

Implementation Agreement for Integrated Polarization Multiplexed Quadrature Modulated Transmitters

IA # OIF-PMQ-TX-01.2

May 15, 2015

Implementation Agreement created and approved by the Optical Internetworking Forum www.oiforum.com

The OIF is an international non-profit organization with over 90 member companies, including the world's leading carriers and vendors. Being an industry group uniting representatives of the data and optical worlds, OIF's purpose is to accelerate the deployment of interoperable, cost-effective and robust optical internetworks and their associated technologies. Optical internetworks are data networks composed of routers and data switches interconnected by optical networking elements.

With the goal of promoting worldwide compatibility of optical internetworking products, the OIF actively supports and extends the work of national and international standards bodies. Working relationships or formal liaisons have been established with IEEE 802.1, IEEE 802.3ba, IETF, IP-MPLS Forum, IPv6 Forum, ITU-T SG13, ITU-T SG15, MEF, ATIS-OPTXS, ATIS-TMOC, TMF and the XFP MSA Group.

For additional information contact:
The Optical Internetworking Forum, 48377 Fremont Blvd,
Suite 117, Fremont, CA 94538
510-492-4040 info@oiforum.com

www.oiforum.com

Working Group: Physical and Link Layer (PLL) Working Group

TITLE: Implementation Agreement for Integrated Polarization Multiplexed Quadrature

Modulated Transmitters.

SOURCE: TECHNICAL EDITOR

Martin Bouda, Ph.D.

Fujitsu Laboratories of America, Inc.

2801 Telecom Parkway Richardson, TX 75093, USA Phone: +1-972-479-2691

Email: martin.bouda@us.fujitsu.com

WORKING GROUP CHAIR WORKING GROUP VICE CHAIR

Karl Gass

Qorvo

David R. Stauffer, Ph.D. Kandou Bus, S.A.

QI-I

1015 Lausanne, Switzerland Phone: +1-802-316-0808

Email: david@kandou.com

Phone: +1-505-844-8849

Email: iamthedonutking@mac.com

ABSTRACT: This Implementation Agreement specifies key aspects of integrated polarization multiplexed quadrature modulated optical transmitters operating at rates up to 32 GBd for applications such as 100G PM-QPSK DWDM transmission. This is not a multi-source agreement (MSA) but it is expected that it will serve as a foundation for future MSAs.

Notice: This Technical Document has been created by the Optical Internetworking Forum (OIF). This document is offered to the OIF Membership solely as a basis for agreement and is not a binding proposal on the companies listed as resources above. The OIF reserves the rights to at any time to add, amend, or withdraw statements contained herein. Nothing in this document is in any way binding on the OIF or any of its members.

The user's attention is called to the possibility that implementation of the OIF implementation agreement contained herein may require the use of inventions covered by the patent rights held by third parties. By publication of this OIF implementation agreement, the OIF makes no representation or warranty whatsoever, whether expressed or implied, that implementation of the specification will not infringe any third party rights, nor does the OIF make any representation or warranty whatsoever, whether expressed or implied, with respect to any claim that has been or may be asserted by any third party, the validity of any patent rights related to any such claim, or the extent to which a license to use any such rights may or may not be available or the terms hereof.

© 2015 Optical Internetworking Forum

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such as by removing the copyright notice or references to the OIF, except as needed for the purpose of developing OIF Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted above are perpetual and will not be revoked by the OIF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE OIF DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY, TITLE OR FITNESS FOR A PARTICULAR PURPOSE.

1 Table of Contents

1	Tabl	e of Contents	4
2	List	of Figures	5
3		of Tables	
4	Doc	ument Revision History	6
5		oduction	
6		ctionality	
7		rical Interfaces	
	7.1	Mechanical Specification of Low-Speed Interface and Interface	
		Locations	9
	7.2	Mechanical Specification of High-Speed Interface Options	9
	7.3	Electrical Interface Pin Assignments	
	7.4	Electrical Properties of Low-Speed Electrical Interface	
8	Opto	o-Electronic Properties	
9		cal Properties	
10	-	ronmental Conditions	
11	Mec	hanical Properties	17
Apı		x A: Glossary	
	_	x B: Examples of Additional Mechanical Details	
	-	x C: Example of reference PCB interface design	
	-	x D: Companies belonging to OIF when document was approved	
1 1		1 0 0	

2 <u>List of Figures</u>

FIGURE I	FUNCTIONAL DIAGRAM OF A POLARIZATION MULTIPLEXED QUADRATURE	
	MODULATED INTEGRATED TRANSMITTER WITH A DETAILED FUNCTIONAL	
	DIAGRAM OF THE DATA MODULATOR.	7
FIGURE 2	SPECIFICATION OF LOW-SPEED INTERFACE, AND LOCATION OF LOW- AND HIGH	I-
	SPEED INTERFACES RELATIVE TO A DATUM.	9
FIGURE 3	MECHANICAL SPECIFICATION OF A "2+2 GPPO" HIGH-SPEED INTERFACE	10
FIGURE 4	MECHANICAL SPECIFICATION OF A "4 GPPO" HIGH-SPEED INTERFACE	10
FIGURE 5	MECHANICAL SPECIFICATION OF FPC HIGH-SPEED INTERFACE	10
FIGURE 6	LANDING PAD EXTENT AND MODULE WALL TO FPC-END DISTANCE	11
FIGURE 7	LOCATION OF DATUM AND DIMENSIONS RELATED TO ENVELOPE TYPES 1, 2, A	AND
	3 (TOP VIEW)	17
FIGURE 8	LOCATION OF DATUM AND DIMENSIONS RELATED TO ENVELOPE TYPE 4 (TOP	
	VIEW).	17
FIGURE 9	A SUBSET OF LOCATIONS OF POTENTIALLY EXISTING MOUNTING HOLES FOR	
	Types 1 and 2 (bottom view).	20
FIGURE 10	POTENTIALLY EXISTING MOUNTING HOLES FOR TYPES 3 AND 4 (BOTTOM VIEW	
FIGURE 1	1 PCB INTERFACE DESIGN EXAMPLE.	21
3 L:	ist of Tables	
_		
TABLE 1	MECHANICAL SPECIFICATION OF FPC HIGH-SPEED INTERFACE	11
TABLE 2	ELECTRICAL INTERFACE PIN-OUT AND FUNCTION WITH MULTIPLE OPTIONS FOR	R
	BIASING AND PHASE CONTROL	12
TABLE 3	ALTERNATIVE ELECTRICAL INTERFACE PIN-OUT AND FUNCTION WITH MULTIP	LE
	OPTIONS FOR BIASING AND PHASE CONTROL.	13
TABLE 4	LOW-SPEED INTERFACE ELECTRICAL PROPERTIES.	14
TABLE 5	ELECTRICAL AND OPTO-ELECTRONIC PROPERTIES.	15
TABLE 6	OPTICAL PROPERTIES.	
Table 7	ENVELOPE TYPE FEATURES AND DIMENSIONAL PARAMETERS IN MM	

4 Document Revision History

Working Group: Physical and Link Layer (PLL) Working Group

SOURCE: TECHNICAL EDITOR

Martin Bouda, Ph.D.

Fujitsu Laboratories of America, Inc.

2801 Telecom Parkway Richardson, TX 75093, USA Phone: +1-972-479-2691

Email: martin.bouda@us.fujitsu.com

WORKING GROUP CHAIR WORKING GROUP VICE CHAIR

David R. Stauffer, Ph.D. Kandou Bus, S.A.

QI-I

1015 Lausanne, Switzerland Phone: +1-802-316-0808

Email: david@kandou.com

Karl Gass Qorvo

Phone: +1-505-844-8849

Email: <u>iamthedonutking@mac.com</u>

DATE: May 15th, 2015

Revision	Date	Changes	Editor
OIF-PMQ-TX-01.0	March 12, 2010	Created from oif2009.186.05	M. Bouda
OIF-PMQ-TX-01.1	August 27, 2013	Based on oif2013.046.05	M. Bouda
		Changes to Sections 7, 11 and 16	
		- Updates to Type 3 Envelope	
		- Addition of Type 4 Envelope	
		- Addition of 4-GPPO interface	
		Changes to Appendix B (Informative)	
		- Potential locations of mounting holes	
		Addition of Appendix C (Informative)	
		- SMT landing pad dimension	
OIF-PMQ-TX-01.2	May 15, 2015	Based on oif2014.099.05	M. Bouda
		- Reduction of SMT options to FPC only	
		- FPC option included in document body	
		- Added FPC mechanical specifications	

5 <u>Introduction</u>

This document details an Implementation Agreement (IA) for an optical integrated Polarization Multiplexed (PM) quadrature modulated transmitter for applications with nominal symbol rates of up 32 GBaud. While specifically addressing 100G PM-QPSK applications with FEC, this Implementation Agreement strives to remain modulation format and data rate agnostic whenever practical to maximize applicability to other future applications. This IA is expected to serve as a foundation for future MSAs.

6 **Functionality**

This Implementation Agreement specifies in detail a single opto-electronic module with the functionality contained in the yellow area enclosed by the bold line in Figure 1. This module will be referred to as Polarization Multiplexed-Quadrature Modulator or PM-Q Modulator.

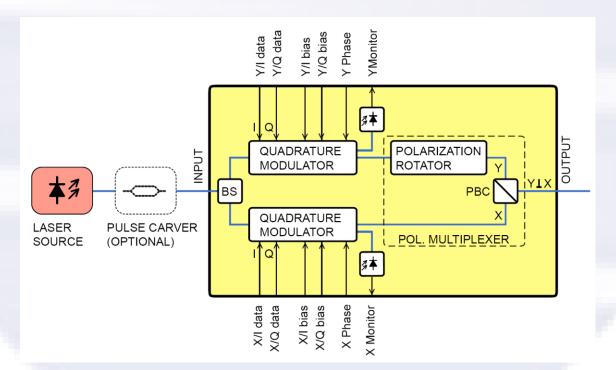


Figure 1 Functional diagram of a polarization multiplexed quadrature modulated integrated transmitter with a detailed functional diagram of the data modulator.

The optical power from an input fiber is divided into two parts and each part is independently modulated by a quadrature modulator. The resulting two modulated signals are combined with their polarizations orthogonal to each other, and output through an optical output fiber. The power in each of the two polarizations is independently monitored with photodiodes.

The quadrature modulators typically comprise two nested Mach-Zehnder modulators with bias control, a 90° phase shifter in the outer modulators with phase control, and an output power monitoring output. Any implementation or technology choices may be used to realize the same basic functionality.

As indicated in Figure 1, the PM-Q Modulator includes the following basic functional components:

- One optical input
- One optical power splitter
- Two independent quadrature modulators
- Two independent monitoring photodiodes
- One polarization multiplexer
- One optical output

The PM-Q Modulator module specified in this Implementation Agreement does not include drivers or any control electronics.

The following independent interfaces are specified for the PM-Q modulator:

- One optical input fiber
- One optical output fiber
- Four high-speed data interfaces
- Four modulator bias control interfaces
- Two phase control interfaces
- Two power monitoring interfaces

The two polarized components at the output are referred to as "X" and "Y", and the arms in which information is modulated onto the polarization component are correspondingly referred to as X and Y arms. Each quadrature modulator is driven by an "I" and a "Q" data signal. The four high-speed data interfaces are referred to as X/I, X/Q, Y/I and Y/Q data interfaces. Nominal phase shifts in the quadrature modulators between I and Q shall be the same in X and Y arms.

Each of the four data modulators needs to be biased with a suitable DC voltage. This IA specifies biasing pins supporting both single-ended as well as push-pull biasing. The naming of the bias pins is consistent with the naming of the high-speed data interfaces. The I and Q phase offset is controlled via phase control pins also supporting both single-ended as well as push-pull control. The phase offset between I and Q in X and Y arms is controlled by phase control interfaces X Phase and Y Phase respectively.

7 Electrical Interfaces

7.1 Mechanical Specification of Low-Speed Interface and Interface Locations

The mechanical specification of an 18-pin low-speed interface is shown in Figure 2. The low-speed pins are grouped in groups of 6 pins. The type of the low-speed pins, their length and their distance from the bottom plane of the modulator package are not specified.

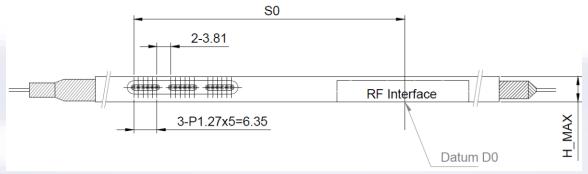


Figure 2 Specification of low-speed interface, and location of low- and high-speed interfaces relative to a Datum.

Figure 2 further defines the positions of both low-speed and high-speed interfaces relative to a Datum D0. Datum D0 is centered between the center lines of the high-speed connectors. The spacing between DC and RF interfaces is defined by parameter S0.

The applicable high-speed interface configuration and the values of H_MAX and S0 are specified in Table 7.

7.2 Mechanical Specification of High-Speed Interface Options

The high-speed data interfaces of the PM-Q Modulator module shall be coaxial GPPO-compatible or Flexible Printed Circuit (FPC), depending on modulator envelope type as specified in Table 7.

7.2.1 GPPO-Compatible High-Speed Interface Options

Figure 3 and Figure 4 define the 2+2 GPPO and 4 GPPO high-speed interface configurations.

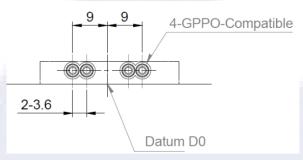


Figure 3 Mechanical specification of a "2+2 GPPO" high-speed interface.

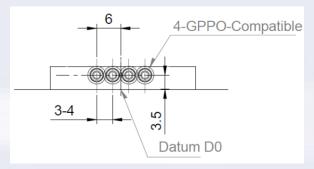


Figure 4 Mechanical specification of a "4 GPPO" high-speed interface.

7.2.2 FPC High-Speed Interface Option

Figure 5 and the relevant parameter values in Table 1 define the FPC High-Speed Interface configuration.

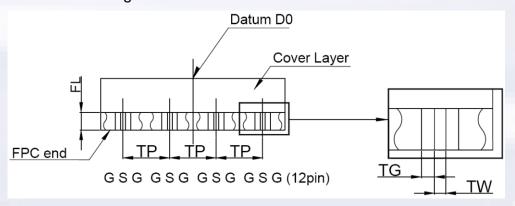


Figure 5 Mechanical specification of FPC high-speed interface.

In case the module is used inside a transponder package and is placed close to a transponder package wall as shown in Figure 6, the extent of the FPC landing pad is defined relative to Datum D1. Datum D1 is defined as the point of intersection between the center line of the High Speed Interface, the surface of the host PCB, and the inner wall surface of the transponder package.

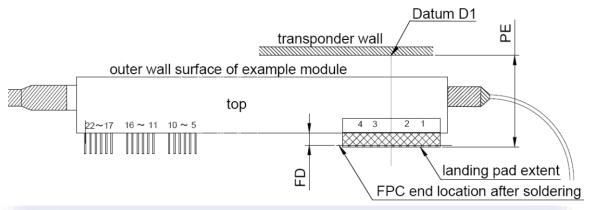


Figure 6 Landing pad extent and module wall to FPC-end distance.

Table 1 Mechanical specification of FPC high-speed interface.

Parameter	Symbol	Unit	Min.	Тур.	Max.
Signal trace pitch	TP	mm		4	
Signal trace width	TW	μm	300	350	400
Signal-Ground gap width	TG	μm	450	500	550
Landing pad extent on host PCB	PE	mm			14.5
Module wall to FPC-end distance	FD	mm	3.5	3.8	4.1
options	FD	mm	1.5	1.8	2.1
FPC solder length	FI	mm		1.5	
options	FL	mm		0.9	

7.3 Electrical Interface Pin Assignments

The pin numbering starts with the first high-speed data interface connector furthest from the low-speed pins and the pin number increases towards the opposite side.

A first electrical interface grouping, ordering and function are listed in Table 2. An alternative allowed electrical interface ordering is provided in Table 3. The alternative ordering in Table 3 interleaves corresponding X and Y polarization quadrature bias pins to minimize the electrical crosstalk between the I and Q modulator biases. The separation between the monitor photodiode cathodes is also maximized with this alternative ordering for crosstalk reasons.

Table 2 Electrical interface pin-out and function with multiple options for biasing and phase control.

Pin	Syr	nbol	Description		
1	Data_X/I		X-polarization in-phase data input		
2	Data_X/Q		X-polarization quadrature data input		
3	Data_Y/I		Y-polarization in-phase data input		
4	Data_Y/Q		Y-polarization quadrature data input		
5	Bias_Y/Q(p)	Bias_Y/Q	Y/Q modulator (positive) bias		
6	Bias_Y/Q(n)	GND or NC	Y/Q modulator neg. bias (push-pull) or GND or NC (single-ended)		
7	Bias_Y/I(p)	Bias_Y/I	Y/I modulator (positive) bias		
8	Bias_Y/I(n)	GND or NC	Y/I modulator neg. bias (push-pull) or GND or NC (single-ended)		
9	Bias_X/Q(p)	Bias_X/Q	X/Q modulator (positive) bias		
10	Bias_X/Q(n)	GND or NC	X/Q modulator neg. bias (push-pull) or GND or NC (single-ended)		
11	Bias_X/I(p)	Bias_X/I	X/I modulator (positive) bias		
12	Bias_X/I(n)	GND or NC	X/I modulator neg. bias (push-pull) or GND or NC (single-ended)		
13	Phase_Y(p)	Phase_Y	Y pol. phase (positive)		
14	Phase_Y(n)	GND or NC	Y pol. phase negative (push-pull) or GND or NC (single-ended)		
15	Phase_X(p)	Phase_X	X pol. phase (positive)		
16	Phase_X(n)	GND or NC	X pol. phase negative (push-pull) or GND or NC (single-ended)		
17	NC or Bias_Sub	est 1)	Not Connected or substrate bias 1)		
18	Y_A		Y-polarization photodiode Anode		
19	Y_C		Y-polarization photodiode Cathode		
20	GND		Ground		
21	X_C		X-polarization photodiode Cathode		
22	X_A		X-polarization photodiode Anode		
	•	sed for substrate	bias if needed. Otherwise the pin shall be		
N	ot Connected.				

Table 3 Alternative electrical interface pin-out and function with multiple options for biasing and phase control.

Pin	Symbol		Description		
1	Data_X/I		X-polarization in-phase data input		
2	Data_X/Q		X-polarization quadrature data input		
3	Data_Y/I		Y-polarization in-phase data input		
4	Data_Y/Q		Y-polarization quadrature data input		
5	Bias_Y/Q(p)	Bias_Y/Q	Y/Q modulator (positive) bias		
6	Bias_Y/Q(n)	GND or NC	Y/Q modulator neg. bias (push-pull) or GND or NC (single-ended)		
7	Bias_X/Q(p)	Bias_X/Q	X/Q modulator (positive) bias		
8	Bias_X/Q(n)	GND or NC	X/Q modulator neg. bias (push-pull) or GND or NC (single-ended)		
9	Bias_Y/I(p)	Bias_Y/I	Y/I modulator (positive) bias		
10	Bias_Y/I(n) GND or NC		Y/I modulator neg. bias (push-pull) or GND or NC (single-ended)		
11	Bias_X/I(p)	Bias_X/I	X/I modulator (positive) bias		
12	Bias_X/I(n)	GND or NC	X/I modulator neg. bias (push-pull) or GND or NC (single-ended)		
13	Phase_Y(p)	Phase_Y	Y pol. phase (positive)		
14	Phase_Y(n)	GND or NC	Y pol. phase negative (push-pull) or GND or NC (single-ended)		
15	Phase_X(p)	Phase_X	X pol. phase (positive)		
16	Phase_X(n) GND or NC		X pol. phase negative (push-pull) or GND or NC (single-ended)		
17	NC or Bias_Subst 1)		Not Connected or substrate bias 1)		
18	Y_C		Y-polarization photodiode Cathode		
19	Y_A		Y-polarization photodiode Anode		
20	GND		Ground		
21	X_A		X-polarization photodiode Anode		
22	X_C		X-polarization photodiode Cathode		

Pin 17 may be used for substrate bias if needed. Otherwise the pin shall be Not Connected.

7.4 Electrical Properties of Low-Speed Electrical Interface

The electrical properties related to the power monitor diodes are specified in Table 4. The opto-electronic properties of the optical modulator including the high-speed data interfaces are specified in Section 8.

Table 4 Low-speed interface electrical properties.

Parameter	Unit	Min.	Тур.	Max.	Remarks
Monitor PD Responsivity	mA/W	1)		1)	
Monitoring PD O/E Bandwidth	GHz	1			

¹⁾ Application Specific - because of the range of applications for this component, a specific value cannot be provided.

8 Opto-Electronic Properties

Electrical specification of the high-speed interface and opto-electronic properties are given in Table 5 at the end of life over the operating temperature and frequency ranges.

Table 5 Electrical and opto-electronic properties.

Parameter	Unit	Min.	Тур.	Max.	Remarks
S21 E/O Bandwidth (3dB)	GHz	23	71		3% smoothed, reference frequency at 1.5 GHz or 2 GHz
S11 Electrical Return Loss f ≤ 25 GHz 25 < f ≤ 32 GHz	dB	10 8			
Vpi_PRBS	V			3.5	Specified at PRBS31 at 32 GBd
Vpi_LF (*1)	V			3.4	Measured at 1.5 GHz or 2 GHz
RF Impedance	Ohm		50		
I/Q skew (*2)	ps			4	For each polarization component
Total skew (*3)	ps			10	
I/Q skew variation	ps			2	
Total skew variation	ps			5	

¹⁾ A module vendor shall provide data showing correlation between Vpi_LF and Vpi_PRBS, and specify a Vpi_LF that guarantees a Vpi_PRBS satisfying the requirements in this table.

Skew is defined as the maximum signal propagation time difference between physical signal channels, between electrical input and optical output interfaces. Skew includes any skew variation due to aging, temperature and any other effects.

²⁾ I/Q Skew is the skew between channel pairs X/I and X/Q, and Y/I and Y/Q.

³⁾ Total skew is the maximum skew between any of the four physical channels X/I, X/Q, Y/I and Y/Q.

9 Optical Properties

Optical properties of the optical modulator are listed in Table 6 at the end of life over the operating temperature and frequency ranges. Tighter parent and child MZI extinction ratio specifications may be required for certain applications such as PM-16QAM modulation (extended performance).

Table 6 Optical properties.

Parameter	Unit	Min.	Тур.	Max.	Remarks
Operating Frequency					At least one range
C-Band	THz	191.35		196.2	shall be supported in
L-Band		186.0		191.5	one device
Input power	dBm			18	Peak power
					All modulators at
Insertion loss	dB	1)		14	peak transmission,
					for each polarization
Insertion loss difference				1)	
between X and Y					
Optical return loss	dB	30			Input and output
Parent MZI ER					
Basic Performance	dB	20			
Extended Performance		22			
Child MZI ER					
Basic Performance	dB	20			
Extended Performance		25			
Polarization ER	dB	20			

¹⁾ Application Specific - because of the range of applications for this component, a specific value cannot be provided.

In case of polarization maintaining fiber, the optical connector key shall be aligned to the slow axis of the polarization maintaining fiber. The input fiber shall be polarization maintaining. Optical and opto-electronic specifications assume that a polarized input signal is launched into the slow axis of the input fiber.

The output fiber shall be either SMF or PMF.

10 Environmental Conditions

The typically expected operating temperature range is -5°C to +75°C. For the purpose of uniform calculation of the Failures In Time (FIT) rate, a fielded temperature of 55°C shall be used.

11 <u>Mechanical Properties</u>

The dimensions of mechanical envelopes depend on the application. Envelope parameters are defined in Figure 7 and Figure 8. A reference point or datum is used to reference the extent of the envelopes, as well as the location of all electrical interfaces.

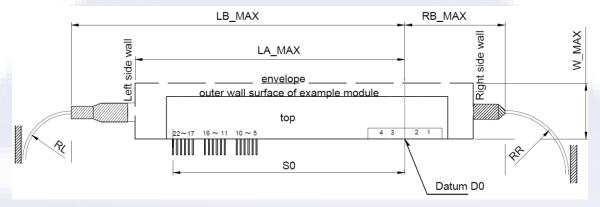


Figure 7 Location of Datum and dimensions related to Envelope Types 1, 2, and 3 (top view).

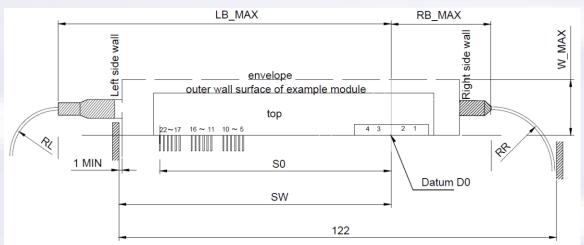


Figure 8 Location of Datum and dimensions related to Envelope Type 4 (top view).

Bend radii and boot lengths are not explicitly specified to avoid restricting the choice of implementation or technology.

Table 7 specifies four Envelope Types. Features and dimensions of Envelope Types 1 and 2 are derived from mechanical constraints of a 5"x7" transponder module application. Features and dimensions of Envelope Types 3 and 4 are derived from mechanical constraints of a 4"x5" transponder module application.

Table 7 Envelope Type features and dimensional parameters in mm.

Parameter	Type 1	Type 2	Type 3	Type 4	
High-speed interface	2+2 0	SPPO	4 GPPO or FPC		
Input fiber side wall	rig	ht	right		
Output fiber side wall	left	right or left	right or left	right or left	
Mounting hole side	bott	om	bottom		
S0	74.06		48.83	61.2	
SW	-	-	-	67.2	
RB_MAX	36.0	51.1	36.0	39.8	
LA_MAX		88.5	57.0	-	
LB_MAX	-	-	-	85.2	
for RR=20mm	98.8	-	89.3	-	
for RR=15mm	103.8	-	94.3	-	
W_MAX	13.5	20.0	20.0	13.5	
H_MAX	7	7	7		

Mounting holes shall be of type M2.

Appendix A: Glossary

AC Alternating Current

BS Beam Splitter
BW Band Width
DC Direct Current
E/O Electro-Optical
ER Extinction Ratio

FEC Forward Error Correction

FIT Failures In Time ffs for further study

GND Ground

IA Implementation Agreement
MSA Multi-Source Agreement
MZI Mach-Zehnder Interferometer

NC Not Connected

PBC Polarization Beam Combiner

PD Photo Diode

PMF Polarization Maintaining Fiber

PM-Q Polarization Multiplexed Quadrature QPSK Quadrature Phase Shift Keying

RF Radio Frequency SMF Single Mode Fiber

Appendix B: Examples of Additional Mechanical Details

This Appendix is informational and intended to avoid incompatible placement of alternate mounting holes and to provide other informative information that may be useful.

Mounting hole placement options are suggested in the area between the lowspeed and high-speed electrical interfaces, along the side wall with the electrical interfaces. Other holes will exist. At least one additional mounting hole shall be located at the side opposite the electrical interfaces.

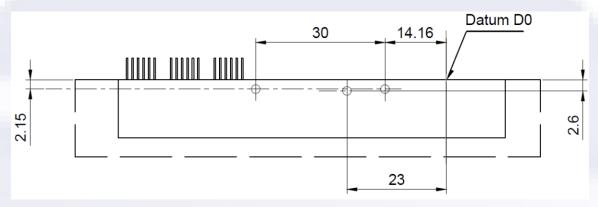


Figure 9 A subset of locations of potentially existing mounting holes for Types 1 and 2 (bottom view).

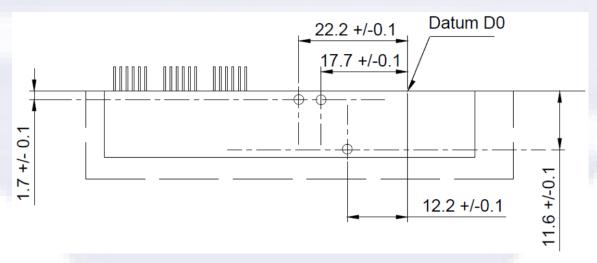


Figure 10 Potentially existing mounting holes for Types 3 and 4 (bottom view).

Boot lengths may vary from 21.2mm to 10.3mm depending on implementation.

Appendix C: Example of reference PCB interface design

This Appendix pertains to applications involving a modulator with FPC-type highspeed interface. The Printed Circuit Board (PCB) design example in Figure 11 is informational.

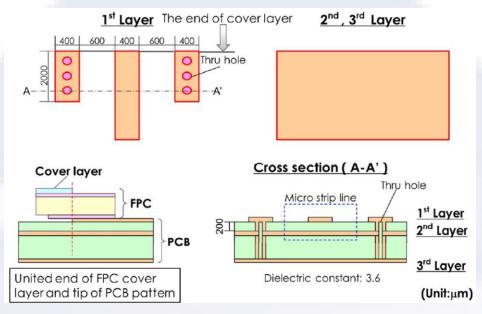
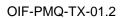



Figure 11 PCB interface design example.

Appendix D: Companies belonging to OIF when document was approved

Acacia Communications	Fujikura	NeoPhotonics
ADVA Optical Networking	Fujitsu	NTT Corporation
Alcatel-Lucent	Furukawa Electric Japan	O-Net Communications (HK) Ltd
Altera	Google	Oclaro
AMCC	Hewlett Packard	Orange
Amphenol Corp.	Hitachi	PETRA
Analog Devices	Huawei Technologies	Picometrix
Anritsu	IBM Corporation	PMC Sierra
Applied Communication Sciences	Infinera	QLogic Corporation
Avago Technologies Inc.	Inphi	Qorvo
Broadcom	Intel	Ranovus
Brocade	Ixia	Rockley Photonics
BRPhotonics	JDSU	Samtec Inc.
BTI Systems	Juniper Networks	Semtech
China Telecom	Kaiam	Socionext Inc.
Ciena Corporation	Kandou	Spirent Communications
Cisco Systems	KDDI R&D Laboratories	Sumitomo Electric Industries
ClariPhy Communications	Keysight Technologies, Inc.	Sumitomo Osaka Cement
Coriant R&G GmbH	LeCroy	TE Connectivity
CPqD	Luxtera	Tektronix
Deutsche Telekom	M/A-COM Technology Solutions	TELUS Communications, Inc.
Dove Networking Solutions	Mellanox Technologies	TeraXion
EMC Corporation	Microsemi Inc.	Texas Instruments
Emcore	Microsoft Corporation	Time Warner Cable
Ericsson	Mitsubishi Electric Corporation	US Conec
ETRI	Molex	Verizon
FCI USA LLC	MoSys, Inc.	Xilinx
Fiberhome Technologies Group	MultiPhy Ltd	Yamaichi Electronics Ltd.
Finisar Corporation	NEC	ZTE Corporation