 LSB =	0000h
[2.6]				Current Y-Pol.	0.01dBm. The raw ADC value is	
[NOO]	-	50	45.0	The Optimal Damas Manifest	reported if BB37 Bit 1-0 is set to 01.	00001
BB19	1	RO	15~0	Tx Optical Power Monitor, Average Y-Pol. over PM	A signed 16-bit integer with 1 LSB = 0.01dBm. The raw ADC value is	0000h
[2.6] [NOO]				interval	reported if BB37 Bit 1-0 is set to 01.	
BB1A	1	RO	15~0	Tx Optical Power Monitor,	A signed 16-bit integer with 1 LSB =	0000h
[2.6]		RU	15~0	Minimum Y-Pol. over PM	0.01dBm. The raw ADC value is	00000
[2.0] [NOO]				interval	reported if BB37 Bit 1-0 is set to 01.	
BB1B	1	RO	15~0			0000h
[2.6]		RU	15~0	Tx Optical Power Monitor, Maximum Y-Pol. over PM	A signed 16-bit integer with 1 LSB = 0.01dBm. The raw ADC value is	00000
[2.0] [NOO]				interval	reported if BB37 Bit 1-0 is set to 01.	
		50	45.0			00001
BB1C	4	RO	15~0	Tx Optical Power Monitor,	4 registers, one for each PMQ channel	0000h
[2.6]				Current PMQ Channel [XI, XQ,	[in order: XI, XQ, YI, YQ]	
[NOO]				ΥΙ, ΥΩ]	complementary power monitor. The	
DDOO	4	RO	15~0	Try Onting! Dawar Manitan	raw ADC value is reported.	00001-
BB20	4	RU	15~0	Tx Optical Power Monitor, Average PMQ Channel IXI.	4 registers, one for each PMQ channel	0000h
[2.6]				J J J J J J J J J J J J J J J J J J J	[in order: XI, XQ, YI, YQ]	
[NOO]				XQ, YI, YQ] over PM interval	complementary power monitor. The	
DD04	4	DO	45.0	Try Onting! Dawar Manitan	raw ADC value is reported.	00001-
BB24	4	RO	15~0	Tx Optical Power Monitor,	4 registers, one for each PMQ channel	0000h
[2.6]				Minimum PMQ Channel [XI,	[in order: XI, XQ, YI, YQ]	
[NOO]				XQ, YI, YQ] over PM interval	complementary power monitor. The	
DD00	4		15~0	Tx Optical Power Monitor,	raw ADC value is reported.	0000h
BB28	4	RO	15~0	I X Obtical Power Monitor.		
10.01	-			Maximum DMO Channel IVI	4 registers, one for each PMQ channel	000011
[2.6]				Maximum PMQ Channel [XI,	[in order: XI, XQ, YI, YQ]	000011
[2.6] [NOO]				Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval	[in order: XI, XQ, YI, YQ] complementary power monitor. The	000011
				Maximum PMQ Channel [XI,	[in order: XI, XQ, YI, YQ]	
[ÑOŌ]	svetor	n Power (Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported.	
[ÑOŌ] Tx Sub				Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported.	
[ÑOŎ] Tx Sub BB2C	<mark>syster</mark> 1	<mark>n Power (</mark> RW		Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported.	
[ÑOÔ] Tx Sub BB2C [2.6]				Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported.	
[ÑOŎ] Tx Sub BB2C			Control [1	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total OL Tx Power Control	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. Itput Power Control Registers]	
[ÑOÔ] Tx Sub BB2C [2.6]			Control [1	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total OL Tx Power Control Tx. Total Power Control to Target	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported.	
[NOO] Tx Sub BB2C [2.6]			Control [1 15 14	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total OL Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. Itput Power Control Registers]	
[ÑOÔ] Tx Sub BB2C [2.6]			Control [1 15 14 13	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. Itput Power Control Registers] 0: Disable, 1: Enable	
[ÑOÔ] Tx Sub BB2C [2.6]			Control [1 15 14	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total OL Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. Itput Power Control Registers] 0: Disable, 1: Enable This bit controls the optical state of the	
[ÑOÔ] Tx Sub BB2C [2.6]			Control [1 15 14 13	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. Itput Power Control Registers] 0: Disable, 1: Enable This bit controls the optical state of the Tx output, independently of the state of	
[NOO] Tx Sub BB2C [2.6]			Control [1 15 14 13	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. Itput Power Control Registers] 0: Disable, 1: Enable This bit controls the optical state of the Tx output, independently of the state of all other Tx optical subsystems. It	
[ÑOÔ] Tx Sub BB2C [2.6]			Control [1 15 14 13	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. tput Power Control Registers] 0: Disable, 1: Enable This bit controls the optical state of the Tx output, independently of the state of all other Tx optical subsystems. It must be possible to shutter/block the	
[ÑOÔ] Tx Sub BB2C [2.6]			Control [1 15 14 13	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. tput Power Control Registers] 0: Disable, 1: Enable This bit controls the optical state of the Tx output, independently of the state of all other Tx optical subsystems. It must be possible to shutter/block the Tx output using the Tx VOA/shutter	
[ÑOÔ] Tx Sub BB2C [2.6]			Control [1 15 14 13	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. ttput Power Control Registers] 0: Disable, 1: Enable This bit controls the optical state of the Tx output, independently of the state of all other Tx optical subsystems. It must be possible to shutter/block the Tx output using the Tx VOA/shutter even when the remainder of the Tx is in	
[ÑOÔ] Tx Sub BB2C [2.6]			Control [1 15 14 13	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. Itput Power Control Registers] 0: Disable, 1: Enable This bit controls the optical state of the Tx output, independently of the state of all other Tx optical subsystems. It must be possible to shutter/block the Tx output using the Tx VOA/shutter even when the remainder of the Tx is in normal operation.	
[NOO] Tx Sub BB2C [2.6]			Control [1 15 14 13	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. Itput Power Control Registers] 0: Disable, 1: Enable This bit controls the optical state of the Tx output, independently of the state of all other Tx optical subsystems. It must be possible to shutter/block the Tx output using the Tx VOA/shutter even when the remainder of the Tx is in normal operation. 1: Tx output enabled: Tx VOA/shutter	
[ÑOÔ] Tx Sub BB2C [2.6]			Control [1 15 14 13	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. 	
[ÑOÔ] Tx Sub BB2C [2.6]			Control [1 15 14 13	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. 	
[ÑOÔ] Tx Sub BB2C [2.6]			15 14 13 12	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target Tx. Optical Output Enable	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. 	
[ÑOÔ] Tx Sub BB2C [2.6]			Control [1 15 14 13	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. 	
[ŇOŎ] Tx Sub BB2C [2.6] [OOŎ]	1	RW	15 14 13 12	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target Tx. Optical Output Enable Reserved	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. Itput Power Control Registers] 0: Disable, 1: Enable This bit controls the optical state of the Tx output, independently of the state of all other Tx optical subsystems. It must be possible to shutter/block the Tx output using the Tx VOA/shutter even when the remainder of the Tx is in normal operation. 1: Tx output enabled: Tx VOA/shutter open (transparent). 0: Tx output disabled: Tx VOA/shutter blocked (opaque).	
[ŇOŎ] Tx Sub BB2C [2.6] [OOO] BB2D			15 14 13 12	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target Tx. Optical Output Enable Reserved Tx X-Pol. Optical Power	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. Itput Power Control Registers] 0: Disable, 1: Enable This bit controls the optical state of the Tx output, independently of the state of all other Tx optical subsystems. It must be possible to shutter/block the Tx output using the Tx VOA/shutter even when the remainder of the Tx is in normal operation. 1: Tx output enabled: Tx VOA/shutter open (transparent). 0: Tx output disabled: Tx VOA/shutter blocked (opaque).	
[ŇOŎ] Tx Sub BB2C [2.6] [OOO] BB2D [2.6]	1	RW	15 14 13 12	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target Tx. Optical Output Enable Reserved	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. Itput Power Control Registers] 0: Disable, 1: Enable 0: Disable, 1: Enable This bit controls the optical state of the Tx output, independently of the state of all other Tx optical subsystems. It must be possible to shutter/block the Tx output using the Tx VOA/shutter even when the remainder of the Tx is in normal operation. 1: Tx output enabled: Tx VOA/shutter open (transparent). 0: Tx output disabled: Tx VOA/shutter blocked (opaque). Power Target at Tx X Pol. Optical Power Monitor. A signed 16-bit integer	
[ŇOŎ] Tx Sub BB2C [2.6] [OOO] BB2D	1	RW	15 14 13 12	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target Tx. Optical Output Enable Reserved Tx X-Pol. Optical Power	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. tput Power Control Registers] 0: Disable, 1: Enable 0: Disable, 1: Enable This bit controls the optical state of the Tx output, independently of the state of all other Tx optical subsystems. It must be possible to shutter/block the Tx output using the Tx VOA/shutter even when the remainder of the Tx is in normal operation. 1: Tx output enabled: Tx VOA/shutter open (transparent). 0: Tx output disabled: Tx VOA/shutter blocked (opaque). Power Target at Tx X Pol. Optical Power Monitor. A signed 16-bit integer with the LSB = 0.01dBm. Dependent on	
[ŇOŎ] Tx Sub BB2C [2.6] [OOO] BB2D [2.6]	1	RW	15 14 13 12	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target Tx. Optical Output Enable Reserved Tx X-Pol. Optical Power	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. tput Power Control Registers] 0: Disable, 1: Enable This bit controls the optical state of the Tx output, independently of the state of all other Tx optical subsystems. It must be possible to shutter/block the Tx output using the Tx VOA/shutter even when the remainder of the Tx is in normal operation. 1: Tx output enabled: Tx VOA/shutter open (transparent). 0: Tx output disabled: Tx VOA/shutter blocked (opaque). Power Target at Tx X Pol. Optical Power Monitor. A signed 16-bit integer with the LSB = 0.01dBm. Dependent on modulation format and modulation	
[ŇOŎ] Tx Sub BB2C [2.6] [OOO] BB2D [2.6] [NOO]	1	RW	15 14 13 12 11~0 15~0	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target Tx. Optical Output Enable Reserved Tx X-Pol. Optical Power Target	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. Itput Power Control Registers] 0: Disable, 1: Enable This bit controls the optical state of the Tx output, independently of the state of all other Tx optical subsystems. It must be possible to shutter/block the Tx output using the Tx VOA/shutter even when the remainder of the Tx is in normal operation. 1: Tx output enabled: Tx VOA/shutter open (transparent). 0: Tx output disabled: Tx VOA/shutter blocked (opaque). Power Target at Tx X Pol. Optical Power Monitor. A signed 16-bit integer with the LSB = 0.01dBm. Dependent on modulation format and modulation depth.	
[ŇOŎ] Tx Sub BB2C [2.6] [OOO] BB2D [2.6] [NOO] BB2E	1	RW	15 14 13 12	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Out Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Optical Output Enable Reserved Tx X-Pol. Optical Power Target Tx Y-Pol. Optical Power	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. Itput Power Control Registers] 0: Disable, 1: Enable 0: Disable, 1: Enable This bit controls the optical state of the Tx output, independently of the state of all other Tx optical subsystems. It must be possible to shutter/block the Tx output using the Tx VOA/shutter even when the remainder of the Tx is in normal operation. 1: Tx output enabled: Tx VOA/shutter open (transparent). 0: Tx output disabled: Tx VOA/shutter blocked (opaque). Power Target at Tx X Pol. Optical Power Monitor. A signed 16-bit integer with the LSB = 0.01dBm. Dependent on modulation format and modulation depth. Power Target at Tx Y Pol. Optical	
[ŇOŌ] Tx Sub BB2C [2.6] [OOO] BB2D [2.6] [NOO] BB2E [2.6] [NOO]	1	RW	15 14 13 12 11~0 15~0	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Ou Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Y-Pol. Power Control to Target Tx. Optical Output Enable Reserved Tx X-Pol. Optical Power Target	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. Itput Power Control Registers] 0: Disable, 1: Enable 0: Disable, 1: Enable This bit controls the optical state of the Tx output, independently of the state of all other Tx optical subsystems. It must be possible to shutter/block the Tx output using the Tx VOA/shutter even when the remainder of the Tx is in normal operation. 1: Tx output enabled: Tx VOA/shutter open (transparent). 0: Tx output disabled: Tx VOA/shutter blocked (opaque). Power Target at Tx X Pol. Optical Power Monitor. A signed 16-bit integer with the LSB = 0.01dBm. Dependent on modulation format and modulation depth. Power Target at Tx Y Pol. Optical Power Monitor. A signed 16-bit integer	
[ŇOŎ] Tx Sub BB2C [2.6] [OOO] BB2D [2.6] [NOO] BB2E	1	RW	15 14 13 12	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Out Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Optical Output Enable Reserved Tx X-Pol. Optical Power Target Tx Y-Pol. Optical Power	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. itput Power Control Registers] 0: Disable, 1: Enable This bit controls the optical state of the Tx output, independently of the state of all other Tx optical subsystems. It must be possible to shutter/block the Tx output using the Tx VOA/shutter even when the remainder of the Tx is in normal operation. 1: Tx output disabled: Tx VOA/shutter open (transparent). 0: Tx output disabled: Tx VOA/shutter blocked (opaque). Power Target at Tx X Pol. Optical Power Monitor. A signed 16-bit integer with the LSB = 0.01dBm. Dependent on modulation format and modulation depth. Power Monitor. A signed 16-bit integer with the LSB = 0.01dBm. Dependent on	
[ŇOŌ] Tx Sub BB2C [2.6] [OOO] BB2D [2.6] [NOO] BB2E [2.6] [NOO]	1	RW	15 14 13 12	Maximum PMQ Channel [XI, XQ, YI, YQ] over PM interval 3.4 Provides Existing Tx Total Out Tx Power Control Tx. Total Power Control to Target Tx. X-Pol. Power Control to Target Tx. Optical Output Enable Reserved Tx X-Pol. Optical Power Target Tx Y-Pol. Optical Power	[in order: XI, XQ, YI, YQ] complementary power monitor. The raw ADC value is reported. Itput Power Control Registers] 0: Disable, 1: Enable 0: Disable, 1: Enable This bit controls the optical state of the Tx output, independently of the state of all other Tx optical subsystems. It must be possible to shutter/block the Tx output using the Tx VOA/shutter even when the remainder of the Tx is in normal operation. 1: Tx output enabled: Tx VOA/shutter open (transparent). 0: Tx output disabled: Tx VOA/shutter blocked (opaque). Power Target at Tx X Pol. Optical Power Monitor. A signed 16-bit integer with the LSB = 0.01dBm. Dependent on modulation format and modulation depth. Power Target at Tx Y Pol. Optical Power Monitor. A signed 16-bit integer	

BB2F	1	RW	15~0	Tx X-Pol. Optical Power	An unsigned 16-bit integer with the	0000h
[2.6]				Controller Drive Signal (A.U.)	LSB = A.U. X-Pol. optical power will	
[NNO]					respond monotonically to this drive	
					signal register. This register can be	
					written if the BB2C "Tx X-Pol. Power	
					Control to Target" is disabled. The	
					A.U. resolution is such that 1 LSB shall	
					not result in a change of X-Pol. optical power >0.1dB. Anticipated	
					implementations are a VOA or SOA.	
					The 90% settling time of a change to	
					this drive signal should be less than	
					100ms. The settling time includes any	
					MDIO/processing latency, and the	
					actual hardware settling time.	
BB30	1	RW	15~0	Tx Y-Pol. Optical Power	An unsigned 16-bit integer with the	0000h
[2.6]				Controller Drive Signal (A.U.)	LSB = A.U. Y-Pol. optical power will	
[NNO]					respond monotonically to this drive	
					signal register. This register can be	
					written if the BB2C "Tx Y-Pol. Power	
					Control to Target" is disabled. The A.U.	
					resolution is such that 1 LSB shall not	
					result in a change of Y-Pol. optical	
					power >0.1dB. Anticipated	
					implementations are a VOA or SOA.	
					The 90% settling time of a change to	
					this drive signal should be less than	
					100ms. The settling time includes any MDIO/processing latency, and the	
					actual hardware settling time.	
BB31	1	RW	15~0	Tx Post Pol. Mux Total Optical	An unsigned 16-bit integer with the	0000h
[2.6]			10.0	Power Controller Drive Signal	LSB = A.U. The post Pol. Mux total	000011
[NNO]				(A.U.)	optical power will respond	
[]				()	monotonically to this drive signal	
					register. This register can be written if	
					the BB2C "Tx Total Output Power	
					Control to Target" is disabled. The A.U.	
					resolution is such that 1 LSB shall not	
					result in a change of the total optical	
					power >0.1dB. Anticipated	
					implementations are a VOA, a SOA or	
					an EDFA. The 90% settling time of a	
					change to this drive signal should be	
					less than 100ms. The settling time	
					includes any MDIO/processing latency,	
DDaa	4			Lacar Output Bower	and the actual hardware settling time.	
BB32	1	RW		Laser Output Power	This register can only be controlled at	
[000]				Enable/Disable	the TX-off State or later, including the	
					Ready State. The ACO State should be independent	
					of BB32. A change in this register	
					should not impact the ACO State, and	
					vice versa.	
					The default is 0: Disable, and this	
					shall remain until being changed by the	
					Host.	
			15	Tx Laser Output Power Enable	1: Enable, Laser output power is turned	0b
			14	Rx Laser Output Power Enable	on.	0b
				•	0: Disable, Laser output power is	
					turned off; however, the laser	
					controller, TEC, etc. should remain on.	
			13~0	Reserved		
DMO O	poret:	on Control				
	perati	on Control				
BB33	1	RW		PMQ Inner MZ Bias Point		
[2.6]				Targets		
[000]						
10001						
[000]			15-13	XI MZ Bias Target Point	Min=MZ output minimum, Max=MZ	000b

r						
			12-10	XQ MZ Bias Target Point	output maximum, Quad=MZ output at	000b
			9-7	YI MZ Bias Target Point	quadrature. Min 1(2) corresponds to	000b
			6-4	YQ MZ Bias Target Point	the first (second) Min point found as	000b
			3-0	Reserved	the bias is increased from its minimum value to its maximum value. Max 1(2) is similarly defined.	0000b
					000 = Min 1, 001 = Min 2	
					010 = Max 1, 011 = Max 2	
					100 = Quad 1, 101 = Quad 2	
					110 = Freeze Current Bias Point	
					111 = Reserved.	
BB34	1	RW		PMQ Outer MZ Bias Point		
[2.6]				Targets		
[000]				Targets		
[000]			15-13	X Pol. Outer MZ Bias Target Point	Min=MZ output minimum, Max=MZ	100b
			12-10	Y Pol. Outer MZ Bias Target Point	output maximum, Quad=MZ output at	100b
			9-0	Reserved	quadrature. Min 1(2) corresponds to the	
					first (second) Min point found as the	
					bias is increased from its minimum	
					value to its maximum value. Max 1(2) is	
					similarly defined.	
					000 = Min 1, 001 = Min 2	
					010 = Max 1, 011 = Max 2	
					100 = Quad 1, 101 = Quad 2 110 = Freeze Current Bias Point	
					110 = Freeze Current Blas Point 111 = Reserved.	
BB35	1	RW	1	PMQ Bias Control		
[2.6]	-					
[000]						
			15~14	Reserved		
			13	Tx X-Pol. Outer MZ Bias Point	1: Enable, 0: Disable	0b
				Control to Target		
			12	Tx Y-Pol. Outer MZ Bias Point		0b
			- 44	Control to Target	-	01-
			11	XI MZ Bias Point Control to Target	-	0b
			10 9	XQ MZ Bias Point Control to Target	-	0b 0b
			8	YI MZ Bias Point Control to Target YQ MZ Bias Point Control to Target	-	0b 0b
			7-0	Reserved		0b 0b
			7-0			05
BB36	1	RW		Tx Analog Control Interface		
[2.6]	-			Dither Gains		
[NNO]						
			15-14	Tx XI Phase Dither Gain	00 = Dither Gain 1,	00b
			13-12	Tx XQ Phase Dither Gain	01 = Dither Gain 2,	00b
			11-10	Tx YI Phase Dither Gain	10 = Dither Gain 3,	00b
			9-8	Tx YQ Phase Dither Gain	11 = Dither Gain 4.	00b
			7-6	Tx X Outer Phase Dither Gain	Dither Gains are vendor specific.	00b
			5-4	Tx Y Outer Phase Dither Gain	MDIO availability of 4 dither gain	00b
			3-2	Tx X-Pol. Power Dither Gain	settings does not imply that 4 settings are available.	00b
			1-0	Tx Y-Pol. Power Dither Gain	A change to the dither gain should be	00b
					effected within 100ms, including any	
					MDIO/processing latency and the	
					actual hardware settling time.	
BB37	1	RW	1	Tx Analog Control Interface		
[2.6] [NNO]				Power Monitor Gains		
			15-14	Tx XI Power Monitor Gain	00 = Monitor Gain 1,	00b
			13-12	Tx XQ Power Monitor Gain	01 = Monitor Gain 2,	00b
			11-10	Tx YI Power Monitor Gain	10 = Monitor Gain 3,	00b
			9-8	Tx YQ Power Monitor Gain	11 = Monitor Gain 4.	00b
			7-6	Tx X-Pol. Power Monitor Gain	Power Monitor Gains are vendor	00b
			5-4	Tx Y-Pol. Power Monitor Gain	specific. MDIO availability of 4 gain settings does not imply that 4 settings	00b
			3-2	Tx Post Pol. Mux Power Monitor Gain		00b
			3-2	Tx Post Pol. Mux Power Monitor Gain	are available. A change to the power monitor gain	00b

			1	1	should be effected within 100ms,	T
					including any MDIO/processing latency	
					and the actual hardware settling time.	
			1-0	Dower Manitar Dow ADC Departing	Applies to Power Monitors BB10-BB1B	00b
			1-0	Power Monitor Raw ADC Reporting Enable	[Post Pol-Mux, X-Pol., Y-Pol.]	000
					00: Disable - BB10-BB1B registers	
					report in dBm.	
					01: Enable - BB10-BB1B registers	
					report the raw ADC values.	
	1				10-11: Reserved	
BB38	12	RW	15~0	PMQ Inner/Outer MZ Phase	12 registers, one for each possible	-
	12		13~0	Controller Drive Signal (A.U.)	inner/outer MZ arm phase control	
[2.6]				Controller Drive Signal (A.O.)	electrode [in order: X _L , X _R , Y _L , Y _R , Xlp,	
[NNO]						
					Xin, XQp, XQn, Yip, Yin, YQp, YQn.] An	
					unsigned 16-bit integer with the LSB =	
					A.U. The selected MZ arm phase will	
					respond monotonically to this drive	
					signal register. These registers can be	
			1		written if the appropriate BB35 "MZ	
			1		Bias Point Control to Target" is	
					disabled. The A.U. resolution is such	
			1		that 1 LSB shall not result in a change	
			1		of MZ arm phase > 5 milliradians. The	
					90% settling time of a change to this	
					drive signal should be less than 100ms.	
					The settling time includes any	
					MDIO/processing latency, and the	
					actual hardware settling time.	
BB44	8	RO	15~0	PMQ RF Phase Shifter	8 registers, one for each RF phase	
[2.6]				Applied DC Bias	shifter DC bias [in order: Xlp, Xln, XQp,	
[NNO]					XQn, Ylp, Yln, YQp, YQn]. A 16-bit	
					signed integer with 1 LSB = 2mV.	
BB4C	1	RO	15~0	PMQ Case Temperature	Measured temperature in degrees	0000h
[2.6]					Celsius, a 16-bit signed integer with	
[000]					LSB = 1/256 of a degree Celsius,	
					representing a total range from -128 to	
					+ 127 255/256 degC. MSA valid range is	
					between -40 and +125C. Accuracy shall	
					be better than +/- 3 degC over the	
					whole temperature range.	
BB4D	1	RO	15~0	PMQ Chip Temperature	Measured temperature in degrees	0000h
[2.6]	-			· ···· · ···· · · ··· · · · · · · · ·	Celsius, a 16-bit signed integer with	
[000]					LSB = $1/256$ of a degree Celsius,	
[]					representing a total range from -128 to	
					+ 127 255/256 degC. MSA valid range is	
					between -40 and +125C. Accuracy shall	
					be better than +/- 3 degC over the	
					whole temperature range.	
BB4E	6	RO	+	Reserved		<u> </u>
		ng Tx Drive	er Contro			
BB54	1	RW	15~0	Host Tx RF Enabled Status	This register is intended to be set by	
[2.6]					the Host to indicate the status of the	
[RRR]					Host Tx RF input signals to the module.	
			15	XI Tx Channel RF Input Active	1: True, 0: False	0b
			14	XQ Tx Channel RF Input Active]	0b
			13	YI Tx Channel RF Input Active	1	0b
			12	YQ Tx Channel RF Input Active	1	0b
			11-0	Reserved		0b
BB55	1	RO	15~0	Module Confirmation of Host	Module conformation of the Host Tx RF	
[2.6]		-		Tx RF Enabled Status	Enabled status.	
[R00]						
[···• •]			15	XI Tx Channel RF Input Active	1: True, 0: False	0b
			14	XQ Tx Channel RF Input Active	1	0b
			13	YI Tx Channel RF Input Active	1	0b 0b
			12	YQ Tx Channel RF Input Active	1	0b 0b
			1 1 4			00
			11-0	Reserved		Ոհ
			11-0	Reserved		0b

BB56 [2.6] [NOO]	4	RW	15~0	Driver Input Amplitude Peak to Average Power Ratio (PAPR) by Channel	4 registers, one for each channel [in order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB=0.002%.	0000h
BB5A	1	RW	15~0	Normalized Tx RF Drive Level		
[2.6] [000]	-					
			15~9	Peak Tx RF Drive Level as a Percentage of 2*Vpi	Values in the range 0 to 100%. An unsigned 6 bit number with 1 LSB = 2%. Anticipated typical range from 50% to 70%.	
			8	Reserved		
			7	YQ Fault	0: No fault setting drive level	
			6	YI Fault	1: Fault occurred while setting drive	
			5 4	XQ Fault XI Fault	level	
			3	YQ In progress	0: Idle	
			2	YI In progress	1: Drive level setting in progress	
			1	XQ In progress		
			0	XI In progress		
DDCD		D W	45.0			00001
BB5B [2.6] [OOO]	4	RW	15~0	Tx Driver RF Output Target	The Tx driver RF output target is provided as a peak or average value, matching the <i>RF Output Detector Type</i> returned by BB04. 4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16-bit integer with 1 LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi.	0000h
BB5F	1	RW		Tx Driver Control	The 'Tx Driver Channel RF Enable' bits	
[2.6] [000]		RVV			can only be enabled from the 'Tx-Off State' defined by the CFP MSA	
[]			15	Tx Driver XI Channel RF Enable	1: Enable, 0: Disable.	0b
			14	Tx Driver XQ Channel RF Enable		0b
			13	Tx Driver YI Channel RF Enable		0b
			12	Tx Driver YQ Channel RF Enable		0b
			11	Tx Driver XI Channel RF Output		0b
			10	Control to Target Tx Driver XQ Channel RF Output	4	0b
			10	Control to Target		00
			9	Tx Driver YI Channel RF Output	1	0b
				Control to Target		
			8	Tx Driver YQ Channel RF Output		0b
			7-2	Control to Target Reserved		
			1-0	Tx Driver Control by A.U.	Applies to Tx Driver BB64-BB67, BB6C- BB6F, and BB70-BB73 registers. 00: Disable 01: Enable LSB = A.U. 10-11: Reserved	0b
BB60	4	RO		Reserved		
BB64 [2.6] [NOO]	4	RW	15~0	Linear Tx Driver Gain by Channel	4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB = 0.001dB. LSB = A.U. if BB5F Bit 1-0 is set to 01.	0000h
BB68 [2.6] [NOO]	4	RW	15~0	Linear Tx Driver Current by Channel	4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB = 10μA	0000h
BB6C [2.6] [ONN]	4	RW	15~0	Limiting Tx Driver Amplitude by Channel	4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the	0000h

BB70 4 RW 15-0 Limiting Tx Driver Crossing Level Adjust by Channel 4 registers, one for each Tx channel [in regret rossing, La Val, X0, Y1, V2], A signed 16-bit integer with 1.SB = 1/256 of a one percent crossing, La Val, X0, Y1, V2], A signed 16-bit integer with 1.SB = 1/256 of a one percent crossing, La Valigned 16-bit integer with 1.SB = 1/256 of a one percent crossing, La Valigned 16-bit integer with 1.SB = 1/256 of a one percent crossing, La Valigned 16-bit integer with 1.SB = 1/256 of a one percent crossing, La Valigned 16-bit integer with 1.SB = 1/256 of a one percent crossing, La Valigned 16-bit integer with 1.SB = 1/256 of a one percent crossing, La Valigned 16-bit integer with 1.SB = 1/256 of a one percent crossing, La Valigned 16-bit integer with 1.SB = 1/256 of a one percent crossing, La Valigned 16-bit integer with 1.SB = 1/256 of a one percent crossing, La Valigned 16-bit integer with 1.SB = 1/256 of a one percent crossing, La Valigned 16-bit integer with 1.SB = 1/256 of a one percent crossing, La Valigned 16-bit integer with 1.SB = 1/256 of a one percent crossing, La Valigned 16-bit integer with 1.SB = 1/256 of a one provided by the BBM register. 0000b 0000b BB79 4 RO 15-0 Tx Driver Current RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [fn optical phase shift assuming the driver output amplitude is interving normalized on the channel Vpi. RF detector type is provided by the BBM register. 0000h order, X1, X0, T1, Y0, La nunsigned 16- bit integer with 1.SB = The voltage for 0.1 militradians of channel RF optical phase shift assuming the driver output amplitude is interving normalized to the channel Vpi. RF detector type is provided by the BBM register. 0000h		1					
[2,6] Level Adjust by Channel order: XI, XQ, YI, YQI, A signed 16-bit integer with 1.58 = 1.256 of a one percent crossing. JA valid range is 35%-65%. LSB = A.U. if BBST Bit 1-0 is set to 01. [2,6] 1 RW RF Transfer Function Equalization provided by Tx Driver. 0000b [1,000] 15-12 XI RF Channel Equalization the transfer Function Equalization the transfer function transfer fun							
[NOO] Image: Second	[2.6]	4	RW	15~0		order: XI, XQ, YI, YQ]. A signed 16-bit integer with 1 LSB = 1/256 of a one percent crossing. IA valid range is 35%-65%. LSB = A.U. if BB5F Bit 1-0 is	
11-8 XO RF Channel Equalization Equalization provided by the Tx Driver 0000b 0000b 3-0 YI RF Channel Equalization 4-bit unsigned integer with LSB = A.U. Equalization capability is vendor specific. 0000b Linear Tx Driver Monitoring Tx Driver Current RF Output Detector by Channel 4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ). A unsigned 16- bit integer with LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h BB79 4 RO 15-0 Tx Driver Average RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ). A unsigned 16- bit integer with 1LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h [NOO] 4 RO 15-0 Tx Driver Minimum RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ). A unsigned 16- bit integer with 1LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h B870 1 RO 15-0 Tx Driver Maximum RF Output	[2.6]	1	RW		Equalization provided by Tx Driver		
T-4 YI RF Channel Equalization 4-bit unsigned integre with LSB = A.U. Equalization capability is vendor specific. 0000b Linear Tx Driver Monitoring FX Driver Monitoring 0000b 0000h 0000h BB75 4 RO 15-0 Tx Driver Current RF Output Detector by Channel 4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with LSB = The voltage for 0.1 milliratians of channel XF optical phase shift assuming the driver output amplitude is lineary normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h BB79 4 RO 15-0 Tx Driver Average RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is lineary normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h BB70 4 RO 15-0 Tx Driver Minimum RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is lineary normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h BB81 4 RO 15-0 Tx D							
3-0 YQ RF Channel Equalization Equalization capability is vendor specific. 0000b Linear Tx Driver Monitoring Tx Driver Current RF Output 4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16-bit integer with 1LSB = The voltage for 0.1 millifradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h BB79 4 RO 15-0 Tx Driver Average RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [in provided by the BB04 register. 0000h BB79 4 RO 15-0 Tx Driver Average RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [in phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h BB70 4 RO 15-0 Tx Driver Minimum RF Output Detector type is provided by the BB04 register. 0000h BB71 4 RO 15-0 Tx Driver Maximum RF Output Detector type is provided by the BB04 register. 0000h [2.6] NO0] 1 Tx Driver Maximum RF Output Detector by Channel over PM interval 1 registers, one for each Tx channel [in order XI, XQ, YI, YQ]. An unsigned 16-bit integer with 1.LSB = The voltage f							
BB75 4 RO 15-0 Tx Driver Current RF Output Detector by Channel 4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB = The voltage for 0.1 millifadians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h BB79 4 RO 15-0 Tx Driver Average RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB = The voltage for 0.1 millifadians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h BB70 4 RO 15-0 Tx Driver Minimum RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB = The voltage for 0.1 millifadians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h BB81 4 RO 15-0 Tx Driver Maximum RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB = The voltage for 0.1 millifadians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h						Equalization capability is vendor	
BB75 4 RO 15-0 Tx Driver Current RF Output Detector by Channel 4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB = The voltage for 0.1 millifadians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h BB79 4 RO 15-0 Tx Driver Average RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB = The voltage for 0.1 millifadians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h BB70 4 RO 15-0 Tx Driver Minimum RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB = The voltage for 0.1 millifadians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h BB81 4 RO 15-0 Tx Driver Maximum RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB = The voltage for 0.1 millifadians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h	Lincor		ver Menite	ring			
[2.6] [NOO] Petector by Channel orde:: XI, XQ, YI, YQ). An unsigned 15- bit integer with 1LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h BB79 4 RO 15-0 Tx Driver Average RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [in orde:: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h BB7D 4 RO 15-0 Tx Driver Minimum RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [in orde:: XI, YQ, YI, YQ]. An unsigned 16- bit integer with 1LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h BB81 4 RO 15-0 Tx Driver Maximum RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [in orde:: XI, YQ, YI, YQ]. An unsigned 16- bit integer with 1LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h BB81 1 RO 15-0 Tx Driver Temperature					Tx Driver Current RF Output	4 registers, one for each Tx channel lin	0000h
[2.6] Detector by Channel over PM order: XI, XQ, YI, YQI. An unsigned 16-bit integre with 1LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. BB7D 4 RO 15-0 Tx Driver Minimum RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [in 0000h otil integre with 1.SB = The voltage for 0.1 milliradians of channel KP optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h B881 4 RO 15-0 Tx Driver Maximum RF Output interval 4 registers, one for each Tx channel [in 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h B881 4 RO 15-0 Tx Driver Maximum RF Output interval a registers, one for each Tx channel [in 0 order: XI, XQ, YI, YQ]. An unsigned 16-bit integre with 1.SB = The voltage for 0.1 milliradians of channel [in 0 order: XI, XQ, YI, YQ]. An unsigned 16-bit integre with 1.SB = The voltage for 0.1 milliradians of channel [in 0 order: XI, XQ, YI, YQ]. An unsigned 16-bit integre with 1.SB = The voltage for 0.1 milliradians of channel [in 0 order: XI, XQ, YI, YQ]. An unsigned 16-bit integre with 1.SB = The voltage for 0.1 milliradians of channel [in 0 order: XI, XQ, YI, YQ]. An unsigned 16-bit integre with 1.SB = The voltage for 0.1 milliradians of channel [in 0 order: XI, XQ, YI, YQ]. An unsigned	[2.6] [NOO]				Detector by Channel	order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register.	
BB7D 4 RO 15-0 Tx Driver Minimum RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h BB81 4 RO 15-0 Tx Driver Maximum RF Output Detector by Channel over PM interval 4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register. 0000h B851 1 RO 15-0 Tx Driver Temperature Monitor Measured temperature in degrees Celsius, a 16-bit signed integer with LSB = 1/256 of a degree Celsius, representing a total range from -128 to + 127 255/256 degC. MSA valid range is between -40 and +125C. Accuracy shall be better than +1-3 degC over the whole temperature range. 0000h	[2.6]	4	RO	15~0	Detector by Channel over PM	order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is	0000h
[2.6] [NOO]Detector by Channel over PM intervalorder: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is provided by the BB04 register.BB851RO15~0Tx Driver Temperature MonitorMeasured temperature in degrees Celsius, a 16-bit signed integer with LSB = 1/256 of a degree Celsius, representing a total range from -128 to + 127 255/256 degC. MSA valid range is between -40 and +125C. Accuracy shall be better than +/- 3 degC over the whole temperature range.0000h	[2.6]	4	RO	15~0	Detector by Channel over PM	4 registers, one for each Tx channel [in order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is	0000h
[2.6] [OOO]	[2.6]		RO	15~0	Detector by Channel over PM	order: XI, XQ, YI, YQ]. An unsigned 16- bit integer with 1 LSB = The voltage for 0.1 milliradians of channel RF optical phase shift assuming the driver output amplitude is linearly normalized to the channel Vpi. RF detector type is	0000h
BB86 4 RO Reserved	[2.6] [OOO]			15~0	Monitor	Measured temperature in degrees Celsius, a 16-bit signed integer with LSB = 1/256 of a degree Celsius, representing a total range from -128 to + 127 255/256 degC. MSA valid range is between -40 and +125C. Accuracy shall be better than +/- 3 degC over the	0000h
	BB86	4	RO		Reserved		

Table 16: Tx Subsystem MDIO Registers

A total of 116 registers are required to implement Table 16 within the CFP MSA MIS.

12.3 New MDIO Registers for Rx Subsystem Control

The new MDIO registers required to support the CFP2-ACO module Rx Subsystem are defined in Table 17 and Table 18 . The Table 17 and Table 18 MDIO registers are organized by function: Rx Subsystem General; Rx Optical Power Monitoring and Control; ICR Monitoring; ICR RF Output Gain Control and RF Monitoring; LO Optical Power Control.

In Table 17 and Table 18 the "Hex Add" field for each register contains the Hex address followed by the MIS revision where the register first appeared in the interface [2.6], and ends with three identifiers within square brackets where the allowed identifiers being **'R'** for *Required*, **'O'** for *Optional* and **'N'** for *Not Supported*. These identifiers are the requirement on the register for each of the Classes of CFP2-ACO, i.e. [Class1; Class2; Class3]. *Not Supported* registers should behave like un-implemented registers in the CFP MSA MIS for consistency.

Rx total input power control registers already exists in the **0xB000** page. They have been reproduced for reference in Section 13.3 and shall be used for CFP2-ACO module control.

LO optical power control registers are included in the Table 18 Rx definitions for the CFP2-ACO module application, since the functionality is not defined as part of the tunable source controls in the current **0xB000** register set.

Hex Add	Size	Access Type	Bit	Register Name Bit Field Name	Description	Init Value
Rx Sub	syster	n General				I
BB8A [2.6] [RRR]	1	RO		Rx RF Channel Mapping and Characteristic Data Availability		
			15	X:Y mapping	0 = X:Y 1 = Y:X As defined in CFP2-ACO IA Section 8.3 and Table 8.	0b
			14-13	I,Q mapping	00 = I,Q:I,Q 01 =Q,I:Q,I 10 = I,Q:Q,I 11 = Q,I:I,Q As defined in CFP2-ACO IA Section 8.3 and Table 8.	00b
			12-10	P/N mapping	000 = p/n,p/n:p/n,p/n 001 = n/p,n/p:n/p,n/p 010 = p/n,p/n:n/p,n/p 011 = n/p,n/p:p/n,p/n 100 = p/n,n/p:p/n,n/p 101 = n/p,p/n:n/p,p/n 110 = p/n,n/p:n/p,p/n 111 = n/p,p/n:p/n,n/p As defined in CFP2-ACO IA Section 8.3 and Table 8.	000b
			9	Rx Skew Values	0 = not stored on device	0b
			8	Rx frequency response amplitude data	1 = stored on device (see CFP2-ACO IA	0b
			7	Rx frequency response phase data	Section 12.7 for details on storage format.)	0b
			6-0	Reserved		0b

Note all Rx subsystem optical power monitoring is CFP2-ACO inputreferred.

BB8B [2.6] [RRR]	1	RO		Rx Subsystem Features	Summary of available Rx subsystem features in the CFP-ACO.	
[]			15	ICR Internal Temperature Monitor	0: Not Available, 1: Available.	
			14	High Speed Photodiode Bias Disable/Enable		
			13	Rx Input Total Power Monitor	-	
			12-11	Rx VOA Options	00 = None, 01 = Total Power Rx VOA 10 = Independent X Pol. and Y Pol. VOA's 11 = Reserved	
			10-9	Local Oscillator Laser Source	00 = Shared with Tx source 01 = Independent, no Power Control 10 = Independent, with Power Control 11 = Reserved	
			8-7	ICR High-Speed Photodiode Current Monitoring Capability	00 = none 01 = By Polarization [X;Y] 10 = By Channel [XI,XQ,YI,YQ] 11 = By Individual PD [XIp, XIn, XQp, XQn, YIp, YIn, YQp, YQn]	
			6	Rx Analog Control Interface	0: Not Available, 1: Available.	
			5	Provisioned Channel Power Monitor	4	
			4	Post-VOA Total Power Monitor		
			3-0	Reserved		
BB8C [2.6] [RRR]	1	RO		Rx TIA/VGA Features	Summary of available Rx TIA/VGA features in the CFP-ACO.	
			15-14	RF Shutdown	00:Not Available, 01:Available (Yes/No) 10:Available (by Pol.), 11:Reserved	
			13	TIA/VGA RF Output Detector	0: Not Available, 1: Available.	
			12	TIA/VGA RF Input Detector		
			11-10	TIA/VGA RF Output Detector Type	00: Peak 01: Average 10: Reserved 11: Reserved	
			9-8	TIA/VGA RF Input Detector Type	00: Peak 01: Average 10: RSSI 11: Reserved	
			7-6	TIA/VGA MGC/AGC Selection	00: Not Available,	
			5-4	Pre-Emphasis (Analog or Digital)	01: Available (X-Y Combined) 10: Available (by Pol.) 11: Available (by RF Lane)	
			3-0	Reserved		
BB8D [2.6] [RRR]	1	RW		Rx Subsystem Control		
Inned			15	TIA/VGA MGC/AGC for X Pol.	0: MGC Mode, 1: AGC Mode.	0b
			14	TIA/VGA MGC/AGC for Y Pol.	If TIA/VGA MGC/AGC Selection by Pol. [BB8Ch~6-7] is not available, then bit [15] shall apply to both the X and Y Pol. and bit [14] shall have no effect.	0b
			13	RF Output Shutdown for X Pol. Enable	1: Shutdown Enabled, 0: Shutdown	1b
			12	RF Output Shutdown for Y Pol. Enable	Disabled. If RF Shutdown by Pol. [BB8Ch~14-15] is not available, then bit [13] shall apply to both the X and Y Pol. and bit [12] shall have no effect.	1b
			11	High Speed Photodiode Bias (All)	1: Enable, 0: Disable.	0b
			10	X Pol. Rx VOA Control to Attenuation Target	1: Enable, 0: Disable. If a Total Power Rx VOA is present then	0b
			9	Y-Pol. Rx VOA Control to Attenuation Target	enabling bit [10] shall enable the Total (X and Y Pol.) Rx VOA Control to Attenuation Target, and bit [9] shall have no effect.	0b
			8	Rx Analog Control Interface	1: Enable, 0: Disable.	00b
			7-6	Rx Power Monitor Gain Selection	Applies to B4E0-B510, BBF4-BBFF. 00 = Auto: Determined by Module, 01 = Monitor Gain 1, 10 = Monitor Gain 2,	

BB8E	1	RW	6-0	Reserved Rx RF Channel Pre-Emphasis	11 = Monitor Gain 3. Power Monitor Gains are vendor specific. MDIO availability of 4 gain settings does not imply that 4 settings are available. A change to the power monitor gain should be effected within 100ms, including any MDIO/processing latency and the actual hardware settling time.	
[2.6]	•					
[000]			15-12 11-8 7-4 3-0	XI Rx channel RF Pre-Emphasis XQ Rx channel RF Pre-Emphasis YI Rx channel RF Pre-Emphasis YQ Rx channel RF Pre-Emphasis	Rx channel pre-emphasis provided within the ACO. 4-bit unsigned integer with LSB = A.U. Pre-emphasis capability is vendor specific. An anticipated implementation maps the TIA/VGA analog gain peaking over frequency adjustment function to this register. If Pre-Emphasis is available only by Pol. (BB8Ch~4-5 = 10) then the I channel bits for a Pol. shall apply to <i>both</i> the I and Q channels of the Pol., and the Q channel bits shall have no effect. If Pre-Emphasis is only available for all channels simultaneously (BB8Ch~4- 5 = 01) then the XI bits shall be used for all channels and the remaining bits shall have no effect.	0000b 0000b 0000b
BB8F [2.6] [RRR]	1	RO		Module Rx Hardware Response Pending Flags		
			15	Rx Fine Tune Frequency (B440) In Progress	0: de-asserted 1: asserted	
BB90	3	RO	14~0	Reserved Reserved		
	-	wer VOA		Reserved		
BB93 [2.6] [OOO]	2	RW	15~0	Rx VOA Input-Referred Attenuation Target	2 registers are allocated. The 1 st register is used for the total input power VOA attenuation target and the 2 nd register is unused, unless the Rx input attenuation function is implemented as independent X and Y VOA's. In this circumstance, the 1 st register is used for the X VOA attenuation target and the 2 nd register is used for the Y VOA attenuation target. Register instances are unsigned 16-bit integers with 1 LSB = 0.01dB.	0000h
BB95 [2.6] [OOO]	2	RO	15~0	Rx VOA Input-Referred Maximum Selectable Attenuation	2 registers are allocated (See BB93 Rx VOA Input-Referred Attenuation Target.) Register instances are unsigned 16-bit integers with 1 LSB = 0.01dB.	
BB97 [2.6] [OOO]	2	RO	15~0	Rx VOA Input-Referred <i>Current</i> Attenuation	2 registers are allocated (See BB93 Rx VOA Input-Referred Attenuation Target.) Register instances are unsigned 16-bit integers with 1 LSB = 0.01dB.	0000h
BB99 [2.6] [OOO]	2	RO	15~0	Rx VOA Input-Referred Average Attenuation over PM interval	2 registers are allocated (See BB93 Rx VOA Input-Referred Attenuation Target.) Register instances are unsigned 16-bit integers with 1 LSB = 0.01dB.	0000h
BB9B	2	RO	15~0	Rx VOA Input-Referred	2 registers are allocated (See BB93 Rx	0000h

[2.6] [OOO]				Minimum Attenuation over PM interval	VOA Input-Referred Attenuation Target.) Register instances are unsigned 16-bit integers with 1 LSB = 0.01dB.	
BB9D [2.6] [OOO]	2	RO	15~0	Rx VOA Input-Referred <i>Maximum</i> Attenuation over PM interval	2 registers are allocated (See BB93 Rx VOA Input-Referred Attenuation Target.) Register instances are unsigned 16-bit integers with 1 LSB = 0.01dB.	0000h
BB9F [2.6] [OOO]	2	RW	15~0	Rx VOA Controller Drive Signal (A.U.)	2 registers are allocated (See BB93 Rx VOA Input-Referred Attenuation Target.) An unsigned 16-bit integer with the LSB = A.U. The Rx VOA will respond monotonically to this drive signal register with 0000h the bright condition. This register can be written if the corresponding BB8D "Rx VOA Control to Target" is disabled. The A.U. resolution is such that 1 LSB shall not result in a change of optical power >0.1dB.	0000h
BBA1 [2.6] [OOO]	2	RO	15~0	Rx VOA Controller Drive DAC Value at Minimum Attenuation	2 registers are allocated (See BB93 Rx VOA Input-Referred Attenuation Target.) Rx VOA controller drive DAC value at the Rx VOA minimum attenuation.	
BBA3 [2.6] [OOO]	2	RO	15~0	Rx VOA Controller Drive DAC Value at Maximum Attenuation	2 registers are allocated (See BB93 Rx VOA Input-Referred Attenuation Target.) Rx VOA controller drive DAC value at the Rx VOA maximum attenuation.	
ICR Mo BBA5	8	ng RO	15~0	ICR Individual PD Current	8 registers, one for each ICR individual	0000h
[2.6] [OOO <mark>]</mark>				Photocurrent	PD [in order: XIp, XIn, XQp, XQn, YIp, YIn, YQp, YQn]. An unsigned 16-bit integer with 1 LSB = 1μA.	
BBAD [2.6] [OOO]	8	RO	15~0	ICR Individual PD Average Photocurrent over PM interval	8 registers, one for each ICR individual PD [in order: Xlp, Xln, XQp, XQn, Ylp, Yln, YQp, YQn]. An unsigned 16-bit integer with 1 LSB = 1μA.	0000h
BBB5 [2.6] [OOO]	4	RO	15~0	ICR PD <i>Current</i> Photocurrent by Channel	4 registers, one for each ICR channel [in order: XI, XQ, YI, YQ]. An unsigned 16-bit integer with the LSB = 1μΑ.	0000h
BBB9 [2.6] [000]	4	RO	15~0	ICR PD Average Photocurrent by Channel over PM interval	4 registers, one for each ICR channel [in order: XI, XQ, YI, YQ]. An unsigned 16-bit integer with the LSB = 1µA.	0000h
BBBD [2.6] [000]	2	RO	15~0	ICR PD <i>Current</i> Photocurrent by Polarization	2 registers, one for each ICR polarization [in order: Χ, Υ]. An unsigned 16-bit integer with the LSB = 1μΑ.	0000h
BBBF [2.6] [000]	2	RO	15~0	ICR PD Average Photocurrent by Polarization over PM interval	2 registers, one for each ICR polarization [in order: X, Y]. An unsigned 16-bit integer with the LSB = 1μΑ.	0000h
BBC1 [2.6] [OOO]	2	RO	15~0	ICR PD <i>Minimum</i> Photocurrent by Polarization over PM interval	2 registers, one for each ICR polarization [in order: X, Y]. An unsigned 16-bit integer with the LSB = 1μA.	0000h
BBC3 [2.6] [OOO]	2	RO	15~0	ICR PD <i>Maximum</i> Photocurrent by Polarization over PM interval	2 registers, one for each ICR polarization [in order: X, Y]. An unsigned 16-bit integer with the LSB = 1μΑ.	0000h
BBC5 [2.6] [OOO]	1	RO	15~0	ICR Internal Temperature	Internally measured temperature in degrees Celsius, a 16-bit signed integer with LSB = 1/256 of a degree Celsius, representing a total range from -128 to + 127 255/256 degC. MSA valid range is	0000h

				between -40 and +125C. Accuracy shall be better than +/- 3 degC over the whole temperature range.	
BBC6	2	RO	Reserved		

Table 17:	Rx Subsystem	MDIO	Registers
-----------	---------------------	------	-----------

Hex Add	Size	Access Type	Bit	Register Name Bit Field Name	Description	Init Value
BBC8	Outpu 4	ut Control RW	15~0	TIA/VGA Gain Control Voltage	4 registers, one for each ICR channel	0000h
[2.6] [000]				by Channel	[in order: XI, XQ, YI, YQ]. Register can be written only when the corresponding BB8D <i>Rx Subsystem</i> <i>Control</i> register bit 15-14 is 0: MGC Mode. An unsigned 16-bit integer with	
BBCC	4	RW	15~0	TIA/VGA RF Output Target	1 LSB = 60μV. 4 registers, one for each ICR channel	0000h
[2.6] [000]	+	ĸw	13~0	Adjust by Channel	[in order: XI, XQ, YI, YQ]. Register applicable only when the corresponding BB8D Rx Subsystem Control register bit 15-14 is 1: AGC Mode. An unsigned 16-bit integer with 1 LSB = 25µVppd. RF output detector type is provided by the Rx TIA/VGA Features register.	000011
		I Laser Co				I
BBD0 [2.6] [OOO]	1	RO	15~0	LO Optical Power Monitor	The LO optical power input to the ICR. A signed integer in dBm*100. Equivalent to ITLA 0x42 OOP command.	
BBD1 [2.6] [OOO]	1	RW	15~0	LO Optical Power Set-Point	Sets the LO optical power input to the ICR. A signed integer in dBm*100. Equivalent to ITLA 0x31 PWR command.	
BBD2 [2.6] [OOO]	1	RO	15~0	LO Optical Power Minimum Setting	Returns the minimum allowed LO optical power input to the ICR. A signed integer in dBm*100. Equivalent to ITLA 0x50 OPSL command.	
BBD3 [2.6] [OOO]	1	RO	15~0	LO Optical Power Maximum Setting	Returns the maximum allowed LO optical power input to the ICR. A signed integer in dBm*100. Equivalent to ITLA 0x50 OPSH command.	
ICR RF	Signa	al Monitorir	ng			
BBD4 [2.6] [OOO]	4	RO	15~0	TIA/VGA <i>Current</i> RF Output Detector by Channel	4 registers, one for each ICR channel [in order: XI, XQ, YI, YQ]. An unsigned 16-bit integer with 1 LSB = 25μVppd. RF output detector type is provided by the BB8C <i>Rx TIA/VGA Features</i> register.	0000h
BBD8 [2.6] [OOO]	4	RO	15~0	TIA/VGA Average RF Output Detector by Channel over PM interval	4 registers, one for each ICR channel [in order: XI, XQ, YI, YQ]. An unsigned 16-bit integer with 1 LSB = 25μVppd. RF output detector type is provided by the BB8C Rx TIA/VGA Features register.	0000h
BBDC [2.6] [OOO]	4	RO	15~0	TIA/VGA <i>Minimum</i> RF Output Detector by Channel over PM interval	4 registers, one for each ICR channel [in order: XI, XQ, YI, YQ]. An unsigned 16-bit integer with 1 LSB = 25μVppd. RF output detector type is provided by the BB8C Rx TIA/VGA Features register.	0000h
BBE0 [2.6] [OOO]	4	RO	15~0	TIA/VGA <i>Maximum</i> RF Output Detector by Channel over PM interval	4 registers, one for each ICR channel [in order: XI, XQ, YI, YQ]. An unsigned 16-bit integer with 1 LSB = 25μVppd. RF output detector type is provided by	0000h

					the BB8C Rx TIA/VGA Features	
BBE4 [2.6] [OOO]	4	RO	15~0	TIA/VGA <i>Current</i> RF Input Detector by Channel	register. 4 registers, one for each ICR channel [in order: XI, XQ, YI, YQ]. RF input detector type is provided by the BB8C <i>Rx TIA/VGA Features</i> register. For an RSSI type, units are input referred power [dBm], a signed 16-bit integer with 1 LSB=0.01dBm. For Peak and Mean types, units are µAppd, an unsigned 16-bit integer with 1 LSB = 0.1 µAppd.	0000h
BBE8 [2.6] [OOO]	4	RO	15~0	TIA/VGA Average RF Input Detector by Channel over PM interval	4 registers, one for each ICR channel [in order: XI, XQ, YI, YQ]. RF input detector type is provided by the BB8C <i>Rx TIA/VGA Features</i> register. For an RSSI type, units are input referred power [dBm], a signed 16-bit integer with 1 LSB = 0.01dBm. For Peak and Mean types, units are μ Appd, an unsigned 16-bit integer with 1 LSB = 0.1 μ Appd.	0000h
BBEC [2.6] [OOO]	4	RO	15~0	TIA/VGA <i>Minimum</i> RF Input Detector by Channel over PM interval	4 registers, one for each ICR channel [in order: XI, XQ, YI, YQ]. RF input detector type is provided by the BB8C <i>Rx TIA/VGA Features</i> register. For an RSSI type, units are input referred power [dBm], a signed 16-bit integer with 1 LSB=0.01dBm. For Peak and Mean types, units are μ Appd, an unsigned 16-bit integer with 1 LSB = 0.1 μ Appd.	0000h
BBF0 [2.6] [OOO]	4	RO	15~0	TIA/VGA <i>Maximum</i> RF Input Detector by Channel over PM interval	4 registers, one for each ICR channel [in order: XI, XQ, YI, YQ]. RF input detector type is provided by the BB8C <i>Rx TIA/VGA Features</i> register. For an RSSI type, units are input referred power [dBm], a signed 16-bit integer with 1 LSB=0.01dBm. For Peak and Mean types, units are μAppd, an unsigned 16-bit integer with 1 LSB = 0.1 μAppd.	0000h
Rx Prov	vision	ed Channe	Power	Monitoring [Colorless Line Syste		
BBF4 [2.6] [OOO]	1	RO	15~0	Current Provisioned Channel Power	The current input power in the provisioned channel. This register will differ from B4E0 in colorless network applications. A signed 16-bit integer with the LSB = 0.01dBm.	
BBF5 [2.6] [OOO]	1	RO	15~0	Average Provisioned Channel Power over PM interval	The average input power in the provisioned channel over the PM interval. This register will differ from B4F0 in colorless network applications. A signed 16-bit integer with the LSB = 0.01dBm.	
BBF6 [2.6] [OOO]	1	RO	15~0	Minimum Provisioned Channel Power over PM interval	The minimum input power in the provisioned channel over the PM interval. This register will differ from B500 in colorless network applications. A signed 16-bit integer with the LSB = 0.01dBm.	
			15~0	Maximum Provisioned	The maximum input power in the	
BBF7 [2.6] [OOO]	1	RO		Channel Power over PM interval	provisioned channel over the PM interval. This register will differ from B510 in colorless network applications. A signed 16-bit integer with the LSB = 0.01dBm. x Input Power Monitoring Registers]	

[2.0] [000]				Optical]	0.01dBm. [2.6 commentary: Preferred Register for CFP2-ACO <i>Total</i> Current Rx Input Power.]
B4F0 [2.0] [OOO]	1	RO	15~0	Average Input Power over PM interval [Total Rx Optical]	A signed 16-bit integer with the LSB = 0.01dBm. [2.6 commentary: Preferred Register for CFP2-ACO Average Total Current Rx Input Power.]
B500 [2.0] [OOO]	1	RO	15~0	Minimum Input Power over PM interval [Total Rx Optical]	A signed 16-bit integer with the LSB = 0.01dBm. [2.6 commentary: Preferred Register for CFP2-ACO <i>Minimum Total</i> Current Rx Input Power.]
B510 [2.0] [OOO]	1	RO	15~0	Maximum Input Power over PM interval [Total Rx Optical]	A signed 16-bit integer with the LSB = 0.01dBm. [2.6 commentary: Preferred Register for CFP2-ACO <i>Maximum Total</i> Current Rx Input Power.]
BBF8 [2.6] [OOO]	2	RO	15~0	Current Post-VOA Total Power	2 registers are allocated (See BB93 Rx VOA Input-Referred Attenuation Target.) Register instances are signed 16-bit integers with 1 LSB = 0.01dBm.
BBFA [2.6] [OOO]	2	RO	15~0	Average Post-VOA Total Power over PM interval	2 registers are allocated (See BB93 Rx VOA Input-Referred Attenuation Target.) Register instances are signed 16-bit integers with 1 LSB = 0.01dBm.
BBFC [2.6] [OOO]	2	RO	15~0	Minimum Post-VOA Total Power over PM Interval	2 registers are allocated (See BB93 Rx VOA Input-Referred Attenuation Target.) Register instances are signed 16-bit integers with 1 LSB = 0.01dBm.
BBFE [2.6] [OOO]	2	RO	15~0	Maximum Post-VOA Total Power over PM interval	2 registers are allocated (See BB93 Rx VOA Input-Referred Attenuation Target.) Register instances are signed 16-bit integers with 1 LSB = 0.01dBm.

Table 18: Rx Subsystem MDIO Registers Continued

A total of 112 registers are required to implement Table 17 and Table 18 within the CFP MSA MIS.

12.4 CFP2-ACO Fault, Alarm, Warning and Status (FAWS) Registers

The existing FAWS registers defined for the **0xB000** page in the CFP MSA MIS V2.4 R06b are required for the CFP2-ACO application. In particular for the network lane, **B180**, **B190**, **B1A0**, **B1B0**, **B1C0**, **B1D0**, **B1E0**, **B1F0** and **B200** are needed, where n=0.

The Table 16 register **BB55** bits 15~12 can be used as error indicators for each of the four GSSG Tx RF channels in the CFP2-ACO application. **BB55** is required for CFP2-ACO Class 1, and is optional for Class 2 and Class 3.

Module FAWS register **B01D** bit 6 for TX_HOST_LOL is the logical OR of all 4 bits in **BB55**. Register **8074** specifies the usage of **B01D** bit 6.

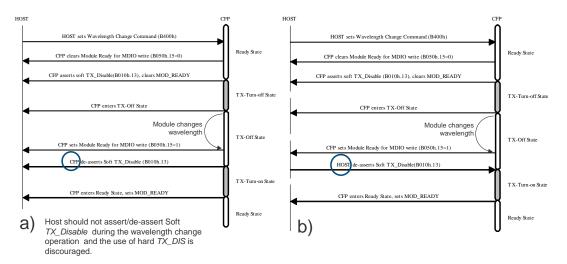
The ITLA IA [9] **FFreqTh(x024)** Fatal Alarm for the loss of frequency control within the required tolerance should be mapped to the ACO MDIO *Wavelength Unlock Fault* FAWS registers [bit 14 on **B1A0**, **B1D0**, **B200** with **n=0**]. When a

dedicated Rx LO laser source is present in the ACO the *Wavelength Unlock Fault* bit [**n=0**] will be set if *either* the Tx or Rx laser source is in fault. The ITLA IA [9] **WfreqTh (0x25)** Warning Alarm register data is not available from the ACO MDIO interface.

The concept of a *Laser Age* is defined in the ITLA IA [9] Sections 9.8.5 and 9.8.6. It is recommended that if available, *Laser Age* ITLA register information be mapped to corresponding ACO MDIO *Laser Bias Current* FAWS registers.

The existing relevant **0xB000** registers in CFP MSA MIS V2.4 R06b have been collected for reference in Sections 13.6.

12.5 CFP2-ACO Wavelength Change Operation


The Class 1 and Class 2 Tx wavelength change sequence is given in Figure 20a, and the Class 3 sequence is given in Figure 20b. From the *Ready-State*, when the Host submits the Tx wavelength change command (**B400**), the CFP2-ACO module first de-asserts the "Module Ready for MDIO Write" (**B050.15=0**) to inform the Host a wavelength change operation is now in progress. The module then asserts Soft TX_DIS (**B010.13**) to turn off the optical output and transitions the module to the *TX-off State*. After the wavelength change sequence completes the CFP2-ACO module sets the "Module Ready for MDIO Write" (**B050.15=1**) to inform the completion of the wavelength change to the Host. For Class 1 and Class 2 ACO modules the *module* then de-asserts soft TX_DIS (**B010.13**) to turn on the optical output power and transition the module to the *Ready-State*. A Class 3 ACO module remains in the *TX-off State* until the *Host* de-asserts soft TX_DIS (**B010.13**), turning on the optical output power and transition the module to the *Ready-State*. If supported, **BB32** *Laser Output Power Enable/Disable* may also come into play during a wavelength change operation.

The Host should not assert/de-assert Soft TX_DIS (**B010.13**) during the wavelength change operation, and the use of hard **TX_DIS** is discouraged.

When the **B430 (Tx)** and **B440** (Rx) *Fine Tune Frequency* (FTF) registers or the **B420** Rx channel control register are called from the *Ready-State*, the corresponding laser source output remains on and the CFP2-ACO remains in the *Ready-State*.

It is undesirable for the MDIO interface to block subsequent writes while a laser is executing a **B430/B440** FTF operation, i.e. **B050.15** should be set by the module to **1b** (*Ready*) as soon as possible. It is instead recommended that the corresponding laser bit in the **BB0A/B88F** *Module Tx/Rx Hardware Response Pending Flags* register be used to indicate the pending and completion of the FTF operation. It is also recommended that the **B430/B440** FTF register return the *Command Not Valid* error in **B00C-B00F** if the corresponding **BB0A/B88F** FTF pending bit is still asserted when a new **B430/B440** FTF value is written.

Figure 20: Wavelength Change Sequence (a) Class 1 and 2, (b) Class 3.

12.6 CFP2-ACO Wavelength Selection Registers

In Ref. [2] the laser source tuning is controlled by a number of registers. The relevant ones are provided in Table 19.

Tx Registers	Register Address	Rx Registers	Register Address
Tx Channel Control	B400	Rx Channel Control	B420
Tx Fine Tune Frequency ¹	B430	Rx Fine Tune Frequency ¹	B440
Tx Minimum Laser Frequency 1	818A	Rx Minimum Laser Frequency 1 ²	818A
Tx Minimum Laser Frequency 2	818C	Rx Minimum Laser Frequency 2 ²	818C

Table 19: CFP MSA MIS V2.4 R06b Laser Control Registers

Notes:

- 1. Register is optional in Ref. [2].
- 2. Minimum frequency for Tx and Rx share the same registers.

The Tx laser frequency as a function of channel number is given by the formula:

Tx Freq(GHz) = (Tx_channel_number-1) * Tx_grid_spacing + Channel_1_frequency +Tx_fine_tune_freq

where:

- Tx-channel_number is obtained from register **B400** bits[9-0]
- Tx_grid_spacing is obtained from **B400** bits[15-13]
- Channel_1_frequency is obtained from register (818A*1000, 818C/20)
- Tx_fine_tune_frequency is register **B430**/1000

Similarly the Rx laser frequency as a function of channel number is given by the formula:

Rx Freq(GHz) =

(Rx_channel_number-1) * Rx_grid_spacing + Channel_1_frequency +Rx_fine_tune_freq

where:

- Rx-channel_number is obtained from register B420 bits[9-0]
- Rx_grid_spacing is obtained from **B420** bits[15-13]
- Channel_1_frequency is obtained from register (818A*1000, 818C/20)
- Rx_fine_tune_frequency is register **B440**/1000

The Tx and Rx *Fine Tune Frequency* registers within the CFP2-ACO are intended to enable fine laser tuning during operation. These registers are expected to be adjusted while the module is carrying traffic and do not require the module to move to a low power or shuttered optical state. The other Tx registers for laser tuning must be used when the laser output is disabled to avoid transmitting signals at frequencies that could affect traffic on other operational channels.

This method of setting the transmit and receive laser frequencies is convenient for the table of gridded frequencies provided in bits[15-13] of registers **B400** (for Tx) and **B420** (for Rx). If an arbitrary grid or frequency is required, this method has limitations caused particularly by the fact that the two registers controlling the Tx and Rx *Minimum Laser Frequency*, **818A** and **818C** are Read-Only registers that are populated at module start up, but are not writable during normal operation.

To facilitate arbitrary frequency tuning with register resolutions down to 1 MHz, a number of additional registers have been requested specifically for the CFP2-ACO module. These registers allow a tuning method similar to Integrable Tunable Laser (ITLA) sources. The requested additional registers are detailed in Section 12.6.1 and in Table 15.

12.6.1 Use of the High Resolution Tuning Registers

The high resolution tuning and arbitrary frequency setting mode is enabled via bit[10] in register **B400** (Tx) and **B420** (Rx). With bit[10] set to "1" an arbitrary settable Tx or Rx *Minimum Laser Frequency* is enabled. The two Read-Only registers for the Tx/Rx *Minimum Laser Frequency* (**818A** and **818C**) are supplemented by 3 Read-Write registers as shown in Table 20. These new registers are Read-Write versions of **818A** and **818C** and additionally a third register that holds frequency information down to a 1 MHz resolution.

	Existing Gridded				High Resolution R	egisters	
B400 bit[10] set to 0			R/W	/W B400 bit[10] set to 1			R/W
Addr	Register Name	Contents		Addr	Register Name	Contents	
818A	Tx Minimum Laser Frequency 1	Represents THz	R	B490	Tx Minimum Laser Frequency 1 [High Resolution]	Represents THz	R/W
818C	Tx Minimum Laser Frequency 2	Represents 0.05GHz	R	B491	Tx Minimum Laser Frequency 2 [High Resolution]	Represents 0.05GHz	R/W
				B492	Tx Minimum Laser Frequency 3 [High Resolution]	Represents MHz (Range is 0 to 49MHz)	R/W

Table 20: Tx Minimum Laser Frequency Registers	Table 20	: Tx Minimum	n Laser Freque	ncy Registers
--	----------	--------------	----------------	---------------

Using these registers the *Minimum Laser Frequency* in GHz is given by (**818A***1000+**818C**/20) GHz if **B400** bit[10] is set to zero and is Read-Only.

The *Minimum Laser Frequency* in GHz would be calculated as (**B490***1000+**B491**/20+ **B492**/1000) GHz if **B400** bit[10] is set to one. Furthermore because the registers **B490**, **B491** and **B492** are Read-Write they can be modified during operation of the module.

The overall laser frequency would be calculated by the formula:

```
Tx Freq(GHz) =
(Tx_channel_number-1) * Tx_grid_spacing + Channel_1_frequency +Tx_fine_tune_freq
```

For example if the Tx-channel_number is set to 1 then the laser operating frequency is given by:

Tx Freq(GHz) = Channel_1_frequency +Tx_fine_tune_freq

In this case any arbitrary laser frequency can be written using the three *Minimum Laser Frequency* registers because they are Read-Write, but this should only be done while the laser is disabled to prevented unwanted output frequencies affecting traffic. Fine tuning can be achieved using the *Fine Tune Frequency* register and this tuning shall be achievable while the laser output is enabled.

The **Tx_Freq(GHz)** tuned laser frequency is given by the values of the 3 high resolution registers given in Table 21.

	Existing Gridded				High Resolution R	egisters	
B400 bit[10] set to 0			R/W	W B400 bit[10] set to 1			
Addr	Register Name	Contents		Addr	Register Name	Contents	
B450	Tx Laser Frequency 1	Represents THz	R	B496	Tx Laser Frequency 1 [High Resolution]	Represents THz	R
B460	Tx Laser Frequency 2	Represents 0.05GHz	R	B497	Tx Laser Frequency 2 [High Resolution]	Represents 0.05GHz	R
				B498	Tx Laser Frequency 3 [High Resolution]	Represents MHz (Range is 0 to 49MHz)	R

Table 21: Tx Tuned Lase	Frequency Registers
-------------------------	---------------------

In Table 22 and Table 23 a corresponding set of registers is provided for high resolution wavelength selection in a dedicated receive-side local oscillator should one be present within the CFP2-ACO module.

	Existing Gridded				High Resolution R	egisters	
B420 bit[10] set to 0			R/W	R/W B420 bit[10] set to 1			
Addr	Register Name	Contents		Addr	Register Name	Contents	
818A	Rx Minimum Laser Frequency 1	Represents THz	R	B493	Rx Minimum Laser Frequency 1 [High Resolution]	Represents THz	R/W
818C	Rx Minimum Laser Frequency 2	Represents 0.05GHz	R	B494	Rx Minimum Laser Frequency 2 [High Resolution]	Represents 0.05GHz	R/W
				B495	Rx Minimum Laser Frequency 3 [High Resolution]	Represents MHz (Range is 0 to 49MHz)	R/W

Table 22: Rx Minimum Laser Frequency Registers

The registers which hold the calculated receiver frequency are similarly:

	Existing Gridded				High Resolution R	egisters	
B420 bit[10] set to 0			R/W	W B420 bit[10] set to 1			R/W
Addr	Register Name	Contents		Addr	Register Name	Contents	
B470	Rx Laser Frequency 1	Represents THz	R	B499	Rx Laser Frequency 1 [High Resolution]	Represents THz	R
B480	Rx Laser Frequency 2	Represents 0.05GHz	R	B49A	Rx Laser Frequency 2 [High Resolution]	Represents 0.05GHz	R
				B49B	Rx Laser Frequency 3 [High Resolution]	Represents MHz (Range is 0 to 49MHz)	R

 Table 23: Rx Tuned Laser Frequency Registers

Under the existing CFP tuning method Tx and Rx frequencies are coupled by register **818A** and **818C**. Under high resolution tuning the frequencies are decoupled.

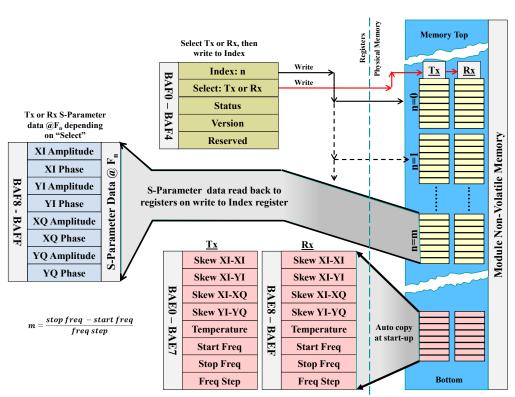
12.7 CFP2-ACO Module Characteristic Data Registers

Optional MDIO module characteristic data registers are provided in Table 24.

OIF reserved registers (**BAE0-BAE7**) have been assigned to optionally specify the Tx skew values and the Tx frequency response range, spacing and temperature. There are 3 bits in **BB00** that indicate whether or not the ACO module contains Tx skew values (bit 9), Tx S21 frequency response amplitude values (bit 8), and/or Tx S21 frequency response phase values (bit 7).

OIF reserved registers (**BAE8-BAEF**) have been assigned to optionally specify the Rx skew values and the Rx frequency response range, spacing and temperature. There are 3 bits in **BB8A** that indicate whether or not the ACO module contains Rx skew values (bit 9), Rx S21 frequency response amplitude values (bit 8), and/or Rx S21 frequency response phase values (bit 7).

For Class 2 and Class 3 ACO modules OIF reserved registers (**BAF0-BAFF**) have been assigned to optionally store the Tx and Rx RF responses. This data can be obtained by the Host using the methodology outlined in Figure 21, and be used by the Host to equalize the channel losses. The number of points in the RF responses is determined by the start, stop and step frequencies specified in **BAE4-BAE7** for the Tx response and in **BAED-BAEF** for the Rx response.


Hex Add	Size	Access	Bit	Register Name	Description	Init Value
		Туре		Bit Field Name		value
TX De-	Skew a	and Equaliz	zation			
BAE0 [2.6] [OOO]	1	RO	15~0	Tx Skew XI to XI	The skew between XI and XI. Value is usually zero. A signed 16-bit integer with 1 LSB = 0.1ps	0000h
BAE1 [2.6] [000]	1	RO	15~0	Tx Skew XI to YI	The skew between XI and YI. A signed 16-bit integer with 1 LSB = 0.1ps	0000h
BAE2 [2.6] [OOO]	1	RO	15~0	Tx Skew XI to XQ	The skew between XI and XQ. A signed 16-bit integer with 1 LSB = 0.1ps	0000h
BAE3 [2.6] [OOO]	1	RO	15~0	Tx Skew YI to YQ	The skew between YI and YQ. A signed 16-bit integer with 1 LSB = 0.1ps	0000h
BAE4 [2.6] [OOO]	1	RO	15~0	Module Temperature for Tx Characteristic Data	Module case temperature in degrees Celsius for the characteristic data set, a 16-bit signed integer with LSB = 1/256 of a degree Celsius, representing a total range from -128 to + 127 255/256 degC. MSA valid range is between –40 and +125C.	0000h
BAE5 [2.6] [NOO]	1	RO	15~0	Tx S21 Data Start Frequency	The start frequency of the Tx frequency response data stored on the device. A 16-bit unsigned integer in MHz. Valid range is between 0 and 65535 MHz.	0000h
BAE6 [2.6] [NOO]	1	RO	15~0	Tx S21 Data Stop Frequency	The stop frequency of the Tx frequency response data stored on the device. A 16-bit unsigned integer in MHz. Valid range is between 0 and 65535 MHz.	0000h
BAE7 [2.6] [NOO]	1	RO	15~0	Tx S21 Data Frequency Spacing	The frequency spacing of the Rx frequency response data stored on the device. An unsigned integer in MHz. Valid range is between 0 and 65535 MHz.	0000h
Rx De-	Skew a	and Equali				
BAE8 [2.6] [OOO]	1	RO	15~0	Rx Skew XI to XI	The skew between XI and XI. Value is usually zero. A signed 16-bit integer with 1 LSB = 0.1ps.	0000h
BAE9 [2.6] [OOO]	1	RO	15~0	Rx Skew XI to YI	The skew between XI and YI. A signed 16-bit integer with 1 LSB = 0.1ps.	0000h
BAEA [2.6] [000]	1	RO	15~0	Rx Skew XI to XQ	The skew between XI and XQ. A signed 16-bit integer with 1 LSB = 0.1ps.	0000h
BAEB [2.6] [000]	1	RO	15~0	Rx Skew YI to YQ	The skew between YI and YQ. A signed 16-bit integer with 1 LSB = 0.1ps.	0000h
BAEC [2.6] [OOO]	1	RO	15~0	Module Temperature for Rx Characteristic Data	Module case temperature in degrees Celsius for the characteristic data set, a 16-bit signed integer with LSB = 1/256 of a degree Celsius, representing a total range from -128 to + 127 255/256 degC. MSA valid range is between –40 and +125C.	0000h
BAED [2.6] [NOO]	1	RO	15~0	Rx S21 Data Start Frequency	The start frequency of the Rx frequency response data stored on the device. A 16-bit unsigned integer in MHz. Valid range is between 0 and 65535 MHz.	0000h
BAEE	1	RO	15~0	Rx S21 Data Stop	The stop frequency of the Rx frequency	0000h

[2.6]				Frequency	response data stored on the device.	
[NOO]				Trequency	A 16-bit unsigned integer in MHz.	
BAEF	1	RO	15~0	Rx S21 Data Frequency	Valid range is between 0 and 65535 MHz.	0000h
БАЕГ [2.6]	•	RU	15~0	Spacing	The frequency spacing of the Rx frequency response data stored on the device.	00000
[NOO]					An unsigned integer in MHz.	
0.0					Valid range is between 0 and 65535 MHz.	
S Parai BAF0	neter 1	Data Regis RW	sters 15~0	Table Index	Index number which allows access to	
[2.6]	•		10.0		magnitude and phase data in memory.	
[NOO]					Starting at 0. Last index is (Stop Frequency -	
					Start Frequency) / Frequency Step.	
BAF1 [2.6] [NOO]	1	RW		Table Select		
			15~2	Reserved		
			1~0	Table Select	0 = Reserved	00b
					1 = TX Data	
					2 = RX Data	
BAF2	1	RO	15~0	Table Status	3 = Reserved	
EAF2 [2.6] [NOO]	1	RU	15~0	Table Status		
1			15~2	Reserved		
			1~0	Table Status	0 = Not Initialised	
					1 = Busy 2 = Data Ready	
					3 = Error	
					This register will have value = 0 at module	
					startup. Writing an index value to the Table	
					Index register BAF0 will initiate reading data	
					from internal memory and populating the data	
					registers BAF8-BAFF. During this time this	
					register will have value = 1 (Busy). When all data registers have been populated this	
					register will have either value = 2 (Data Ready)	
					if the command completed successfully, or	
					value = 3 (Error), if the Table Index or Table	
					Select registers have invalid values or if there	
					was a fault.	
BAF3	1	RW	15~0	Table Format Version	Table Format Version – register to track	0000h
[2.6]	-				changes to format of data registers BAF8 –	
[NOO]					BAFF.	
BAF4	4	RO	15~0	Reserved		0000h
[2.6]						
[NOO] BAF8	1	RO	15~0	XI Amplitude Value	Amplitude response for XI tributary normalized	0000h
[2.6]	•	ŇŬ	13~0		to 1GHz	000011
[NOO]					A 16-bit signed integer with 1 LSB = 0.01dBe.	
BAF9	1	RO	15~0	XI Phase Value	Unwrapped Phase response for XI tributary.	0000h
[2.6]					A 16-bit signed integer with 1 LSB = 0.1deg.	
[NOO]			45.0	ML Ammilities de M. J.	And Photo and a state of the st	
BAFA	1	RO	15~0	YI Amplitude Value	Amplitude response for YI tributary normalized to 1GHz	0000h
[2.6] [NOO]					A 16-bit signed integer with 1 LSB = 0.01dBe.	
BAFB	1	RO	15~0	YI Phase Value	Unwrapped Phase response for YI tributary.	0000h
[2.6]					A 16-bit signed integer with 1 LSB = 0.1deg.	
[NOO]						
BAFC	1	RO	15~0	XQ Amplitude Value	Amplitude response for XQ tributary	0000h
[2.6]					normalized to 1GHz.	
[NOO]		B O	45.0	VO Dhaga Value	A 16-bit signed integer with 1 LSB = 0.01dBe.	00001
BAFD	1	RO	15~0	XQ Phase Value	Unwrapped Phase response for XQ tributary. A 16-bit signed integer with 1 LSB = 0.1deg.	0000h
[2.6] [NOO]					A 10-DIL SIGNER MILLEYER WILL I LOD - U. IREG.	
BAFE	1	RO	15~0	YQ Amplitude Value	Amplitude response for YQ tributary	0000h
[2.6]					normalized to 1GHz.	
[NOO]					A 16-bit signed integer with 1 LSB = 0.01dBe.	
		RO	15~0	YQ Phase Value	Unwrapped Phase response for YQ tributary.	0000h

[2.6]		A 16-bit signed integer with 1 LSB = 0.1deg.	
[NOO]			

Table 24: MDIO Module Characteristic Data Registers

Figure 21: Access Methodology to obtain Class 2 and Class 3 Module Characteristic Data

13 Relevant 0xB000 MDIO Registers in CFP MSA MIS V2.4 R06b (Informative)

Existing CFP2-ACO relevant **0xB000** registers in CFP MSA MIS V2.4 R06b have been collected for reference in *informative* Sections 13.1-13.6.

13.1 Tx and Rx Laser Source Control

If a conflict exists, Section 12.5 and 12.6 take precedence over the CFP MSA MIS V2.4 R06b information presented here.

6.2.2.2 Laser Frequency Setting Definition

The TX laser frequency as a function of channel number is defined as: Freq(GHz) = (Tx_chan_no (B400h.9~0) - 1) * Tx_grid_spacing (B400h.15~13) + chan_1_freq (818Ah*1000, 818Ch/20) + Tx_fine_tune_freq (B430h/1000)

The RX laser frequency as a function of channel number is defined as:

Freq(GHz) = (Rx_chan_no (B420h.9~0) - 1) * Rx_grid_spacing (B420h.15~13) + chan_1_freq (818Ah*1000, 818Ch/20) + Rx_fine_tune_freq (B440h/1000)

The fine tune frequency registers B430h(TX) and B440h(Rx) should be set under the low power state to avoid the mis-setting of laser frequency.

Related registers channel number, grid spacing (B400h, B420h) and fine frequency tuning (B430h, B440h) are settable parameters from the host. First channel and last channel frequency (for each system vendor) are defined by the module at registers 818Ah, 818Ch, 818Eh and 818Gh. Registers B450h ~ B480h give current laser frequency settings in the module.

Note: Registers 0x8012h, 0x8014h and 0x8016h provide module transmitter spectral characteristics information for all applications. However, they do not have a role in transmitter wavelength provisioning between host and module.

	1	1	1	Network Lane Contr	rol 2 Registers	1
B400 [2.0]	16			TX Channel Control	Desired TX channel number and grid spacing. 16 registers, one for each network lane, represent 16 network	0001h
					lanes. n = 0, 1, …, N-1. N_max = 16. Actual N is module dependent.	
		RW	15~1 3	Grid Spacing	000b: 100 GHz grid spacing 001b: 50 GHz grid spacing 010b: 33 GHz grid spacing 011b: 25 GHz grid spacing 100b: 12.5 GHz grid spacing 101b: 6.25 GHz grid spacing 110b ~ 111b: Reserved	000b
		RO	12~1 0	Reserved		0
		RW	9~0	Channel number	Tx channel number. Channel 0 is an undefined channel number.	001h

B420 [2.0]	16			RX Channel Control	Desired RX channel number and grid spacing. 16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent.	0001h
		RW	15~1 3	Grid Spacing	000b: 100 GHz grid spacing001b: 50 GHz grid spacing010b: 33 GHz grid spacing011b: 25 GHz grid spacing100b: 12.5 GHz grid spacing101b: 6.25 GHz grid spacing110b ~ 111b: Reserved	000b
		RO	13~1 0	Reserved		0
		RW	9~0	Channel number	Rx channel number. Channel 0 is an undefined channel number.	001h
B430 [2.0]	16	RW	15~0	TX Fine Tune Frequency (Optional)	A signed 16-bit integer with LSB = 1 MHz.	000h
B440 [2.0]	16	RW	15~0	RX Fine Tune Frequency (Optional)	A signed 16-bit integer with LSB = 1 MHz.	000h
B450 [2.0]	16	RO	15~0	TX Frequency 1	Current module TX Frequency 1. An unsigned 16-bit integer with LSB = 1 THz.	N/A
B460 [2.0]	16	RO	15~0	TX Frequency 2	Current module TX Frequency 2. An unsigned 16-bit integer with LSB = 0.05 GHz. Value should not exceed 19999.	N/A
B470 [2.0]	16	RO	15~0	RX Frequency 1	Current module RX Frequency 1. An unsigned 16-bit integer with LSB = 1 THz.	N/A
B480 [2.0]	16	RO	15~0	RX Frequency 2	Current module RX Frequency 2. An unsigned 16-bit integer with LSB = 0.05 GHz. Value should not exceed 19999.	N/A
B490	16	RO		Reserved		0

818A [2.0]	2	RO	<mark>7~0</mark>	TX/RX Minimum Laser Frequency 1	An unsigned 16-bit integer with LSB = 1THz. MSB stored at low address. LSB stored at	N/A
818C [2.0]	2	RO	<mark>7~0</mark>	TX/RX Minimum Laser Frequency 2	high address. An unsigned 16-bit integer with LSB = 0.05 GHz. Value should not exceed 19999. MSB stored at low address. LSB stored at high address.	N/A
818E [2.0]	2	RO	<mark>7~0</mark>	TX/RX Maximum Laser Frequency 1	An unsigned 16-bit integer with LSB = 1THz. MSB stored at low address. LSB stored at high address.	N/A
8190 [2.0]	2	RO	<mark>7~0</mark>	TX/RX Maximum Laser Frequency 2	An unsigned 16-bit integer with LSB = 0.05 GHz. Value should not exceed 19999. MSB stored at low address. LSB stored at high address.	N/A
8192 [2.0]	2	RO	<mark>7~0</mark>	RX Laser Fine Tune Frequency Range (FTF) (Optional)	An unsigned 16-bit integer with LSB = 1 MHz. The range covers the min/max range symmetrically about 0. Set to zero if FTF is not supported. MSB stored at low address. LSB stored at high address.	0000h
8194 [2.0]	2	RO	<mark>7~0</mark>	TX Laser Fine Tune Frequency Range (FTF) (Optional)	An unsigned 16-bit integer with LSB = 1 MHz. The range covers the min/max range symmetrically about 0. Set to zero if FTF is not supported. MSB stored at low address. LSB stored at high address.	0000h
8196 [2.0]	2	RO		Laser Tuning Capabilities	MSB stored at low address. LSB stored at high address.	
			15	6.25 GHz Grid Spacing	1 = Supported, 0 = Not Supported	N/A
			14	12.5 GHz Grid Spacing	1 = Supported, 0 = Not Supported	N/A
			13	25 GHz Grid Spacing	1 = Supported, 0 = Not Supported	N/A
			12	33 GHz Grid Spacing	1 = Supported, 0 = Not Supported	N/A
			11	50 GHz Grid Spacing	1 = Supported, 0 = Not Supported	N/A
			10	100 GHz Grid Spacing	1 = Supported, 0 = Not Supported	N/A
			9~0	Maximum Channels	Maximum channels supported based on minimum grid spacing supported	N/A

8012	2	RO	7~0	Minimum Wavelength per Active Fiber	16-bit unsigned value x 25 pm. (MSB is at 8012h, LSB is at 8013h). A value of 0 indicates a multimode source or undefined.	25 pm
8014	2	RO	7~0	Maximum Wavelength per Active Fiber	16-bit unsigned value x 25 pm. (MSB is at 8014h, LSB is at 8015h). A value of 0 indicates a multimode source or undefined.	25 pm
8016	2	RO	7~0	Maximum per Lane Optical Width	Guaranteed range of laser wavelength. 16-bit unsigned value x 1 pm. MSB is at 8016h, LSB is at 8017h. For an example, the value for 100GBASE-LR4 with a maximum specified optical wavelength width of 2.1nm for network lane L_3 would be 834h. A value of 0 indicates a multimode source or undefined.	1 pm

B330 [2.0]	16	RO	15~0	Network Lane n TX Laser Output Power monitor A/D value	16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. Measured TX laser output power in dBm, a signed 16-bit integer with LSB = 0.01 dBm. Accuracy must be better than +/- 2 dB over temperature and voltage range. Relative accuracy must be better than 1 dB.	0000h
B340 [2.0]	16	RO	15~0	Network Lane n TX Laser Temp Monitor A/D value	16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. Internally measured temperature in degrees Celsius, a 16-bit signed integer with LSB = 1/256 of a degree Celsius, representing a total range from -128 to + 127 255/256 degC. MSA valid range is between -40 and +125C. Minimum accuracy is +/- 3 degC over temperature range.	0000h

13.2 Tx and Rx Laser Source Performance Monitoring

B360 [2.0]	16	RO	15~0	Network Lane n TX Laser Bias Current monitor A/D value	16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. TX laser bias current monitor in uA, an unsigned 16-bit integer with LSB = 100uA, representing a total measurement range of 0 to 6553.5 mA. Minimum accuracy is +/- 10% of the nominal value over temperature and voltage.	0000h
B370 [2.0]	16	RO	15~0	Network Lane n RX Laser Bias Current monitor A/D values.	16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. Measured RX laser bias current in uA, an unsigned 16-bit integer with LSB = 100 uA, representing a total measurement range of 0 to 6553.5 mA. Minimum accuracy is +/- 10% of the nominal value over temperature and voltage.	0000h

B380 [2.0]	16	RO	15~0	Network Lane n RX Laser Temp Monitor A/D value.	16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. Internally measured temperature in degrees Celsius, a signed 16-bit integer with LSB = 1/256 of a degree Celsius, representing a total range from -128 to + 127 255/256 degC. MSA valid range is between -40 and +125C. Minimum accuracy is +/- 3 degC over t	0000h
B390 [2.0]	16	RO	15~0	Network Lane n RX Laser Output Power Monitor A/D value	16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. Measured RX laser output power in dBm, a signed 16-bit integer with the LSB = 0.01 dBm	0000h

13.3 Rx Input Power Monitor

The preferred registers for the Rx input power monitor in the CFP2-ACO application are **B4E0**, **B4F0**, **B500**, **and B510**. Note for the CFP2-ACO application these registers are used to provide the *total integrated input power* to the ACO module (all wavelengths.) In Table 18 **BBFC-BBFF** provide additional optional registers for the *currently provisioned channel power*. The use of **B350** is discouraged.

			Netw	ork Lane RX Performance Monitoring	Statistics Registers	·
B4E0 [2.0]	16	RO	15~0	Current Input Power	A signed 16-bit integer with the LSB = 0.01 dBm.	0000h
B4F0 [2.0]	16	RO	15~0	Average Input Power over PM interval	A signed 16-bit integer with the LSB = 0.01 dBm.	0000h
B500 [2.0]	16	RO	15~0	Minimum Input Power over PM interval	A signed 16-bit integer with the LSB = 0.01 dBm.	0000h
B510 [2.0]	16	RO	15~0	Maximum Input Power over PM interval	A signed 16-bit integer with the LSB = 0.01 dBm.	0000h

Network Lane A/D Value Measurer	nent Registers	
16 RO 15~0 Network Lane n RX Input Power monitor A/D value	16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. 00001 Measured received input power in uW, a 16-bit unsigned integer with LSB = 0.1 uW, representing a power range from 0 to 6.5535 mW (-40 to +8.2 dBm). Value can represent either average received power or OMA depending upon how bit 3 of Register 8080h is set. Accuracy must be better than +/- 2dB over temperature and voltage. This accuracy shall be maintained for input power levels up to the lesser of maximum transmitted or maximum received optical power per the appropriate standard. It shall be maintained down to the minimum transmitted power minus cable plant loss per the appropriate standard. Relative accuracy shall be better than 1 dB over the received power range, temperature range, voltage range, and the life of the product. 00001	

13.4 Tx Output Power and Monitoring (VOA Control)

The preferred registers for the Tx output power monitor in the CFP2-ACO application are **B4A0**, **B4B0**, **B4C0**, **B4D0** corresponding to n=0. The Tx output power is set using **B410** (n=0).

	Network Lane TX Performance Monitoring Statistics Registers						
B4A0 [2.0]	16	RO	15~0	Current Output Power	A signed 16-bit integer with the LSB = 0.01 dBm.	0000h	
B4B0 [2.0]	16	RO	15~0	Average Output Power over PM interval	A signed 16-bit integer with the LSB = 0.01 dBm.	0000h	
B4C0 [2.0]	16	RO	15~0	Minimum Output Power over PM interval	A signed 16-bit integer with the LSB = 0.01 dBm.	0000h	
B4D0 [2.0]	16	RO	15~0	Maximum Output Power over PM interval	A signed 16-bit integer with the LSB = 0.01 dBm.	0000h	

	Network Lane VR 2					
Hex Addr	Size	Access Type	Bit	Register Name Bit Field Name	Description	Init Value
B410 [2.0]	16	RW	15~0	TX Output Power	Desired TX output power. 16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. A signed 16-bit integer with the LSB = 0.01dBm	0000h

13.5 Modulator Bias Voltages

The modulator voltage bias monitors defined in Ref [2] page 154 and included here are not generic enough to account for all the expected InP or silicon MZ implementations. Registers, fit for purpose, are provided in the Table 16 definitions for the CFP2-ACO module application.

	Network Lane VR 2						
Hex Addr	Size	Access Type	Bit	Register Name Bit Field Name	Description	Init Value	
B3A0 [2.0]	16	RO	15~0	TX Modulator Bias X/I Monitor A/D value	16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,,	0	
B3B0 [2.0]	16	RO	15~0	TX Modulator Bias X/Q Monitor A/D value	N-1. N_max = 16. Actual N is module dependent.	0	
B3C0 [2.0]	16	RO	15~0	TX Modulator Bias Y/I Monitor A/D value	TX Modulator Bias, a 16-bit unsigned integer with	0	
B3D0 [2.0]	16	RO	15~0	TX Modulator Bias Y/Q Monitor A/D value	LSB = 2mV, yielding a total measurement range of 0 to	0	
B3E0 [2.0]	16	RO	15~0	TX Modulator Bias X_Phase Monitor A/D value	131.072 Volts. Accuracy shall be better than +/-3% of the nominal value over	0	
B3F0 [2.0]	16	RO	15~0	TX Modulator Bias Y_Phase Monitor A/D value	 specified operating temperature and voltage range. 	0	

13.6 FAWS Registers

Included here are the existing FAWS registers relevant to the CFP2-ACO from *Table 39: Network Lane VR1 Registers* in Ref [2].

Alarm/Warning Threshold Registers are given in *Table 24: CFP NVR2* in Ref [2]. The CFP2-ACO application may also require changes here; for example, a single *Tx Modulator Bias Threshold* for the full collection of biases on semiconductor PMQ designs may not be sufficient.

[2.0] Warning 1 represent 16 network lanes. n = 0, 1,, N-1, Nax = 16. Actual N is module dependent. 15 Bias High Alarm 0: Normai; 1: Asserted. (FAWS_TYPE_C). 13 Bias Low Warning 0: Normai; 1: Asserted. (FAWS_TYPE_C). 12 Bias Low Warning 0: Normai; 1: Asserted. (FAWS_TYPE_C). 13 Bias Low Warning 0: Normai; 1: Asserted. (FAWS_TYPE_C). 10 TX Power High Marm 0: Normai; 1: Asserted. (FAWS_TYPE_C). 10 TX Power High Marm 0: Normai; 1: Asserted. (FAWS_TYPE_C). 10 TX Power Low Warning 0: Normai; 1: Asserted. (FAWS_TYPE_C). 11 TX Power Low Warning 0: Normai; 1: Asserted. (FAWS_TYPE_C). 12 Easer Temperature High Alarm 0: Normai; 1: Asserted. (FAWS_TYPE_B). 14 Laser Temperature Low Varning 0: Normai; 1: Asserted. (FAWS_TYPE_B). 15 Laser Temperature Low Alarm 0: Normai; 1: Asserted. (FAWS_TYPE_B). 16 RX Power High Narm 0: Normai; 1: Asserted. (FAWS_TYPE_B). 17 RX Power Low Warning 0: Normai; 1: Asserted. (FAWS_TYPE_B). 18 18 0: Normai; 1: Asserted. (FAWS_TYPE_B). 19 0 Normai; 1: Asserted. (FAWS_TYPE_B).	Addr		Туре		Bit Field Name		Value
[2.0] Warning 1 represent 16 network lanes. n = 0, 1,, N-1, Nax = 16. Actual N is module dependent. 15 Bias High Alarm 0: Normai; 1: Asserted. (FAWS_TYPE_C). 13 Bias Low Warning 0: Normai; 1: Asserted. (FAWS_TYPE_C). 12 Bias Low Warning 0: Normai; 1: Asserted. (FAWS_TYPE_C). 13 Bias Low Warning 0: Normai; 1: Asserted. (FAWS_TYPE_C). 10 TX Power High Marm 0: Normai; 1: Asserted. (FAWS_TYPE_C). 10 TX Power High Marm 0: Normai; 1: Asserted. (FAWS_TYPE_C). 10 TX Power Low Warning 0: Normai; 1: Asserted. (FAWS_TYPE_C). 11 TX Power Low Warning 0: Normai; 1: Asserted. (FAWS_TYPE_C). 12 Easer Temperature High Alarm 0: Normai; 1: Asserted. (FAWS_TYPE_B). 14 Laser Temperature Low Varning 0: Normai; 1: Asserted. (FAWS_TYPE_B). 15 Laser Temperature Low Alarm 0: Normai; 1: Asserted. (FAWS_TYPE_B). 16 RX Power High Narm 0: Normai; 1: Asserted. (FAWS_TYPE_B). 17 RX Power Low Warning 0: Normai; 1: Asserted. (FAWS_TYPE_B). 18 18 0: Normai; 1: Asserted. (FAWS_TYPE_B). 19 0 Normai; 1: Asserted. (FAWS_TYPE_B).			'		Network Lane FAWS Regis	sters	,
15 Bias High Narming 0: Normal: 1: Asserted. (FAWS_TYPE_C) 14 Bias Low Warning 0: Normal: 1: Asserted. (FAWS_TYPE_C) 13 Bias Low Warning 0: Normal: 1: Asserted. (FAWS_TYPE_C) 12 Bias Low Varning 0: Normal: 1: Asserted. (FAWS_TYPE_C) 11 TX Power High Naming 0: Normal: 1: Asserted. (FAWS_TYPE_C) 10 TX Power Low Warning 0: Normal: 1: Asserted. (FAWS_TYPE_C) 9 TX Power Low Warning 0: Normal: 1: Asserted. (FAWS_TYPE_C) 11 TX Power Low Varning 0: Normal: 1: Asserted. (FAWS_TYPE_B) 6 Laser Temperature High Narming 0: Normal: 1: Asserted. (FAWS_TYPE_B) 6 Laser Temperature Low Narming 0: Normal: 1: Asserted. (FAWS_TYPE_B) 14 Laser Temperature Low Alarm 0: Normal: 1: Asserted. (FAWS_TYPE_B) 15 Laser Temperature Low Alarm 0: Normal: 1: Asserted. (FAWS_TYPE_B) 16 Laser Temperature Low Alarm 0: Normal: 1: Asserted. (FAWS_TYPE_B) 17 Laser Momer Liph Narming 0: Normal: 1: Asserted. (FAWS_TYPE_B) 18 RX Power Low Varming 0: Normal: 1: Asserted. (FAWS_TYPE_B) 19 <		16	RO			represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module	0000h
14 Bias High Warning 0: Normal: 1: Asserted. (FAWS_TYPE_C) 13 Bias Low Warning 0: Normal: 1: Asserted. (FAWS_TYPE_C) 11 TX Power High Alarm 0: Normal: 1: Asserted. (FAWS_TYPE_C) 10 TX Power High Alarm 0: Normal: 1: Asserted. (FAWS_TYPE_C) 10 TX Power High Marning 0: Normal: 1: Asserted. (FAWS_TYPE_C) 10 TX Power Low Warning 0: Normal: 1: Asserted. (FAWS_TYPE_C) 11 TX Power Low Warning 0: Normal: 1: Asserted. (FAWS_TYPE_C) 12 Bias Emegrature High Alarm 0: Normal: 1: Asserted. (FAWS_TYPE_B) 14 Laser Temperature Low Varning 0: Normal: 1: Asserted. (FAWS_TYPE_B) 14 Laser Temperature Low Varning 0: Normal: 1: Asserted. (FAWS_TYPE_B) 14 Laser Temperature Low Varning 0: Normal: 1: Asserted. (FAWS_TYPE_B) 15 Laser Temperature Low Varning 0: Normal: 1: Asserted. (FAWS_TYPE_B) 16 RX Power High Warning 0: Normal: 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Warning 0: Normal: 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Warning 0: Normal: 1: Asserted. (FAWS_TYPE_B) 1				15	Bias High Alarm	•	0
13 Bias Low Warning 0: Normal: 1: Asserted. (FAWS_TYPE_C) 12 Bias Low Alarm 0: Normal: 1: Asserted. (FAWS_TYPE_C) 11 TX Power High Marning 0: Normal: 1: Asserted. (FAWS_TYPE_C) 9 TX Power Low Warning 0: Normal: 1: Asserted. (FAWS_TYPE_C) 9 TX Power Low Warning 0: Normal: 1: Asserted. (FAWS_TYPE_C) 9 TX Power Low Warning 0: Normal: 1: Asserted. (FAWS_TYPE_C) 7 Laser Temperature High Marning 0: Normal: 1: Asserted. (FAWS_TYPE_B) 6 Laser Temperature Low Varning 0: Normal: 1: Asserted. (FAWS_TYPE_B) 14 Laser Temperature Low Alarm 0: Normal: 1: Asserted. (FAWS_TYPE_B) 3 RX Power High Alarm 0: Normal: 1: Asserted. (FAWS_TYPE_B) 3 RX Power High Varning 0: Normal: 1: Asserted. (FAWS_TYPE_B) 3 RX Power Low Warning 0: Normal: 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Warning 0: Normal: 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Warning 0: Normal: 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Warning 0: Normal: 1: Asserted. (FAWS_TYPE_B) 1 RX Laser Bias Curr				14			0
12 Bias Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_C) 11 TX Power High Varning 0: Normal; 1: Asserted. (FAWS_TYPE_C) 10 TX Power High Varning 0: Normal; 1: Asserted. (FAWS_TYPE_C) 9 TX Power Low Vlarming 0: Normal; 1: Asserted. (FAWS_TYPE_C) 8 TX Power Low Vlarming 0: Normal; 1: Asserted. (FAWS_TYPE_C) 7 Laser Temperature High Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 6 Laser Temperature High Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 6 Laser Temperature Low Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 14 Laser Temperature Low Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 3 RX Power High Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 3 RX Power High Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B)				13	Bias Low Warning	0: Normal; 1: Asserted. (FAWS TYPE C)	0
10 TX Power High Warning 0: Normal; 1: Asserted. (FAWS_TYPE_C) 9 TX Power Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_C) 8 TX Power Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 6 Laser Temperature High Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 6 Laser Temperature High Marning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 4 Laser Temperature Low Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 4 Laser Temperature Low Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 3 RX Power High Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 4 Laser Temperature Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 5 In RX Power High Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 6 RX Power High Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 7 RX Power Low Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 8 Network Lane n Alarm and Warning 2 Normal; 1: Asserted. (FAWS_TYPE_B) 9 RX Laser Bias Current High Alarm 0: Normal; 1: Asserted (FAWS_TYPE_B) 10 Rx Laser Bias Current High Warning 0: Normal; 1: Asserted (FAWS_TYPE_B)				12	Bias Low Alarm		0
10 TX Power High Warning 0: Normal; 1: Asserted. (FAWS_TYPE_C) 9 TX Power Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_C) 8 TX Power Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 6 Laser Temperature High Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 6 Laser Temperature High Marning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 4 Laser Temperature Low Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 4 Laser Temperature Low Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 3 RX Power High Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 4 Laser Temperature Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 5 In RX Power High Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 6 RX Power High Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 7 RX Power Low Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 8 Network Lane n Alarm and Warning 2 Normal; 1: Asserted. (FAWS_TYPE_B) 9 RX Laser Bias Current High Alarm 0: Normal; 1: Asserted (FAWS_TYPE_B) 10 Rx Laser Bias Current High Warning 0: Normal; 1: Asserted (FAWS_TYPE_B)				11	TX Power High Alarm	0: Normal; 1: Asserted. (FAWS_TYPE_C)	0
8 TX Power Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_C) 7 Laser Temperature High Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 6 Laser Temperature High Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 6 Laser Temperature Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 7 Laser Temperature Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 8 X Power High Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 9 RX Power High Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 10 RX Power High Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 11 RX Power Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 12 RX Power Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 13 RX Power Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 14 RX Power Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 15 Rx Laser Bias Current High Alarm 0: Normal; 1: Asserted (FAWS_TYPE_B) 16 Riser Bias Current Low Warning 0: Normal; 1: Asserted (FAWS_TYPE_B) 12 Rx Laser Bias Current High Marming 0: Normal; 1: Asserted (FAWS_TYPE_B)				10			0
7 Laser Temperature High Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 6 Laser Temperature High Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 5 Laser Temperature Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 4 Laser Temperature Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 3 RX Power High Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 3 RX Power High Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 4 Laser Temperature Low Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 6 Laser Temperature Numperature Low Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 7 RX Power High Varning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 0 RX Power Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 RX Laser Bias Current High Narning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 Rx Laser Bias Current High Narning 0: Normal; 1: Asserted (FAWS_TYPE_B) 1 Rx Laser Bias Current Low Varining 0: Normal; 1: Asserted (FAWS_T				9	TX Power Low Warning	0: Normal; 1: Asserted. (FAWS_TYPE_C)	0
6 Laser Temperature High Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 5 Laser Temperature Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 4 Laser Temperature Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 3 RX Power High Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 3 RX Power High Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 4 Laser Temperature Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 6 RX Power High Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 0 RX Power Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Alarm 0: Normal; 1: Asserted (FAWS_TYPE_B) 1 RX Laser Bias Current High Alarm 0: Normal; 1: Asserted (FAWS_TYPE_B) 14 Rx Laser Bias Current High Marning 0: Normal; 1: Asserted (FAWS_TYPE_B) 13 Rx Laser Bias Current Low Warning 0: Normal; 1: Asserted (FAWS_TYPE_B) 14 Rx Laser Output High Marm 0: Normal; 1: Asserted (FAWS_TYPE_B)				8	TX Power Low Alarm	0: Normal; 1: Asserted. (FAWS_TYPE_C)	0
5 Laser Temperature Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 4 Laser Temperature Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 3 RX Power High Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 3 RX Power High Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 4 Laser Temperature Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 5 RX Power High Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 6 RX Power High Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 0 RX Power Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 0 RX Power Low Alarm 0: Normal; 1: Asserted (FAWS_TYPE_B) 16 RX Laser Bias Current High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 17 Rx Laser Bias Current High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 18 Rx Laser Bias Current High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 19 Rx Laser Bias Current High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 10 Rx Laser Output Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) <t< td=""><td></td><td></td><td></td><td>7</td><td>Laser Temperature High Alarm</td><td>0: Normal; 1: Asserted. (FAWS_TYPE_B)</td><td>0</td></t<>				7	Laser Temperature High Alarm	0: Normal; 1: Asserted. (FAWS_TYPE_B)	0
4 Laser Temperature Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 3 RX Power High Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 3 RX Power High Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 Rt Power High Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 2 RX Power High Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 0 RX Power Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Alarm 0: Normal; 1: Asserted (FAWS_TYPE_B) 1 RX Laser Bias Current High Alarm 0: Normal; 1: Asserted (FAWS_TYPE_B) 14 Rx Laser Bias Current Low Varning 0: Normal; 1: Asserted (FAWS_TYPE_B) 11 Rx Laser Bias Current Low Varning 0: Normal; 1: Asserted (FAWS_TYPE_B) 12 Rx Laser Bias Current Low Alarm 0: Normal; 1: Asserted (FAWS_TYPE_B) 13 Rx Laser Dias Current Low Alarm 0: Normal; 1: Asserted (FAWS_TYPE_B) <td< td=""><td></td><td></td><td></td><td>6</td><td>Laser Temperature High Warning</td><td>0: Normal; 1: Asserted. (FAWS_TYPE_B)</td><td>0</td></td<>				6	Laser Temperature High Warning	0: Normal; 1: Asserted. (FAWS_TYPE_B)	0
3 RX Power High Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) The thresholds for the RX Power High/Low Alarm/Warning are determined by the RX Power Monitor Alarm/Warning Threshold Select in B015h. This comment applies to bits 2-0 as well. 2 RX Power High Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 0 RX Power Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 0 RX Power Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 0 RX Power Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 0 RX Power Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 15 Rx Laser Bias Current High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 14 Rx Laser Bias Current Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 13 Rx Laser Bias Current Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 11 Rx Laser Output High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 14 Rx Laser Output High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 12 Rx Laser Output High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 <td></td> <td></td> <td></td> <td>5</td> <td>Laser Temperature Low Warning</td> <td>0: Normal; 1: Asserted. (FAWS_TYPE_B)</td> <td>0</td>				5	Laser Temperature Low Warning	0: Normal; 1: Asserted. (FAWS_TYPE_B)	0
Bis Ro Revork Lane n Alarm and Warning 2 Is represent 16 network lane, represent 16 network lane, n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. Ro Ra Laser Diago Current Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) Q 14 Rx Laser Bias Current High Marming 12 Rx Laser Output High Marming 0: Normal, 1: Asserted (FAWS_TYPE_B) Q<				4	Laser Temperature Low Alarm	0: Normal; 1: Asserted. (FAWS_TYPE_B)	0
2 RX Power High Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 1 RX Power Low Warning 0: Normal; 1: Asserted. (FAWS_TYPE_B) 0 RX Power Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) 8190 16 RO Network Lane n Alarm and Warning 2 16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. 00001 15 Rx Laser Bias Current High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 14 Rx Laser Bias Current Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 13 Rx Laser Bias Current Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 12 Rx Laser Output High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 10 Rx Laser Output High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 10 Rx Laser Output Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 10 Rx Laser Output Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 10 Rx Laser Output Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 11 Rx Laser Temp High Alarm				3	RX Power High Alarm	The thresholds for the RX Power High/Low Alarm/Warning are determined by the RX Power Monitor Alarm/Warning Threshold Select in B015h. This comment applies to	0
Image: Second				2	RX Power High Warning		0
0 RX Power Low Alarm 0: Normal; 1: Asserted. (FAWS_TYPE_B) B190 [2.0] 16 RO Network Lane n Alarm and Warning 2 16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. 00000 15 Rx Laser Bias Current High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 14 Rx Laser Bias Current High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 12 Rx Laser Bias Current Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 11 Rx Laser Dutput High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 10 Rx Laser Output High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 10 Rx Laser Output Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 10 Rx Laser Output Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 10 Rx Laser Temp High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 11 Rx Laser Temp Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 15 Rx Laser Temp Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 15 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>							0
[2.0] Warning 2 represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. 15 Rx Laser Bias Current High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 14 Rx Laser Bias Current High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 13 Rx Laser Bias Current Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 12 Rx Laser Bias Current Low Varning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 11 Rx Laser Output High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 10 Rx Laser Output High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 10 Rx Laser Output Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 9 Rx Laser Output Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 10 Rx Laser Temp High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 6 Rx Laser Temp High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 6 Rx Laser Temp Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 6 Rx Laser Temp Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 14 Rx Laser Temp Low Alarm				0	RX Power Low Alarm		0
14 Rx Laser Bias Current High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 13 Rx Laser Bias Current Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 12 Rx Laser Bias Current Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 11 Rx Laser Output High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 10 Rx Laser Output High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 10 Rx Laser Output Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 9 Rx Laser Output Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 8 Rx Laser Output Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 7 Rx Laser Temp High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 6 Rx Laser Temp High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 6 Rx Laser Temp Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 7 Rx Laser Temp Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 6 Rx Laser Temp Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 7 Rx Laser Temp Low Alarm 0: Normal, 1: Asserted (FAWS		16	RO			represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module	0000h
13 Rx Laser Bias Current Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 12 Rx Laser Bias Current Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 11 Rx Laser Output High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 10 Rx Laser Output High Marning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 9 Rx Laser Output Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 8 Rx Laser Output Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 7 Rx Laser Output Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 6 Rx Laser Temp High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 6 Rx Laser Temp High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 7 Rx Laser Temp Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 6 Rx Laser Temp Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 7 Rx Laser Temp Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 6 Rx Laser Temp Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 7 Rx Laser Temp Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) <td></td> <td></td> <td></td> <td>15</td> <td>Rx Laser Bias Current High Alarm</td> <td>0: Normal, 1: Asserted (FAWS_TYPE_B)</td> <td>0</td>				15	Rx Laser Bias Current High Alarm	0: Normal, 1: Asserted (FAWS_TYPE_B)	0
12Rx Laser Bias Current Low Alarm0: Normal, 1: Asserted (FAWS_TYPE_B)011Rx Laser Output High Alarm0: Normal, 1: Asserted (FAWS_TYPE_B)010Rx Laser Output High Warning0: Normal, 1: Asserted (FAWS_TYPE_B)09Rx Laser Output Low Warning0: Normal, 1: Asserted (FAWS_TYPE_B)08Rx Laser Output Low Warning0: Normal, 1: Asserted (FAWS_TYPE_B)07Rx Laser Output Low Alarm0: Normal, 1: Asserted (FAWS_TYPE_B)06Rx Laser Temp High Alarm0: Normal, 1: Asserted (FAWS_TYPE_B)06Rx Laser Temp High Warning0: Normal, 1: Asserted (FAWS_TYPE_B)06Rx Laser Temp Low Alarm0: Normal, 1: Asserted (FAWS_TYPE_B)07X Modulator Bias High Alarm0: Normal, 1: Asserted (FAWS_TYPE_B)010Tx Modulator Bias High Warning0: Normal, 1: Asserted (FAWS_TYPE_B)011Tx Modulator Bias High Warning0: Normal, 1: Asserted (FAWS_TYPE_B)012Tx Modulator Bias High Warning0: Normal, 1: Asserted (FAWS_TYPE_B)013Tx Modulator Bias High Warning0: Normal, 1: Asserted (FAWS_TYPE_B)014Tx Modulator Bias Low Warning0: Normal, 1: Asserted (FAWS_TYPE_B)015Tx Modulator Bias Low Warning0: Normal, 1: Asserted (FAWS_TYPE_B)014Tx Modulator Bias Low Warning0: Normal, 1: Asserted (FAWS_TYPE_B)015Tx Modulator Bias Low Warning0: Normal, 1: Asserted (FAWS_TYPE_B)0				14	Rx Laser Bias Current High Warning	0: Normal, 1: Asserted (FAWS_TYPE_B)	0
11Rx Laser Output High Alarm0: Normal, 1: Asserted (FAWS_TYPE_B)010Rx Laser Output High Warning0: Normal, 1: Asserted (FAWS_TYPE_B)09Rx Laser Output Low Warning0: Normal, 1: Asserted (FAWS_TYPE_B)08Rx Laser Output Low Alarm0: Normal, 1: Asserted (FAWS_TYPE_B)07Rx Laser Temp High Alarm0: Normal, 1: Asserted (FAWS_TYPE_B)06Rx Laser Temp High Alarm0: Normal, 1: Asserted (FAWS_TYPE_B)05Rx Laser Temp High Warning0: Normal, 1: Asserted (FAWS_TYPE_B)04Rx Laser Temp Low Warning0: Normal, 1: Asserted (FAWS_TYPE_B)03Tx Modulator Bias High Alarm0: Normal, 1: Asserted (FAWS_TYPE_B)02Tx Modulator Bias High Warning0: Normal, 1: Asserted (FAWS_TYPE_B)01Tx Modulator Bias Low Warning0: Normal, 1: Asserted (FAWS_TYPE_B)0				13	Rx Laser Bias Current Low Warning	0: Normal, 1: Asserted (FAWS_TYPE_B)	0
10 Rx Laser Output High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 9 Rx Laser Output Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 8 Rx Laser Output Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 7 Rx Laser Temp High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 6 Rx Laser Temp High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 5 Rx Laser Temp High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 4 Rx Laser Temp Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 3 Tx Modulator Bias High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 2 Tx Modulator Bias High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 1 Tx Modulator Bias Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0				12	Rx Laser Bias Current Low Alarm	0: Normal, 1: Asserted (FAWS_TYPE_B)	0
9 Rx Laser Output Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 8 Rx Laser Output Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 7 Rx Laser Temp High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 6 Rx Laser Temp High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 5 Rx Laser Temp High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 4 Rx Laser Temp Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 4 Rx Laser Temp Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 3 Tx Modulator Bias High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 2 Tx Modulator Bias High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 1 Tx Modulator Bias Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0				11	Rx Laser Output High Alarm	0: Normal, 1: Asserted (FAWS_TYPE_B)	0
8 Rx Laser Output Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 7 Rx Laser Temp High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 6 Rx Laser Temp High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 5 Rx Laser Temp Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 4 Rx Laser Temp Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 3 Tx Modulator Bias High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 2 Tx Modulator Bias High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 1 Tx Modulator Bias Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0				10	Rx Laser Output High Warning		0
7 Rx Laser Temp High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 6 Rx Laser Temp High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 5 Rx Laser Temp Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 4 Rx Laser Temp Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 3 Tx Modulator Bias High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 2 Tx Modulator Bias High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 1 Tx Modulator Bias Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0				9	Rx Laser Output Low Warning	0: Normal, 1: Asserted (FAWS_TYPE_B)	0
6 Rx Laser Temp High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 5 Rx Laser Temp Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 4 Rx Laser Temp Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 3 Tx Modulator Bias High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 2 Tx Modulator Bias High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 1 Tx Modulator Bias Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0				8	Rx Laser Output Low Alarm	0: Normal, 1: Asserted (FAWS_TYPE_B)	0
5 Rx Laser Temp Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 4 Rx Laser Temp Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 3 Tx Modulator Bias High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 2 Tx Modulator Bias High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 1 Tx Modulator Bias Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0				7	Rx Laser Temp High Alarm	0: Normal, 1: Asserted (FAWS_TYPE_B)	0
4 Rx Laser Temp Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 3 Tx Modulator Bias High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 2 Tx Modulator Bias High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 1 Tx Modulator Bias Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0				6	Rx Laser Temp High Warning	0: Normal, 1: Asserted (FAWS_TYPE_B)	0
3 Tx Modulator Bias High Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 2 Tx Modulator Bias High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 1 Tx Modulator Bias Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0				5	Rx Laser Temp Low Warning	0: Normal, 1: Asserted (FAWS_TYPE_B)	0
2 Tx Modulator Bias High Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0 1 Tx Modulator Bias Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) 0				4	Rx Laser Temp Low Alarm	0: Normal, 1: Asserted (FAWS_TYPE_B)	0
1 Tx Modulator Bias Low Warning 0: Normal, 1: Asserted (FAWS_TYPE_B) (3	Tx Modulator Bias High Alarm	0: Normal, 1: Asserted (FAWS_TYPE_B)	0
				2	Tx Modulator Bias High Warning	0: Normal, 1: Asserted (FAWS_TYPE_B)	0
0 Tx Modulator Bias Low Alarm 0: Normal, 1: Asserted (FAWS_TYPE_B) 0				1	Tx Modulator Bias Low Warning	0: Normal, 1: Asserted (FAWS_TYPE_B)	0
				0	Tx Modulator Bias Low Alarm	0: Normal, 1: Asserted (FAWS_TYPE_B)	0

B1A0 [2.0]	16	RO		Network Lane n Fault and Status	16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent.	0000h
			15	Lane TEC Fault	0: Normal; 1: Asserted. (FAWS_TYPE_B)	0
			14	Lane Wavelength Unlocked Fault	0: Normal; 1: Asserted. (FAWS_TYPE_C)	0
			13	Lane APD Power Supply Fault	0: Normal; 1: Asserted. (FAWS TYPE B)	0
			12~8	Reserved		0
			7	Lane TX_LOSF	0: Normal; 1: Asserted. (PMD) (FAWS_TYPE_C)	0
			6	Lane TX_LOL	0: Normal; 1: Asserted. (Network) (FAWS_TYPE_B)	0
			5	Reserved		0
			4	Lane RX LOS	0: Normal; 1: Asserted. (FAWS TYPE B)	0
			3	Lane RX_LOL	0: Normal; 1: Asserted. (FAWS TYPE B)	0
			2	Lane RX FIFO error	0: Normal, 1: Error. (FAWS_TYPE_B)	0
			1	Lane RX TEC Fault	0: Normal; 1: Asserted. (FAWS_TYPE_B)	0
			0	Reserved.		0
,				Network Lane FAWS Latch R	egisters	
B1B0 [2.0]	16	RO/LH/ COR		Network Lane n Alarm and Warning 1 Latch	16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent.	0000h
			15	Bias High Alarm Latch	1: Latched.	0
			14	Bias High Warning Latch	1: Latched.	C
			13	Bias Low Warning Latch	1: Latched.	C
			12	Bias Low Alarm Latch	1: Latched.	0
			11	TX Power High Alarm Latch	1: Latched.	0
			10	TX Power High Warning Latch	1: Latched.	(
			9	TX Power Low Warning Latch	1: Latched.	0
			8	TX Power Low Alarm Latch	1: Latched.	(
			7	Laser Temperature High Alarm	1: Latched.	C
			6	Latch Laser Temperature High Warning Latch	1: Latched.	C
			5	Latch	1: Latched.	C
			4	Laser Temperature Low Alarm Latch	1: Latched.	C
			3	RX Power High Alarm Latch	1: Latched. The thresholds for the RX Power High/Low Alarm/Warning are determined by the RX Power Monitor Alarm/Warning Threshold Select in B015h. This comment applies to bits 2~0 as well.	C
			2	RX Power High Warning Latch	1: Latched.	0
			1	RX Power Low Warning Latch	1: Latched.	0
			0	RX Power Low Alarm Latch	1: Latched.	(
B1C0 [2.0]	16	RO/LH/ COR		Network Lane n Alarm and Warning 2 Latch	16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent.	10000
			15	Rx Laser Bias High Alarm Latch	1: Latched	(
			14	Rx Laser Bias High Warning Latch	1: Latched	(
			13	Rx Laser Bias Low Warning Latch	1: Latched	(
			12	Rx Laser Bias Low Alarm Latch	1: Latched	0
			11	Rx Laser Output High Alarm Latch	1: Latched	(
			10	Rx Laser Output High Warning Latch	1: Latched	0
			9	Rx Laser Output Low Warning Latch Rx Laser Output Low Alarm Latch	1: Latched	(
			7	Rx Laser Output Low Alarm Laton Rx Laser Temp High Alarm Latoh	1: Latched 1: Latched	(
			6	Rx Laser Temp High Warning Latch	1: Latched	(
			5	Rx Laser Temp Low Warning Latch	1: Latched	0
			4	Rx Laser Temp Low Alarm Latch	1: Latched	(
			3	Tx Modulator Bias High Alarm Latch	1: Latched	(
			2			

				Latch		
			1	Tx Modulator Bias Low	1: Latched	0
				Warning Latch		
	[0	Tx Modulator Bias Low Alarm Latch	1: Latched	0
B1D0 [2.0]	16			Network Lane n Fault and Status Latch	16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent.	0000h
		RO/LH/C OR	15	Lane TEC Fault Latch	1: Latched.	0
		RO/LH/C OR	14	Lane Wavelength Unlocked Fault Latch	1: Latched.	0
		RO/LH/C OR	13	Lane APD Power Supply Fault Latch	1: Latched.	0
		RO	12~8	Reserved		0
		RO/LH/C OR	7	Lane TX_LOSF Latch	1: Latched.	0
		RO/LH/C OR	6	Lane TX_LOL Latch	1: Latched.	0
		RO	5	Reserved	4.1.4.6	0
		RO/LH/C OR	4	Lane RX_LOS Latch	1: Latched.	0
		RO/LH/C OR	3	Lane RX_LOL Latch	1: Latched.	0
		RO/LH/C OR	2	Lane RX FIFO Status Latch	1: Latched.	0
		RO/LH/C OR	1	Lane RX TEC Fault Latch	1: Latched.	0
		RO	0	Reserved		
	10			Network Lane FAWS Enable R	-	
B1E0	16					
[2.0]		RW		Network Lane n Alarm and Warning 1 Enable	16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent.	FFFF h
		RW	15		represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module	
		RW	15 14	Warning 1 Enable	represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent.	h
		RW		Warning 1 Enable Bias High Alarm Enable	represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. 0: Disable, 1: Enable.	h 1
	10	RW	14	Warning 1 Enable Bias High Alarm Enable Bias High Warning Enable	represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. 0: Disable, 1: Enable. 0: Disable, 1: Enable. 0: Disable, 1: Enable.	h 1 1
		RW	14 13 12	Warning 1 Enable Bias High Alarm Enable Bias High Warning Enable Bias Low Warning Enable Bias Low Alarm Enable	represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. 0: Disable, 1: Enable. 0: Disable, 1: Enable. 0: Disable, 1: Enable. 0: Disable, 1: Enable.	h 1 1 1 1
		RW	14 13	Warning 1 Enable Bias High Alarm Enable Bias High Warning Enable Bias Low Warning Enable Bias Low Alarm Enable TX Power High Alarm Enable	represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. 0: Disable, 1: Enable. 0: Disable, 1: Enable. 0: Disable, 1: Enable. 0: Disable, 1: Enable. 0: Disable, 1: Enable.	h 1 1 1
		ĸw	14 13 12 11	Warning 1 Enable Bias High Alarm Enable Bias High Warning Enable Bias Low Warning Enable Bias Low Alarm Enable TX Power High Alarm Enable TX Power High Warning Enable	represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. 0: Disable, 1: Enable. 0: Disable, 1: Enable.	h 1 1 1 1 1 1
	10	ĸw	14 13 12 11 10	Warning 1 Enable Bias High Alarm Enable Bias High Warning Enable Bias Low Warning Enable Bias Low Alarm Enable TX Power High Alarm Enable TX Power High Warning Enable TX Power Low Warning Enable	represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. 0: Disable, 1: Enable. 0: Disable, 1: Enable.	h 1 1 1 1 1 1 1 1 1 1
		ĸw	14 13 12 11 10 9	Warning 1 Enable Bias High Alarm Enable Bias High Warning Enable Bias Low Warning Enable Bias Low Alarm Enable TX Power High Alarm Enable TX Power High Warning Enable	represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. 0: Disable, 1: Enable. 0: Disable, 1: Enable.	h 1 1 1 1 1 1 1 1 1 1 1 1
		ĸw	14 13 12 11 10 9 8	Warning 1 Enable Bias High Alarm Enable Bias High Warning Enable Bias Low Warning Enable Bias Low Alarm Enable TX Power High Alarm Enable TX Power Low Warning Enable TX Power Low Warning Enable TX Power Low Alarm Enable Laser Temperature High Alarm	represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. 0: Disable, 1: Enable. 0: Disable, 1: Enable.	h 1 1 1 1 1 1 1 1 1 1 1 1
		ĸw	14 13 12 11 10 9 8 7	Warning 1 Enable Bias High Alarm Enable Bias High Warning Enable Bias Low Warning Enable Bias Low Alarm Enable TX Power High Alarm Enable TX Power Low Warning Enable TX Power Low Warning Enable Laser Temperature High Alarm Enable Laser Temperature High Warning	represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. 0: Disable, 1: Enable. 0: Disable, 1: Enable.	h 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		ĸw	14 13 12 11 10 9 8 7 6	Warning 1 Enable Bias High Alarm Enable Bias High Warning Enable Bias Low Warning Enable Bias Low Alarm Enable TX Power High Alarm Enable TX Power High Warning Enable TX Power Low Warning Enable TX Power Low Alarm Enable Laser Temperature High Alarm Enable Laser Temperature High Warning Enable Laser Temperature High Warning Enable	represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. 0: Disable, 1: Enable. 0: Disable, 1: Enable.	h 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		ĸw	14 13 12 11 10 9 8 7 6 5	Warning 1 Enable Bias High Alarm Enable Bias High Warning Enable Bias Low Warning Enable Bias Low Alarm Enable TX Power High Alarm Enable TX Power High Warning Enable TX Power Low Warning Enable TX Power Low Alarm Enable Laser Temperature High Alarm Enable Laser Temperature High Warning Enable Laser Temperature Low Warning	represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. 0: Disable, 1: Enable. 0: Disable, 1: Enable This comment applies to bits 2~0 as well The thresholds for the RX Power High/Low Alarm/Warning are determined by the RX Power Monitor	h 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		ĸw	14 13 12 11 10 9 8 7 6 5 5 4 3	Warning 1 Enable Bias High Alarm Enable Bias High Warning Enable Bias Low Warning Enable TX Power High Alarm Enable TX Power High Warning Enable TX Power Low Warning Enable TX Power Low Alarm Enable Laser Temperature High Alarm Enable Laser Temperature High Warning Enable Laser Temperature Low Warning Enable Laser Temperature Low Warning Enable Raser Temperature Low Alarm Enable RX Power High Alarm Enable	represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. 0: Disable, 1: Enable. 0: Disable, 1: Enable This comment applies to bits 2~0 as well The thresholds for the RX Power High/Low Alarm/Warning are determined by the RX Power Monitor Alarm/Warning Threshold Select in B015h.	h 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		ĸw	14 13 12 11 10 9 8 7 6 5 4	Warning 1 Enable Bias High Alarm Enable Bias High Warning Enable Bias Low Warning Enable Bias Low Alarm Enable TX Power High Alarm Enable TX Power Low Warning Enable TX Power Low Warning Enable Laser Temperature High Alarm Enable Laser Temperature Low Warning Enable Laser Temperature Low Warning Enable Laser Temperature Low Warning Enable RX Power High Alarm Enable RX Power High Warning Enable	represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. 0: Disable, 1: Enable. 0: Disable, 1: Enable This comment applies to bits 2-0 as well The thresholds for the RX Power High/Low Alarm/Warning are determined by the RX Power Monitor Alarm/Warning Threshold Select in B015h. 0: Disable, 1: Enable.	h 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		ĸw	14 13 12 11 10 9 8 7 6 5 4 3	Warning 1 Enable Bias High Alarm Enable Bias High Warning Enable Bias Low Warning Enable TX Power High Alarm Enable TX Power High Warning Enable TX Power Low Warning Enable TX Power Low Alarm Enable Laser Temperature High Alarm Enable Laser Temperature High Warning Enable Laser Temperature Low Warning Enable Laser Temperature Low Warning Enable Raser Temperature Low Alarm Enable RX Power High Alarm Enable	represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent. 0: Disable, 1: Enable. 0: Disable, 1: Enable This comment applies to bits 2~0 as well The thresholds for the RX Power High/Low Alarm/Warning are determined by the RX Power Monitor Alarm/Warning Threshold Select in B015h.	h 1 1 1 1 1 1 1 1 1 1 1 1 1

				Network Lane VR	1	
Hex Addr	Size	Access Type	Bit	Register Name Bit Field Name	Description	Init Value
B1F0 [2.0]	16	RW		Network Lane n Alarm and Warning 2 Enable	16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent.	FFFF h
			15	Rx Laser Bias Current High Alarm Enable	0: Disable, 1: Enable.	1
			14	Rx Laser Bias Current High Warning Enable	0: Disable, 1: Enable.	1
			13	Rx Laser Bias Current Low Warning Enable	0: Disable, 1: Enable.	1
			12	Rx Laser Bias Current Low Alarm Enable	0: Disable, 1: Enable.	1
			11	Rx Laser Output High Alarm Enable	0: Disable, 1: Enable.	1
			10	Rx Laser Output High Warning Enable	0: Disable, 1: Enable.	1
			9	Rx Laser Output Low Warning Enable	0: Disable, 1: Enable.	1
			8	Rx Laser Output Low Alarm Enable	0: Disable, 1: Enable.	1
			7	Rx Laser Temp High Alarm Enable	0: Disable, 1: Enable.	1
			6	Rx Laser Temp High Warning Enable	0: Disable, 1: Enable.	1
			5	Rx Laser Temp Low Warning Enable	0: Disable, 1: Enable.	1
			4	Rx Laser Temp Low Alarm Enable	0: Disable, 1: Enable.	1
			3	Tx Modulator Bias High Alarm Enable	0: Disable, 1: Enable.	1
			2	Tx Modulator Bias High Warning Enable	0: Disable, 1: Enable.	1
			1	Tx Modulator Bias Low Warning Enable	0: Disable, 1: Enable.	1
			0	Tx Modulator Bias Low Alarm Enable	0: Disable, 1: Enable.	1
B200 [2.0]	16			Network Lane n Fault and Status Enable	16 registers, one for each network lane, represent 16 network lanes. n = 0, 1,, N-1. N_max = 16. Actual N is module dependent.	E0D Ch
		RW	15	Lane TEC Fault Enable	0: Disable, 1: Enable.	1
		RW	14	Lane Wavelength Unlocked Fault Enable	0: Disable, 1: Enable.	1
		RW	13	Lane APD Power Supply Fault Enable	0: Disable, 1: Enable.	1
		RO	12~8	Reserved		0
		RW	7	Lane TX_LOSF Enable	0: Disable, 1: Enable.	1
		RW	6	Lane TX_LOL Enable	0: Disable, 1: Enable.	1
		RO	5	Reserved		0
		RW	4	Lane RX_LOS Enable	0: Disable, 1: Enable.	1
		RW	3	Lane RX_LOL Enable	0: Disable, 1: Enable.	1
		RW	2	Lane RX FIFO Status Enable	0: Disable, 1: Enable.	1
		RW	1	Lane RX TEC Fault Enable	0: Disable, 1: Enable.	1
		RO	0	Reserved		0

14 Glossary

Term	Definition	Term	Definition
A.U.	Arbitrary Units	MGC	Manual Gain Control
ACI	Analog Control Interface	mils	Thousandths of an inch
ADC	Analog to Digital Converter	MIS	Management Interface Specification
AGC	Automatic Gain Control	MSA	Multiple Supplier Agreement
ASE	Amplified Spontaneous Emission	MZ	Mach-Zehnder
BOM	Bill of Materials	N.C.	not connected
BPSK	Binary Phase Shift Keying	OSP	Organic Solderability Preservatives (PCB finish)
CFP2-ACO	CFP2 for Analog Coherent Optics	p/n	The complementary electrical outputs for each channel are labeled p and n, see Section 8.3.
CG	Rx OE Conversion Gain	PANDA	PMF fiber type with circular stress rods
CMRR	Common Mode Rejection Ratio	PBS	Polarization Beam Splitter
CTE	Coefficient of Thermal Expansion	PCB	Printed Circuit Board
DAC	Digital to Analog Converter	PD	Photodiode
dB	10*log ₁₀ (x)	PDL	Polarization Dependent Loss
dBe	20*log ₁₀ (x)	PER	Polarization Extinction Ratio
DLP	Deviation from Linear Phase	PLC	Planar Lightwave Circuit
DLP	Deviation from Linear Phase	PMF	Polarization Maintaining Fiber
DP	Dual Polarization	PMQ	Integrated Polarization Multiplexed Quadrature Mach-Zehnder Modulator
DSP	Digital Signal Processing	PP/RMS	Peak-to-Peak to RMS Ratio
ED	Electrical Delay	PRBS	Pseudo-Random Bit Sequence
EOL	End of Life	Psig	Mean power of the CFP2-ACO Rx input that will beat with the LO
ESA	Electrical Spectrum Analyzer	QPSK	Quadrature Phase Shift Keying
E-to-O	Electrical to Optical	REFCLK	Reference Clock
FAWS	Fault and Warning System	RMS	Root Mean Square
FIT	Failures in Time	rms	Root Mean Square
FSO	Free-Space-Optics	Rx	Receiver
GC	Gain Control (usually in reference to TIA)	SMF	Single Mode Fiber
GSSG	Differential RF Line [GND-Sig-Sig-GND]	SOA	Semiconductor Optical Amplifier
НСВ	Host Compliance Board	SOL	Start of Life
I/Q	Mutually orthogonal phase channels in each polarization as defined in Section 8.3.	TBD	To Be Determined
IA	Implementation Agreement	TDL	Temperature Dependent Loss
ICR	Intradyne Coherent Receiver	TE	Transverse Electric Polarization (electric vector of incident wave parallel to the boundary plane)
IL	Insertion Loss	TEC	Thermoelectric cooler
InP	Indium Phosphide	THD	Total Harmonic Distortion
ю	Input Output	TIA	Transimpedance Amplifier
LO	Local Oscillator [Optical Source]	Тх	Transmitter
LVCMOS	Low Voltage CMOS	V1	V1 is the rms voltage of the fundamental frequency
МСВ	Module Compliance Board	V2	V2 is the rms voltage of the 2nd harmonic
MCLK	Monitor Clock	VGA	Variable Gain Amplifier
MDIO	Management Data Input/Output	VOA	Variable Optical Attenuator
ME	Modulation Efficiency	VOUT	Differential Output Voltage from Rx at TP4
		X / Y Pol.	Pair of mutually orthogonal polarizations of any orientation
		xQAM	

Table 25 presents definitions for acronyms used in this IA.

Table 25: Glossary

15 Annex A: HCB and MCB Differential Insertion Losses

Individual MCB and HCB test traces of matching length and geometry to the signal traces between the Host connector and RF ports should conform to the differential insertion losses provided by Equations 1 and 2 and given in Figure 22 and Figure 23. *These specifications are defined between the reference planes of the RF coax connectors on the test trace with the S-parameter magnitudes in dBe and f (frequency) in GHz.*

 $MCB \ SDD21 = \min(-0.12 \cdot \sqrt{f} - 0.02 \cdot f, \ 0.65 - 0.09 \cdot f) \ dB, \ 0.001 < f < 32 \ (1)$ $HCB \ SDD21 = \min(-0.2 - 0.04 \cdot \sqrt{f} - 0.095 \cdot f, \ 2.53 - 0.268 \cdot f) \ dB, \ 0.001 < f < 32 \ (2)$

As per Section 9.4, observed differences from Equations 1 and 2 on actual MCBs and HCBs can be applied as corrections to measurements that use them.

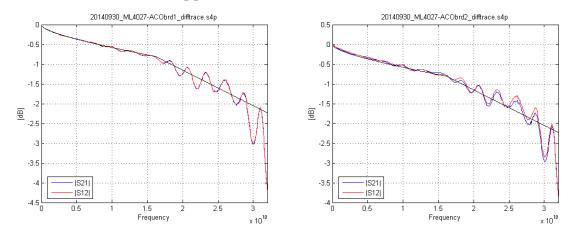


Figure 22: Reference Differential Insertion Losses for the PCB Traces on Two Module Compliance Boards [MCB SDD21]

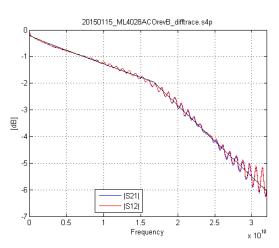


Figure 23: Reference Differential Insertion Losses for the PCB Traces on a Host Compliance Board [HCB SDD21]

16 Annex B: Mated HCB and MCB S-Parameters

The specifications given for the mated HCB and MCB shall be verified in both directions, except for the differential insertion loss that can be measured in either direction. In the equations provided here the S-parameter magnitudes are in dBe and f (frequency) is in GHz. *The mated MCB-HCB specifications are defined between the reference planes of the RF coax connectors on the MCB and HCB.*

The differential return loss of the mated HCB and MCB pair shall follow Equations 3 and 4, illustrated in Figure 24.

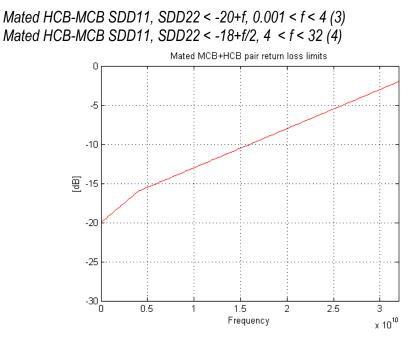
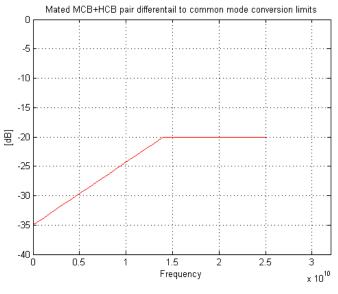



Figure 24: Mated HCB-MCB SDD11, SDD22

The differential to common mode conversion for a mated HCB and MCB pair is given in Equations 5 and 6, shown in Figure 25.

Mated HCB-MCB SCD21, SCD12 < -35+1.07*f, 0.001 < f < 14 (5) Mated HCB-MCB SCD21, SCD12 < -20, 14 < f < 25 (6)

The mode conversion return loss for a mated HCB and MCB pair is given in Equations 7 and 8, shown in Figure 26.

HCB-MCB SCD11, SCD22 and SDC11, SDC22 < -30+(5/7)*f, 0.001 < f < 14 (7) HCB-MCB SCD11, SCD22 and SDC11, SDC22 < -25+(5/14)*f, 14 < f < 25 (8)

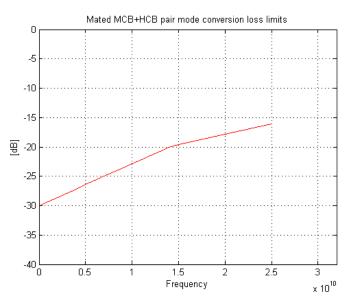


Figure 26: Mated HCB-MCB SCD11, SCD22 and SDC11, SDC22

The maximum differential insertion loss for a mated HCB and MCB pair are given in Equation 9 and 10. The minimum differential insertion loss for a mated HCB and MCB is given in Equation 11. These equations are shown in Figure 27.

Mated HCB-MCB SDD21, SDD12 > -0.3-0.4*sqrt(f)-0.2*f, 0.001 < f < 16 (9) Mated HCB-MCB SDD21, SDD12 > 7.5-0.8*f, 16 < f < 32 (10) Mated HCB-MCB SDD21, SDD12 < -0.08*sqrt(f)-0.2*f, 0.001 < f < 32 (11)

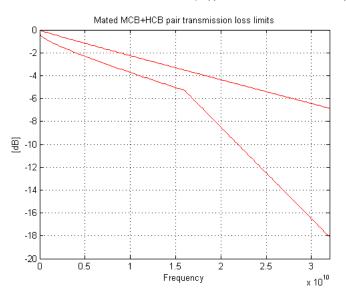


Figure 27: Mated HCB-MCB SDD21, SDD12

The maximum common mode return loss for a mated HCB and MCB pair from either end shall be -3 dBe, 0.001 < f < 25.

17 Appendix I: Electrical Connector S-Parameters (Informative)

Figure 28 and Figure 29 provide informative reference data for a typical mated CFP2-ACO connector.

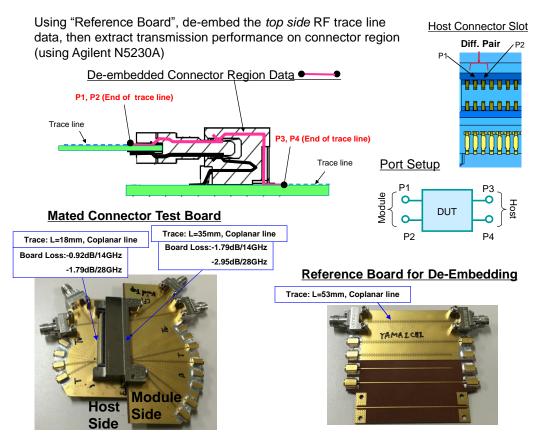


Figure 28: Mated CFP2 Connector SI Performance Measurement Conditions

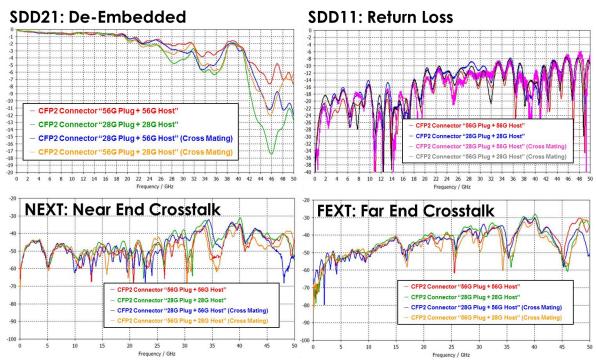


Figure 29: Typical Mated CFP2 Connector SI Performance

18 Appendix II: Beat Frequency Skew Measurement Method (*Informative*)

Two un-modulated narrow line width CW laser sources (one is the LO in the ACO, the other is an optical Rx input signal to the ACO) are used in the Beat Frequency skew measurement method. The frequency offset between the two laser sources creates an ICR output beat signal from which the phase delay between XI, XQ, YI and YQ can be determined at the set offset frequency. This measurement is repeated with various offset frequencies to obtain enough accuracy for a line fit, typically between 1.0 GHz and 5.0 GHz, and with a frequency step size small enough to resolve big skews, typically 0.1 GHz. The slope of the fitted line determines the skew between the tributaries.

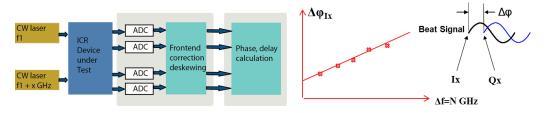


Figure 30: Beat Frequency Skew Measurement Method

19 Open Issues / Current Work Items

20 List of Companies Belonging to OIF when Document is Approved

Acacia Communications	Gigoptix	O-Net Communications (HK) Limited
ADVA Optical Networking	Global Foundries	Oclaro
Alcatel-Lucent	Google	Orange
Altera	Hitachi	PETRA
AMCC	Huawei Technologies Co., Ltd.	Picometrix
Amphenol Corp.	Infinera	PMC Sierra
Analog Devices	Inphi	QLogic Corporation
Anritsu	Intel	Qorvo
Avago Technologies Inc.	Ixia	Rockley Photonics
Broadcom	Juniper Networks	Samtec Inc.
Brocade	Kandou Bus	Semtech
BTI Systems	KDDI R&D Laboratories	Socionext Inc.
China Telecom	Keysight Technologies, Inc.	Spirent Communications
Ciena Corporation	Leaba	Sumitomo Electric Industries
Cisco Systems	Lumentum	Sumitomo Osaka Cement
ClariPhy Communications	Luxtera	TE Connectivity
Compass Networks	M/A-COM Technology Solutions	Tektronix
Coriant	Marvell Technology	TELUS Communications, Inc.
CPqD	Mellanox Technologies	TeraXion
EMC Corporation	Microsemi Inc.	Texas Instruments
Ericsson	Microsoft Corporation	Time Warner Cable
ETRI	Mitsubishi Electric Corporation	US Conec
FCI USA LLC	Molex	Verizon
Fiberhome Technologies Group	MoSys, Inc.	Viavi Solutions Deutschland GmbH
Finisar Corporation	NEC	Xilinx
Fujikura	NeoPhotonics	Yamaichi Electronics Ltd.
Fujitsu	NTT Corporation	ZTE Corporation
Furukawa Electric Japan		