
 IA OIF-E2E-SEC-01.0

End-to-End Transport of UNI Client Authentication,

Integrity, and Data Plane Security Support
Information

IA # OIF-E2E-SEC-01.0

June 4, 2012

Implementation Agreement created and approved

by the Optical Internetworking Forum

www.oiforum.com

 IA OIF-E2E-SEC-01.0

www.oiforum.com i

The OIF is an international non-profit organization with over 90 member companies, including the world’s

leading carriers and vendors. Being an industry group uniting representatives of the data and optical worlds,

OIF’s purpose is to accelerate the deployment of interoperable, cost-effective and robust optical

internetworks and their associated technologies. Optical internetworks are data networks composed of

routers and data switches interconnected by optical networking elements.

With the goal of promoting worldwide compatibility of optical internetworking products, the OIF actively

supports and extends the work of national and international standards bodies. Working relationships or

formal liaisons have been established with IEEE 802.1, IEEE 802.3ba, IETF, IP-MPLS Forum, IPv6 Forum,

ITU-T SG13, ITU-T SG15, MEF, ATIS-OPTXS, ATIS-TMOC, TMF and the XFP MSA Group.

For additional information contact:

The Optical Internetworking Forum, 48377 Fremont Blvd.,

Suite 117, Fremont, CA 94538

+1 510 492 4040

info@oiforum.com

www.oiforum.com

 IA OIF-E2E-SEC-01.0

www.oiforum.com ii

End-to-End Transport of UNI Client Authentication,
Integrity, and Data Plane Security Support

Information

ABSTRACT: This Implementation Agreement defines an optional extension to the OIF UNI. This extension

consists of a UNI client service that supports authenticating and transparently transporting a UNI client’s set

of UNI message objects and additional security information across the entire signaling network between two

UNI-C’s. Authentication is performed with an end-to-end client digital signature mechanism that provides

authentication, integrity, and support for non-repudiation of end-to-end UNI-to-UNI communications. It

describes what data items to protect, how to apply this protection, policy specification and enforcement,

security credentials, error and restart handing, performance, recovery, and security considerations. Using

this extension depends on availability of an end-to-end signaling network for carrying security objects. In the

cases where this violates carriers’ policies, UNI clients cannot assume it is available. As a result, this

Implementation Agreement applies only to those cases where mutual agreement exists between service

providers and end clients.

Notice: This Technical Document has been created by the Optical Internetworking Forum (OIF). This document is offered to the OIF

Membership solely as a basis for agreement and is not a binding proposal on the companies listed as resources above. The OIF reserves
the rights to at any time to add, amend, or withdraw statements contained herein. Nothing in this document is in any way binding on the

OIF or any of its members.

The user's attention is called to the possibility that implementation of the OIF implementation agreement contained herein may require
the use of inventions covered by the patent rights held by third parties. By publication of this OIF implementation agreement, the OIF

makes no representation or warranty whatsoever, whether expressed or implied, that implementation of the specification will not

infringe any third party rights, nor does the OIF make any representation or warranty whatsoever, whether expressed or implied, with
respect to any claim that has been or may be asserted by any third party, the validity of any patent rights related to any such claim, or the

extent to which a license to use any such rights may or may not be available or the terms hereof.

© 2012 Optical Internetworking Forum

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain

it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction other than the

following, (1) the above copyright notice and this paragraph must be included on all such copies and derivative works, and (2) this
document itself may not be modified in any way, such as by removing the copyright notice or references to the OIF, except as needed for

the purpose of developing OIF Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of this notice. Unless the
terms and conditions of this notice are breached by the user, the limited permissions granted above are perpetual and will not be revoked

by the OIF or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and THE OIF DISCLAIMS ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY, TITLE OR

FITNESS FOR A PARTICULAR PURPOSE.

 IA OIF-E2E-SEC-01.0

www.oiforum.com iii

Table of Contents

1. Introduction .. 1
1.1 Problem Statement .. 1
1.2 Scope .. 2
1.3 Background on End-to-End Protocol Security ... 3

1.4 OIF UNI End-to-End Security .. 4
1.5 Relationship to Other Standards Bodies ... 5
1.6 Acknowledgements .. 5
1.7 How to Use this Implementation Agreement ... 5
1.8 Document Organization .. 6

2. Terminology and Acronyms .. 6

2.1 Keywords .. 6

2.2 Terminology ... 6

2.3 Acronyms.. 7
3. Objectives and Requirements .. 8
4. RSVP Signature Option ... 10

4.1 Background on Digital Signatures .. 11
4.2 Overview of Signatures for the OIF UNI ... 11

4.3 Timestamps and Replay Detection ... 13
4.4 Names and Certificates ... 13
4.5 Distributing Certificates ... 14

4.6 Mapping from Names to CALL_IDs.. 15
4.7 What to Sign: Mutable, Immutable, and Excluded Objects 16

5. Data Structures, Error Handling, Logging, and Processing Rules 20
5.1 Structure of the OIF_E2E_SECURITY Subobject .. 22

5.2 Error Codes and Error Logging .. 28
5.3 Processing Rules ... 34
5.4 Backward Compatibility ... 35

6. Policy Considerations at UNI Endpoints ... 36
6.1 Specifying, Enforcing, and Changing Policies without Disruption................ 36

6.2 Signaling Channel Failure, Restart, and Policy Updates 37
7. OIF Assigned Numbers.. 38
8. Performance ... 38

9. Security Considerations ... 39
10. Short Signatures (Informative) ... 40
11. Summary .. 41

12. References .. 41

12.1 Normative References .. 41
12.2 Informative References ... 42

Appendix A: Glossary... 45

Appendix B: OIF Members When the Document Was Approved 46

 IA OIF-E2E-SEC-01.0

www.oiforum.com iv

List of Figures

Figure 1: The OIF’s UNI and E-NNI Signaling Interfaces (from [E-NNI]) 4

Figure 2: Structure of a Signature Block .. 12

List of Tables

Table 1: Example of Message Size for Singing a Path Message 39

Document Contact Information

TECHNICAL EDITOR

 Richard Graveman

 Department of Defense

 15 Park Avenue

 Morristown, NJ 07960 USA

Phone: +1 973 984 8780

Email: rfg@acm.org

WORKING GROUP CHAIRS

Doug Zuckerman, Telcordia Technologies

Evelyne Roch, Ciena Corporation

Rémi Theillaud, Marben Products

 IA OIF-E2E-SEC-01.0

www.oiforum.com 1

End-to-End Transport of UNI Client
Authentication, Integrity, and Data Plane

Security Support Information

1. Introduction

This document defines an optional extension to the OIF UNI. It consists of a UNI client

service that supports authenticating and transparently transporting a UNI client’s set of

UNI message objects and additional security information across the entire signaling

network between two UNI-C’s. To verify this information, a method to generate and verify

digital signatures on data items in RSVP-TE signaling messages at a user-network

interface (UNI-C) reference point is defined. The objective is to define a mechanism that

ensures the integrity and authenticity of the end-to-end user-defined items in such

messages. Using this extension depends on availability of an end-to-end signaling network

for carrying security objects. In the cases where this violates carriers’ policies, UNI clients

cannot assume it is available. As a result, this Implementation Agreement applies only to

those cases where mutual agreement exists between service providers and end clients.

This document also defines how supporting security information can be communicated

transparently, end-to-end between the UNI clients. The information exchanged is client

specific (i.e., unspecified).

This document also provides material helpful to implementers and users of end-to-end UNI

authentication and integrity. It covers topics such as what data items to protect, how to

apply protection (i.e., handling mutable [original] and immutable data items), security

policy specification and enforcement, security credentials, error handing, performance,

security considerations, and restart and recovery considerations.

Parts of this document contain background information on how end-to-end UNI security

works, advice to implementers on what tools and utilities to provide with this security

mechanism, and advice to users on setting up and configuring security policy, handling

errors, and logging.

1.1 Problem Statement

Briefly, the way RSVP-TE (and most other signaling protocols) works is:

 The message payload consists of a main header that defines the type of message

followed by a list of type-length-value objects (TLVs)

 Each party along the path may, according to its policy and function, modify or fill

in information in certain objects as appropriate

 Processing rules exist for changing or adding information, but no end-to-end

method is defined for detecting whether these rules were followed or not

 The final receiver does not know what was originally sent versus what was added,

changed, or deleted later

 IA OIF-E2E-SEC-01.0

www.oiforum.com 2

OIF has defined extensions for securing the inter-domain interfaces, i.e., UNI and E-NNI.

The OIF’s profile of IPsec and the IETF’s RSVP INTERGITY object protect messages but

only across a single RSVP session, so they cannot be used across multiple sessions. The

main problem created by these semantics for the OIF UNI is that two UNI-C [UNI2.0,

UNI2.0-RSVP] entities setting up, modifying, or tearing down a call do not have any direct

assurance about what the other party has requested or even any strong assurance about who

the other party is. This is an independent topic from service operators’ requirements to hide

internal details about how the users’ requests are handled.

A possible side benefit of signing parts of such messages is that logging signed and

timestamped messages provides much stronger evidence of end-users’ actions in case audit

logs disagree on what has been requested.

This optional extension applies only to implementations based on RSVP-TE

[UNI2.0-RSVP] at the UNI. Furthermore, the OIF’s UNI signaling model based on ASON

requirements and defined in [UNI2.0] does not depend on any particular signaling protocol

within the network. Various signaling approaches may be used to connect the two,

independent UNI sessions, one at the source and one at the destination. Only limited

information including the contents of the Generalized_UNI object is communicated

between the source and destination UNI-N’s. For this optional extension to work, an

additional RSVP object, subobject, and its sub-subobjects need to be delivered

transparently, intact between source and destination UNI-N’s. Because doing this involves

additional complexity and overhead, and because it passes information generated outside

the network through the SCN, support for this extension is optional and depends on service

operators for each domain between UNI-N’s.

1.2 Scope

This optional client service for the OIF UNI and the supporting digital signature

mechanism are intended primarily to work only between UNI-C entities. In a soft

permanent connection (SPC), one or both of the connection endpoints is under

management system control rather than UNI client control. Support for this service in this

case requires additional functionality at the UNI-N which is for future study.

Generalizations to other interfaces are also for future study. For example, signing OIF

E-NNI NOTIFY messages, or indeed GMPLS signaling messages over RSVP-TE in

general, may be useful, but defining trust models, handling key management, and

potentially working with multiple signatures all add complications.

This digital signature mechanism is independent of and somewhat complementary to

existing, hop-by-hop security mechanisms. Many of the objects at the OIF UNI are

meaningful only between the UNI-C and UNI-N reference points and have no end-to-end

significance. This IA is not intended to cover these objects.

The confidentiality of the UNI data items signed by this mechanism is out of scope.

This is an optional digital signature mechanism defined only for the OIF UNI

[UNI2.0-RSVP]. The OIF UNI uses the RSVP-TE protocol defined by the IETF and

 IA OIF-E2E-SEC-01.0

www.oiforum.com 3

extended by the OIF. As such, it may not work with other signaling protocols on the path

between the UNI endpoints.

The support of this client service and the applicability of this mechanism may vary

according to the relationship the users on the two ends have with each other, the

configuration of the signaling communications networks (SCNs) between them, and the

policies enforced on these SCNs. For example, this mechanism may be used:

i. entirely within a single user’s private domain. In this case, the user has complete

control of the endpoints and the network, and the user wants to protect the

end-to-end signaling against a compromised or malfunctioning intermediate

signaling point.

ii. between users who trust each other across a single carrier’s semi-trusted network.

In this case the users want to protect their end-to-end signaling against a

compromised or malfunctioning intermediate signaling point or an impersonation

attack against the entire signaling network. The users need support for this

mechanism from their carrier, and their carrier may enforce a network operator’s

policy stating which users are allowed to use this mechanism and how they use it.

iii. between cooperating but untrusting users across one or more carriers. In this case,

the users can establish trust through an external public key infrastructure. In

contrast to case (ii), this mechanism may offer protection against additional points

of attack. In the future, for multiple-carrier scenarios, all carriers in the path will

need to allow this mechanism.

1.3 Background on End-to-End Protocol Security

The end-to-end security problem is not specific to signaling protocols. Another good

example is link state routing protocols. For OSPFv2 (which is primarily used in

intra-domain routing), see, for example, the discussion and solution in RFC 2154

[RFC2154]. End-to-end security for inter-domain routing has been addressed more

recently in the IETF’s SIDR Working Group.

Prior work on RSVP security has considered this and similar problems. Wu et al. [Wu99]

stated the following in the abstract to their RSVP security paper:

In this paper, we study the first type of DoQoNS (Denial of Quality of Network Service)

attacks: attacks directly on the resource reservation and setup protocol. In particular, we

have studied and analyzed the RSVP protocol. Two important research contributions are

presented: First, we performed a security analysis on RSVP which demonstrates the key

vulnerabilities of its distributed resource reservation and setup process. Second, we

proposed a new secure RSVP protocol, SDS/CD (Selective Digital Signature with Conflict

Detection) for RSVP, which combines the strength of attack prevention and intrusion

detection. SDS/CD resolved a fundamental issue in network security: how to protect the

integrity, in an End-to-End fashion, of a target object that is mutable along the route path.

As a result, we will show that SDS/CD can deal with many insider attacks that cannot be

handled by the current IETF/RSVP security solution: hop-by-hop Authentication.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 4

Talwar and Nahrstedt [TN00] proposed using a combination of digital signatures for the

immutable parts of an RSVP message and hop-by-hop message authentication codes for

the mutable parts.

Behringer, Le Faucheur, and Weis [BFW11] have addressed a different problem: how to

distribute shared keys among more than two parties for hop-by-hop integrity checks or

confidentiality mechanisms. They cite the open problem of a subverted node:

A subverted node is defined here as an untrusted node, for example because an intruder has

gained control over it. Since RSVP authentication is hop-by-hop and not end-to-end, a

subverted node in the path breaks the chain of trust. …

These references, with respect to both RSVP and protocols with similar characteristics,

illustrate that client end-to-end assurance and solutions using digital signatures have been

identified repeatedly as long-standing security challenges.

1.4 OIF UNI End-to-End Security

Figure 1 illustrates the OIF’s UNI and E-NNI reference points in an overall control plane

architecture. Each UNI-C entity (labeled Client) communicates with its UNI-N (its directly

connected NE). Even though pairs of UNI-C’s manage calls and connections between

them, they do not use any signaling protocol to communicate directly with each other. This,

in itself, explains why the OIF’s existing RSVP security mechanisms provide no security

assurances between pairs of UNI-C’s. When two UNI-C’s use RSVP-TE to manage calls

and connections, certain RSVP message types sent by one UNI-C cause the same message

types to be delivered to the other UNI-C, and certain RSVP objects or parts of objects

within these messages are defined to have end-to-end significance. Providing client

authentication, integrity, and freshness guarantees for these message types and data items

is what is meant by “End-to-End Transport of UNI Client Authentication, Integrity, and

Data Plane Security Support Information.”

Figure 1: The OIF’s UNI and E-NNI Signaling Interfaces (from [E-NNI]).

The IETF has defined the RSVP INTEGRITY object [RFC2747], which provides a secure

checksum for messages between RSVP entities. The OIF has defined a security

encapsulation mechanism that can protect signaling and routing messages between two

UNI or between two E-NNI reference points [SecExt]. These security protocols protect

what is sent between a UNI-C and a UNI-N or between two E-NNIs but give UNI-C

entities no end-to-end way to verify which UNI-C is actually at the other end and what was

requested or confirmed at the other end. This mechanism provides such end-to-end UNI

 IA OIF-E2E-SEC-01.0

www.oiforum.com 5

assurances in an in-line, immediate way, before committing to allocate networking

resources.

In addition, when two UNI-C’s set up calls and connections, they may need to exchange

security setup information for their transport network elements’ data plane connections.

The details of how they secure data plane connections depend on the data plane technology

and are beyond the scope of OIF control plane protocols. This optional mechanism also

defines a sub-subobject to provide a single, authenticated way to exchange security setup

information for such data plane connections (see Section 5.1.9). Whereas other

mechanisms have been defined for user channels over specific transport technologies, this

IA defines a method based on the OIF control plane. Because this sub-subobject needs to

be delivered transparently and intact between UNI-C’s, support for this sub-subobject is

optional and depends on agreement with the network service operator. Note that this data

plane security, which is applied to user’s data (e.g., the payload in an Ethernet or

SONET/SDH frame), must not interfere with the need to access or modify transport layer

network information such as headers, trailers, or overhead along the data plane connection.

1.5 Relationship to Other Standards Bodies

One goal of the design in this IA is to simplify implementation by reusing algorithms and

data structures already defined for the OIF’s control plane. To that end, this IA reuses the

OIF’s UNI 2.0 signaling, the IETF’s NTP [RFC5905], and, for security, the following

work from the IETF:

 X.509 certificates as used in IKEv2 [RFC5996]

 Hash and URL of X.509 certificates as used in IKEv2

 SHA-1 and DSS as used in IKEv2

 OCSP as used in IKEv2

 Timestamps as used in syslog [RFC5424]

The main cryptographic methods (the SHA-1 hash function and the Digital Signature

Standard) were defined by NIST. The certificate format, X.509 [X.509], was defined by

the ITU-T.

1.6 Acknowledgements

Fred Gruman (Fujitsu), Jim Jones (Alcatel-Lucent), Monica Lazer (AT&T), Scott

McNown (DoD), Thierry Marcot (France Telecom), George Newsome (Ciena), Lyndon

Ong (Ciena), Evelyne Roch (Ciena), Jonathan Sadler (Tellabs), Stephen Shew (Ciena),

Vishnu Shukla (Verizon), Chuck Sannipoli (IP Infusion), and Rémi Theillaud (Marben

Products) provided helpful comments that led to improvements in this work.

1.7 How to Use this Implementation Agreement

This document defines an optional OIF UNI extension to support an end-to-end client

service for authenticating signaling operations and transparently transporting user-defined

supporting security information between UNI-C reference points.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 6

It uses a private RSVP object (OIF_VENDOR_PRIVATE_ EXTENSION_TYPE_3) with

the OIF’s Enterprise Number as defined in [PrivExt], and it defines a new subobject

(OIF_E2E_SECURITY) of this object. Implementing this service and subobject is

OPTIONAL, but, as described in [PrivExt], intermediate protocol controllers that do not

recognize this object and subobject pass them on unchanged, as long as all

policy-enforcing protocol controllers, according to local operators’ policies, allow this

object and subobject to pass. Support for this extension beyond the UNI-N (towards the

network) depends on the service operator’s policy and agreements with the client. As

required in Section 5, operators must have the capability to configure support for this

subobject, and the default must be set to “off” or unsupported.

1.8 Document Organization

This document is organized as follows:

 Section 2 defines the terminology and acronyms used.

 Section 3 discusses requirements and objectives.

 Section 4 contains background on how the signature mechanism works and how to use

it. It covers digital signatures, names, timestamps, certificates, distributing certificates,

and selecting what to sign and how to sign it.

 Section 5 defines the signature mechanism. Section 5.1 covers data structures; Section

5.2 lists error codes and describes error handling and logging; Section 5.3 lists

processing rules.

 Section 6 provides information on end-user policy, restart, and recovery.

 Section 7 lists OIF codepoints used by this mechanism.

 Section 8 discusses performance aspects: processing and communications.

 Section 9 addresses security considerations.

 Section 10 contains informative material on short digital signatures.

 Section 11 contains a summary, and Section 12 contains normative and informative

references.

2. Terminology and Acronyms

2.1 Keywords

When written in ALL CAPITALS, the key words “MUST”, “MUST NOT,”

“REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,”

“RECOMMENDED,” “MAY,” and “OPTIONAL” in this document are to be interpreted

as described in IETF RFC 2119 [RFC2119].

2.2 Terminology

In this implementation agreement, the following definition applies:

 IA OIF-E2E-SEC-01.0

www.oiforum.com 7

Signature Block: The bytes that are signed. See Figure 1.

2.3 Acronyms

The following acronyms or abbreviations are used in this implementation agreement:

ASON Automatically Switched Optical Network

CN Common Name

DSA Digital Signature Algorithm

DSS Digital Signature Standard

E-NNI External Network-Network Interface

GMPLS Generalized Multiprotocol Label Switching

I-NNI Internal Network-Network Interface

IA Implementation Agreement

IANA Internet Assigned Numbers Authority

IETF Internet Engineering Task Force

IPsec Internet Protocol Security

IKEv2 Internet Key Exchange version 2

ITU-T International Telecommunication Union—Telecommunication

Standardization Sector

IV Initialization Vector

LSP Label Switched Path

NAT Network Address Translation

NNI Network-Network Interface

NTP Network Time Protocol

OCSP On-line Certificate Status Protocol

OIF Optical Internetworking Forum

OSPF Open Shortest Path First

OSPFv2 Open Shortest Path First version 2

PEM Privacy Enhanced Mail

PGP Pretty Good Privacy

RFC Request for Comments

RSVP Resource Reservation Protocol

SD-ID Structured Data Identifier

SHA Secure Hash Algorithm

S/MIME Secure Multipurpose Internet Mail Extension

SPC Soft Permanent Connection

SSH Secure Shell

TE Traffic Engineering

 IA OIF-E2E-SEC-01.0

www.oiforum.com 8

TLS Transport Layer Security

TLV Type, Length, Value

TNA Transport Network Assigned (Name)

UNI User-Network Interface

UNI-C User-Network Interface—Client

UNI-N User-Network Interface—Network

URL Uniform Resource Locator

3. Objectives and Requirements

Because only certain items in UNI signaling messages have end-to-end significance,

providing end-to-end authentication requires a client first to identify or to replicate, second

to sign relevant parts of the original message, and third to pass this signature end to end. In

high-volume, low-revenue-per-connection switching applications (i.e., voice), where the

protocol designers and implementers are counting bits per message and calls per second,

such an idea entails huge overhead both in message size and processing requirements.

Optical switching, on the other hand, may be a lower-volume, higher-value-per-connection

service, and the tradeoffs may be different. With today’s processing speeds, allowing UNI

clients to sign and verify signaling messages (or parts of messages) to obtain end-to-end

assurance before allocating resources may be a viable security enhancement for UNI

clients.

This IA does not replace the need to implement security mechanisms for control plane

exchanges over UNI and E-NNI interfaces [SecExt]. It extends security coverage from a

single interface to end-to-end client interactions with respect to the following security

requirements [CarrierReq]:

 R269: All Control Plane protocols shall include optional and interoperable

security mechanisms (a) to authenticate entities exchanging information across an

interface; (b) to guarantee the integrity of the information exchanged across an

interface and to detect replay attacks; (c) to protect the confidentiality of

information that communicating entities may be required to keep secret from other

parties.

The end-to-end authentication and integrity mechanism defined in this IA works

across more than one interface. This end-to-end authentication and integrity

mechanism may help end clients to identify forged or improperly modified

signaling messages that occur during their exchanges.

 R270: These security mechanisms shall protect against passive eavesdropping and

active attacks against the optical network as well as unintentionally malfunctioning

control entities (for example, due to software or configuration errors).

End-to-end authentication and integrity for control plane messages can identify

certain unexpected end-to-end signaling behaviors and detect active attacks in

 IA OIF-E2E-SEC-01.0

www.oiforum.com 9

certain configurations not protected by other security mechanisms. (It does not

protect against passive eavesdropping.)

 R271: These security mechanisms shall be designed to prevent or limit the effect of

denial of service attacks.

End-to-end authentication and integrity mechanisms can help identify and stop

denial-of-service attacks against end clients.

 R272: These security mechanisms shall be designed so they can be extended to

incorporate or accommodate the particular or proprietary needs of individual

users and be kept up to date with advances in security technology.

This IA, as explained above for R269 and R270, supplements security across a

single interface and keeps the OIF’s security work in step with new end-to-end

security work on other protocols (e.g., BGP4). It may also be of particular interest

to end-users with high-assurance security requirements.

 R273: Tools and methods shall be included with these security mechanisms to

specify and configure them based on policy, operate them with minimal manual

intervention, and audit their correct operation.

This IA is consistent with this requirement. It includes support for policy and

logging.

 R274: To reduce implementation cost, improve manageability, enhance

interoperability, reduce the risk of errors, and provide compatibility with other

protocols, these security mechanisms should be based on a minimal,

well-understood, and widely used set of cryptographic primitives at the network or

transport layer and a comprehensive key management system that can be used with

all Control Plane protocols (e.g., signaling, routing, and discovery).

All of the cryptographic methods used in this IA are drawn from existing standards

that are widely used and occur already in existing OIF security IAs.

 R275: The security system shall provide a mechanism to specify and enforce a

security policy that states where and when security services must be applied.

This IA is consistent with this requirement.

Although this mechanism is defined entirely at the UNI endpoints, it does extend the OIF

UNI signaling model and add message overhead across the entire end-to-end signaling

network. This overhead is examined in greater detail in Section 8.

Two constraints on the design are (1) transparency to and minimal impact on nodes not

implementing this feature and (2) placement high enough in the protocol stack to survive

end to end.

One goal is to add end-to-end signatures to messages in a way that is transparent to entities

not knowing about signatures. This allows for partial deployment and ensures backward

compatibility. A second goal is to make this mechanism optional and ensure that it has little

 IA OIF-E2E-SEC-01.0

www.oiforum.com 10

to no impact on entities not supporting it. A third goal is to avoid translating messages with

signatures into messages without signatures or building tunnels or other communications

channels to hold signatures of messages. A fourth goal is to avoid introducing new

messages and to minimize message expansion. Protocol design principles dictate that the

best place to authenticate a protocol message is directly in the message itself. All of the

common examples—IPsec, TLS, SSH, and S/MIME—do this. It is, overall, more efficient

and more reliable. There are no additional messages and fewer things can go wrong. In the

case of end-to-end UNI authentication, two more reasons exist. In-line authentication

allows all parties to detect attacks that may improperly reserve or allocate costly resources

to be detected as quickly as possible, and carrying authentication information on other

channels may be technology dependent and require multiple solutions.

Signatures have to work end to end, so they need to be applied above the network layer,

where NAT and other effects may interfere with proper operation. Signatures need to be

applied to particular parts of the payload, but these parts or other parts of the payload still

may need to be modified by the signaling protocol. The data structures need to

accommodate these properties efficiently.

Security requirements for this mechanism include:

 Security policy enforcement at endpoints

 Message origin authentication

 End-to-end integrity for certain objects in a message

 Integrity for certain objects as they existed in the initial message while allowing for

legitimate changes to these objects

 Detection of insertion of objects not in the original message

 Replay detection

 Support for non-repudiation of origin

Other requirements include:

 Transparent end-to-end operation

 Small or no impact on entities not implementing this feature

 Minimal message size expansion

4. RSVP Signature Option

This section provides background information needed to understand the working of this

end-to-end UNI signature mechanism. Section 4.1 explains the operation of digital

signatures, and Section 4.2 covers how signatures are used with RSVP-TE. Section

4.3explains how timestamps are used for replay detection. Section 4.4 defines how names

and certificates work, and Section 4.5 covers how certificates can be installed where they

are needed. Section 4.6 explains how messages can be mapped back to names, even though

the names are not present in most messages. Finally, Section 4.7 lists the data items that

should be protected in each message and how they should be protected.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 11

4.1 Background on Digital Signatures

A digital signature is a string of bits, which an originator may add to a message to allow

anyone possessing the public verification key to check that the originator indeed generated

the message and that it has not been altered.

Digital signatures work by establishing for each party two keys, a signing key and a

verification key. The signing key must be kept secret by the signer. The verification key

can be distributed to all parties, but it must be protected against forgery or substitution.

That is, the verifier must be sure that it has not been tricked into using a verification key

belonging to an imposter. Of course, to be a secure signature scheme, there must be no way

for someone with just a verification key and samples of signed messages to calculate the

corresponding signing key or to produce forged signatures for plausible messages. For an

overview of digital signatures and diagrams illustrating how they work, see Section 3 of

[FIPS186-3]; for a thorough description of the cryptographic theory of digital signatures,

see [Katz].

The signatures described in this work follow the Digital Signature Algorithm (DSA)

specified by NIST. They are defined in Section 4 of [FIPS186-3] with L = 1024 and

N = 160, which results in signatures that are 320 bits (40 bytes) long. Signing and verifying

operations must be careful to ensure that all of the values chosen and computed satisfy the

randomness requirements and range checks in the specification.

To use these signatures, implementations have to generate a new value k for each signature.

Every value of k must be unique, unpredictable, and secret. However, it is possible to

pre-compute pairs of values k and k
1

 to make the on-line signing process more efficient.

Because of these requirements, implementations need to have a source of

cryptographically secure pseudo-random numbers. For cryptographic applications,

pseudo-random numbers need stronger unpredictability properties than merely satisfying

certain statistical tests. For more information on this topic, see [NIST800-90], [RFC4086],

[Koç09], [Gut98], or [KSF99].

Alternatively, given a signing key and a message to be signed, a way to generate such an

unpredictable, secret, pseudo-random value in a deterministic, message-dependent way is

described in [Pornin].

4.2 Overview of Signatures for the OIF UNI

Because UNI signaling messages are not delivered intact, end to end, it would not be useful

to apply a digital signature to an entire UNI signaling message. Therefore, end-to-end

authentication and integrity for the OIF UNI is defined by applying digital signatures to

certain data items in signaling messages that have end-to-end significance. A new

subobject is inserted into RSVP messages for end-to-end delivery between two UNI-C’s.

Because the OIF UNI model is not based on one UNI-C to UNI-C signaling session,

end-to-end delivery of this subobject depends on signaling interworking and support by the

network of multiple concatenated signaling sessions. This subobject may contain:

 IA OIF-E2E-SEC-01.0

www.oiforum.com 12

i. the RSVP signaling message type (Section 5.1.1)

ii. a list of copies of “original” objects in the message (Section 5.1.3); copies of these

objects as they existed at the source UNI are carried in the signature subobject, so

that the destination UNI can determine whether they changed and whether such

changes are appropriate

iii. a list of pointers to “immutable” objects in the message (Section 5.1.2); these

objects are signed but not duplicated, so the signature can be used to detect whether

all of these objects are the same at the receiver as they were at the sender

iv. lists of objects that did not appear in the message at the origin (Sections 5.1.4 and

5.1.5)

v. items needed to support data plane security, for example, key agreement

information, initialization vectors, or synchronization tokens (Section 5.1.9)

vi. a strictly increasing timestamp used to detect replays (Section 5.1.6)

vii. pointers to the certificate containing the signature verification key and other

certificates as needed (Section 5.1.7)

viii. requests and responses for certificate revocation information (Section 5.1.9)

ix. a signature (Section 5.1.8)

Figure 2: Structure of a Signature Block.

The only reason that the “immutable” construct exists is to save space in the message.

Everything signed could be signed as original and replicated, but if it is known that an item

 IA OIF-E2E-SEC-01.0

www.oiforum.com 13

needs to be delivered as originally sent, it can be listed as immutable and not duplicated. It

is important to note that the notion of “immutable” imposes no constraints on the network.

There is never any implication that what the signature subobject asserts should alter the

network behavior of the network.

Parts (i) through (viii) of this subobject together with the listed immutable objects make up

what is signed. The actual data structure containing the bits that are signed is called a

“signature block,” as shown in Figure 2. The signature block, itself, is not transmitted

intact. It is constructed by the sender and receiver at each end to generate and verify the

signature, respectively.

4.3 Timestamps and Replay Detection

Replays of old messages are a serious threat to integrity. They are usually prevented by

including counters, one-time values (called nonces), or timestamps in the authenticated

portion of a message, or, in this case, in a signature block. With this end-to-end UNI

mechanism, timestamps are used. They are written in ASCII text as specified for syslog

[RFC5424] with a granularity of one microsecond, which is sufficient for any conceivable

signaling application. These timestamps SHOULD always be used.

Senders MUST ensure that they use strictly increasing timestamps for each

source-destination pair. Therefore, strict time synchronization is not needed, although

keeping accurate time is useful for other purposes such as audit logging. Receivers merely

need to keep track of the most recently received timestamp from each signer and check that

each newer one is later. Note that the requirement to send increasing timestamps holds,

even though the Network Time Protocol (NTP) or other mechanisms do not guarantee

against adjusting clocks backwards.

4.4 Names and Certificates

Knowing who signed a message (or a signature block in this case) is an essential part of

using digital signatures. Therefore, a certain amount of formality is needed to ensure that

this part of the system cannot be spoofed.

First, names must be sufficiently unambiguous, so some well-defined namespace and

syntactical rules such as email addresses, URIs, or DNS names are often chosen. The

signatures defined here use the OIF UNI’s TNA names (see [UNI2.0]). More exactly, a

TNA name can have any of three formats with different lengths (32 bits, 128 bits, or

160 bits), so a TNA name is specified by the pair consisting of its <format, value>.

Second, certificates are used to make sure that verifiers map names to keys correctly. They

allow a UNI client to authenticate its TNA name with its signature. A certificate contains

(1) a UNI client’s TNA name; (2) the UNI client’s signature verification key; and (3)

another digital signature certifying the binding between the two. The signature verifier

relies on the party that signed the certificate, called a Certification Authority or CA, to have

verified the relationship between TNA name and public key correctly.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 14

Certificates have a formal structure specified by the ITU-T’s Recommendation X.509,

profiled by the IETF in RFC 5280, and used by the IETF in IKEv2 (RFC 5996).

Certificates are written in Abstract Syntax Notation One (ASN.1).

Carriers may issue these certificates when they assign TNA names. On the other hand, in

the absence of carrier-supported certificates that serve to assign TNA names, parties using

this mechanism need to have their own way for certifying the TNA names they will use.

They may use, for example, an external CA trusted by both or a CA internal to some

organization to which they both belong.

If the CA signing a certificate is not known to the relying party, then it still may be possible

to use a chain of certificates to establish trust. Many schemes based on X.509, therefore,

arrange certificates in a hierarchy and widely distribute the certificate belonging to the top

(called “root CA”) of the hierarchy.

In addition to containing a signature from a trusted party, certificates must also be valid in

other respects. They contain a serial number, the issuing CA’s name, identifiers for the

cryptographic algorithms used with the verification key and in the certificate’s signature

(which may be different), initiation and expiration dates, and possibly restrictions on how

they may be used. CAs may also revoke certificates by publishing Certificate Revocation

Lists.

The UNI client’s TNA name is contained in the Subject Alternative Name extension of a

certificate. The RECOMMENDED way to include TNA names in certificates is to ignore

the CN and include the TNA sub-types plus names in one or more subjAltName extensions

(see [RFC5280], Section 4.2.1.6). Thus, a single certificate may be valid for multiple TNA

names. (Specifying TNA names with wildcards is for future study.)

Some connections may be initiated or terminated through management system control

rather than a UNI client, i.e., soft permanent connections (SPCs). Support for transport of

UNI client end-to-end authentication and security information for SPC connections

requires additional functionality at the UNI-N and is for future study.Because the verifier

relies on the issuer for the binding between TNA name and verification key, secure

processes for issuing and revoking certificates may be required. These processes may

require presenting appropriate credentials, performing authorization checks,

demonstrating knowledge of the signing key, and taking delivery of the certificate in

secure ways specified by a CA.

4.5 Distributing Certificates

One important design criterion for this end-to-end authentication mechanism is to

minimize message expansion. This is why, for example, immutable objects are not

replicated but merely listed. A signature is unavoidable, but certificates, which contain

keys, names, signatures, and other items, are much longer than signatures. Therefore, two

ways are provided to avoid having to encode actual certificates in signaling messages.

First, if there is no reason to believe that the receiver already has a certificate needed to

verify a signature, then a URL telling the receiver where to find the certificate and a hash

 IA OIF-E2E-SEC-01.0

www.oiforum.com 15

(i.e., a cryptographically collision and preimage resistant checksum) of the certificate are

signed and sent. The hash plus URL should be much shorter than the certificate.

Second, the protocol provides a way to point to a certificate that was previously made

available to the other party. A certificate previously delivered with the hash-and-URL

method should be remembered, so that it does not need to be sent, looked up, and verified

again.

Also, certificates can be pre-installed, so that they never need to be communicated in

signaling messages or by URL lookup. Implementers SHOULD provide tools to do this.

Receivers keep an indexed array of certificates associated with a given signer, so the index

number suffices to specify which certificate was used. This way, more than one certificate

can be associated with each other signing party, so expiring and updating certificates cause

no interruption in service.

4.6 Mapping from Names to CALL_IDs

To be able to verify these signatures, one has to know who (i.e., what TNA name) is on the

other end of a signaling exchange. However, this information is not explicitly provided in

every signaling message. To understand how to do this, the signaling messages need to be

examined in more detail. UNI signaling provides three basic capabilities: (1) call and

connection setup; (2) call and connection modification; and (3) connection release. (The

release of the last remaining connection terminates a call.)

The RSVP-TE message types defined in the OIF UNI and used in messages with

end-to-end significance are Path, Resv, ResvConf, PathErr, and PathTear. Message flows

for call and connection setup, modification, and release need to be considered both when

they successfully complete and when they fail or result in various error conditions. The

following list shows the signaling action, RSVP-TE messages used to perform each

signaling action, and directionality of the messages (where > means source to destination

UNI-C and < means destination to source UNI-C):

 Call (or connection) setup: (Path, >), (Resv, <), and (ResvConf, >)

 Call (or connection) setup rejected by destination UNI-C: (Path, >), (PathErr , <)

 Call modification, adding a connection: (Path, >), (Resv, <), and (ResvConf, >)

 Call modification attempt, additional connection rejected by destination UNI-C:

(Path, >), (PathErr, <)

 Successful connection modification, modifying service parameters: Path (P, >),

Resv (R, <), (ResvConf , >), (Path, >), (PathErr, <), (Resv, <), (ResvConf, >)

 Unsuccessful connection modification, failure to increase or decrease bandwidth at

destination UNI-C: (Path, >), (PathErr, <)

 Source UNI-C initiated connection release: (Path, >), (PathErr, <)

 Destination UNI-C initiated connection release: (Resv, <), (PathTear, >)

 IA OIF-E2E-SEC-01.0

www.oiforum.com 16

The Source and Destination TNA names are present only in the Path message. The initial

exchange of Path and Resv messages establishes a CALL_ID. The CALL_ID is then

present in every message except the ResvConf. Therefore, to be able to identify the TNA

names on each side of a message, it suffices to be able to map CALL_IDs back to TNA

names and to handle the ResvConf message.

A Local Connection Identifier is used to identify a connection uniquely at a UNI. With the

OIF’s RSVP-TE UNI signaling, the UNI_IPv4_SESSION object is included in all five

messages with end-to-end significance and serves as a unique Local Connection Identifier

that remains the same for the lifetime of the connection, even when connection

modification occurs. Therefore, the following process can be used:

1. Source Destination, Path: The Source fills in the Source and Destination TNA

names and sets CALL_ID = 0. The Source signs and sends the message. It also

remembers the TNA names and the UNI_IPv4_SESSION object it constructed, so

that it can identify the reply.

2. The network fills in the CALL_ID and delivers a Path message with the two TNA

names and signature to the Destination. The Destination verifies the signature and

associates this CALL_ID with the Source and Destination TNA names for the rest

of the call. Whenever the Destination requests a ResvConf message, it remembers

how to associate the UNI_IPv4_SESSION object in the expected ResvConf

message with the corresponding CALL_ID. Thus, the Destination can map every

message with end-to-end significance to the proper pair of TNA names for the rest

of the call.

3. Destination -> Source, Resv or PathErr: The Destination sends a signed Resv or

PathErr with the CALL_ID. The Source receives a Resv or PathErr with

CALL_ID, UNI_IPv4_SESSION, and signature. It uses the UNI_IPv4_SESSION

object to check that the signature belongs to the correct TNA name, verifies the

signature, and associates this CALL_ID with the TNA name it remembered. If the

Source ever requests a ResvConf message, it uses the remembered

UNI_IPv4_SESSION object, as described above for the Destination. Thus, the

Source can map every message with end-to-end significance to the proper pair of

TNA names for the rest of the call.

4.7 What to Sign: Mutable, Immutable, and Excluded Objects

This section enumerates the UNI data items that may be covered by end-to-end security.

Table 7 of [UNI2.0-RSVP] summarizes the UNI message types and data items with

end-to-end significance. Implementers should refer to this list as well as the information

here for guidance on what to allow in signatures. Users MUST be allowed to configure a

security policy at a UNI that states, for each other UNI, which items in which messages

need to be signed with which keys. All of the signed items MAY be signed as original, but

using the immutable option reduces message expansion. When using the immutable option,

the signature verification will fail if the object is not delivered as signed. Therefore, if there

is uncertainty about, for example, ordering of subobjects, canonicalization, or values of

padding or reserved fields, signing as original may be necessary.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 17

Five RSVP-TE message types are used in the OIF UNI but have no end-to-end

significance, so they never occur with this signature mechanism: Hello, Ack, Srefresh,

Bundle, and Notify.

The other five RSVP-TE message types do contain objects with end-to-end significance

that may be signed:

1. Path

2. Resv

3. ResvConf

4. PathErr

5. PathTear

It is important always to include the RSVP message type in the signature to prevent attacks

in which one signed message is substituted for another of a different type. To avoid

extraneous message expansion, data items in the message with end-to-end significance

should only be signed when their security is needed to accomplish a well-defined purpose.

Certain objects, however, are needed in the signature to allow the destination to identify the

source and to find the correct signature verification key. Finally, certain objects or parts of

objects are not supposed to be delivered end to end, and extra original copies of these

objects or subobjects, therefore, should not be included in what is signed.

The RSVP-TE objects that have end-to-end significance in these messages are listed in

Table 7 of [UNI2.0-RSVP] and repeated here with short descriptions:

 ADMIN_STATUS in a Path or Resv message contains flags to indicate teardown

of a connection.

 CALL_ID is filled in by the network for the first Path message of a call, and it is

subsequently used as a call identifier in Path, Resv, PathErr and PathTear

messages.

 The FLOWSPEC object for SONET/SDH, G.709, or ETHERNET returned in a

Resv or ResvConf message contains the technology-dependent traffic parameters

reserved for a connection.

 GENERALIZED_LABEL_REQUEST must be in a Path message. It asks for a

label binding and includes an Encoding Type (e.g., SONET/SDH), Switching Type

(e.g., TDM) and Generalized Payload Identifier (i.e., packet type, e.g., IPv4).

 GENERALIZED_ UNI_ATTRIBUTES must be in a Path message. It contains the

SOURCE_TNA and DESTINATION_TNA. These are the identifiers that the two

UNI-C’s use to authenticate each other. However, they are not present in in other

message types. All other items in this objects do not have end-to-end significance.

 IPv4_ERROR_SPEC in a ResvConf or PathErr message contains codes indicating

specific errors.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 18

 IF_ID ERROR_SPEC in a ResvConf or PathErr message contains codes indicating

errors pertaining to specific interfaces.

 The SENDER_TSPEC object for SONET/SDH, G.709, or ETHERNET in a Path

or PathErr message contains technology-dependent traffic parameters requested for

a connection.

 STYLE in the Resv, ResvConf, and PathTear messages indicates whether or not

connection modification is supported. It is always set to Shared Explicit (SE) or

Fixed Filter (FF), respectively.

 SESSION_ATTRIBUTE is like STYLE, except it occurs in the Path message.

A Path message provides the Tspec to describe the traffic parameters for the desired

connection, and a Resv message provides the Flowspec to describe the reservation the

connection will use. These objects have different contents for the three supported

technology groups, SONET/SDH, OTN, and Ethernet.

4.7.1 Path Message

In a Path message, the objects with end-to-end significance are:

1. ADMIN_STATUS

This object should be signed. It may be signed as immutable.

2. CALL_ID

For the first Path message of a call, this object is sent as zero and filled in before

being delivered to the destination UNI-C. In this case it should be protected as

original. In all other cases, it needs to be signed to let the Destination determine the

who the Source is and may be signed as immuatable.

3. GENERALIZED_LABEL_REQUEST

This object contains a LSP Encoding Type (i.e., Switching Type) and G-PID. It

may be signed as immutable.

4. GENERALIZED_ UNI_ATTRIBUTES

This object contains SOURCE _TNA, DESTINATION_TNA, DIVERSITY, and

some number of occurrences of EGRESS_LABEL or SPC_LABEL and

SERVICE_LEVEL. The Source UNI needs to sign this object as Original after

removing all subobjects except the SOURCE _TNA and DESTINATION_TNA

and reducing the length accordingly. The Desination UNI uses the SOURCE_TNA

to pick a signature cerification key. It should check that the SOURCE _TNA in the

outer message matches what was signed and that the DESTINATION_TNA

matches its own identity.

5. SENDER_TSPEC for SONET/SDH, G.709, or ETHERNET

This object should be signed. It may be signed as immutable.

6. SESSION_ATTRIBUTE

 IA OIF-E2E-SEC-01.0

www.oiforum.com 19

This object should be signed. It may be signed as immutable.

4.7.2 Resv Message

In the Resv message, the objects with end-to-end significance are:

1. ADMIN_STATUS

This object contains flags to distinguish setup or modification from release of a

connection. It should be signed. It may be signed as immutable.

2. CALL_ID

This object needs to be signed and may be signed as immutable. It allows the

Destination to determine who the Source is.

3. FLOWSPEC

This object should be signed. It may be signed as immutable.

4. STYLE

This object should be signed. It may be signed as immutable.

4.7.3 ResvConf Message

In the ResvConf message, the objects with end-to-end significance are:

1. FLOWSPEC

This object should be signed. It may be signed as immutable.

2. IPv4_ERROR_SPEC

This object should be signed as original.

3. IF_ID ERROR_SPEC

This object should be signed as original.

4. STYLE

This object should be signed. It may be signed as immutable.

4.7.4 PathErr Message

In the PathErr message, the objects with end-to-end significance are:

1. CALL_ID

This object needs to be signed to allow the Destination to determine who the Source

is. It may be signed as immutable.

2. IPv4_ERROR_SPEC

This object should be signed as original.

3. IF_ID ERROR_SPEC

This object should be signed as original.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 20

4. SENDER_TSPEC for SONET/SDH, G.709, or ETHERNET

This object should be signed. It may be signed as immutable.

4.7.5 PathTear Message

In the PathTear message, the objects with end-to-end significance are:

1. CALL_ID

This object needs to be signed to allow the Destination to determine who the Source

is. It may be signed as immutable.

2. STYLE

This object should be signed. It may be signed as immutable.

5. Data Structures, Error Handling, Logging, and Processing
Rules

This section describes signatures that can be added to data items with end-to-end

significance in UNI messages. It covers the structure of these signatures, rules for

processing them, errors that can occur, and backward compatibility considerations.

This signature mechanism works at the RSVP application layer
1
 of the OIF UNI. It is not

defined for other UNI interfaces or protocols. It does not define any new RSVP message

types to contain signatures, though it does extend the OIF UNI signaling model by it

defining an end-to-end transport capability for user-defined information. It does use a

private RSVP object OIF_VENDOR_PRIVATE_ EXTENSION_TYPE_3 defined in

[PrivExt] and define an RSVP subobject OIF_E2E_SECURITY, which has its own Class

Number and C-Type. This object and subobject are defined according to RSVP’s rules for

unknown and private-use Class Numbers and the OIF’s conventions for using such private

extensions [PrivExt]. Because of these rules:

1. This service and mechanism are OPTIONAL to implement and optional to use.

UNI-N and E-NNI implementations of this mechanism MUST be capable of

configuring how to treat the E2E_UNI_SECURITY based on an enforceable

network operator’s policy. Such implementations MUST be configured, by default,

so that they do not allow the E2E_UNI_SECURITY subobject to be used, so that,

to use this mechanism with such implementations, it must be specifically enabled.

2. If this subobject arrives at UNI-N, E-NNI 1.0, or E-NNI 2.0 reference points as

intermediate RSVP-TE-based protocol controllers on the path (i.e., UNI-C source

to UNI-N destination), they should ignore it and forward it. As a matter of network

operator’s policy, however, UNI-N and E-NNI reference points may wish to

1
 Note that there is nothing essential about RSVP for the design of an end-to-end UNI signature mechanism.

That is, all of the components could be defined as abstract objects and then instantiated in RSVP or other

protocols. This was not done, because RSVP is the only protocol used in current OIF signaling. This type of

generalization is left for future study if the need arises.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 21

examine all message contents and apply whatever network operator’s policy or

misuse detection and responses are appropriate.

3. To work properly, this object and subobject need to be transported by both external

and internal NNIs. (There is no requirement that all of the signaling data items

remain intact or in the same format throughout internal processing.) Where this is

not possible or not allowed, this mechanism will not work. As such, support for this

mechanism is optional.

4. A UNI endpoint receiving this object and subobject and not recognizing them

should, of course, ignore them. However, if it replies without a signature and policy

requires one, it may then get an unexpected ResvErr message or Connection

Release Request instead of a Connection Setup Confirm. The signaling operation

should fail, and management plane intervention should be triggered.

The OIF_VENDOR_PRIVATE_ EXTENSION_TYPE_3 object contains not more than

one subobject named OIF_E2E_SECURITY. It is shown for convenience below, although

the authoritative definition for OIF_VENDOR_PRIVATE_ EXTENSION_TYPE_3 is in

[PrivExt]:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Length |Class-Num (252)| C-Type (1) |

 +-+

 | Enterprise Number (26041) |

 +-+

 | OIF_E2E_SECURITY subobject |

 +-+

The OIF_E2E_SECURITY subobject contains:

a. A subobject header (32 bits) with Length, Class-Num = 1, and C-Type = 1

b. A list of sub-subobjects containing the information listed in Section 4.1

Note: An alternative authentication mechanism, for future consideration, is to use a shared

key and message authentication code instead of a signature. Using a signature has two

distinct properties that would be lost in this case:

1. Only one party, the originating UNI-C, can create the signature

2. Any party, now or later, can verify the signature

End of Note.

To facilitate implementation, the algorithms and data structures have been chosen to reuse

constructions in:

 UNI 2.0 [UNI2.0-RSVP]

 The OIF’s rules for RSVP Private Extensions [PrivExt]

 IA OIF-E2E-SEC-01.0

www.oiforum.com 22

 IKEv2 [RFC5996]

 Syslog [RFC5424]

5.1 Structure of the OIF_E2E_SECURITY Subobject

This document defines one new RSVP subobject, OIF_E2E_SECURITY, of the

OIF_VENDOR_PRIVATE_ EXTENSION_TYPE_3 object [PrivExt]:
 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | 0 | Length | Class-Num (1) | C-Type (1) |

 +-+

 | |

 // List of sub-subobjects //

 | |

 +-+

The OIF_E2E_SECURITY subobject MUST NOT have Length (in the subobject header,

above) greater than 256. The sub-subobjects all have the following format:
 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | 0 | Length | Value |

 +-+

 | |

 // Value //

 | |

 +-+

Length (in each sub-subobject header) contains the total length of the sub-subobject in

bytes. It is an unsigned number and always a multiple of four.

The following sub-subobjects are defined. They SHOULD be included in the order listed

here, but they MUST be accepted in any order. Fields labeled RESERVED SHOULD be

set to all zeroes and MUST be ignored.

5.1.1 Message Type

This sub-subobject contains the Message Type in the original Common Header. It MUST

be present and MUST NOT occur more than once. Length MUST be 4.
 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |Type(1)| 0 | Length (4) | RESERVED | Message Type |

 +-+

5.1.2 Immutable

This sub-subobject lists objects in the original message that must not change. It MUST

occur zero or one time. It lists C-Num and C-Type pairs for which the outer RSVP message

contains exactly one object. It indicates that this object is delivered unchanged. To

compute and verify the signature, the corresponding objects are appended in the order

listed to the signature block. If the C-Num and C-Type pair refers to the

 IA OIF-E2E-SEC-01.0

www.oiforum.com 23

OIF_VENDOR_PRIVATE_ EXTENSION_TYPE_3 object specified in [PrivExt], then

the signature block is formed by removing the OIF_E2E_SECURITY subobject from this

object and reducing its length accordingly.

Note 1: Any of the unique objects defined in [PrivExt] MAY be listed as immutable,

subject to the adjustment of the OIF_VENDOR_PRIVATE_ EXTENSION_TYPE_3

object described here.

Note 2: No provision is included for listing any subobjects as immutable, including

subobjects of the objects defined in [PrivExt]. If a need for such capability arises in future

versions of the OIF UNI, extensions to this protocol to handle such cases can be

considered.
 0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |Type(2)| 0 | Length | C-Num_1 | C-Type_1 |

 +-+

 | C-Num_2 | C-Type_2 | C-Num_3 | C-Type_3 |

 +-+

 | |

 ~ ~

 | |

 +-+

 | C-Num_i | C-Type_i | 0 | 0 |

 +-+

Length MUST be a multiple of 4. If one pair is listed, Length = 4; if two or three pairs are

listed, Length = 8, and so on. If an even number of pairs is listed, the last two bytes are

encoded as zeros.

5.1.3 Original

This sub-subobject replicates an object in the original message that may change. It MAY

occur zero or more times.

Length is the length of the sub-subobject, a multiple of 4. This sub-subobject should be

used only when an object may be changed, but its original value is important, for example,

to verify that a null CALL_ID was filled in. Value is any complete object (i.e., a top-level

object, neither a subobject nor a sub-TLV of a subobject) in the original message, zero

padded to a multiple of four octets.
 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |Type(3)| 0 | Length | RESERVED |

 +-+

 | |

 // Value //

 | |

 +-+

 IA OIF-E2E-SEC-01.0

www.oiforum.com 24

Note 1: If the original value of the OIF_VENDOR_PRIVATE_ EXTENSION_TYPE_3 is

included, then implementations MUST remove the OIF_E2E_SECURITY subobject and

adjust the length of the object accordingly.

Note 2: If the signed original object contains one or more subobjects that will not be

delivered to the destination UNI (e.g., because of processing rules or policy), then these

subobjects MAY be removed from the signed copy of the original object. In this case, the

size of the signed copy of the original object MUST be adjusted accordingly.

Note 3: No direct provision exists to include the original values of subobjects. If a need for

such capability arises in future versions of the OIF UNI, extensions to this protocol to

handle such cases can be considered.

5.1.4 C-Nums_Not_Present

This sub-subobject asserts that no object in the outer RSVP message had any of the

C-Nums listed at the Source UNI. It MUST occur zero or one time.

Length MUST be a multiple of 4. For example, if one or two C-Nums are listed, Length =

4, if three through six are listed, Length = 8, and so forth. Unused entries in the last word

are coded as 0.
 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |Type(4)| 0 | Length | C-Num_1 | C-Num_2 |

 +-+

 | |

 ~ ~

 | |

 +-+

 | C-Num_i | C-Num_i+1 | ... | 0 |

 +-+

Note 1: C-Num values should be listed only if they are important to identify as not present

at the Source UNI as a matter of policy.

Note 2: No provision exists for identifying particular subobjects of an object as not present

at the Source UNI.

5.1.5 C-Nums_and_C-Types_Not_Present

This sub-subobject lists pairs of C-Num and C-Type values that it asserts did not occur for

any object in the outer RSVP message at the Source UNI. It MUST occur zero or one time.

Length MUST be a multiple of 4. If one pair is listed, Length = 4; if two or three pairs are

listed, Length = 8, and so on. If an even number of pairs is listed, the last two bytes are

encoded as zeros.

Note 1: Pairs of C-Num and C-Type values should be listed only if they are important to

identify as not present at the Source UNI as a matter of policy.

Note 2: No provision exists for identifying particular subobjects of an object as not present

at the Source UNI.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 25

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |Type(5)| 0 | Length | C-Num_1 | C-Type_1 |

 +-+

 | C-Num_2 | C-Type_2 | C-Num_3 | C-Type_3 |

 +-+

 | |

 ~ ~

 | |

 +-+

 | C-Num_i | C-Type_i | 0 | 0 |

 +-+

5.1.6 Timestamp

This sub-subobject contains the time at which the message is sent. It is used to detect stale

or replayed messages. It SHOULD be present and MUST NOT occur more than once.

Implementations MUST verify the Timestamp sub-subobject when it is received.

One T-Type is defined for Timestamp, T-Type = 1. In this case, Time MUST be formatted

as described in Section 6.2.3 of RFC 5424, The Syslog Protocol, [RFC5424], and padded

with zeros as needed for 32-bit alignment. Length is 4 plus the number of bytes in the

Time, excluding padding.
 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |Type(6)| 0 | Length | RESERVED | T-Type (1) |

 +-+

 | |

 ~ Time ~

 | |

 +-+

Implementations using the T-Type =1 TIMESTAMP sub-subobject MUST send a

strictly increasing sequence of timestamps to each distinct receiver. The T-Type = 1

Timestamp sub-subobject has a maximum resolution of one microsecond, so

implementations SHOULD have an accurate clock and SHOULD use the greatest

precision available up to this limit. If another source of accurate time is not available,

the Network Time Protocol (NTP) [RFC5905] is RECOMMENDED.

5.1.7 Signature

This sub-subobject contains the signature on the locally generated signature block. It

MUST be present exactly once. S-Type corresponds to the IKEv2 Authentication Method

(see [IANA-IKEv2]). S-Type = 3 (DSS with SHA-1) MUST be implemented.

A signature block is formed by starting with the OIF_E2E_SECURITY subobject, zeroing

the Value field of this sub-subobject, and appending the immutable objects (starting with

the Length, C-Num, and C-Type of each) to the OIF_E2E_SECURITY subobject in the

 IA OIF-E2E-SEC-01.0

www.oiforum.com 26

order listed in the Immutable sub-subobject. Then, the signature is computed over the

signature block and inserted into the Value field.
 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |Type(7)| 0 | Length | RESERVED | S-Type |

 +-+

 | |

 // Value //

 | |

 +-+

5.1.8 Cert_Encoding

This sub-subobject points to a certificate used for verifying the signature. It MUST occur at

least once and MAY occur more than once. The first occurrence directs the verifier to the

public key (i.e., the certificate encoding the public key) needed to verify the signature.

Subsequent occurrences may be included to support this key (e.g., certificate chains).

If the C (cache) flag is 1, the receiver SHOULD store the sending UNI’s TNA name (i.e.,

TNA name sub-type and value), the CE-Type, Index, and resulting certificate for future

use. If the C flag is 0, the Length MUST be 4, the Value is omitted, and the triple <sending

TNA name, CE-Type, Index> is used to locate the appropriate certificate. (The Index field

provides ways for senders to avoid sending certificate pointers and to change certificates or

for multiple senders to use the same TNA name with different certificates.)

If the sender sets the C flag to 1 and receives an error-free response, the sender SHOULD

subsequently use the same CE-Type and Index and set the C flag to 0 when using this

certificate with this receiver.
 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |Type(8)| 0 | Length |C| CE-Type | Index |

 +-+

 | |

 // Value //

 | |

 +-+

The following value for CE-Type is specified:

CE-Type = 1 The Value field contains an IKEv2 Certificate Payload as defined in Section

3.6 of [RFC5996] and beginning with a Cert Encoding byte. The

hash-and-URL certificate (Cert Encoding = 12) MUST be implemented.

Notes to implementers:

 The TNA name may not actually be present in the message. Implementations need

to keep a table of active CALL_IDs (i.e., call identifiers [RFC3474]) and their

associated TNA names along with their sub-types to perform this operation.

Implementations also need to include the local connection information (i.e., the

UNI_IPv4_SESSION object) in this table.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 27

 Implementations may provide utilities apart from the signaling protocol to help

users populate and maintain certificate caches.

 If the C flag is 0 and the certificate is not available, an error has occurred. If

certificates are not being sent but are managed out of band, implementations MAY

try to obtain the certificate by other means before returning an error. In any case,

implementations MAY return the error indication

OIF_E2E_SECURITY_NO_KEY. Local policy determines whether the

Path_State_Removed flag is set.

If the Value field points the receiver to a certificate that must be retrieved, then the

certificate itself SHOULD be stored to avoid repeated lookups.

5.1.9 Security_Credentials

This sub-subobject contains additional security information. It MAY occur zero or more

times.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |Type(9)| 0 | Length | Flags | SC-Type |

 +-+

 | |

 // Value //

 | |

 +-+

The following values are defined for SC-Type:

 1 OCSP

A Flags value of 1 indicates a request for OCSPResponse data in any signed

replies. Otherwise, Flags MUST be 0. The Value, if present, contains a

DER-encoded OCSPResponse as defined in RFC 2560 [RFC2560]. This

sub-subobject MUST NOT occur more than once with a SC-Type 1 and

Flags value of 1.

 2 IV

The Value specifies one or more initialization vectors needed for securing

end-to-end data (e.g., Ethernet or SONET/SDH payload data) in the data

plane.

 3 Synch

The Value specifies synchronization information needed for securing

end-to-end data (e.g., Ethernet or SONET/SDH payload data) in the data

plane.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 28

 4 KA

The Value specifies key agreement material needed for securing end-to-end

data (e.g., Ethernet or SONET/SDH payload data) in the data plane.

5.2 Error Codes and Error Logging

To configure this signature mechanism for the OIF UNI, users need to carry out a sequence

of processes:

1. Ensure that their service provider allows the use of this mechanism

2. Generate signing keys and obtain a certificates for the corresponding verification

keys

3. Distribute their certificates to other UNI-C’s that will need them

4. Set up security policy, which includes deciding which incoming and outgoing

messages will be signed and how

5. Verify which objects will be protected as original or immutable, and make sure the

resulting message lengths will be acceptable

6. Verify that suitable signaling channel throughput and performance will be available

7. Set up logging for security messages

Implementers should provide tools to carry out these operations and check that they are

done completely and consistently. If these processes are carried out interactively, a user

interface is needed, and various warnings or errors need to be presented, explained, and

addressed. If these processes are carried out automatically, then warning or error

conditions should be logged with the appropriate severity needed to generate the necessary

alarms. In either case, how these processes work and how these errors are presented and

handled are left to implementers. They do not involve any protocol operations or

interoperability considerations. Considering common management interfaces to such

functions is a matter for future study.

This IA focuses on the error conditions that occur when the OIF_E2E_SECURITY

subobject is actually sent, received, and processed, or when it is expected but not received.

Each step in the receiver’s processing rules is associated with an identifiable error

condition, and this IA explains how to record and respond to each of these conditions.

Especially because this IA uses protocols to define a security mechanism, the mechanism

defined here needs to balance, on the one hand, providing enough tools to debug and

diagnose the mechanism against, on the other hand, revealing too much information in

response to hostile probes.

These errors SHOULD be recorded in a log when they are generated or received. They

provide specific information as to what has gone wrong. Because these errors may result

from attacks on the protocol and sending specific error messages to an attacker may be

undesirable, implementers SHOULD provide users with a way to specify in their security

policies how errors are handled.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 29

The strictest approach is to provide the attacker with no information at all, that is, do not

even reply. Sending OIF_E2E_SECURITY_UNSPECIFIED_ERROR message in all

cases is a more forgiving approach. At the other extreme, one could simply record errors

and continue processing, which might be suitable for experimenting with the security

mechanism. One approach is to define four levels for error handling, from strictest to most

lenient:

1. Silently discard the message. This provides an attacker with no indication as to

what has happened.

2. Send a generic error reply (OIF_E2E_SECURITY_UNSPECIFIED_ERROR).

This provides an attacker with minimal information.

3. Send a specific error reply. This may provide an attacker with specific

information.

4. Note the error and ignore it; accept the message and continue processing as

though the message were valid. This may allow an attacker to forge or modify

messages.

The user-defined error message as defined in [RFC5284] is used according to the rules in

[PrivExt] when sending error replies resulting from using the OIF_E2E_SECURITY

object. To specify a user-defined error message, the standard ERROR_SPEC object (Class

= 6) is sent with the error code 33 (User Error Spec) and error value 0. The

USER_ERROR_SPEC object (Class=194, C-Type=1) MUST be sent when the

ERROR_SPEC error code is set to 33. The fields of the USER_ERROR_SPEC object are

set as follows:

 Enterprise Number = 26041 (i.e., OIF)

 Sub Org = 1

 Err Desc Len = 0 (no error description)

 User Error Value as defined below

 Err Desc = Null (not present)

 User Defined Subobjects (not present)

As defined in Section 9.1 of [UNI2.0-RSVP], this object MAY be included in a PathErr

(Section 9.1.4) or ResvErr (Section 9.1.8) message, as appropriate.

Notes to implementers:

 Implementations MAY use the OIF_E2E_SECURITY subobject to sign these

ERROR_SPEC and USER_ERROR_SPEC objects (as well as other items as

appropriate) in these error replies. The ERROR_SPEC object and the

USER_ERROR_SPEC object SHOULD be signed as Immutable.

 Implementations MUST NOT reply to these error messages with another error

message.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 30

 Implementations using this end-to-end authentication mechanism and receiving an

unauthenticated error message SHOULD anticipate that the error message may be a

denial of service attack and allow time for a legitimate response before acting on

the reported error.

Seven User Error Values are defined and used as follows:

 OIF_E2E_SECURITY_REQUIRED, User Error Value = 1

Policy requires an OIF_E2E_SECURITY subobject for this message, but none was

received, or policy requires that certain objects in the message be signed but they

were not.

If generators of this error message use logging [LogAud], they SHOULD log this

error message with:

 SD-ID E2E_SEC@26041

 SEVERITY 3 (Error)

 SD parameters TYPE=“<rsvp message type>”

 ERROR=“SECURITY_REQUIRED”, DIR=“T”, and also the CALL_ID

and TNA names along with their sub-types for both parties as appropriate

If receivers of this error message use logging [LogAud], they SHOULD log this

error message with:

 SD-ID E2E_SEC@26041

 SEVERITY 3 (Error)

 SD parameters TYPE=“<rsvp message type>”,

ERROR=“SECURITY_REQUIRED”, DIR=“R”, and also the CALL_ID

and TNA names along with their sub-types for both parties as appropriate

 OIF_E2E_SECURITY_NO_KEY, User Error Value = 2

This error message MAY be sent if a key to verify the signature cannot be obtained.

If generators of this error message use logging [LogAud], they SHOULD log this

error message with:

 SD-ID E2E_SEC@26041

 SEVERITY 3 (Error)

 SD parameters TYPE=“<rsvp message type>”, ERROR=“NO_KEY”,

DIR=“T”, and also the CALL_ID and TNA names along with their

sub-types for both parties as appropriate

If receivers of this error message use logging [LogAud], they SHOULD log this

error message with:

 IA OIF-E2E-SEC-01.0

www.oiforum.com 31

 SD-ID E2E_SEC@26041

 SEVERITY 3 (Error)

 SD parameters TYPE=“<rsvp message type>”, ERROR=“NO_KEY”,

DIR=“R”, and also the CALL_ID and TNA names along with their

sub-types for both parties as appropriate

 OIF_E2E_SECURITY_INVALID_CERT, User Error Value = 3

A certificate containing the signature verification key or needed to obtain the

signature verification key has some problem, e.g., it may have expired or been

revoked.

If generators of this error message use logging [LogAud], they SHOULD log this

error message with:

 SD-ID E2E_SEC@26041

 SEVERITY 3 (Error)

 SD parameters TYPE=“<rsvp message type>”,

ERROR=“INVALID_CERT”, DIR=“T”, NAME=“<name in the

certificate>”, and also the CALL_ID and TNA names along with their

sub-types for both parties as appropriate

If receivers of this error message use logging [LogAud], they SHOULD log this

error message with:

 SD-ID E2E_SEC@26041

 SEVERITY 3 (Error)

 SD parameters TYPE=“<rsvp message type>”,

ERROR=“INVALID_CERT”, DIR=“R”, NAME=“<name in the

certificate>”, and also the CALL_ID and TNA names along with their

sub-types for both parties as appropriate

 OIF_E2E_SECURITY_UNAUTHORIZED_SIGNER, User Error Value = 4

Policy specifies that the name in the certificate is not permitted to send this

message.

If generators of this error message use logging [LogAud], they SHOULD log this

error message with:

 SD-ID E2E_SEC@26041

 SEVERITY 3 (Error)

 SD parameters TYPE=“<rsvp message type>”,

ERROR=“UNAUTHORIZED_SIGNER”, DIR=“T”, NAME=“<name in

the certificate>”, and also the CALL_ID and TNA names along with their

sub-types for both parties as appropriate

 IA OIF-E2E-SEC-01.0

www.oiforum.com 32

If receivers of this error message use logging [LogAud], they SHOULD log this

error message with:

 SD-ID E2E_SEC@26041

 SEVERITY 3 (Error)

 SD parameters TYPE=“<rsvp message type>”,

ERROR=“UNAUTHORIZED_SIGNER”, DIR=“R”, NAME=“<name in

the certificate>”, and also the CALL_ID and TNA names along with their

sub-types for both parties as appropriate

 OIF_E2E_SECURITY_INVALID_SIGNATURE, User Error Value = 5

The certificate is valid, but the signature verification failed.

If generators of this error message use logging [LogAud], they SHOULD log this

error message with:

 SD-ID E2E_SEC@26041

 SEVERITY 3 (Error)

 SD parameters TYPE=“<rsvp message type>”,

ERROR=“INVALID_SIGNATURE”, DIR=“T”, NAME=“<name in the

certificate>”, and also the CALL_ID and TNA names along with their

sub-types for both parties as appropriate

Also, generators of this error message that use logging SHOULD log the entire

message with the PROT@26041 message as described in [LogAud].

If receivers of this error message use logging [LogAud], they SHOULD log this

error message with:

 SD-ID E2E_SEC@26041

 SEVERITY 3 (Error)

 SD parameters TYPE=“<rsvp message type>”,

ERROR=“INVALID_SIGNATURE”, DIR=“R”, NAME=“<name in the

certificate>”, and also the CALL_ID and TNA names along with their

sub-types for both parties as appropriate

 OIF_E2E_SECURITY_CONTENT_ERROR, User Error Value = 6

The certificate is valid, the signature verified, but either the contents of the outer

RSVP message do not correspond to what the OIF_E2E_SECURITY object asserts

or the Timestamp is stale.

If generators of this error message use logging [LogAud], they SHOULD log this

error message with:

 SD-ID E2E_SEC@26041

 IA OIF-E2E-SEC-01.0

www.oiforum.com 33

 SEVERITY 3 (Error)

 SD parameters TYPE=“<rsvp message type>”,

ERROR=“CONTENT_ERROR”, DIR=“T”, and OPTIONALLY the

CALL_ID and TNA names along with their sub-types for both parties as

appropriate

Also, generators of this error message that use logging SHOULD log the entire

message with the PROT@26041 message as described in [LogAud].

If receivers of this error message use logging [LogAud], they SHOULD log this

error message with:

 SD-ID E2E_SEC@26041

 SEVERITY 3 (Error)

 SD parameters TYPE=“<rsvp message type>”,

ERROR=“CONTENT_ERROR”, DIR=“R”, and OPTIONALLY the

CALL_ID and TNA names along with their sub-types for both parties party

as appropriate

 OIF_E2E_SECURITY_UNSPECIFIED_ERROR, User Error Value = 7

An OIF_E2E_SECURITY error occurred that (1) cannot be categorized by other

error codes or (2) is left unspecified for policy reasons.

This error can occur if more than one OIF_E2E_SECURITY subobject is received,

or if the OIF_E2E_SECURITY subobject is improperly formatted.

If generators of this error message use logging [LogAud], they SHOULD log this

error message with:

 SD-ID E2E_SEC@26041

 SEVERITY 3 (Error)

 SD parameters TYPE=“<rsvp message type>”,

ERROR=“UNSPECIFIED_ERROR”, DIR=“T”, and the CALL_ID and

TNA names along with their sub-types for both parties as appropriate

Also, generators of this error message that use logging SHOULD log the entire

message with the PROT@26041 message as described in [LogAud].

If receivers of this error message use logging [LogAud], they SHOULD log this

error message with:

 SD-ID E2E_SEC@26041

 SEVERITY 3 (Error)

 SD parameters TYPE=“<rsvp message type>”,

ERROR=“UNSPECIFIED_ERROR”, DIR=“R”, and the CALL_ID and

TNA names along with their sub-types for both parties as appropriate

 IA OIF-E2E-SEC-01.0

www.oiforum.com 34

5.3 Processing Rules

The OIF_E2E_SECURITY subobject MAY be included in messages with end-to-end

significance. These include Path, Resv, ResvConf, PathErr, ResvErr, and PathTear. It

MUST NOT be used in messages without end-to-end significance (e.g., Hello, Ack,

Bundle, Notify, and Srefresh).

Implementations SHOULD be careful to use the features described herein in a way that

minimizes the size of the OIF_E2E_SECURITY subobject.

Implementations MUST include a method for users to specify an end-to-end security

policy that includes specifying:

 For each other UNI-C (identified by a TNA name along with its sub-type) using

the OIF_E2E_SECURITY subobject, the RSVP message types and objects

requiring the OIF_E2E_SECURITY subobject (e.g., GENERALIZED_UNI in

a Path message)

 The acceptable criteria for signing certificates

 How OIF_E2E_SECURITY errors are handled

For active calls, implementations MUST also know how to map messages to TNA

names.

The following steps illustrate how to generate and check messages with the

OIF_E2E_SECURITY subobject in them.

For senders:

1. Determine whether the OIF_E2E_SECURITY subobject is required for this

message and, if so, continue.

2. Obtain the appropriate signing key.

3. Generate the RSVP message with zeros in the Signature Value.

4. Copy the Message Type into the OIF_E2E_SECURITY subobject.

5. Generate a TIMESTAMP subobject with a later time than any previously sent

to this receiver.

6. Determine which objects need to be signed.

7. Form a signature block that has immutable objects appended.

8. Calculate the signature over the signature block and insert it into the

OIF_E2E_SECURITY subobject.

9. Calculate and insert the checksum in the outer RSVP Common Header.

For receivers:

1. Verify the checksum in the outer RSVP Common Header.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 35

2. Determine according to policy whether the OIF_E2E_SECURITY subobject is

required for this message. If so, and the OIF_E2E_SECURITY subobject is not

present, record the error OIF_E2E_SECURITY_REQUIRED. If not, discard

any OIF_E2E_SECURITY subobject and skip the remaining steps.

3. Check that the signing key is appropriate and valid. If not, record the error

OIF_E2E_SECURITY_UNAUTHORIZED_SIGNER and exit.

4. Retrieve the verification key. If not possible, record the error

OIF_E2E_SECURITY_NO_KEY and exit.

5. Form the signature block as above and verify the signature. If this fails, record

the error OIF_E2E_SECURITY_INVALID_SIGNATURE and exit.

6. Check according to policy that all objects that are required to be signed actually

are. If not, record the error OIF_E2E_SECURITY_REQUIRED

and exit.

7. Check that the outer RSVP message corresponds appropriately to what was

signed. Check that the Timestamp is later than any previously received from

this sender. (Implementations MAY track clock skew and round-trip times for

future reference.) If any of this fails, record the error

OIF_E2E_SECURITY_CONTENT_ERROR and exit.

8. Record any auxiliary Security_Credentials information for later use.

9. Update dynamic policy tables as needed.

5.4 Backward Compatibility

This section describes what happens when a first UNI-C attempts to use the

OIF_E2E_SECURITY subobject but other OIF reference points on the UNI-C to UNI-C

end-to-end path are unaware of it.

If the other UNI endpoint does not recognize the OIF_E2E_SECURITY subobject, it

should, according to [PrivExt], ignore it. If the first UNI-C does not require this subobject

in return, signaling may work normally, as if no signatures are being used. If the first

UNI-C does, however, expect a valid signature in return, this is a configuration error, and

the response without a signature should be rejected.

At intermediate protocol controllers between a UNI-C and UNI-N running an RSVP-TE

session, the processing rules in [PrivExt] and for RSVP-TE in general state that this

sub-subobject should be passed on unchanged. If I-NNIs or E-NNIs upstream of the

UNI-N are based on RSVP-TE and the operator’s policy allows use of the

OIF_E2E_SECURITY subobject, it needs to be transported (i.e., interworked or mapped)

over all such I-NNI and E-NNI sessions. However, at a UNI-N or E-NNI reference point a

service operator may enforce a network operator’s policy that prohibits unrecognized

objects, unrecognized subobjects, or malformed RSVP-TE messages in general. In this

case, messages containing the OIF_E2E_SECURITY subobject may be rejected. Note,

however, that implementations unaware of this subobject will also be unaware of the

requirement that it must be delivered and installed in a disabled state.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 36

At an intermediate I-NNI running a signaling protocol other than RSVP-TE, the handling

of the OIF_E2E_SECURITY sub-subobject is unspecified. If this reference point is

configured to follow the processing rules in [PrivExt] and does not apply any filtering rules,

it may arrange to communicate the OIF_E2E_SECURITY sub-subobject in a way that it

can be reconstructed at the other RSVP-TE UNI endpoint. In other cases, it may not do this,

and this mechanism will not work as presently defined.

6. Policy Considerations at UNI Endpoints

6.1 Specifying, Enforcing, and Changing Policies without Disruption

Security is not much use without an enforceable security policy. An attacker could simply

remove the signature from a message and modify it: the receiver would not know that the

original message was ever signed.

Policy includes who the other party is (TNA name), what (message types and objects)

needs to be protected, how the protection is applied (e.g., what cryptographic methods,

keys, and replay counters to use), and how errors are handled. Security policies are needed

both for sending and receiving signed messages. Senders consult policy to decide what

protection to apply to outgoing messages, and receivers do the same to determine what

protection is required for incoming messages.

Therefore, implementations MUST support a security policy that lets users specify

which messages and objects must be signed with which keys.

One approach is to start with a global static policy table indexed by TNA name that

describes incoming and outgoing security policy for each other TNA name with which they

use the OIF_E2E_SECURITY subobject and the corresponding certificates and keys. At

the top level, the choices for each TNA name are (1) allow unsecured calls; (2) require

security on all calls; or (3) block all calls. Conventions for specifying ranges of TNA name

or default policy may be included.

Next, implementations may maintain a table of active CALL_IDs using the

OIF_E2E_SECURITY subobject with local connection information as needed and

pointers to the table of parties. Separate tables of incoming and outgoing security policy for

each active call might be used. These may be indexed by CALL_ID.

Finally, a sorted list of local connection information with pointers to CALL_IDs may

be maintained.

Policy MUST specify how errors are handled, as described in Section 5.2.

It may be important for auditing or such purposes to keep track of past policies and policy

changes. Logging of policy changes and who made them is RECOMMENDED.

Vendors should provide tools for setting up and maintaining security policies. In fact, such

tools should let users align policies at both ends of a potential call and check that this has

been done correctly. The tools may also allow users to schedule changes in policies in a

coordinated way. Vendors may decide how the user interface to these tools works and

whether the same set of tools should perhaps deal with certificate distribution.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 37

During normal processing, upon restart, or after signaling channel recovery, users may

wish to change security policies. It is important that security policy changes do not cause

unexpected control plane or data plane behavior, particularly for existing calls. Users

should test security policies in a safe environment before applying them to live traffic,

coordinate policy changes at both ends of an existing or planned call, follow a safe order of

applying policy changes, and log the results for later examination. Implementations

SHOULD provide tools and warnings to help users update policies safely and to avoid

errors. It may be useful to allow scheduling of policy changes or even to allow policies to

vary regularly according to calendar or time of day. Two RECOMMENDED capabilities

are (1) to allow users to specify whether policy changes apply to all new and existing calls,

new calls and certain existing calls, or just new calls, and (2) to allow users to schedule

policy changes to go into effect at a certain scheduled time.

Policy enforcement has to be turned on or off in a safe sequence to avoid errors. For

example, to raise the required security level:

1. Set the receiver to accept the higher security level.

2. Set the sender to apply this higher security level.

3. Set the receiver to require the higher security level.

To lower the required security level, these steps can be reversed.

6.2 Signaling Channel Failure, Restart, and Policy Updates

Recovery and restart need to take into account both changes in security policy and changes

in state.

When the signaling channel fails and then is restarted, a UNI-C may have missed

messages, some of which contained signatures.

Section 8.14 of [UNI2.0-RSVP] describes how a UNI-C and UNI-N resume operations

when recovering from a failure of one party or loss of signaling connectivity.

Implementations MUST follow the restart procedures in [UNI2.0-RSVP].

UNI 2.0 restart procedures may result in a change of state (i.e., removed connections)

without delivering the signaling messages that caused the change of state. Users need to

understand that, policy for securing such lost messages notwithstanding, the UNI-C may

need to accept such state changes. If logging is used, details of such removed connections

MUST be logged with:

 SD-ID E2E_SEC@26041

 SEVERITY 4 (Warning)

 SD parameters TYPE= “Srefresh: connection removed”, and the CALL_ID

and TNA names along with their sub-types for both parties as appropriate

A UNI-N SHOULD attempt to ensure that a signature compliant with the network

operator’s policy is delivered at least once. If the signaling protocol is unreliable, and there

is reason to believe that the signature may not have been received, it may be sent

 IA OIF-E2E-SEC-01.0

www.oiforum.com 38

repeatedly. As with all unreliable protocols, it may be a configurable option to send a

message including a signature a certain number of times or every time a corresponding

refresh message is sent. The graceful restart and recovery procedure should resend any

signatures that may not have been received. A UNI-C, upon receiving a duplicate copy of a

message with a signature, MUST ignore the retransmitted signature.

In the unlikely event that a signature is required and not received, the signaling operation

may result in an error and need to be repeated. This may, of course, occur with any

signaling message transmitted with an unreliable protocol.

The following items have to be maintained across restarts:

 Keying material

 Certificate caches

 Policy tables

 TNA name to CALL_ID mappings for existing connections

 Replay counters

The remaining aspects of this mechanism should be stateless.

7. OIF Assigned Numbers

Within the OIF_VENDOR_PRIVATE_ EXTENSION_TYPE_3 object [PrivExt], Class

Number 1 with C-Type 1 is reserved for the OIF_E2E_SECURITY subobject.

When using RSVP Class Number 194 and C-Type = 1 with the OIF’s Enterprise number

26041, Sub Org = 1 is reserved for errors resulting from using the OIF_E2E_SECURITY

object (see [PrivExt] and [RFC5284]).

8. Performance

This mechanism entails some overhead in processing cycles and message size.

Open source software for the cryptographic functions is available. For a light load of say a

few messages a second, the overhead is quite manageable on today’s microprocessors. For

heavier loads, there are well-developed technologies for high volume cryptography (e.g.,

those developed for secure web servers), which can handle the constructions defined for

this signature mechanism.

Commonly expected use of this signature mechanism should be achievable with less than

150 bytes of message expansion or perhaps a little more in some cases. Normal use should

not cause fragmentation or other undesirable effects. A strict limit of 256 bytes has been

placed on the length of the E2E_UNI_SECURITY subobject. This limit should exceed

what ordinarily occurs. A signaling communications network supporting end-to-end UNI

authentication needs to be designed to account for this.

The first Path message in a call may be a worst-case example over all message types. With

certificate caching and 32-bit TNA names, the overhead may be 144 bytes, as shown in

 IA OIF-E2E-SEC-01.0

www.oiforum.com 39

Table 1. The size limit of 256, in this case, still allows sufficient room for a longer

Cert_Encoding sub-subobject (Section 5.1.8) and an additional Security_Credentials

sub-subobject (Section 5.1.9).

Item Length

OIF_VENDOR_PRIVATE_ EXTENSION_TYPE_3 header 8 bytes

OIF_E2E_SECURITY header 4 bytes

Message Type sub-subobject 4 bytes

List of four immutable objects (ADMIN_STATUS, GENERALIZED

_LABEL_REQUEST, SENDER_TSPEC, SESSION_ATTRIBUTE)

12 bytes

Original CALL_ID object 12 bytes

Original GENERALIZED_ UNI_ATTRIBUTES object 20 bytes

Timestamp sub-subobject 36 bytes

Signature sub-subobject 44 bytes

Cert_Encoding sub-subobject 4 bytes

Table 1: Example of Message Size for Signing a Path Message.

9. Security Considerations

Both the DSS signatures and the hash-and-URL certificate lookup rely on the collision

resistance of the SHA-1 hash function. Stronger hash functions for these methods should

be considered if and when they are standardized by the IETF or SHA-1 is officially

declared broken. A potentially stronger combination would be to use SHA-256 and the

elliptic curve digital signature algorithm (ECDSA) with a signature of corresponding

length. Algorithm agility is provided in the data structures, and implementations should

allow for this type of enhancement in the future.

Signers using DSS must protect not only their private keys but also all of the random

numbers used to generate signatures. Thus, signers must have a strong method for

generating pseudo-random numbers. See Section 4.1 for references on this topic. Some

implementations of DSS have been shown to be insecure because implementers did not

enforce range checks in the specification.

The mechanism described in this IA imposes overhead on a service provider’s signaling

communications network and allows end-to-end communications between users. These

communications are designed to support the integrity of the signaling and security for the

transport resources set up by signaling. Service providers should enforce appropriate use of

this mechanism based on their policies. In particular, they may allow this mechanism,

prohibit it, or place limits on its use. They may, for example, limit it by any combination of

number of occurrences, aggregate overhead, or per-message overhead. Service providers

 IA OIF-E2E-SEC-01.0

www.oiforum.com 40

may choose to drop non-conforming traffic, respond with an error condition, or remove the

non-conforming parts of messages.

Future signaling extensions may, of course, impact the way this mechanism is defined and

used. Therefore, this IA needs to be maintained along with new OIF developments in

signaling. For example, a future signaling enhancement may be to allow the network to

translate the DESTINATION_TNA. If this data item is signed as Original, the destination

UNI may verify the signature but find two different values. In this hypothetical example,

the destination UNI may choose to check whether the translation done by the network was

appropriate or not.

A denial of service attack carried out by flooding a UNI receiver with a large number of

invalid signatures is possible. Upstream ingress and egress filtering can be used to block

off-path attacks of this sort. If this is an insufficient or impractical remedy, then, the

methods in [SecExt] may be used to filter such attacks more efficiently.

When possible, error responses defined in this IA should include a signature to prevent

denial of service attacks based on forging these error messages.

10. Short Signatures (Informative)

This section is included only for future consideration. It does not provide any guidance for

this Implementation Agreement. Also, this section offers no opinions about intellectual

property considerations.

One of the main design goals in this IA is to keep the size of the OIF_E2E_SEC subobject

as small as possible. The DSS signature, which is 320 bits or 40 bytes, is a necessary part of

this subobject, so it is worthwhile to consider shorter alternatives. Three approaches have

been proposed:

 Use signatures with message recovery. If the data that are signed contain part of the

message itself, then the inverse verification operation can recover these bits, and

the effective overhead of the signature is reduced accordingly.

 Use signatures based not on computational number theory but rather on

multivariate cryptography, coding theory, or lattices.

 Use bilinear pairings, which allow digital signatures based on discrete logarithms

to be expressed with one, say, 160-bit parameter instead of two.

Naïve approaches to message recovery have pitfalls. For instance, signing the actual

message with textbook RSA allows an attacker to obtain existential forgeries of signatures,

so, as always, constructions need to be analyzed carefully and not invented in an ad hoc

fashion.

In 2000, Naccache and Stern [NS00] described a partial message recovery scheme that

shortens 40-byte DSS signatures (or the analogous construction based on elliptic curves) to

26 bytes with no loss in security. They provide a security proof in the random oracle model.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 41

In 2001, Patarin, Courtois, and Goubin first presented QUARTZ [PCG01], a 128-bit

signature scheme based on multivariate polynomials. Signing a message, however, is slow.

Potential users should also refer to the most up-to-date information about cryptanalysis of

such schemes.

Also in 2001, Boneh, Lynn, and Shacham [BLS01] used a totally different approach,

bilinear pairings on an elliptic (or hyper-elliptic) curve, to derive a short signature scheme

based on the computational Diffie-Hellman assumption and proved its security in the

random oracle model. It uses the private key extraction technique in the Boneh-Franklin

identity-based encryption scheme to eliminate the need for two 160-bit parameters and

reduce the size of the corresponding signature to 20 bytes. However, it requires a special

kind of hash function called PointToMap.

In 2004, Zhang, Safavi-Naini, and Susilo [ZSS04] showed how to construct a more

efficient short signature scheme based on bilinear pairings that can use any hash function

(such as SHA-1). Their security proof is based on the inverse computational

Diffie-Hellman assumption and also works in the random oracle model.

Also in 2004, Boneh and Boyen [BB04] described efficiency and security improvements to

their short signature scheme based on bilinear pairings. Their newer security proof avoids

using a random oracle but relies on the strong Diffie-Hellman assumption.

11. Summary

This Implementation Agreement defines an optional OIF UNI extension to provide

end-to-end authentication of signaling messages between two OIF UNI 2.0 clients by

transporting a signature on a subset of the objects in signaling the message end to end.

Support for this end-to-end transport is optional.

12. References

12.1 Normative References

The following references contain provisions that, through reference in this text, constitute

provisions of this IA. At the time of publication, the versions indicated were current and

valid. Many references are subject to revision, and parties to agreements based on this IA

are encouraged to investigate the possibility of applying the most recent versions of the

references indicated below.

[FIPS186-3] National Institute of Standards and Technology Federal Information

Processing Standard 186-3, Digital Signature Standard (DSS), June 2009.

[IANA-IKEv2] http://www.iana.org/assignments/ikev2-parameters

[LogAud] Optical Internetworking Forum Implementation Agreement OIF-SLG-01.2,

“OIF Control Plane Logging and Auditing with Syslog version 1.1,”

November 2011.

[PrivExt] Optical Internetworking Forum Implementation Agreement

RSVP-PVT-EXT-01.0, “OIF Application of Vendor Private Extensions in

RSVP,” October 2011.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 42

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,”

IETF RFC 2119, March 1997.

[RFC2205] Braden, R., et al., “Resource ReSerVation Protocol (RSVP) --Version 1

Functional Specification,” IETF RFC 2205, September 1997.

[RFC2560] Myers, M., et al., “X.509 Internet Public Key Infrastructure Online

Certificate Status Protocol – OCSP,” IETF RFC 2560, June 1999. See also

RFC 5019, draft-ietf-pkix-rfc2560bis, and RFC 6277.

[RFC3474] Lin, Z., and D. Pendarakis, “Documentation of IANA assignments for

Generalized MultiProtocol Label Switching (GMPLS) Resource

Reservation Protocol - Traffic Engineering (RSVP-TE) Usage and

Extensions for Automatically Switched Optical Network (ASON),” IETF

RFC 3474, March 2003.

[RFC5280] Cooper, D., et al., “Internet X.509 Public Key Infrastructure Certificate and

Certificate Revocation List (CRL) Profile,” IETF RFC 5280, May 2008.

[RFC5284] Swallow, G., and A. Farrel, “User-Defined Errors for RSVP,” IETF RFC

5284, August 2008.

[RFC5424] Gerhards, R., “The syslog Protocol,” IETF RFC 5424, March 2009.

[RFC5905] Mills, D., et al., “Network Time Protocol Version 4: Protocol and

Algorithms Specification,” IETF RFC 5905, June 2010.

[RFC5996] Kaufman, C., P. Hoffman, Y. Nir, and P. Eronen, “Internet Key Exchange

Protocol Version 2 (IKEv2),” IETF RFC 5996, September 2010.

[SecExt] Optical Internetworking Forum Implementation Agreement OIF-SEP-03.1,

“Security Extension for UNI and NNI version 2.0,” November 2011.

[UNI2.0] OIF Implementation Agreement, “User Network Interface (UNI) 2.0

Signaling Specification Common Part,” OIF-UNI-02.0-Common, February

2008.

[UNI2.0-RSVP] OIF Implementation Agreement, “User Network Interface (UNI) 2.0

Signaling Specification OIF-UNI-02.0-RSVP - RSVP Extensions for User

Network Interface (UNI) 2.0 Signaling,” OIF-UNI-02.0-RSVP, February

2008.

[X.509] ITU-T Recommendation X.509: Information technology - Open Systems

Interconnection - The Directory: Public-key and attribute certificate

frameworks, August 2005.

12.2 Informative References

[BFW11] Behringer, M., F. Le Faucheur, and B. Weis, “Applicability of Keying

Methods for RSVP Security,” IETF RFC 6411, October 2011.

[BB04] Boneh, D., and X. Boyen, “Short signatures without random oracles and the

SDH assumption in bilinear groups,” in J.Cryptology 21(2), 2008,

pp. 149-177. Preliminary version in C. Cachin and J. Camenisch, eds.,

Eurocrypt 2004, Springer LNCS vol. 3027, pp. 56–73.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 43

[BLS01] Boneh, D., B. Lynn, and H. Shacham, “Short Signatures from the Weil

Pairing,” In J. Cryptology, 17(4):297–319, 2004. Extended abstract in

C. Boyd, ed., Asiacrypt 2001, Springer LNCS vol. 2248, 2001,

pp. 524–532.

[CarrierReq] OIF Carrier WG Guideline Document: Control Plane Requirements for

Multi-Domain Optical Transport Networks, CWG

OIF-CWG-CPR-01.0, July 2010.

[E-NNI] Optical Internetworking Forum Implementation Agreement, “OIF

E-NNI Signaling Specification,” OIF-E-NNI-Sig-02.0, 2009.

[Gut98] Gutmann, P., “Software Generation of Practically Strong Random

Numbers,” Seventh USENIX Security Symposium Proceedings, The

USENIX Association, 1998, pp. 243–257.

[Katz] Katz, J., Digital Signatures, Springer-Verlag, 2010.

[KSF99] Kelsey, J., B. Schneier, and N. Ferguson, “Notes on the Design and

Analysis of the Yarrow Cryptographic Pseudorandom Number Generator,”

Sixth Annual Workshop on Selected Areas in Cryptography,

Springer-Verlag, 1999.

[Koç09] Koç, Ç., ed., Cryptographic Engineering, Springer-Verlag, 2009.

[NS00] Naccache, D., and J. Stern, “Signing on a Postcard,” In Y. Frankel, ed.,

Financial Cryptography, Springer LNCS vol. 1962, 2000, pp. 121–135.

[NIST800-90] Barker, E., and J. Kelsey, Recommendation for Random Number

Generation Using Deterministic Random Bit Generators (Revised), NIST

Special Publication 800-90, March 2007.

[PCG01] Patarin, J., N. Courtois, and L. Goubin, “QUARTZ, 128-bit long digital

signatures,” in CT-RSA 2001, Springer LNCS vol. 2020, 2001,

pp. 282–297.

[Pornin] Pornin, T., “Deterministic Usage of DSA and ECDSA Digital Signature

Algorithms,” IETF work in progress draft-pornin-deterministic-dsa-00,

March 2011.

[RFC2154] Murphy, S., M. Badger, and B. Wellington, “OSPF with Digital

Signatures,” RFC 2154, June 1997. (Experimental)

[RFC2747] Baker, F., B. Lindell, and M. Talwar, “RSVP Cryptographic

Authentication,” IETF RFC 2747, January 2000.

[RFC3936] Kompella, K., and J. Lang, “Procedures for Modifying the Resource

reSerVation Protocol (RSVP),” IETF RFC 3936, October 2004.

[RFC4086] Eastlake, D., 3rd, J. Schiller, and S. Crocker, “Randomness Requirements

for Security,” IETF RFC 4086, June 2005.

[RFC4949] Shirey, R., “Internet Security Glossary, Version 2,” IETF RFC 4949,

August 2007.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 44

[TN00] Talwar, V., and K. Nahrstedt, “Securing RSVP For Multimedia

Applications,” ACM Multimedia Workshop, 2000, pp. 153–156.

[Wu99] Wu, T.-L., et al., “Securing QoS: Threats to RSVP Messages and their

Countermeasures,” IWQoS’99, pp.62–64.

[ZSS04] Zhang, F., R. Safavi-Naini, and W. Susilo, “An Efficient Signature Scheme

from Bilinear Pairing and its Applications,” in: F. Bao et al., eds., PKC

2004, Springer LNCS vol. 2947, 2004, pp. 277–290.

 IA OIF-E2E-SEC-01.0

www.oiforum.com 45

Appendix A: Glossary

A thorough glossary of Internet and TCP/IP security terminology can be found in

[RFC4949].

 IA OIF-E2E-SEC-01.0

www.oiforum.com 46

Appendix B: OIF Members When the Document Was
Approved

Acacia Communications ADVA Optical Networking

Alcatel-Lucent Altera

AMCC Amphenol Corp.

Anritsu Applied Communication Sciences

AT&T Avago Technologies Inc.

Broadcom Brocade

Centellax, Inc. China Telecom

Ciena Corporation Cisco Systems

ClariPhy Communications Cogo Optronics

Comcast Cortina Systems

CyOptics Dell, Inc.

Department of Defense Deutsche Telekom

ECI Telecom Ltd. Emcore

Emulex Ericsson

ETRI EXFO

FCI USA LLC Fiberhome Technologies Group

Finisar Corporation France Telecom Group/Orange

Fujitsu Fundacao.CPqD

Furukawa Electric Japan GigOptix Inc.

Hewlett Packard Hitachi

Hittite Microwave Corp Huawei Technologies

IBM Corporation Infinera

Inphi IP Infusion

JDSU Juniper Networks

KDDI R&D Laboratories Kotura, Inc.

LeCroy LSI Corporation

Luxtera M/A-COM Technology Solutions, Inc.

Marben Products Maxim Integrated Products

Mayo Clinic Metaswitch

Mitsubishi Electric Corporation Molex

MoSys, Inc. NEC

NeoPhotonics Nokia Siemens Networks

NTT Corporation Oclaro

Opnext PETRA

Picometrix PMC Sierra

QLogic Corporation Reflex Photonics

Semtech SHF Communication Technologies

Sumitomo Electric Industries Sumitomo Osaka Cement

TE Connectivity Tektronix

Tellabs TeraXion

Texas Instruments Time Warner Cable

TriQuint Semiconductor u2t Photonics AG

Verizon Vitesse Semiconductor

Xilinx Xtera Communications

Yamaichi Electronics Ltd. ZTE Corporation

