Working Group:

TITLE:

Multi-Source Agreement for CW Tunable Lasers

SOURCE:

Jeff Hutchins

Editor; Communications Work Group Iolon 1870 Lundy Ave San Jose, CA 95131 USA Phone: +1 408 952 6923 Email: jeff@iolon.com

Karl Gass

PLL Working Group Vice Chair Sandia National Laboratories PO Box 5800, MS 0874 Albuquerque, NM 87185 USA Phone: +1 505 844-8849 Email: kgass@sandia.gov Mike Lerer PLL Working Group Chair Xilinx Box 636 Londonderry, NH 03053 USA Phone: +1 603 548 3704 Email: <u>mlerer@fpga.com</u>

DATE:

May 30, 2003

Project Name: Tunable Laser MSA-IA

Abstract: This contribution contains the MSA-IA for tunable lasers based upon OIF TL-01.1 (the OIF-IA for tunable lasers). It specifically addresses a common software protocol, control syntax, physical (electrical) interfaces, and relevant user application space specific parameters.

Notice: This contribution has been created to assist the Optical Internetworking Forum (OIF). This document is offered to the OIF solely as a basis for discussion and is not a binding proposal on the companies listed as resources above. Each company in the source list, and the OIF, reserves the rights to at any time to add, amend, or withdraw statements contained herein.

This Working Text represents work in progress by the OIF, and must not be construed as an official OIF Technical Report. Nothing in this document is in any way binding on the OIF or any of its members. The document is offered as a basis for discussion and communication, both within and without the OIF. For additional information contact:

The Optical Internetworking Forum, 39355 California Street,

Suite 307, Fremont, CA 94538

510-608-5990 phone ◆ info@oiforum.com

© 2002 Optical Internetworking Forum

Editor

iolon

Jeff Hutchins

jeff@iolon.com

Contributors

Agility Communications	k
Bookham	Т
Bookham	F
Cisco	Ľ
Corvis	Ľ
Intel	F
Intel	k
Lucent	5
Princeton Optronics	Т
Santur	J
Santur	C

Kevin Affolter Tim Simmons Richard Barlow Diego Marchese David Young Raj Batra Ken Koller Shuai Shen Tim Hayes Jay Kubicky Colin Chipman kaffolter@agility.com Timothy.Simmons@bookham.com richard.barlow@bookham.com dmarches@cisco.com dyoung@corvis.com Raj.batra@intel.com ken.koller@intel.com sshen2@lucent.com thays@princetonoptronics.com jay@santurcorp.com cchipman@santurcorp.com

Document Version: PV:1.2.0

1 OIF-TLMSA-01.0

1.1 Table of Contents

1	OIF	-TLMSA-01.0	. 3
	1.1	Table of Contents	. 3
	1.2	List of Tables	. 5
	1.3	List of Figures	. 5
	1.4	Document Revision History	. 6
	1.5	Project Summary	. 6
2	Ref	erences	
2	2.1	External Reference Documents	. 7
2	2.2	Conventions Used in This Document	. 7
3	Intro	oduction The OIF Tunable Laser MSA-IA	. 8
3	3.1	Scope	. 8
3	3.2	Objectives	. 8
3	3.3	Background	. 8
3	3.4	Design Objectives and Features	. 8
3	3.5	Communication Overview	10
	3.5.	1 Physical Interfaces	11
3	3.6	Command Overview	
	3.6.	1 Command Execution Overlap	11
	3.6.	2 Extended Addressing	12
	3.6.	3 Data Types	13
	3.	.6.3.1 Two Byte Data Values	
	3.	.6.3.2 Multi-byte Fields	
	3.6.		13
3	3.7		
	3.7.	1 Module Reset	14
	3.7.	2 Register Lockout for Write Access	14
	3.7.	3 Communication Error Detection	14
	3.	.7.3.1 Detection by Module	15
	3.	.7.3.2 Detection by Host	15
	3.7.	4 Execution Error Detection	15
	3.7.	5 Module Signaling Lines	15
	3.7.		15
4	Phy	sical Layer & Electrical Characteristics	16
2	4.1 ·	Module Electrical Interface	16
	4.1.	1 Electrical Connector	16
	4.1.	2 Pin Assignments	16
	4.1.	3 Electrical Characteristics	21
4	1.2	Communication Interfaces	22
	4.2.		
	4.2.	2 SPI Communications Interface	27
	4.2.	3 I ² C Communications Interface	32
5	Trai	nsport Layer	38
Ę	5.1	Överview	
Ę	5.2	Checksum	
Ę	5.3	CRC-16	39
Ę	5.4	Packet Pacing	40
6	Con	nmand Interface (Application Layer)	41
6	5.1	Command Format	

6.1.1	In-Bound (Host to Module)	41
6.1.2	Out-Bound (Module to Host)	41
6.2 Re	gister Summary	43
6.3 Co	mmand Description Format	46
6.4 Ge	neric Module Commands	
6.4.1	NOP/Status (NOP 0x00) [RW]	
6.4.2	Device Type (DevTyp 0x01) [R]	
6.4.3	Manufacturer (MFGR 0x02) [R]	
6.4.4	Model (Model 0x03) [R]	
6.4.5	Serial Number (SerNo 0x04) [R]	
6.4.6	Manufacturing Date (MFGDate0x05) [R]	
6.4.7	Release (Release 0x06) [R]	
6.4.8	Release Backwards Compatibility (RelBack 0x07) [R]	
6.4.9	General Module Configuration (GenCfg 0x08) [RW]	
6.4.10	IO Capabilities (IOCap 0x0D) [RW]	
6.4.11	Extended Addressing Mode Registers (0x09-0x0B, 0x0E-0x10) [RW]	
6.4.1	0 (
6.4.1		
6.4.1		
6.4.12	Assert CRC (WCRC 0x11) [W]	
6.4.13	Read CRC (RCRC 0x12) [R]	
6.4.14	Last Response (LstResp 0x13) [R]	
6.4.15	Download Configuration (DLConfig 0x14) [RW]	
6.4.16	Download Status (DLStatus 0x15) [R]	
6.4.17	Register Lockout (Lock 0x16) [RW]	
	dule Status Commands	
6.5.1	StatusF, StatusW (0x20, 0x21) [RW]	
6.5.2	Power Threshold (FPowTh, WPowTh 0x22, 0x23) [RW]	
6.5.3	Frequency Threshold (FFreqTh, WFreqTh 0x24, 0x25) [RW]	
6.5.4 6.5.5	Thermal Threshold (FThermTh, WThermTh 0x26, 0x27) [RW]	
6.5.6	SRQ* Triggers (SRQT 0x28) [RW] FATAL* Triggers (FatalT 0x29) [RW]	
6.5.7	ALM* Triggers (ALMT 0x24) [RW]	
	dule Optical Settings	
6.6.1	Channel (Channel 0x30) [RW]	
6.6.2	Optical Power Set Point (PWR 0x31) [RW]	
6.6.3	Reset/Enable (ResEna 0x32) [RW]	
6.6.4	Module Configuration Behavior (MCB 0x33) [RW]	
6.6.5	Grid Spacing (Grid 0x34) [RW]	
6.6.6	First Channel's Frequency (FCF1, FCF2 0x35 – 0x36) [RW]	
6.6.7	Laser Frequency (LF1, LF2 0x40 – 0x41) [R]	
6.6.8	Optical Output Power (OOP 0x42) [R]	
6.6.9	Current Temperature (CTemp 0x43) [R]	
	dule's Capabilities	
6.7.1	Optical Power Min/Max Set Points (OPSL, OPSH 0x50 – 0x51) [R]	
6.7.2	Laser's First/Last Frequency (LFL1/2, LFH1/2 0x52-0x55) [R]	
6.7.3	Laser's Minimum Grid Spacing (LGrid 0x56)	
	A Commands	
6.8.1	Module Currents (Currents 0x57) [R]	
6.8.2	Module Temperatures (Temps 0x58) [R]	
6.8.3	Analog & Digital Dither (Dither(E,R,A,F) 0x59-0x5C) [RW] [Optional]	
6.8.4	TCase Warning Limits (TCaseL, TCaseH 0x5D, 0x5E) [RW]	
	nufacturer Specific (0x80-0xFE)	
6.9.1	User Data Storage (User1 0xFF)	
7 Optical	Specifications	
	ical Characteristics	

7.1.1 Optical Parameter Definitions	
7.1.1.1 Spectral Linewidth	
7.1.1.2 SMSR (Side Mode Suppression Ratio)	
7.1.1.3 RIN (Relative Intensity Noise)	
7.1.2 Application Requirement 1 (Ultra Long Haul)	
7.1.3 Application Requirement 2 (Long Haul)	101
7.1.4 Application Requirement 3 (Metro)	102
7.2 Timing Specifications	
7.3 Module Warm Up Time	103
8 Mechanical Specifications	104
8.1 Module Mechanical Outline Dimensions	
9 Appendix – List of OIF Member Companies	105
10 Index	108

1.2 List of Tables

Table 3.3-1: List of Contributors to the OIF-IA	8
Table 3.6-1: Example Reading Module Status	11
Table 3.6-2: Extended Address Register Description	
Table 3.6-3: Extended Address Register READ Example	12
Table 3.6-4: Extended Address Register WRITE Example	
Table 3.7.2-1: Register Lockout Lock Levels	
Table 4-1 Pin Functions	
Table 4.1-1 Pin Assignments	17
Table 4.1-2 Pin Functions	
Table 4.1-3: Electrical Characteristics	21
Table 4.1-4: Absolute Maximum Ratings	
Table 4.2-1: Physical Interface Selection	
Table 4.2-2: Communication Interface Performance	
Table 4.2-3: Communication Byte Numbering	
Table 4.2-4 RS232 Physical Interface Pins	
Table 4.2-5 SPI Physical Interface Pin Table	
Table 4.2-6 SPI Physical Interface Pin Timing	
Table 4.2-7 I ² C-Bus Physical Interface Pin Table	
Table 5.3-1: CRC-16 Example	
Table 6.1-1: Packet Status Flags	
Table 6.2-1: Table of Registers (Commands)	
Table 6.4-1 Extended Address Space Mode Selection (EAM)	
Table 6.4.15-1 Firmware Download Example	
Table 6.4.15-2 Firmware Upload Example	
Table 6.4-3: Register Lockout Lock Levels	
Table 7-1: Optical Specification Requirement Matrix	
Table 7.1.2-1: Optical Specifications (Application 1)	
Table 7.1.3-1: Optical Specifications (Application 2)	101
Table 7.1.4-1: Optical Specifications (Application 3)	102
Table 7.2-1: Timing Specifications	
Table 7.3-1: Module Warm Up Time	103

1.3 List of Figures

Figure 3.5-1– Three Layer Communication Diagram	.10
Figure 3.6-1: Paradigms for Module Control	
Figure 4.1-1 Connector Pin Numbering	
Figure 4.2-1 RS232 Timing	
Figure 4.2-2 RS232 Communication or Execution Error Timing	

Figure 4.2-3 Alarm Timing	
Figure 4.2-4 SPI IOCLK Timing	
Figure 4.2-5 SPI Read (or Write) Timing, 1 Byte Host	
Figure 4.2-6 SPI Error Timing (Execution or Communication)	
Figure 4.2-7 SPI Transfer Timing	
Figure 4.2-8 Connection of Standard and Fast mode devices to the I ² C-Bus	
Figure 4.2-9 Bit transfer on the I ² C-Bus	
Figure 4.2-10 Start and Stop conditions	
Figure 4.2-11 Data Transfer on the I ² C-Bus	34
Figure 4.2-12 Acknowledge on the I ² C-Bus	35
Figure 4.2-13 A complete data transfer	
Figure 5.1-1: In-Bound (Host to Module) Frame	
Figure 5.1-2 Out-Bound (Module to Host) Frame	
Figure 5.1-3 Transport Layer Field Definitions	38
Figure 5.4-1 Packet Pacing Example	
Figure 8.1-1 Mechanical Outline Dimensions	104

1.4 Document Revision History

	Version	Date	Description
OIF-TL	_MSA-01.0	30 May 2003	Initial Document

1.5 **Project Summary**

The OIF has completed two tunable laser projects. The first project resulted in the <u>Tunable</u> <u>Laser Implementation Agreement</u>, OIF-TL-01.1 released in November 2002. It addressed the communication protocol, electrical interface and mechanical form factor interoperability for tunable continuous wavelength (CW) lasers. The document serves as a roadmap for future tunable device implementation agreements. However, as scoped, the first implementation agreement avoided defining certain application specifics such as optical performance. It also addressed a variety of options such as multiple module sizes.

In February 2003, the OIF began a new fast track project, the <u>Tunable Laser MSA</u> <u>Implementation Agreement</u> in the PLL Working Group. This MSA-IA builds upon the existing <u>Tunable Laser Implementation Agreement</u>, generating a more comprehensive specification of the optical, electrical, mechanical, and communication protocols. The project document is contribution OIF2003.048.04. The document passed straw ballot in April 2003 and Principal Member Ballot in May 2003, and is now in standard maintenance mode as implementation agreement OIF-TLMSA-01.0.

2 References

2.1 External Reference Documents

The following documents should be read in conjunction with this specification

OIF TL 01.1	OIF Tunable Laser Implementation Agreement (<u>www.oiforum.com</u>)
GR-468 CORE	General Reliability Assurance Requirements for Optoelectronic Devices Used in Telecommunications Equipment
CENELEC. EN50081-1	Electromagnetic Compatibility – Generic Emissions Standard part 1: Residential, Commercial and Light Industry
CENELEC. EN50082-1	Electromagnetic Compatibility – Generic Immunity Standard part 1: Residential, Commercial and Light Industry
CENELEC. EN50081-1	Electromagnetic Compatibility – Generic Emissions Standard part 2: Residential, Commercial and Light Industry
Philips 9397-750-00954	The I ² C Bus specification (January 2000)
EIA RS-232D	The RS232 Bus Specification
21CFR 1040.10	Laser Safety
IEC 60825-1	Safety Of Laser Products Part1: Equipment Classification, Requirements and Users Guide
ITU-T G692	Optical Interfaces For Multi-channel Systems with Optical Amplifiers

2.2 Conventions Used in This Document

Numeric Values:	
5, 05	Decimal
0x05	Hexadecimal
Bit Numbering	
-	Bit 0 is LSB ¹
Data Types	
Unsigned short int	16 bit, big endian
Signed short int	15 bit + 1, two's complement, big endian
Character	7-bit ASCII character (0x00 to 0x7F) (\0 is the null character)
Printable character	(0x20 to 0x7E)
String (ASCII)	All strings are null terminated string (first character bits are 15:8)
Data Direction	
Out-bound	Module to host transfer (Response packet)
In-bound	Host to module transfer (Command from host)

¹ LSB: Least significant bit

3 Introduction The OIF Tunable Laser MSA-IA

3.1 Scope

This document is a Multi-Source Agreement for tunable laser modules. It details a communication protocol, electrical interface, power supply, and optical specifications for use in telecommunications equipment operating in the C or L band. Mechanical form factors are also defined.

3.2 Objectives

The aim of this document is to form the basis for highly extensible performance agreements among tunable device manufacturers that, in addition to their individual contents, conform to this document. It recognizes that customers require the same communication protocol, electrical interface, power supply and mechanical form factor for tunable laser modules as well as a basic set of minimum optical performance requirements.

The OIF Tunable Laser MSA-IA is compliant with the OIF's Tunable Laser Interoperability Agreement (OIF-IA) and contains several of the anticipated extensions to the OIF-IA.

3.3 Background

The Optical Internetworking Forum (OIF) first began working on an Interoperability agreement (OIF-IA) in April 2001. Over the next 1.5 years, a large number of contributors from a wide variety of consumers and suppliers of tunable lasers were involved in contributing and reviewing the Interoperability Agreement. (See Table 3.3-1)

Name:	Company:	Name:	Company:
John Marchionda	ADC	Jeff Hutchins	iolon
Mike Peppler	Agere Systems	Eric Selvik	lolon
Sean Hannam	Agere Systems	Angel Molina	Lucent
James Moffat	Agere Systems	Shuai Shen	Lucent
Rang-Chen Yu	Agility Communications	George Pontis	New Focus
Stephen Scott	Agility Communications	Jose Downes	Nortel
Jim Blair	AMCC	Todd Stewart	Nortel
Charles Duvall	Bandwidth9	Peter Dartnell	Nortel
Yuan Li	Blue Sky Research	Larry McAdams	Picarro
Tim Simmons	Bookham Technologies	Steffen Koehler	Sparkolor
Larry Davis	Ciena	Jay Kubicky	Santur
Jay Lofthouse-Zeis	Coherent	Wes Stalcup	Texas Instruments
David Young	Corvis	Sinthia Khan	Texas Instruments
Raj Batra	Intel		

Table 3.3-1: List of Contributors to the OIF-IA

The OIF-IA can be found at <u>www.oiforum.com</u> as document OIF-TL-01.1.pdf at <u>http://www.oiforum.com/public/documents/OIF-TL-01.1.pdf</u>.

3.4 Design Objectives and Features

The OIF-IA was created with the following design guidelines in mind.

- o <u>Configurable</u>:
 - The tunable laser's behavior shall be configurable such that it can be used in a

number of different network equipment manufacturer's line card architectures and design philosophies.

Some examples:

- Three physical interface options are provided: I²C, RS232, SPI
- Alarms and service request behaviors are configurable as to trigger conditions as well as latching/non-latching behavior.
- Module reset on power on condition is configurable.
- o Efficient and Robust Communication Interface:

The command interface shall be robust and consume a relatively small fraction of the bus bandwidth. This allows interfaces such as 9600 baud RS232 to provide timely control of the module in the event of a SONET/SDH protection switch. The efficient interface also provides for high bus utilization for highly shared busses such as SPI and I^2C .

- Some examples:
 - The command interface consists of only 4 bytes per command. For instance, ~4ms is required to send a set channel command over RS232 and ~8us for a relatively pedestrian 4Mb/s SPI interface. Many other command interfaces require 7 or more bytes to transmit the same command.
 - The interface keeps all communications transactions relatively short such that commands can be interlaced. For example, a SONET/SDH protection event can be handled in a timely manner while the module's firmware is being uploaded.
- Extensible Platform for Communication Interfaces:
 - The OIF-IA communication protocol is designed around 3 independent layers:
 - Physical Layer: There are 3 physical interfaces to choose from. (I²C, RS232, SPI)
 - Transport Layer: Reliable data exchange (framing, checksums and error reporting, pacing)
 - Application Layer: General and specific commands

These features allow other tunable devices (such as tunable transmitters or receivers) to use the same protocol.

The application layer's command set has been divided into two groupings:

- The first group of commands deals with general module behavior as well as providing a way to determine what kind of module is present (tunable laser, tunable transmitter, etc.).
- The second group of commands is device type specific. This document describes the "*CW Laser*" device type.

The application layer also provides the ability to registers hold two object types: either 16 bit integers or an arbitrarily long sequence of bytes (multi-byte response). The command response identifies the response as either a 16-bit integer or multibyte response.

3.5 Communication Overview

The following diagram (Figure 3.5-1) depicts the communication process.

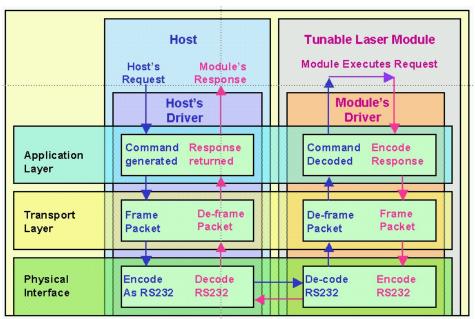


Figure 3.5-1– Three Layer Communication Diagram

Assume the host has a request to transmit to the module (Host's Request). The request is first encoded as a 28-bit command packet in the Host Driver's application layer. The command is then framed as a 32-bit packet in the host driver's transport layer. The framing operation includes the addition of a BIP-4² checksum. Finally, the host driver's physical interface (RS232 shown) encodes the 32 bit packet as 4 ten bit³ RS232 "characters" and transmits in across the TxD line to the module.

The module's physical layer receives 40 bits and de-codes them by removing the RS232 start and stop bits. The resulting 32-bit frame is delivered to the transport layer where checksum is checked for consistency. Assuming no error is generated, the 28-bit command packet is delivered to the module's application layer where the command is decoded and executed.

The command execution will generate a response when complete⁴. The response packet consists of 26 bits.

The response packet is delivered to the module's transport layer which frames the packet by pre-pending a checksum, communication error (CE), and a response flag. The resulting 32-bit packet is then delivered to the module's physical layer where it is then encoded as 40 bits.

² Bit Interleaved Parity (4 bits)

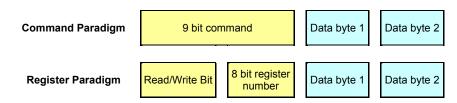
³ Note each byte to be transmitted by RS232 is encapsulated by a start and stop bit thus prepending 1 bit and post-pending 1 bit for a total of 10 bits for each byte to be transmitted.

⁴ Note that an initial response may also be generated for commands whose execution time exceeds the command response timeout period. The host can either poll for completion of the command or have pre-configured the module to issue a service request (SRQ) upon completion of the command.

The host then receives the 4 RS232 characters and performs the inverse operations as the packet moves up the host's layer hierarchy.

3.5.1 Physical Interfaces

The communications interface supports three physical layer protocols


- I²C
- RS232
- SPI

The interface to be used is determined at power up or hard reset by the state of the IOMode and IOMode1 pins (see §4.2) for the tunable laser module. Note that for a given application, the manufacturer need only implement the physical interface required by the user application.

3.6 Command Overview

The commands to the module consist of a 9-bit operation followed by 2 bytes of optional data. Alternatively, the command can be thought of as one read/write bit followed by an 8-bit register number followed by 2 bytes of optional data. See Figure 3.6-1. The register paradigm will be used in this document.

Figure 3.6-1: Paradigms for Module Control

There are 256 directly accessible registers (0x00 to 0xFF) in the primary register address space. The OIF-IA allocates the first 32 registers (0x00 to 0x1F) for generic module operations for all module types. Another 96 registers (0x20-0x7f) are reserved for device type "CW Laser". Finally, the remaining 128 registers (0x80-0xFF) are provided as manufacturing specific registers.

The following example shows how the module's status would be read.

 Table 3.6-1: Example Reading Module Status

	Command (Host to Module) Response (Module to Host)			Host)		
#	Operation	Register	Data Bytes (15:0)	Status	Register	Data Bytes (15:0)
1	Read	0x20 (StatusF)	0x0000	0x00 (Ok)	0x20 (StatusF)	0x0000
1	Note: Example shows that the module status is 0x0000 as returned in the response data.					

3.6.1 Command Execution Overlap

The application layer provides support for pending operations especially useful for operations that can take a significant period of time to complete⁵.

If a command is issued to the module that results in a long time to complete, the module will return a response packet within the specified time out period for the module and flag the operation as pending. The interface is now free to respond to additional commands. The host can determine when the pending operation completes by polling the NOP register (0x00). The NOP register returns the pending operation status as well as any error

⁵ Channel tuning is an example of a command which can take from 5ms to 10s to achieve depending on laser technology utilized.

conditions. Note that the module can be configured to generate an SRQ (Service Request) when a pending operation terminates operation in an error state.⁶ See §6.4.1 and §6.1.2.

3.6.2 Extended Addressing

Extended addressing provides an additional memory space (22 address bits) in addition to the primary 256 registers (8-bit address space).

The extended addressing feature consists of three registers described in Table 3.6-2.

Register	Description	Fields					
Configuration	Defines basic configuration for the extended address	Defines the address space high order address bits					
Address	Address of field in either physical or virtual memory space	Defines the 16 low order address bits					
Contents	Reading from this register returns data stored in this field 16 bits at a time Write to this register stores data into this field 16 bits at a time	16 bit data value					

 Table 3.6-2: Extended Address Register Description

Once the configuration and address registers are configured, the host may issue a series of read or write commands to the (indirect contents register) thereby accessing the memory location pointed to by the indirect register. The locations may map to physical or virtual memory spaces.

The configuration register and address registers are usually pre-configured when one of the primary registers is accessed which holds an object longer than a 16-bit integer.

For example, the device type of the laser is stored in register. The DevTyp register (0x01) requires the use of the extended address register. Table 3.6-3 shows an example where the DevTyp register is read and the module returns the 9-character string "CW Laser\0". The table shows a seventh entry showing what happens if the read extends beyond the available string length.

	Com	mand (Host to Mod	ule)	Response (Module to Host)						
#	Operation	peration Register Byt		Register Bytes (15:0)		Status	Register	Data Bytes (15:0)		
1	Read	0x01 (DevTyp)	0x0000	0x02 (AEA-flag)	0x01 DevTyp	0x0009 (# bytes in string)				
	Note: W	hen the Read is com	pleted, regis	ters (0x09, and 0x0A) are configured to po	int to proper field.				
2	Read	0x0B (AEA-EAR)	0x0000	0x00	0x0B (AEA-EAR)	0x4357 ("CW")				
3	Read	0x0B (AEA-EAR)	0x0000	0x00	0x0B (AEA-EAR)	0x204C (" L")				
4	Read	0x0B (AEA-EAR)	0x0000	0x00	0x0B (AEA-EAR)	0x6173 ("as")				
5	Read	0x0B (AEA-EAR)	0x0000	0x00	0x0B (AEA-EAR)	0x6572 ("er")				
6	Read	0x0B (AEA-EAR)	0x0000	0x00	0x0B (AEA-EAR)	0x0000 ("\0\0")				
7	Read	0x0B (AEA-EAR)	0x0000	0x01 (XE-flag)	0x0B (AEA-EAR)	0x0000				

 Table 3.6-3: Extended Address Register READ Example

Writing to an extended address field is handled in much the same way. The initial write causes the configuration and address registers to be preset to the appropriate values.

⁶ Some other interfaces such as the 300-pin transponder MSA do not allow command execution overlap.

Writing to the extended address register then stores the 16 bit values sequentially into the field.

	Com	mand (Host to Mod	ule)	Response (Module to Host)								
#	Operation	Register	Data Bytes (15:0)	Status	Register	Data Bytes (15:0)						
1	Write	0xFF (User1)	0x0000	0x00 (Ok)	0xFF (User1)	0x0100 (max 256 bytes in field)						
1	Note: Writing an AEA register with length 0x0000 above results in no AEA configuration and a return value of the maximum number of bytes in the field.											
2	Write	0x0FF (User1)	0x0003	0x02 (AEA flag)	0xFF (User1)	0x0000						
	Note: Writin	ig an AEA register wi	th a non-zero	o length (<mark>0x0003</mark>) res	ults in the module res	ponding with an AEA-						
	flag, configu	ration of the AEA reg	isters, and ir	nforms the module on	the length of the data	a to be stored.						
	Now write th	e byte sequence 0x0	1, 0x02, 0x0	3 to the User1 registe	er space							
3	Write	0x0B (AEA-EAR)	0x0102	0x00	0x0B (AEA-EAR)	0x0000						
4	Write	0x0B (AEA-EAR)	0x0300	0x00	0x0B (AEA-EAR)	0x0100 (pending)						
	Note: For some implementations, a write to the AEA-EAR may not complete in the time allotted due to the											
				or writing to non-volati								
	operation is	asserted and is clear	ed once the	background write to r	non-volatile memory i	s completed.						
5	Read	0x00 (NOP)	0x0000	0x00 (Ok)	0x00 (NOP)	0x0000 (completed)						

Table 3.6-4: Extended Address Register WRITE Example

3.6.3 Data Types

All of the general registers hold 16-bit data values or serve as pointers to a sequence of bytes (extended addressing mode). All values are stored as big endian, two's complement⁷.

3.6.3.1 <u>Two Byte Data Values</u>

Data is represented in the registers as either signed or unsigned 16 bit integers. Note that single byte values would be stored with the appropriate leading zeros.

Real values are stored with an implied decimal point location. For instance, the value "12.3 dBm" would be stored as 123_{10} in a field and has an implied formatting of one decimal place.

3.6.3.2 <u>Multi-byte Fields</u>

Fields holding data longer than 16 bits are stored as a sequence of bytes and accessed through the extended addressing register.

ASCII strings are terminated with a null. Note that the extended address register allows the host to read beyond a null termination but not beyond the maximum field size.

Integers, floats, or structures are stored as a sequence of bytes⁸.

3.6.4 Execution Error Field Conditions

The reason for an execution error (XE) can be determined by reading the NOP/Status register (NOP 0x00). Bits 3:0 encode the error field value. The following table describes the error conditions.

⁷ For instance, the number 256_{10} (0x0100) is stored as the byte sequence 0x01, 0x00. The string "HI" is stored as 0x48 ('H'), 0x49 ('I'), 0x00('\0').

⁸ For instance, the number 256_{10} (0x0100) is stored as the byte sequence 0x01, 0x00. The string "HI" is stored as 0x48 ('H'), 0x49 ('I'), 0x00('\0').

Error Field	Symbol	Meaning
0x00	OK	Ok, no errors
0x01	RNI	The addressed register is not implemented
0x02	RNW	Register not write-able; register cannot be written (may be locked or read only)
0x03	RVE	Register value range error; writing register contents causes value range error; contents unchanged
0x04	CIP	Command ignored due to pending operation
0x05	CII	Command ignored while module is initializing, warming up, or contains an invalid configuration
0x06	ERE	Extended address range error (address invalid)
0x07	ERO	Extended address is read only
0x08	EXF	Execution general failure
0x09	CIE	Command ignored while module's optical output is enabled (carrying traffic)
0x0A	IVC	Invalid configuration, command ignored
0x0A-0x0E		Reserved for future expansion
0x0F	VSE	Vendor specific error

3.7 Command & Module Features

3.7.1 Module Reset

The module provides four ways to accomplish reset.

	Reset Technique	Resulting Action
Hardware	Module Select (when MS* de-asserted and then re-asserted (specifically the low to high transition))	RS232: Clears input buffers, resets baud rate to default SPI: Terminates transfer, incomplete packets are discarded ⁹ . I ² C: Clears input buffers
	Reset (RST* low)	Traffic interrupting – reboots module.
Software	ResEna (0x32) (SR Bit = 1)	Aborts transfers in progress (FW download, AEA transfers)
Sonware	ResEna (0x32) (MR Bit = 1)	Traffic interrupting – reboots module.

3.7.2 Register Lockout for Write Access

Registers are classified as falling into one of four lockout levels as shown in Table 3.7.2-1. The lockout feature provides a degree of protection from altering registers which impact network traffic.

Lock Level	Description	Key Value	Key Length
0	Fully locked (all lockable registers are write protected	0x0	1
1	Partially unlocked – Lockable registers set 1 are unlocked Available for channel tuning etc.	MFG Specific	<20
2	Partially unlocked – Lockable registers set 2 are unlocked Available for Reset, firmware downloads, alarm thresholds, etc. (Basic module configuration)	MFG Specific	<20
3	All lockable registers are unlocked Normally reserved for manufacturer	MFG Specific	<20

Table 3.7.2-1: Register Lockout Lock Levels

Registers which are locked out can be unlocked for writing by writing a key (a series of unsigned chars) to the Lock register (0x16) through the AEA mechanism. See §6.4.17 Register Lockout (Lock 0x16) [RW].

3.7.3 Communication Error Detection

Communication error detection occurs on the module and host sides of the communication interface.

⁹ As determined by the BIP-4 checksum or optional CRC-16.

3.7.3.1 Detection by Module

The module examines the in-bound packets (host to module) to see if the checksum (see §5.2) or the optional CRC-16 (see §5.3) is consistent. An inconsistency results in a unprocessed response packet with the CE flag asserted in the out-bound packet.

When the host observes the CE flag, the last out-bound packet should be resent.

3.7.3.2 Detection by Host

The host examines the response packets for consistency by checking the checksum (see 5.2) and the optional CRC-16 (see 5.3) for the out-bound packet (module to host). If either the CRC or checksum is inconsistent, the host may request the module's last response to be retransmitted by reading the LstResp (0x13) register.

3.7.4 Execution Error Detection

Execution errors occur when the module is unable to execute the requested command. The module encodes the XE flag bit (execution error flag) in the response packet. When the host detects an XE flag in the response packet, it can read the NOP (0x00) register to determine the error field condition. The reasons for failure to execute a command are enumerated in §3.6.4-Execution Error Field Conditions.

3.7.5 Module Signaling Lines

The module has three hardware lines to signal its status.

- FATAL*
- SRQ*
- ALM*

The FATAL* line is used to signal fatal conditions which typically will cause shutdown of the optical output. The FATAL*, once asserted, remains asserted until the status register is cleared.

The SRQ* line is used to signal fatal conditions, warning conditions, or other module service request needs such as an execution error (XE) for a command processing in the background (pending operation) or a communication error (CE) which occurs on the SPI interface. The SRQ* line, once asserted, remains asserted until the status register is cleared.

The ALM* line is used to signal a warning condition. It remains asserted only during the time that the specified conditions occur. Due to the transient nature of the ALM* line, it is recommended to use the SRQ* to signal errors. The default module configuration specifies the ALM* to function as a LOCKED line¹⁰.

3.7.6 Non-Volatile Default Configuration

The command interface allows the current module configuration to be saved as the default configuration. The default configuration is restored upon hard reset (See §3.7.1 Module Reset) or upon power up. In the event of loss of power or hard reset during a save configuration request, the module's default configuration will remain unchanged. See (§6.4.9 General Module Configuration (GenCfg 0x08) [RW]).

¹⁰ Module locked on channel frequency.

4 Physical Layer & Electrical Characteristics

This section describes the electrical interfaces and the physical layer interfaces.

Charact	Tunable Laser Module	
Electrical Inter	face	§ 4.1
Dhysical	RS232	§ 4.2.1
Physical Interface	SPI	§ 4.2.2
menace	l ² C	§ 4.2.3

Table 4-1 Pin Functions

4.1 Module Electrical Interface

4.1.1 Electrical Connector

Module connector type: Samtec P/N FTSH-120-03-F-DV-ES or equivalent. PCB mounting connector type: Samtec P/N CLP-120-02-G-D-P or equivalent.

4.1.2 Pin Assignments

The y-pluggable module defines the pin numbering as shown in Figure 4.1-1.

	Module Bottom View																		
2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	٠	٠	٠	٠	٠
٠	٠	٠	٠	•	•	٠	•	٠	٠	٠	٠	•	٠	•	٠	•	٠	•	٠
1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39

Figure 4.1-1 Connector Pin Numbering

The OIF-IA specifies the pin assignments shown in Table 4.1-1. The pin functions are described in Table 4.1-2.

		U	
Pin	Pin #	Pin #	Pin
Vcc	1	2	DIS*
Vcc	3	4	MS*
Vcc	5	6	RST*
Vcc	7	8	SRQ*
GND	9	10	FATAL*
GND	11	12	ALM*
GND	13	14	TxD
GND	15	16	RxD
TRST (JTAG)	17	18	IRDY*
TDO	19	20	IOCLK
TDI	21	22	IOMODE
TMS	23	24	IOMODE1
тск	25	26	A0
ADITHER	27	28	A1
Mfg Spec	29	30	A2
Mfg Spec	31	32	Reserved
Mfg Spec	33	34	Reserved
Mfg Spec	35	36	Reserved
Mfg Spec	37	38	Reserved
Mfg Spec	39	40	Reserved

Table 4.1-1 Pin Assignments

Symbol	Туре	Name	Description					
0.115	-		Ground					
GND	Power	Ground	Note : Ground pins are tied together internally to the module.					
			Vcc					
VCC	Power	Vcc	Note: V _{CC} pins are tied together					
			internally to the module.					
			Purpose : Disables laser output and holds the module in RESET					
			Initial State: Low					
			Action: Laser OFF, TEC OFF,					
			Module CPU held in RESET, Communication protocol is OFF					
RST*	LVTTL input,	Reset	Resultant State: High, Must remain					
_	active low		high for laser to operate					
			Attributes: When active, lowest					
			current draw from the module. On low to high transition, module state is					
			latched in, such as with the IOMODE					
			pin.					
			Purpose : Provide hardware control to kill laser output.					
			Initial State: Any – user application					
			specific					
			Action: High = laser output controlled by protocol; Low = laser output OFF					
Diot	LVTTL input,	Disable module's	Resultant State: When DIS*					
DIS*	active low	optical output	asserted, communication protocol is					
			ON, software enable (SENA) reset.					
			Attributes: Bypasses communication protocol to turn laser OFF. Re-					
			enabling of the laser requires setting					
			SENA. Otherwise does not interfere					
			with module settings. Purpose : Signals that the module's					
			I/O interface is ready to receive a					
			packet.					
IRDY*	LVTTL output,	Communication interface Ready	Polarity : Ready asserted when IRDY* is low.					
	active low		Action: Upon being low, data may be					
			transmitted to the module (consistent					
			with the conditions of specific interface in use).					
			Purpose: General purpose service					
			request.					
			Initial State: High (No service					
			requested) Action: Generates request for service					
			as required to report a variety of					
			conditions by setting line low. SRQ*					
			is asserted when the result of the status (0x21) OR'd with SRQT trigger					
SRQ*	LVTTL output,	Programmable module service	(0x28) is non-zero.					
SKU	active low	request	Resultant State:					
			 Communication protocol is ON SRQ* conditions can be read and 					
			cleared through interface					
			Attributes: SRQ conditions (and					
			limits) are software configurable and can be re-configured by the user					
			through the interface. Status bits					
			must be cleared to de-assert SRQ*.					
			Line is latching.					

Table 4.1-2 Pin Functions

Symbol	Туре	Name	Description
FATAL*	LVTTL output, active low	Programmable module fatal flag	Purpose: To indicate FATAL condition has been triggered Initial State: High Action: Reports a variety of FATAL conditions by setting line low. FATAL* is asserted when the result of the fatal status (0x20) OR'd with FATALT trigger (0x29) is non-zero. Resultant State: • Laser output is OFF, if configured (SDF bit in 0x33) • Communication protocol is ON Attributes: Alarm sources and limits are software configurable and can be re-configured by the user through the interface. Line is latching. Default fatal alarm conditions: • Optical output power alarm condition • Frequency error condition • Thermal alarm condition • Technology specific alarm conditions
ALM*	LVTTL output, active low	Programmable module alarm	Purpose: Indicates laser is not in specified state Initial State: Dependent upon ALM* mask and laser's initial state. Action: Asserted (low) for whenever a variety of conditions occur by setting line low. ALM* is asserted when the result of the alarm (0x21) OR'd with alarm mask (0x2A) is non-zero. Line is cleared when condition goes away. Bit ADT in Register 0x33 (MCB) indicates that ALM* should be asserted when the appropriate bit in the alarm register (0x21 or'd with 0x2A) is set during tuning. Default Action: Asserts that laser is LOCKED on channel when high and low during tuning or other alarm conditions. Resultant State: High – when laser is in desired state Attributes: Positive indication to user that laser is in desired (programmable) state. This line is non-latching and may "chatter". Delays in assertion and de-assertion are manufacturer specific.
MS*	MS* LVTTL input, active low Module IO Select		Purpose: Provide hardware control to select IO interface. Initial State: Any – user application specific Action:High = Interface not active, TxD may be tri-state; Low = IO interface selected Resultant State: Communication can be commenced. Upon de-assertion, interface may be reset (soft reset) and packet terminated. Attributes: Provides ability to "bus" tunable and reset packet framing.

Symbol	Туре	Name	Description						
-			Purpose: Transmit outbound packets						
		M	from module (SPI, RS232)						
TxD	LVTTL tri-state	Module's Transmit Data	Polarity : Dependent upon physical interface selected.						
	output	Dala	Attributes: May be tri-stated for						
			appropriate interface.						
			Purpose: Receive inbound packets						
			from host; SDA for I2C						
RxD	LVTTL input, output (for I ² C)	Module's Receive Data	Polarity : Dependent upon physical interface selected.						
		Dala	Attributes: Receive ignores data						
			when module not selected						
			Purpose: To select one of three						
	LVTTL Input		physical communication interfaces.						
IOMODE			Polarity: IOMODE IOMODE1 Mode						
			1 0 RS232						
		Communication	0 1 I ² C						
		Interface Mode	1 1 Vendor						
		Select	specific						
	LVTTL Input		Action: Must not change during low to high transition of RST* when the						
IOMODE 1	Evilemput		MODE is latched in. No effect if						
			changed later. These pins are read						
			only on hard reset or power up.						
			Attributes: Allows user hardware to						
			select physical interface						
A0	LVTTL Input	Dhysiaal Interface	Address lines are only read on newer						
A1	LVTTL Input	Physical Interface Address Selection	Address lines are only read on power up or hardware reset to set device address (A2, A1, A0); A0 is the LSB.						
A2	LVTTL Input	Lines							
			Purpose: IOCLK pin for serial						
			interfaces such as SPI.						
IOCLK	LVTTL input	I/O Interface Clock	Polarity : Polarity defined in SPI §4.2.2 & I ² C §4.2.3.						
IOOEK		NO INCLUE OIOCK	Action: Specific behavior is specified						
			in SPI §4.2.2 & I ² C §4.2.3. No						
			interaction with the RS232 interface.						
TMS	LVTTL input	JTAG Mode Select	Ontional Mayba defined for us						
TDI TDO	LVTTL input LVTTL output	JTAG Data In JTAG Data Out	Optional – May be defined for use during PCB testing						
ТСК	LVTTL input	JTAG Clock							
TRST	LVTTL input	JTAG Reset	1						
			Optional –Externally AC coupled						
ADITHER	Analog Input	Analog Dither Input	input for the application of an arbitrary						
			dither waveform.						
			No user connection . Manufacturer Specific. Although Manufacturer						
			Specific pins can provide additional						
Monufactures		Monufacturar	flexibility to meet system needs, they						
Manufacturer Specific		Manufacturer Specific	can also be a source of						
Opeonio			interoperability issues. When utilizing						
			manufacturing specific pins, care must be taken by the integrator to						
			watch for potential conflicts						
			No user connection. Reserved pins						
OIF		OIF Reserved	are unavailable for vendor definition.						
Reserved			These are reserved for future OIF						
			implementation agreements.						

Param	eter	Symbol	Min	Тур	Мах	Unit
Supply voltage		V _{cc}	3.15	3.30	3.45	V
Supply current					3000	mA (Peak ¹¹)
Input voltage, low	v	VIL	0.0		0.8	V
input voltage, iov	v	V _{IL-I2C}	0.0		1.0	V
Input voltago, bio	, h	V _{IH}	2.0		3.45	V
input voitage, nig	Input voltage, high		2.3		3.45	V
Output voltage,	Output voltage, (I _{OL} = 4 mA)		0.0		0.6	V
low	(I _{OL} = 3 mA)	V _{OL-I2C}	0.0		0.4	V
Output voltage, h mA)	Output voltage, high (I _{OH} = -4 mA)		2.4		Vcc	V
Power supply noise (for power supplied to the module) (100Hz to 20MHz)					1.0	%rms
Analog Dithor	Input Voltage	VADITHER	0.0		2.0	Vp-р
Analog Dither Input ¹² (Optional)	-3dB Bandwidth ¹³	F _{ADITHER}	250			kHz
(Optional)	Input Impedance	Z _{ADITHER}	900		10000	Ohms

4.1.3 Electrical Characteristics

The module must be able to withstand the following conditions without permanent damage.

Item	Parameter	Symbol	Min	Max	Unit
2.2.1	Operating case temperature range	T _{CASE}	-5	+70	°C
2.2.2	Total power dissipation			10	W
2.2.3	Storage temperature range	T _{STORE}	-40	+85	°C
2.2.4	Storage relative humidity ¹⁴	RH	5	95	%
2.2.5	Operating relative humidity ¹⁴	RH	5	85	%
2.2.6	Signal pin voltage		-0.5	V _{CC} + 0.3	V
2.2.7	Power Pin Voltage		-0.3	3.6	V

¹¹ The instantaneous current cannot exceed 3 amps. ¹² Connection to the dither pin shall be made through an external AC coupling capacitor (C_{AC} >22 nF). Arbitrary waveforms can be applied to this pin. ¹³ A bandwidth of 250kHz provides the ability to support arbitrary waveforms to 50 kHz and

sinusoidal waveforms to 200kHz. ¹⁴ Non condensing

4.2 Communication Interfaces

The module supports multiple physical layer interfaces. The interface is determined during module boot up by the values on the IOMode and IOMode1 pins shown in the following table.

IOMode	IOMode1	Physical Interface Selected During Module Boot Up
0	0	SPI
1	0	RS232
0	1	I ² C
1	1	Vendor specific

 Table 4.2-1: Physical Interface Selection

The IoMode and IoMode1 pins only need to be defined during boot up¹⁵.

Inte	rface	Typical Clock Rate	Inter-byte Latency (Total) (us)	Time To Transfer 2 Packets (us)		
			(Min	Max	
RS	RS232 9.6 k-baud - 115.2 k-baud		1*5 us	694.4	8333.3	
SPI ¹⁶	4 byte host	1 MHz - 50MHz	6*0.5 +1*5 us	6.3	69.0	
011	1 byte host		1*5 us	9.3	72.0	
		Standard mode 100KHz		1752		
² (C ¹⁷	Fast mode 400KHz		522		
		High speed mode 3.4 MHz	0.2			

 Table 4.2-2: Communication Interface Performance

Any one module need only support one such interface for a given customer application. However, manufacturers may provide more than one physical interface option in a given module¹⁸.

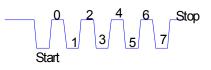
The communications interface transfer the 32-bit packet with the high order byte (byte 1) transmitted first.

Byte 1	Byte 2	Byte 3	Byte 4
Bits 31:24	Bits 23:16	Bits 15:8	Bits 7:0

¹⁵ Note a boot up sequence can initiated by either a power on event or a hard reset event.

¹⁶ The table shows two entries for SPI. The host can be either 1-byte transfer capable or a host can be at least 4-byte transfer capable. Both are supported with the 4-byte slave implementation. ¹⁷ Assumes that a packet must be received for every packet sent. Therefore, an I²C read packet

is required for the handshake increasing the total number of packets to 4.


¹⁸ Even if a module for a given application supports only one communication interface option, users are encouraged to set the logic levels appropriately on these pins in case new versions of the module or other second sources provide multiple interfaces.

4.2.1 RS232 Communications Interface

The RS232 interface uses a 3-wire implementation $(Tx, Rx + ground)^{19}$.

The default baud rate (for initial communication) is 9600 baud which remains in effect otherwise changed or reconfigured as a module default. The maximum supported baud rate is 115.2 kbaud.

The interface is configured as 8 bit, no parity, 1 stop bit, no echo, no flow control, and is fully capable of transferring binary data. The following figure shows the timing of a RS232 signal transmitting 0xAA. The LSB²⁰ is transmitted first²¹.

The interface generates LVTTL output signal levels.

The physical interface also provides an interface available line (IRDY*) which is used to pace communication on a packet level and is under the control of the transport layer.

The interface consists of the pins shown in the following table.

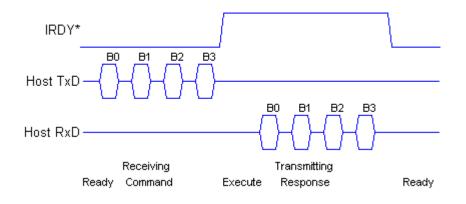

PIN	I/O		FUNCTION							
RxD	input	LVTTL se	rial input (break	signal is 0v)						
TxD	output	LVTTL se	LVTTL serial output (break signal is 0v)							
Gnd	ground	Ground	Ground							
MS*	input	LVTTL Mo	LVTTL Module Select (Used for RS232 Interface reset or tied							
		low) Does	s not deselect the	e interface.						
IRDY*	output	LVTTL (in	LVTTL (interface available/busy)							
IOMODE	Input	LVTTL (Select physical interface) IOMODE and IOMODE1 determine the physical interface to be used.								
			IOMODE	IOMODE1	Mode					
			0	0	SPI					
			1	0	RS232					
	Input		0	1	I ² C					
IOMODE1	mpac		1	1	Vendor Specific					

Figure 4.2-1 RS232 Timing shows the interface timing. The IRDY* indicates that a command is in process and that a packet will be returned. Once the packet is returned, the IRDY* line is asserted. The MS* line is not required to use the RS232 interface. It can be used to reset the serial interface and clear the I/O buffers on a low to high transition. By default, de-selecting the module and then reselecting the module (MS*= low to high transition) will reset the interface baud rate to the default. This behavior can be modified by changing the IOCAP register.

¹⁹ This physical interface may be better described as an ASYNC interface but is usually referred to by the industry as an RS232 implementation.

²⁰ Least significant bit

²¹ It is assumed that neither hardware or software flow control is needed to transfer a packet at the maximum data rate.

Note that de-asserting the MS* line does not tri-state the Tx line.

The following figure (Figure 4.2-2) also shows a case in which a CE or XE (communications error or execution error) is asserted. In this case the SRQ* line is not asserted for the default RS232 configuration. The conditions reflected by the assertion of SRQ* line are configurable (SRQ* Trigger register (0x28) which can include XE (execution error) or CE (communication error)).

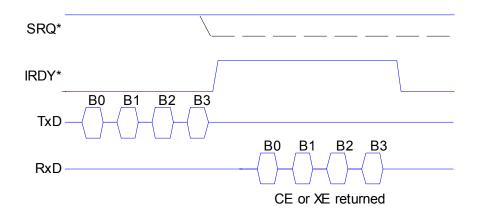
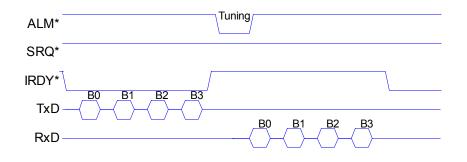



Figure 4.2-2 RS232 Communication or Execution Error Timing

If the command given was a tuning command, the ALM* line would be temporarily asserted. See Figure 4.2-3.

The alarm line is asserted only while the alarming condition exists. The conditions reflected by the assertion of the ALM* line are configurable. A typical use for the ALM* signal would be to assert when the module's output is not "locked" to a channel (ALM* = LOCK). This behavior is shown in Figure 4.2-3. The conditions for which this occurs are fully programmable.

Figure 4.2-3 Alarm Timing

The IOCap register has the following format when the RS232 interface is selected and assumes default values upon power up or hardware reset.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0x	C	RMS	0x0 ASCII Current Baud Rate		ate	Supp	orted B	aud Ra	tes					

Bits 0-3 - Maximum baud rate supported by the module²². (Not writable)

Bits 0-3 – Maximum badd rate supported by the module . (Not whable)
0x00 – 9600
0x01 – 19200
0x02 – 38400
0x03 – 57600
0x04 – 115200
0x05 – 0x0F – Undefined
Bits 4-7 – The module's currently configured baud rate (writable) (default 0x00)
0x00 - 9600
0x01 – 19200
0x02 - 38400
0x03 - 57600
0x04 – 115200
0x05 – 0x0F – Undefined
Bit 8 – ASCII - Enter ASCII interface debug mode when bit 8 is a 1, and exit when bit 8 is a 0.
Bits 9-11 Reserved
Bits 12 – RMS - Configurable action upon low to high transition of MS*
0x0 – Baud rate will be reset to default (0x00) and input buffer cleared upon low to high transitio
MS* (default). This bit is for RS-232 mode only it has no affect in SPI mode
0x1 - Clear the input buffers but do not reset the baud rate.
Bits 14-15 – Reserved (default 0x00)
Dis 14-15 – Reserved (deladit 0x00)
Note: Bit 8 of the RS232 Implementation's IOCap register, when set to one, sets the interface t
Note: Dit o of the Nozoz implementation o reody register, when set to one, sets the interface i

Note the interface to operate in ASCII mode. This feature is optional, and if not implemented, generates an XE (execution error). The response from the write IOCap is sent formatted as the interface was set to before bit 8 was set. Then the interface switches into the desired binary or ASCII mode.

Commands must then be given in the following ASCII readable format:

[R,W] <REG NO> <DATA><CR²³>. (Example string: "W 0x03 0x0000\r")

Responses will be likewise readable:

CE=[0,1] Status=[0-3] <REG NO> <DATA><CRLF²⁴>

to high transition of

²² The assumption is that the module will support all RS232 baud rates shown in the table to the specified maximum baud rate. ²³ CR – ASCII character 0x0D

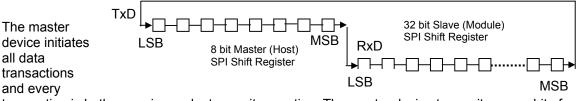
²⁴ CFLF – ASCII character sequence "0x0D + 0x0A"

(Example String: "CE=0 Status=0 0x03 0x0000\r\n")

To enter this mode, the command "W IOCap 0x0100\r" (0x0100 0x0100) is given. From a terminal keyboard, this is essentially the equivalent of pressing the <CR> key 4 times (0x0d0d, 0x0d0d). The interface can be reset to binary mode with the appropriate *write iocap* command or by sending any non-printable²⁵ ASCII character (other than <CR>. The binary character is not lost and becomes the first byte of the binary command. This allows the interface to be easily reset should the interface accidentally be placed into ASCII mode. No checksum is done with the ASCII interface enabled. Therefore a transmission error can put the interface into binary mode. Of course, this is easily recoverable by sending 4 <cr>

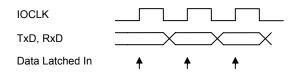
The 4 character '\r" (0x0d) sequence encodes the following: W 0x0D 0x0D0D (out-bound bytes 0-3)

7	6	5	4	3	2		1	0
	BIP-4	= 0x0		Re	eserved =	0x6		1
	_	_			_			
1	6	5	4	3	2		1	0
Register = 0x0D								
			i tegi		U			
			itegi					
			Regi		0			
15	14	13	12	11)	9	8
	14 ved 0x0	13 BCMS=0	12	11			-	8 ASCII=1
			12	11	1(-	0
			12	11	1(-	0


7	6	5	4	3	2	1	0
C	urrent Bau	d Rate=0x	(00	SI		Baud Rates red)=0xD	s (write

²⁵ Non-printable ASCII characters are 0x00-0x1F and 0x7F.

4.2.2 SPI Communications Interface


The SPI implementation used a standard 4-wire SPI interface with an additional line for communication packet pacing and an additional line for requesting attention. Both lines either can be used to generate interrupts or can be polled.

The Serial Peripheral Interface (SPI) is essentially a shift register that serially transmits data bits to other SPI ports. During a data transfer, one SPI system acts as the "master" which controls the data flow, while the other system acts as the "slave" which has data shifted into and out of it by the master.

transaction is both a receive and a transmit operation. The master device transmits a new bit of data on the RxD pin and the slave device drives a new data bit on TxD pin on each active clock edge. However, only one slave may drive its output to write data back to the master at any given time. The master can be either a 8 bit, 16 bit, or 32 bit master and the slave is 32 bits.

When the master is addressing the device, the module select signal (MS*) is driven low. The SPI slave device will immediately begin sending the transmit shift register contents to the TxD pin. The slave device also simultaneously reads the receiver shift register by shifting data in from the RxD pin. Thus a read and write transaction can be carried out simultaneously.

Figure 4.2-4 SPI IOCLK Timing

The SPI system consists of two data lines, a clock line, one control line, and a module select line.

PIN	SPI Name	I/O	FUNCTION
RxD	MOSI	input	LVTTL serial input M aster O ut S lave In - Abbreviated MOSI, this data line supplies the output data from the master which is shifted into the input(s) of the slave(s).
TxD	MISO	output	LVTTL serial output M aster In S lave O ut - Abbreviated MISO, this data line supplies the output data from a slave to the input of the master. There may be no more than one slave which is transmitting data during any particular transfer.
MS*	SS*	input	LVTTL serial input active low M odule S elect* - Abbreviated MS* (SS*), this control line allows slave's TxD to be turned driven or tri- stated. Can be used to reset the communication's interface.

PIN	SPI Name	I/O	FUNCTION
IRDY*	N/A	output	LVTTL (interface available/busy)
IOCLK	SCLK	Input	LVTTL serial input normally low I/O Clock - Abbreviated IOCLK (SCLK), this control line is driven by the master and regulates the flow of the data bits. The master may transmit data at a variety of baud rates; the SCLK line cycles once for each bit that is transmitted. This line is normally low. Inbound data is clocked on the rising edge and outbound data is clocked on the falling edge. The minimum clock speed ²⁶ is 1 MHz. All SPI devices will respond correctly at the minimum data rate. Faster data rates can be negotiated by reading the IOCAP register.
IOMODE	N/A	Input	LVTTL serial input IOMODE and IOMODE1 determine the physical interface to be used IOMODE IOMODE1 Mode 0 0
			1 0 RS232
			$\begin{array}{c c c c c c c c c c c c c c c c c c c $
IOMODE1	IOMODE1 N/A		1 1 Vendor Specific
			These pins are read only on hard reset or power up.
GND	GND	Ground	Ground

The tunable device always acts as a slave device in this implementation.

The communication occurs in packets of 4 byte transfers. The MS* line is held low during the entire 4 byte transfer. Raising the line anytime during the transfer aborts the packet transmission. Upon MS* returning high, the tunable device will begin any operations that were specified in the packet. The MS* line can be raised between an in-bound read command and the corresponding out-bound response.

The following figure shows the timing for 1 byte capable host. A 4 byte capable host would have the same "Load-Read" timing as the slave.

²⁶ A host may use any clock rate up to the maximum supported by the module. When a host first makes contact with a module, it can begin communications at a 1MHz clock rate or below to determine the maximum clock rate supported by the module. Further communication can be any clock rate up to the module's maximum supported clock rate.

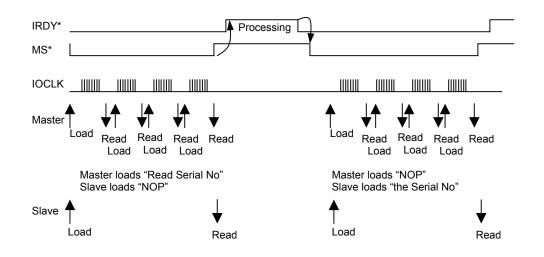


Figure 4.2-5 SPI Read (or Write) Timing, 1 Byte Host

The command is complete when the IRDY* line is low. If the command was a READ command, the response can be read. If the packet was a WRITE command, a NOP can be sent to read the status bits CE and XE.

In the event of an error (either communication error (CE) or execution error (XE)), the SRQ* (service request) line is asserted, if configured. See Figure 4.2-6.

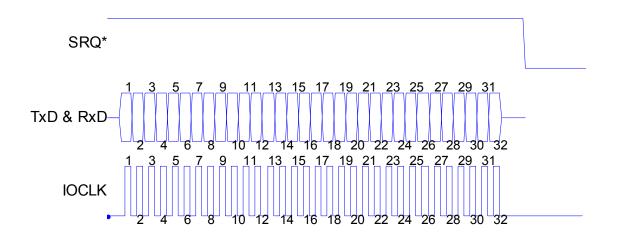
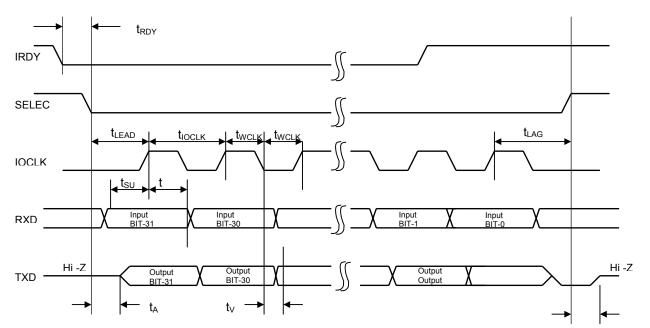


Figure 4.2-6 SPI Error Timing (Execution or Communication)


The SRQ* line stays low until the appropriate status register bits are reset by a command (the default behavior). If the condition persists after the reset, the SRQ* line will again be asserted.

The ALM* line is a non-latching version of SRQ and can be used to indicate loss of LOCK or any other programmable condition. When configured as a LOCK pin, it will be asserted during tuning.

The IOCap register has the following format when the SPI interface is selected and assumes default values upon power up or hardware reset.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0x000										SPI Da	ita Rate	9		

Bits 0-5 – Maximum SPI data rate specified in MHz as an unsigned integer value. For example, the data rate maximum would be 20 MHz if Bits 5-0 are 0x14. Bits 6-15 – Reserved (default: 0x00)

Figure 4.2-7 SPI Transfer Timing

Table 4.2-6 SPI Physical Interface Pin Timing

Parameter	Symbol	Min	Max	Units
Transfer Ready	t _{RDY}	30	-	ns
IOCLK Period	tioclk	50	-	ns
IOCLK high or low time	twclk	25	-	ns
SELECT to first clock	t _{LEAD}	25	-	ns
Last clock to SELECT	t _{LAG}	25	-	ns
DATA IN set up time	t _{s∪}	10	-	ns
DATA IN hold time	t _H	10	-	ns
Slave access time	t _A	-	15	ns
TxD data valid	t _V	-	15	ns
Slave disable time	t _{HO}	-	15	ns

4.2.3 I²C Communications Interface

Acknowledgement: Some text and figures for this section have been obtained from the **Philips** l^2 **C-Bus specification**.

 I^2 C-Bus is a simple bi-directional bus requiring only 2 bus lines – a serial data line (SDA) and a serial clock line (SCL) to communicate with multiple components attached to the bus. The I^2 C-Bus mechanical interface uses 5 connector pins – the clock, data line, and 3 address pins.

The data link physical layer shall comply with the Philips specifications as defined in the I²C-Bus Specification, Version 2.1, January 2000.

The 2 signals, Serial Data and Serial Clock, carry information between devices connected to the bus. Each device is recognized by a unique address and can operate as either a transmitter or receiver, depending on the function of the device. In addition to transmitters and receivers, devices can also be considered as masters or slaves when performing data transfers. A master is the device which initiates a data transfer on the bus, and generates the clock signals to permit that transfer, and terminates a transfer. At that time any other device connected to the bus is considered the slave, being addressed by the master. The I²C-Bus is a multi-master bus. More than one device capable of controlling the bus can be connected to it. The tunable module is connected as a slave only. The host is always the bus master.

Both SDA and SCL are bi-directional lines, connected to a positive supply voltage via a currentsource or pull-up resistor (see Figure 4.2-8). When the bus is free, both lines are HIGH. The output stages of devices connected to the bus must have an open-drain or open-collector to perform the wired-AND function. Data on the I^2 C-bus can be transferred at rates of up to 100 kbit/s in the Standard-mode, up to 400 kbit/s in the Fast-mode, or up to 3.4 Mbit/s in the Highspeed mode. The IOCAP register can be used to declare the maximum supported data rate. Note that the I^2 C specification calls for the fast and high-speed data rates to be compatible with the slow or standard mode. The number of interfaces connected to the bus is solely dependent on the bus capacitance limit of 400 pF.

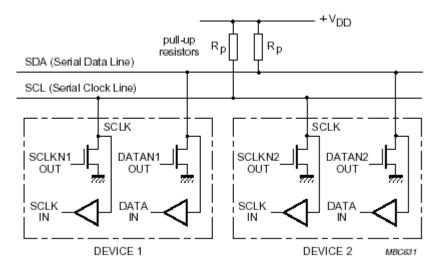


Figure 4.2-8 Connection of Standard and Fast mode devices to the I²C-Bus.

The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW (see Figure 4.2-9).

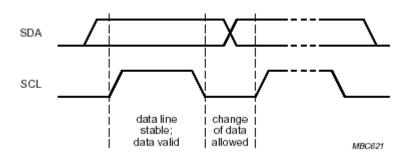
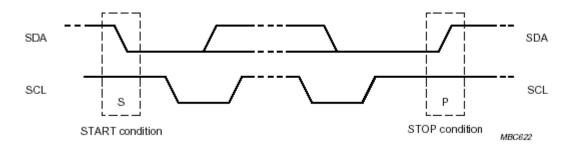
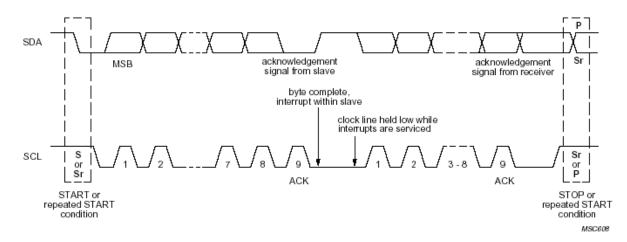



Figure 4.2-9 Bit transfer on the I²C-Bus


Within the procedure of the I²C-Bus, unique situations arise which are defined as START (S) and STOP (P) conditions (see Figure 4.2-10). A HIGH to LOW transition on the SDA line while SCL is HIGH is one such unique case. This situation indicates a START condition. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition. START and STOP conditions are always generated by the master. The bus is considered to be busy after the START condition. The bus is considered to be free again a certain time after the STOP condition. The bus stays busy if a repeated START (Sr) is generated instead of a STOP condition. In this respect, the START (S) and repeated START (Sr) conditions are functionally identical. Detection of START and STOP conditions by devices connected to the bus is easy if they incorporate the necessary interfacing hardware. However, microcontrollers with no such interface have to sample the SDA line at least twice per clock period to sense the transition.

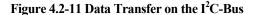
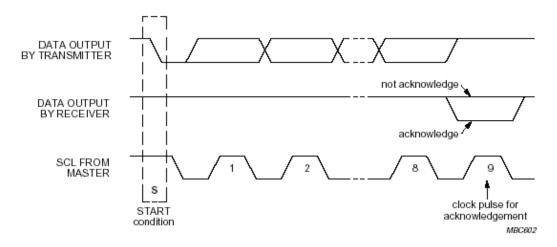


Figure 4.2-10 Start and Stop conditions


Every byte put on the SDA line must be 8-bits long. The number of bytes that can be transmitted per transfer is unrestricted. However, for the tunable module source – packets are restricted to 4 bytes and are governed by layers B and C. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first (see Figure 4.2-11). If a slave can't receive or transmit another complete byte of data until it has performed some other function, for example servicing an internal interrupt, it can hold the clock line SCL LOW to force the master into a wait state. Data transfer then continues when the slave is ready for another byte of data and releases clock line SCL. As a slave is capable of seizing the bus, a maximum wait state is imposed. A byte wait state shall not exceed the time of 1 minimum rate byte (9 bits including the acknowledge or 100 microseconds with a minimum rate of 90 kHz). The host shall not pause more than 1 minimum rate byte (9 bits including the acknowledge) between bytes of an ongoing message. The use of wait states is discouraged. A tunable module cannot use the clock line to indicate that a command in processing, before issuing a response. The module generates the

IRDY* line to indicate that a command is executing. The host can either monitor the IRDY* line or poll the module to determine when the command is complete.

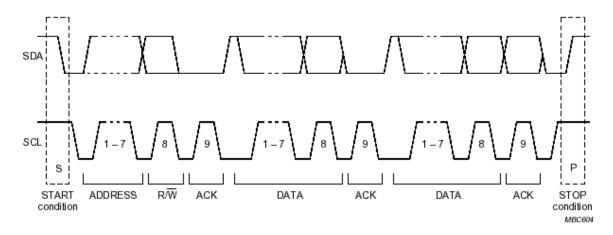

Data transfer with acknowledge is obligatory. The acknowledge-related clock pulse is generated by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse (see Figure 4.2-12). Of course, set-up and hold times must also be taken into account. Usually, a receiver which has been addressed is obliged to generate an acknowledge after each byte has been received. When a slave doesn't acknowledge the slave address (for example, it's unable to receive or transmit because it's performing some real-time function), the data line must be left HIGH by the slave. The master can then generate either a STOP condition to abort the transfer, or a repeated START condition to start a new transfer. If a slave-receiver does acknowledge the slave address but, some time later in the transfer cannot receive any more data bytes, the master must again abort the transfer. This is indicated by the slave generating the not-acknowledge on the first byte to follow. The slave leaves the data line HIGH and the master generates a STOP or a repeated START condition. If a master-receiver is involved in a transfer, it must signal the end of data to the slave- transmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slavetransmitter must release the data line to allow the master to generate a STOP or repeated START condition.

Figure 4.2-12 Acknowledge on the I²C-Bus

Bus arbitration and clock synchronization are considered beyond the scope of this document, and are described in the Philips I²C-Bus Specification. The tunable module may act only as a slave.

Data transfers follow the format shown in Figure 4.2-13. After the START condition (S), a slave address is sent. A device only responds to an I²C message when its own address and the address in the I²C frame match. The definition of the 7-bit address shall be xxxxyyy. The four most significant bits, xxxx, are specific to tunable sources and are defined as 1100 (allocated by Philips). The least significant bits, yyy, are specific to an individual module and are defined by the address pins A2, A1, A0. The address is then defined as "1 1 0 0 A2 A1 A0." This 7-bit address is followed by an eighth bit that is a data direction bit (R/W) - a 'zero' indicates a transmission (WRITE), a 'one' indicates a request for data (READ). A data transfer is always terminated by a STOP condition (P) generated by the master. However, if a master still wishes to communicate on the bus, it can generate a repeated START condition (Sr) and address another slave without first generating a STOP condition. Various combinations of read/write formats are then possible within such a transfer, which are described in the Philips I²C-Bus specification.

The I²C-Bus system requires 1 data line, 1 clock line. Each Tunable Laser module requires 3 address pins, which are hard wired to a fixed address code. I²C-Bus pins are defined in Table 4.2-7 below.

		Table 4.2-7	I ² C-Bus Physi	cal Interface Pin Table
PIN NO.	PIN	I ² C Name	I/O	FUNCTION
16	RxD	SDA	Input/output	LVTTL serial input/output Serial Data line
20	IOCLK	SCL	Input/output	LVTTL serial input/output Serial Clock line
26	N/A	A0	Input	LVTTL input
28	N/A	A1	Input	Address lines are only read on power up or hardware
30	N/A	A2	Input	reset to set device address (A2, A1, A0); A0 is the LSB.
22	IOMODE	N/A	laput	IOMODE and IOMODE1 determine the physical interface to be used. IOMODE IOMODE1 Mode 0 0 SPI
24	IOMODE1	N/A	- Input	$ \begin{array}{c cccc} 1 & 0 & RS232 \\ \hline 0 & 1 & l^2C \\ \hline 1 & 1 & Vendor \\ Specific \\ \hline These pins are read only on hard reset or power up. \end{array} $

PIN NO.	PIN	I ² C Name	I/O	FUNCTION
4	MS*	N/A	Input	LVTTL input Not required. Can be used to reset communications and clear transport layer communication buffers on a low to high transition
18	IRDY*	N/A	Output	LVTTL output, active low Controlled by the transport layer. Indicates when the unit is still executing a previous command and not ready for the response to be read.

An I²C-Bus interface does not require use the IRDY* (interface available/busy) pin although it is supported²⁷. The MS* (module select) pin is used only to clear in the input buffer and reset the communications interface²⁸. The bus is considered busy after generating a Start command, and is free after a Stop command. The packet length is a fixed size and is framed by the Start and Stop symbols. A module is selected using the I²C-Bus slave address bits, and does not require a separate select line.

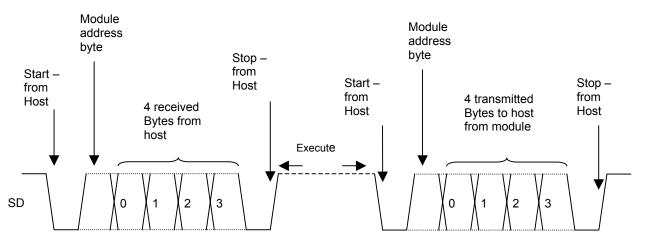


Figure 4.2-14 Receipt and Transmit of 4 Byte packets

The use of the Start and Stop commands is demonstrated in Figure 4.2-13 above, which shows how the 4-byte packets are received by the module and transmitted from the module.

The first transfer of the 4 bytes is an I^2C "W" command independent of whether the application layer command is a read or a write. When the module is finished processing, the host issues an I^2C "R" command to read the response. The application layer defines a maximum timeout for commands. If the module will exceed this time during the execution, the module will return a response which includes indication of a pending operation.

In either case, the host must either check the IRDY* line or poll the module through the I²C interface to determine if the module is ready with a response. The use of the IRDY* by the host is

²⁷ The IRDY* line can be used by the host to determine that the module is currently executing a command and not available for communication. This can be useful if the host is restarted while the module is executing a (long) command. If the IRDY* line not used, a polling scheme is required. It can also be used to advise the host when to continue clocking to read the response.
²⁸ The behavior is preserved to keep the transport and application layers identical although it is

not required for normal I²C operation.

purely optional but is provided for compatibility with the transport layer²⁹ as well as allowing for faster transfer rates by eliminating the bus transfers during polling³⁰.

The IOCap register is defined as follows for the I^2C bus.

•	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						(0x000							2	Support Data Ra	

Bits 2-0 – Maximum supported I²C data rate specified in the table below. Default manufacturer specific.

I ² C Data Rate Value (Bits 2,1,0)	I ² C Data Rate				
0x0	Standard	100kbits/s			
0x1	Fast	400 kbits/s			
0x2	High Speed	3.4Mbits/s			
0x3-0x7	Reserved				

Note that a given interface speed is compatible with all lower valued data rates.

Bits 15-3 - Reserved (default: 0x00)

 ²⁹ Note that the IRDY* line may be necessary under certain conditions depending upon the particular I²C implementation
 ³⁰ This also increases the availability of the I²C bus for use with other devices.

Transport Layer 5

5.1 Overview

The transport layer encapsulates the command and response packets to form a 32-bit frame. Figure 5.1-1 and Figure 5.1-2 depict the in-bound and out-bound frames. The transport layer is responsible for the fields in white. The application layer is responsible for the shaded fields below.

Note that the high order bit (left most bit) is numbered 31.

				8	,	
31	30	29	28		Bits 27:0	
Checksum					Command packet beir	ng framed

Figure 5.1-1: In-Bound (Host to Module) Frame

Figure 5.1-2 Out-Bound (Module to Host) Frame

31	30	29	28	27	26	Bits 25:0
Checksum		CE	Response	Response packet being framed		

Figure 5.1-3 Transport Layer Field Definitions

Field	In-Bound (Host to Module)	Out-Bound (Module to Host)		
Application Layer Packet to be Framed	28 bits Bits 27:0	26 bits Bits 25:0		
Checksum Bits 31:28	BIP-4 checksum computed over a 32 bit word with the leading 4 bits pre-pended to the 28 bit packet and set to zero.	BIP-4 checksum computed over a 32 bit word with the bits 31:28 set to zero and bits 27:26 defined by the transport layer prior to the BIP-4 computation.		
CE Bit 27 (Communication Error)	N/A	Bit set to logic 0 when the checksum (and/or optional CRC check) are consistent. Bit set to logic 1 when the checksum (and/or optional CRC check) are inconsistent.		
Response Flag Bit 26	N/A	Bit set to logic 1 when the response packet contains a response to a request to read (data returned). Bit set to logic 0 when the response packet contains no useable data ³¹ .		

Each in-bound and out-bound packet contains a 4 bit checksum. The checksum is computed over all the bits being encapsulated using a BIP-4 checksum. A CRC-16 is also available using registers 0x11-0x13

5.2 Checksum

The checksum is a BIP-4³² checksum is computed by xor'ing all the bytes in the packet together and then xor'ing the left nibble of the result with the right nibble of the result. The checksum provides a basic level of consistency check for the communications transfer.

³¹ Some physical interfaces such as SPI return response to every command even if the command didn't request any data to be returned.

Bits interleaved parity four bits wide

```
unsigned char calcBIP4 ( unsigned char* data )
   int i;
   unsigned char bip8=(data[0]& 0x0f) ^ data[1] ^ data[2] ^ data[3];
   unsigned char bip4=((bip8 \& 0xf0) >>4) ^ (bip8 & 0x0f);
   return bip4;
3
#include <stdio.h>
int main(int argc, char** argv) {
  int i, input char;
  unsigned char data[4];
  unsigned char bip4;
   if (argc!=5) {
      fprintf(stderr,"Usage: ChkSum hexdata0 hexdata1 hexdata2
hexdata3\n");
     fprintf(stderr," Example:Usage: ChkSum 0x0d 0x0d 0x0d 0x0d\n");
      exit(1);
   for (i=1; i<5; i++) {
     sscanf(argv[i],"%x",&input_char);
      data[i-1] = (unsigned char) input_char;
  bip4=calcBIP4(data);
  printf("Packet prior to checksum %2.2x %2.2x %2.2x %2.2x\n", data[0],
data[1],data[2],data[3]);
   data[0] = (bip4<<4); /* Add in the BIP-4 checksum */</pre>
   printf("Bip-4 checksum value is %x\n",bip4);
   printf("Packet with checksum %2.2x %2.2x %2.2x %2.2x \n", data[0],
data[1],data[2],data[3]);
```

5.3 CRC-16

For increased robustness of the communication interface, the module can be configured to support a full 16-bit CRC³³. This option is only recommended for implementations where the integrity of the communication's interface is paramount. The CRC-16 mode is enabled through the General Module Configuration register (0x08).

The CRC can be computed by the following C program.

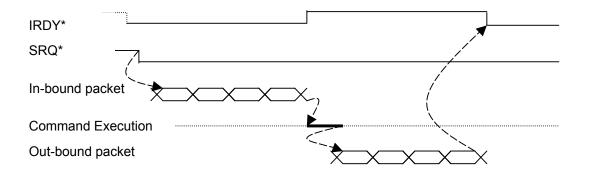
```
/* X16 + X15 + X2 + 1 */
#define CRC16
                   0xA001
unsigned short calcCRC( unsigned short crc, unsigned short data )
                                                                        {
   int i;
   for ( i = 8; i; i-- ) {
    if (( data ^ crc ) & 0x0001) crc = ( crc >> 1 ) ^ CRC16;
      else crc >>= 1;
      data >>= 1;
   }
   return crc;
}
#include <stdio.h>
int main(int argc, char** argv) {
   unsigned short crc = 0;
   int i;
   int data;
   if (argc!=5) {
      fprintf(stderr,"Usage: crc16 hexdata0 hexdata1 hexdata2 hexdata3\n");
      fprintf(stderr," Example:Usage: crc16 0x0d 0x0d 0x0d 0x0d\n");
      fprintf(stderr,"
                                          CRC-16 is 3a56\n");
      exit(1);
   }
   crc=0;
   for (i=1; i<5; i++) {
      sscanf(argv[i], "%x", &data);
      crc=calcCRC(crc,(short) data);
   }
```

³³ The CRC-16 is computed over the entire 32 bit packet including the BIP-4 checksum field.

```
printf("CRC-16 is %x\n",crc);
}
```

An example utilizing the CRC-16 capability is shown in Table 5.3-1.

		Command (Host to I	Module)	Response (Module to Host)				
#	Operation	Register	Data Bytes (15:0)	Packet	Status	Register	Data Bytes (15:0)	Packet
1	Write	0x11 (WCRC)	0x0A0A	0x1111, 0x0A0A	0x00	0x11 (WCRC)	0x0000	0x4411, 0x0000
2	Read	0x02 (Status Fatal)	0x0000	0x2020, 0x0000	0x00	0x20 (Status,fatal)	0x0000	0x6420, 0x0000
3	Read	0x12 (RCRC)	0x0000	0x3012, 0x0000	0x00	0x12 (RCRC)	0xFA1E	0x0412, 0xFA1E


Table 5.3-1:	CRC-16	Example
--------------	--------	---------

In step 1, the CRC-16 is computed for the full 32-bit command packet in step 2 and asserted by writing to the WCRC register. After the status register is read in step 2, the RCRC register is read to retrieve the CRC-16 value the module computed for its response packet in step 2.

For the in-bound command, the module will generate a CE (Communications Error) if the CRC-16 doesn't match the assertion in step 1. For the out-bound command, the host must compare the returned CRC-16 in step 3 with its own CRC-16 calculation on the response in step 2.

5.4 Packet Pacing

The physical interfaces use the IRDY* line (Interface Ready) to signal that the interface is available to receive the next packet. Figure 5.4-1 shows the IRDY* timing. This signal is required by the SPI interface but can improve the robustness of the other interfaces.

Figure 5.4-1 Packet Pacing Example

The host watches the IRDY* line. When it is low, the host can begin transmission of a command to the module. The IRDY* line goes high after the last byte of the packet is received. At the end of the packet, the module can decode it and begin execution. The IRDY* line will remain high and return low after the execution completes or terminates in error.

The module is never allowed to transmit an out-bound packet without a request from the host.

6 Command Interface (Application Layer)

6.1 Command Format

6.1.1 In-Bound (Host to Module)

The command packets consist of a 4 byte packet of which the lower 28 bits are used. The 4 high order bits are redefined by the transport layer (where the packet checksum is added). The shaded area shows the bits to be replaced by the transport layer.

<u>31</u> <u>30</u> <u>29</u> <u>28</u> <u>27</u> <u>26</u> <u>25</u>	24								
	24								
0x0 (To be defined by transport layer) 0x0	RW								
Inbound Byte 1									
23 22 21 20 19 18 17	16								
Register Number (0x00 – 0xff)									
Inbound Byte 2									
15 14 13 12 11 10 9	8								
Data 15:8									
Inbound Byte 3									
7 6 5 4 3 2 1	0								
Data 7:0									

6.1.2 Out-Bound (Module to Host)

The response packet consists of a 4 byte packet of which the lower 26 bits are used. The 6 high order bits contain a checksum and two flags which are redefined by the transport layer. The shaded area shows the bits to be replaced by the transport layer.

			Outbound	d Byte 0							
31	30	29	28	27	26	25	24				
	0x0 (To be defined by transport layer) Status										
			Outbound	d Byte 1							
23	22	21	20	19	18	17	16				
	Register Number (0x00 – 0xff)										
			Outbound	d Byte 2							
15	14	13	12	11	10	9	8				
			Data	15:8							
			Outbound	d Byte 3							
7	6	5	4	3	2	1	0				

Data 7:0

The status field (bits 25:24) take on one of the 4 values in Table 6.1-1.

Table 6.1-1: Packet Status Flags

Bits 1:0 Value	Status Field
0x00	OK flag, Normal return status
0x01	XE flag, (execution error)
0x02	AEA flag, (Automatic extended addressing result being returned or ready to write)
0x03	CP flag, Command not complete, pending

Bits 1:0=0x00, OK flag, Normal. No execution errors and not using AEA mode for returning result.

Bits 1:0=0x01, XE flag (Execution Error) signifies that the previous command failed to execute properly. (Bits 1:0) not equal 0x01 signifies that the previous command completed successfully or is pending.

Bits 1:0=0x02, AEA flag, (automatic extended addressing) mode, indicates that the register (for which a read or write operation has been given) requires a multi-byte sequence³⁴. The unsigned value is returned in bytes 2 and 3 and represents the number of bytes in the multi-byte response.

Bits 1:0=0x03, CP flag, Command pending (command not complete), indicates that the command will take longer than the maximum timeout specified for this device type.³⁵ In this case the module returns a response within the timeout period and continues to execute the requested operation. The host can poll the module's status register (0x00) through the communication's interface to determine if the operation has completed.

If the CP flag is set, the out-bound byte 3 will be 0x00 and out-bound byte 2 will have one of eight bits set (bits 15:8) showing which bit the pending operation has been assigned. Note that this bit mapping is identical to the bits 15:8 in the response of the NOP (x000) command.

³⁴ In the case where a write was done to a register that supports AEA, outbound bytes 2 and 3 are ignored. The write command will need to be repeated this time addressing the AEA-EAR register instead.

³⁵ Device types/classes are specific implementations of tunable devices. See §10.1 for a table of device type assignments

		rable	0.2-1.		gisters (Commands)
Command	Register Name	Read / Write	AEA	NV / Lock?	Description
General N	Iodule Comm	nands			
0x00	NOP	R/W			Provide a way to read a pending response as from an interrupt, to determine if there is pending operation, and/or determine the specific error condition for a failed command.
0x01	DevTyp	R	AEA		Returns device type (tunable laser source, filter, modulator, etc) as a null terminated string.
0x02	MFGR	R	AEA		Returns manufacturer as a null terminated string in AEA mode (vendor specific format)
0x03	Model	R	AEA		Returns a model null terminated string in AEA mode (vendor specific format)
0x04	SerNo	R	AEA		Returns the serial number as null terminated string in AEA mode
0x05	MFGDate	R	AEA		Returns the mfg date as a null terminated string
0x06	FW	R	AEA		Returns a manufacturer specific firmware releas as a null terminated string in AEA mode
0x07	RelBack	R	AEA		Returns manufacturer specific firmware backwards compatibility as a null terminated string
0x08	GenCfg	RW		NV Lockable 2	General module configuration
0x09	AEA-EAC	R			Automatic extended address configuration register
0x0A	AEA-EA	R			Automatic extended address (16 bits)
0x0B	AEA-EAR	RW		Lockable 1	Location accessed "thru" AEA-EA and AEA-EAC
0x0C	Reserved				
0x0D	IOCap	RW		NV Lockable 2	Physical interface specific information in string form (such as data rate, etc.)
0x0E	EAC	RW		Lockable 3	Extended address configuration register - auto incr/decr flag on read and on write and additional address bits
0x0F	EA	RW		Lockable 3	Extended address (16 bits)
0x10	EAR	RW	1		Location accessed "thru" EA and EAC
0x11	WCRC	W			Asserts CRC16 for next command packet
0x12	RCRC	R			Returns CRC16 for last response packet
0x13	LstResp	R			Returns last response
0x14	DLConfig	RW		Lockable 2	Download configuration register
0x15	DLStatus	R			Download status register
0x16	Lock	RW	AEA		Register Lockout Enable/Disable
0x17 – 0x1F	Reserved				

Module S	tatus Comma	nds			
0x20	StatusF	RW			Contains reset status, optical faults and alarms,
0,20	Statusi	RVV			and enable status.
0x21	StatusW	RW			Contains reset status, warning optical faults and
0/12	olaldott				alarms, and enable status.
0x22	FPowTh	RW		NV	Returns/Sets the threshold for the output power
				Lockable 2	FATAL condition encoded as ±dBm*100
0x23	WPowTh	RW		NV	Returns/Sets the threshold for the power warning
				Lockable 2	encoded as ±dBm*100
0x24	FFregTh	RW		NV	Returns/Sets the threshold for the frequency
-	•	-		Lockable 2	FATAL condition encoded as ±GHz*10
0x25	WFregTh	RW		NV	Returns/Sets the threshold for the frequency
		-		Lockable 2	error warning encoded as ±GHZ*10
0x26	FThermTh	RW		NV	Returns/Sets the threshold for thermal deviations
-				Lockable 2 NV	$(> \pm^{\circ}C^{*}100)$ at which FATAL is asserted.
0x27	WThermTh	RW			Returns/Sets the threshold for thermal deviations
				Lockable 2	$(> \pm^{\circ}C^{*}100)$ at which a warning is asserted. Indicates which bits in the Fatal & Warning status
0x28	SRQT	RW		NV	registers, 0x20-0x21, cause a SRQ condition and
0,20	ShQT	L.A.		Lockable 2	asserts the SRQ* line.
					Indicates which bits in the Fatal & Warning status
0x29	FatalT	RW		NV	register, 0x20-0x21, cause a FATAL condition
0/120				Lockable 2	and asserts the FATAL* line.
					Indicates which bits in the status registers, 0x20,
004				NV	0x21, cause an alarm condition and asserts the
0x2A	ALMT	RW		Lockable 2	alarm line (Default behavior asserted whether
					laser is LOCKED on frequency.
0x2B – 0x2F	Reserved				
	Optical Comma	ands	ļ	l	
			1	NV	Setting valid channel causes a tuning operation
0x30	Channel	RW		Lockable 1	to occur.
0.01	DIME	514		NV	Sets the optical power set point as encoded as
0x31	PWR	RW		Lockable 1	dBm*100
0,222	Deele			Lookoblo 1	Reset/Enable - Enable output, hard and soft
0x32	ResEna	RW		Lockable 1	reset
0x33	МСВ	RW		NV	Various module configurations
0,55	NICB			Lockable 2	-
0x34	GRID	RW		NV	Allows the grid spacing to be set for channel
0,04	GIND			Lockable 2	numbering.
0x35	FCF1	RW		NV	Allows the first channel's frequency to be defined
				Lockable 2	for channel numbering. (THz)
0x36	FCF2	RW		NV	Allows the first channel's frequency to be defined
	-			Lockable 2	for channel numbering. (GHz*10)
0x37 – 0x3F	Reserved				Reserved for OIF configuration registers
0x3F 0x40	LF1	R			Returns channel's frequency as THz
0x40 0x41	LF1	R	<u> </u>		Returns channel's frequency as GHZ*10
0x41 0x42	OOP	R	<u> </u>		Returns the optical power encoded as dBm*1000
0342		Л	<u> </u>		Returns the current temperature (monitored by
0x43	CTemp	R	AEA		the temperature alarm) encoded as °C*100.
0x44 –					
0x4F	Reserved				Reserved for OIF status registers
071	1	1	1	1	

Module Ca	apabilities						
0x50	OPSL	R			Returns the min possible optical po	wer setting	
0x51	OPSH	R			Returns the max possible optical p	ower setting	
0x52	LFL1	R			Laser's first frequency (THz)		
0x53	LFL2	R			Laser's first frequency (GHz*10)		
0x54	LFH1	R			Laser's last frequency (THz)		
0x55	LFH2	R			Laser's last frequency (GHz*10)		
0x56	LGrid	R			Laser's minimum supported grid sp (GHz*10)	bacing	
MSA Com	mands						
0x57	Currents	R	AE A		Return module specific currents		
0x58	Temps	R	AEA		Return module specific temperatures		
0x59	DitherE	RW		NV Lockable 1	Digital dither enable		
0x5A	DitherR	RW		NV Lockable 2	2 Digital dither rate Op		
0x5B	DitherF	RW		NV Lockable 2	Digital dither frequency modulation	features	
0x5C	DitherA	RW		NV Lockable 2	Digital dither amplitude modulation		
0x5D	TCaseL	RW		NV Lockable 2	Sets the lower boundary for a warr temperature	iing on case	
0x5E	TCaseH	RW		NV Lockable 2	Sets the upper boundary for a warr temperature	ning on case	
0x5F- 0x7F	Reserved						
Manufactu	irer Specific						
0x80-0xFE	Manufacturer Specific						
0xFF	User1	RW	AEA	NV Lockable 1	User area 1 – Store / retrieve user	data	

6.3 Command Description Format

The commands are described using 5 sections (note the shaded boxes in the table represent fields that are not applicable):

- 1) **Purpose** Describes the basic purpose of the command.
- Synopsis Tabular format summarizing the command behavior and arguments
- Returns Tabular format summarizing the possible returns for successful and error conditions.
 - Status field (register 0x00)
 - Error condition field (0x00)
 - Data value (16 bit)
 - Effect on module
 - Execution time
 - Pending operation
- 6.3.1 NOP/Status (NOP 0x00) IRWI urpose The NOP register provides a way access the module status returning pending operation status and the current value of the error field. This register may be read upon receiving an execution error for an immediately preceding command It can also be polled to determin the status of pending operations. mopsis Register Register Name Number Can Be Data Type Read or Writter Read / Write Response Generated Default Contents s15;8: 0x00 (pen ding bits) Bits 7:4: 0x0 (reserved) R Unsigned short <5 ms No Volatile NOF 0:00 its 3:0: 0x0 (error field) Unsigned short w <5 ms Returns Data Value Retur Response Upo Successful Read Successful Write Error on Read Error on Write Status Reid Returned: RNMC CIP CIL EXE o Error Condition Field: οк CIP, CII, EXF, or VSE USE Pending command status (bits 15:8) and error condition field ame as was sent)×0000 0000x Data Value error condition field (bits 3:0) None, by definition None, by definition Error field set rror field se Impact on Module <5ms <5ms <5ms xecution Time <5ms Never Pending Operation: Never Detailed Description A write to the NOP register is allowed but the contents are not loaded with the data value from the write command. h ata Value Description 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
- 4) **Detailed Description** Describes the detailed behavior of the command
- 5) **Data Value Description** Describes the data value for the command.

Section Register Name Register Number Read / Write Data Type Response Generated Can Be Pending? Volatile? Access? Default Contents describes the NOP 0x00 R Unsigned short <5 ms No Volatile? Bits15:8: 0x00 (pending bits)	The	Synopsis:							
the following: NOP 0x00 R Unsigned short <5 ms No Volatile bits 0.000 (pertaining bits 3:0: 0x0 (pertaining bits)) Bits 7:4: 0x0 (reserved) Bits 3:0: 0x0 (error field)	section	Register	Register						Default Contents
W Unsigned short <5 ms No Not locked	the	NOP	0x00	R	Unsigned short	<5 ms	No	Volatile	bits)
				W	Unsigned short	<5 ms	No	Not locked	

Every

command will show two lines; one for read and one for write. In the case of a read, the data value type is shown for the response packet. For a write, the data value type is shown as the operand of the command. (Note the shaded boxes in the table represent fields that are not applicable):

- 1) The "**Response Generated**" column indicates the maximum interval of time from when the command is acknowledged by the module until the module will generate a response. The transmission time of the response is dependent on the physical interface data rate and characteristics. See §4.2-Communication Interfaces.
- 2) The "**Can Be Pending**" column indicates if the command is allowed not to finish in the "Response Generated" time interval.
- 3) The "Volatile" column, if contains *non-volatile*, indicates that the default value loaded during power up or hard reset is loaded from non-volatile memory³⁶. The defaults may be configured and stored using the GenCfg:SDC operation. See §6.4.9-General Module Configuration (GenCfg 0x08) [RW].
- 4) The "Access" column indicates if the register can be locked for write access through the module's register lockout capability. Lockable registers have four lock levels. See §6.4.17-Register Lockout (Lock 0x16) [RW].

³⁶ The default configuration is typically user application specific and once configured is expected to be infrequently modified. Most of these parameters are defined as lock level 2.

5) Where relevant, the "**Default Contents**" column indicates what the default contents would be for a freshly booted or reset module. Note that registers marked non-volatile have defaults values set by the GenCfg:SDC operation.

The **Returns** section describes the following for successful and failed read and write operations.

- 1) **Status Field Returned**: The value in the status field (bits 25:24) in the out-bound response (module to host).
- 2) **Error Condition Field**: The possible values contained in the NOP (0x00) commands error field because of the command's execution or failure to execute.
- 3) **Data Value**: A description of the data value contained in the modules response.
- 4) **Effect on Module**: Indicates the resultant state of the module after requested operation has terminated.
- 5) **Execution Time**: The maximum time for the command to complete execution. Note this is different than the generation of a response described in the previous table.
- 6) **Pending Operation**: Indicates whether a successful command can return before the command has completed execution.

Returns									
	Data Value Returned in Response Upon								
	Successful Read	Successful Write	Error on Read	Error on Write					
Status Field Returned:	ок	ок	XE	XE					
Error Condition Field:	ок	ок	CIP, CII, EXF, or VSE	RNW, CIP, CII, EXF, or VSE					
	Pending command status (bits 15:8) and error condition field (bits 3:0)	Same as was sent	0x0000	0x0000					
Impact on Module	None, by definition	None, by definition	Error field set	Error field set					
Execution Time:	<5ms	<5ms	<5ms	<5ms					
Pending Operation:	Never	Never							

6.4 Generic Module Commands

6.4.1 NOP/Status (NOP 0x00) [RW]

Purpose

The NOP register provides a way to access the module's status, returning pending operation status, and the current value of the error field. This register may be read upon receiving an execution error for an immediately preceding command. It can also be polled to determine the status of pending operations.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
NOP	0x00	R	Unsigned short	See §7.2	No		Bits15:8: 0x00 (pending bits) Bit 7:6: Locked (non- volatile) Bit 5: MRDY (0x0) Bit 4: 0x0 (reserved) Bits 3:0: 0x0 (error field)
		W	Unsigned short	See §7.2	No	Not locked	

Returns

		Data Value Returned in Response Upon							
	Successful Read	Successful Write	Error on Read	Error on Write					
Status Field Returned:	ОК	ОК	XE	XE					
Error Condition Field:	OK	ОК	CIP, CII, EXF, or VSE	CIP, CII, EXF, or VSE					
Data Value:	Pending command status (bits 15:8), Bit 7:6, 4, and error condition field (bits 3:0)	Same as was sent	0x0000	0x0000					
Effect on Module	None, by definition	None, by definition	Error field set	Error field set					
Execution Time:	See §7.2	See §7.2	See §7.2	See §7.2					
Pending Operation:	Never	Never							

Detailed Description

A write to the NOP register is allowed but the contents are not loaded with the data value from the write command.

Data Value Description

15	14	13	12	11	10	(ł	7	6	5	4	2	1	0
	Pending Operation Status						Lock	ed	0x0	MRDY	Error	r Field	b	

Bits 15:8 – Pending Operation Flags

A series of eight flag bits indicating which operations, if any, are still pending. Each operation that becomes pending is assigned one of these four bit positions. The module can be periodically polled (by reading the NOP register) to determine which operations have completed. A value of 0x0 indicates that there are no currently pending operations.

Bit 7:6 - Locked

When non-zero, indicates that the registers listed as "Lockable" are locked or read only as per the lock level. Note that the module's default lock level is configurable with GenCfg:SDC.

When "0", indicates that all the registers listed as "Lockable" are write-able. Bit 5– Always 0x00 (Reserved) Bit 4 – MRDY - Module Ready³⁷

When "1" indicates that the module is ready for its output to be enabled When "0" indicates that the module is not ready for its output to be enabled.

Bits 3:0 – Error field – Error condition for last command

A read of the NOP register will return the error condition from the last command before setting it to 0x00 to reflect the status of the current command (which is reading the NOP register).

Value (Bits 3:0)	Symbol	Meaning
0x00	OK	Ok, no errors
0x01	RNI	The addressed register is not implemented
0x02	RNW	Register not write-able; register cannot be written (may be locked or read only)
0x03	RVE	Register value range error; writing register contents causes value range error; contents unchanged
0x04	CIP	Command ignored due to pending operation
0x05	CII	Command ignored while module is initializing, warming up, or contains an invalid configuration.
0x06	ERE	Extended address range error (address invalid)
0x07	ERO	Extended address is read only
0x08	EXF	Execution general failure
0x09	CIE	Command ignored while module's optical output is enabled (carrying traffic)
0x0A	IVC	Invalid configuration, command ignored
0x0B-0x0E		Reserved for future expansion
0x0F	VSE	Vendor specific error (see vendor specific documentation for more information)

The device type register is provided such that a host can distinguish between different types of tunable devices.

6.4.2 Device Type (DevTyp 0x01) [R]

Purpose:

DevTyp returns the module's device type. For all tunable lasers covered by this MSA, the module will return the null terminated string "CW Laser\0" (nine bytes including the terminating null character) indirectly through the AEA mechanism. The device type register is provided such that a host can distinguish between different types of tunable devices.

<u>Synopsis:</u>

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
DevTyp	0x01	R	AEA (string)	See §7.2	No		0x0009 ➔ "CW Laser\0"
51		W					

³⁷ De-asserted during module warm up time (see §7.3-Module Warm Up Time) or if an invalid configuration detected. Asserted when module is ready to enable output and carry traffic.

		Data Value Return	ned in Response Upor	1
	Successful Read	Successful Write	Error on Read	Error on Write
Status Field Returned:	ОК		XE	
Error Condition Field:	OK		CIP, CII, EXF, or VSE	
Data Value:	0x0009 ➔ "CW Laser\0"		0x0000	
Effect on Module	AEA registers configured to reference string		Error field set	
Execution Time:	See §7.2		See §7.2	
Pending Operation:	Never			

<u>Returns</u>

Detailed Description

A write to the DevTyp register results in an execution error.

Data Value Description

DevTyp returns the length of ASCII string. Note that in this case, the null terminated string "CW Laser\0" contains nine bytes including the null terminating byte.

Example Usage

	Com	mand (Host to Mod	ule)	Re	sponse (Module to	Host)
#	Operation	Register	Data Bytes (15:0)	Status	Register	Data Bytes (15:0)
1	Read	0x01 (DevTyp)	0x0000	0x02 (AEA-flag)	0x01 DevTyp	0x0009 (# bytes in string)
	Note: W	hen the Read is com	pleted, regis	ters (0x09, and 0x0A) are configured to po	pint to proper field.
2	Read	0x0B (AEA-EAR)	0x0000	0x00	0x0B (AEA-EAR)	0x4357 ("CW")
3	Read	0x0B (AEA-EAR)	0x0000	0x00	0x0B (AEA-EAR)	0x204C (" L")
4	Read	0x0B (AEA-EAR)	0x0000	0x00	0x0B (AEA-EAR)	0x6173 ("as")
5	Read	0x0B (AEA-EAR)	0x0000	0x00	0x0B (AEA-EAR)	0x6572 ("er")
6	Read	0x0B (AEA-EAR)	0x0000	0x00	0x0B (AEA-EAR)	0x0000 ("\0\0")
7	Read	0x0B (AEA-EAR)	0x0000	0x01 (XE-flag)	0x0B (AEA-EAR)	0x0000
	Note: Query	the NOP register to	determine ca	ause of execution erro	pr.	
8	Read	0x00 (NOP)	0x0000	0x00	0x00 (NOP)	0x0006 (ERE flag)

6.4.3 Manufacturer (MFGR 0x02) [R]

Purpose:

MFGR returns the module's manufacturers ID null terminated string indirectly through the AEA mechanism.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
MFGR	0x02	R	AEA (string)	See §7.2	No		0x00xx ➔ Manufacturer
		W					

		Data Value Returned in Response Upon							
	Successful Read	Successful Write	Error on Read	Error on Write					
Status Field Returned:	ОК		XE						
Error Condition Field:	OK		CIP, CII, EXF, or VSE						
Data Value:	0x00xx ➔ Manufacturer		0x0000						
	AEA registers configured to reference string		Error field set						
Execution Time:	See §7.2		See §7.2						
Pending Operation:	Never								

<u>Returns</u>

Detailed Description

A write to the MFGR register results in an execution error.

Data Value Description

MFGR returns the length of a null terminated printable ASCII string. (Maximum 80 bytes)

6.4.4 Model (Model 0x03) [R]

Purpose:

Model returns the module's model designation string indirectly through the AEA mechanism. The null terminated string containing the module's model designation is placed into a field of not more than 80 bytes in size. The model string is defined by the manufacturer

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
Model	0x03	R	AEA (string)	See §7.2	No		0x00xx ➔ Model
		W					

<u>Returns</u>

		Data Value Return	ed in Response Upor	1
	Successful Read	Successful Write	Error on Read	Error on Write
Status Field Returned:	OK		XE	
Error Condition Field:	OK		CIP, CII, EXF, or VSE	
Data Valuo	0x00xx ➔ Model		0x0000	
	AEA registers configured to reference string		Error field set	
Execution Time:	See §7.2		See §7.2	
Pending Operation:	Never			

Detailed Description

A write to the Model register results in an execution error.

Data Value Description

Model returns the length of a null terminated printable ASCII string. (Maximum 80 bytes)

6.4.5 Serial Number (SerNo 0x04) [R]

Purpose:

SerNo returns the module's serial number string indirectly through the AEA mechanism. The null terminated string containing the module's serial number is placed into a field of not more than 80 bytes in size. The serial number string is defined by the manufacturer.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
SerNo	0x04	R	AEA (string)	See §7.2	No		0x00xx ➔ SerNo
		W					

<u>Returns</u>

		Data Value Return	ned in Response Upor	1
	Successful Read	Successful Write	Error on Read	Error on Write
Status Field Returned:	ОК		XE	
Error Condition Field:	OK		CIP, CII, EXF, or VSE	
Data Value:	0x00xx ➔ SerNo string		0x0000	
Effect on Module	AEA registers configured to reference string		Error field set	
Execution Time:	See §7.2		See §7.2	
Pending Operation:	Never			

Detailed Description

A write to the SerNo register results in an execution error.

Data Value Description

SerNo returns the length of a null terminated printable ASCII string. (Maximum 80 bytes)

6.4.6 Manufacturing Date (MFGDate0x05) [R]

Purpose:

MFGDate returns the manufacturing date string of the module indirectly through the AEA mechanism. The null terminated string containing the date string is contained in a field size of 12 bytes.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
MFGDate	0x05	R	AEA (string)	See §7.2	No		0x000C ➔ Date
		W					

		Data Value Return	ed in Response Upor	1
	Successful Read	Successful Write	Error on Read	Error on Write
Status Field Returned:	OK		XE	
Error Condition Field:	OK		CIP, CII, EXF, or VSE	
Data Value:	0x000C ➔ Date "DD-MON-YYYY\0"		0x0000	
Effect on Module	AEA registers configured to reference string		Error field set	
Execution Time:	See §7.2		See §7.2	
Pending Operation:	Never			

<u>Returns</u>

Detailed Description

A write to the MFGDate register results in an execution error.

Data Value Description

The MFGDate register returns the date of manufacture as a null terminated ASCII string (12 characters) formatted as "DD-MON-YYYY". *DD* is a 2 character field with leading zeros indicating the day of the month, *MON* is 3 character representation of the month (JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC), and YYYY is the 4 digit year.

Example: "04-APR-2001"

6.4.7 Release (Release 0x06) [R]

Purpose:

Release returns the release string of the module indirectly through the AEA mechanism. The null terminated string containing the module release information is placed into a field of not more than 80 bytes in size. Note that a module may have one or more firmware and/or hardware revisions to track. The release field also encodes the application space identifier.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
Release	0x06	R	AEA (string)	See §7.2	No		0x00xx → Module release
		W					

<u>Returns</u>

		Data Value Return	ned in Response Upor	1
	Successful Read	Successful Write	Error on Read	Error on Write
Status Field Returned:	ОК		XE	
Error Condition Field:	OK		CIP, CII, EXF, or VSE	
Data Value:	0x00xx ➔ Module release		0x0000	
Effect on Module	AEA registers configured to reference string		Error field set	
Execution Time:	See §7.2		See §7.2	
Pending Operation:	Never			

Detailed Description

A write to the Release register results in an execution error.

The module release string must contain at least protocol version and either a firmware or a hardware version.

Data Value Description

Release returns the length of a null terminated printable ASCII string. (Maximum 80 bytes)

The release string consists of one or more concatenated release fields with a ":' used as the delimiter. A release field is white space delimited and consists of an identifier followed by a release version consisting of 3 base 10 numeric fields formatted as X.Y.Z. The application space identifier are defined in §7.1 - Optical Characteristics.

Format: "<Identifier₁> <space> <X₁.Y₁.Z₁> : <Identifier₂> <space> <X₂.Y₂.Z₂> ..."

Identifier	Description	Field	Values	Description
PV	Protocol version ³⁸	Х	0:255	Major release - Change in fit, form, or function
HW	Hardware release	Y	11.255	Minor release - Improvements but no change in fit, form, or function
FW	Firmware release	Z	0:255	Patch Level
AS	Application Space			
<others></others>	Manufacturer specific			

The release fields are guaranteed to follow the following relationship.

- $X_{NEW} > X_{OLD}$
- $Y_{NEW} > Y_{OLD}$
- Z_{NEW} and Z_{OLD} are not necessarily sequential and shall not be compared.

Example:

For example a module showing a firmware revision and a hardware revision would return a string like: "PV:1.2.0:FW 1.0.1:HW 3.2.1:AS A1".

³⁸ The protocol version references the protocol document (this document) and indicates which version the module conforms.

6.4.8 Release Backwards Compatibility (RelBack 0x07) [R]

Purpose:

RelBack returns the release backwards compatibility string of the module indirectly through the AEA mechanism. The null terminated string containing the earliest release string which is fully backwards compatible with the current module. The string is contained in a field of not more than 80 bytes in size. Note that a module may have one or more firmware and/or hardware revisions to track as described in the Release (0x06) register.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written			Volatile? Access?	Default Contents
RelBack	0x07	R	AEA (string)	See §7.2	No		0x00xx ➔ Release
		W					

Returns

		Data Value Return	ned in Response Upor	
	Successful Read	Successful Write	Error on Read	Error on Write
Status Field Returned:	ОК		XE	
Error Condition Field:	OK		CIP, CII, EXF, or VSE	
Data Value:	0x00xx ➔ Release		0x0000	
Effect on Module	AEA registers configured to reference string		Error field set	
Execution Time:	See §7.2		See §7.2	
Pending Operation:	Never			

Detailed Description

A write to the RelBack register results in an execution error.

Data Value Description

RelBack returns the length of a null terminated printable ASCII string. (Maximum 80 bytes)

The release string consists of one or more concatenated release fields with a ":' used as the delimiter. A release field is white space delimited and consists of an identifier followed by a release version consisting of 3 base 10 numeric fields formatted as X.Y.Z.

Format: "<Identifier₁> <space> <X₁.Y₁.Z₁> : <Identifier₂> <space> <X₂.Y₂.Z₂> ..."

Identifier	Description	Fie	d Values	Description
HW	Hardware release	Х	0:255	Major release - Change in fit, form, or function
FW	Firmware release	Y	0:255	Minor release - Improvements but no change in fit, form, or function
<others></others>	Manufacturer specific	Z	0:255	Patch Level – Not part of a normal release scheme

The release fields are guaranteed to follow the following relationship.

- $X_{\rm NEW} > X_{\rm OLD}$
- $Y_{NEW} > Y_{OLD}$
- Z_{NEW} and Z_{OLD} are not necessarily sequential and shall not be compared to determine whether Z_{NEW} or Z_{OLD} is newer.

Example:

For example a module showing a firmware revision and a hardware revision might return a string: "PV:1.0.1:FW 1.0.1:HW 3.2.1" and might return a RelBack string: "PV:1.0.1:FW 1.0.0:HW 3.2.1". This indicates that the current FW is backwards compatible with drivers written for FW 1.0.0 and that the hardware and protocol versions are the same.

6.4.9 General Module Configuration (GenCfg 0x08) [RW]

Purpose

GenCfg defines the general module configuration for the generic tunable device. For the tunable laser, the register is used to enable or disable the CRC-16 enforcement for the communication interface and to save the power on/reset module configuration defaults.

<u>Synopsis:</u>

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
GenCfg	0x08	R	Unsigned short	See §7.2	No		Bit 0: RCS (0x0) Bits 14:2 0x0000 Bit 15: SDC (0x0)
		W	Unsigned short	See §7.2	Yes	Lockable 2	

<u>Returns</u>

		Data Value Return	ned in Response Upor	ı
	Successful Read	Successful Write	Error on Read	Error on Write
Status Field Returned:	OK	ОК	XE	XE
Error Condition Field:	ОК	ок		RNW, RVE, CIP, CII, EXF, CIE, or VSE
Data Value:	RUS (BITI)	RCS (Bit 0) SDC (Bit 15)	0x0000	0x0000
Effect on Module	None	Set CRC-16 enforcement and/or store registers marked <i>non-volatile</i> in non-volatile memory	Error field set	Error field set
Execution Time:	See §7.2	See §7.2	See §7.2	See §7.2
Pending Operation:	Never	Yes		

Detailed Description

Reading GenCfg shows the state of the RCS (require CRC-16) flag. Writing to GenCfg is only allowed when laser is not carrying traffic (optical output disabled)³⁹.

The RCS (Require CRC-16) flag may be enabled or disabled. When RCS is changed, all subsequent communication (beginning with the next host to module command) will be checked and responses prepared according to the value of the RCS flag.

The self clearing SDC (Store Default Configuration) flag is used to initiate a transfer of all registers marked non-volatile to non-volatile memory. The values are restored on power up or module reset.

³⁹ Some module configuration changes may cause a traffic interrupting event. Therefore, configuration changes (writes to GenCfg) are only allowed when the optical output is disabled.

Data Value Description

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SDC	0x0000										RCS				

Bit 0: RCS (Require CRC-16)

"1": All commands except for WCRC, require a valid CRC-16 to be written to the WCRC register (0x11) prior to the command being sent by the host. See register 0x11.

"0": Default = 0. CRC-16 is not required.

Bit 15: SDC (Store default configuration)

Read: Always returns zero.

Write:

"1": Save all non-volatile module configuration values in non-volatile memory. This bit is self clearing. Upon power on or hard reset, the module loads these configuration settings.⁴⁰ There may be other parameters which need to be saved as well such as the RUNV⁴¹ state. "0": Default = 0. No action taken on write.

6.4.10 IO Capabilities (IOCap 0x0D) [RW]

Purpose

The IOCap register returns or sets the I/O interface capabilities. Each physical interface implementation defines the format of this register⁴².

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
IOCap	0x0D	R	Unsigned short	See §7.2	No	Non-volatile	See §4.2
iocap	UXUD	W	Unsigned short	See §7.2	No	Lockable 2	

Returns

		Data Value Return	ned in Response Upor	ı
	Successful Read	Successful Write	Error on Read	Error on Write
Status Field Returned:	OK	ОК	XE	XE
Error Condition Field:	ОК	ок	CIP, CII, EXF, or VSE	RNW, RVE, CIP, CII, EXF, VSE, or CIE
Data Value:	See §4.2	Same as was sent	0x0000	0x0000
Effect on Module	None	Alter physical interface characteristics	Error field set	Error field set
Execution Time:	See §7.2	See §7.2	See §7.2	See §7.2
Pending Operation:	Never	Never		

Detailed Description

The register returns to its default when hardware reset is asserted or then module is powered on. The physical interface can only be selected during power on or during hardware reset.

⁴⁰ Care must be taken such that power loss or hard reset during a SDC operation results in the previously saved configuration to be fully restored upon power up or completion of reset. ⁴¹ The RUNV value is non-volatile which can be asserted by the DLConfig register (§6.4.15).

The DLConfig register is volatile. However, the GenCfg:SDC must save the RUNV state as well as the other register contents marked non-volatile. ⁴² There are three possible "views" of the IOCap register which are saved in non-volatile memory.

When an interface speed is reconfigured, the response packet for the IOCap command is returned to the host. The interface speed is then changed to the requested speed and then the IRDY* line is then re-asserted. The host can monitor the IRDY* line to determine when the interface is ready for a command packet at the new interface speed.

Changes to the module configuration are performed while the laser is not carrying traffic.

The IOCap configuration can be saved as module reset/power on defaults.

Data Value Description

See §4.2Communication Interfaces for detailed information on the register fields and default values.

6.4.11 Extended Addressing Mode Registers (0x09-0x0B, 0x0E-0x10) [RW]

Purpose

The predefined register set provides two sets of three registers each that are utilized for extended addressing. The first set (0x09-0x0B) is normally pre-configured by the module when the host reads from or writes to a register that supports AEA (automatic extended addressing) mode. The second set is normally pre-configured for large transfers such as a firmware upload or download. Note that two sets of extended address registers is desirable in case an AEA register needs to be accessed during a lengthy upload or download.

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
AEA-EAC	0x09	R	Unsigned short	See §7.2	No		0x0000
ALA-LAU	0,09	W					
	EA-EA 0x0A R		Unsigned short	See §7.2	No		0x0000
		W					
AEA-EAR	0x0B	R	Defined by target	See §7.2	No		No Default Required
AEA-EAR	UXUB	W	field format	See §7.2	Yes		
EAC	0x0E	R	Unsigned short	See §7.2	No		0x0000
EAC	UXUE	W	Unsigned short	See §7.2	No	Lockable 3	
EA	0x0F	R	Unsigned short	See §7.2	No		0x0000
EA	UXUF	W	Unsigned short	See §7.2	No	Lockable 3	
EAR	0x10	R	Defined by target	See §7.2	No		No Default Required
LAN	0,10	W	field format	See §7.2	Yes		

Synopsis:

Returns

		Data Value Return	ed in Response Upor	ı		
	Successful Read	Successful Write	Error on Read	Error on Write		
Status Field Returned:	ОК	ОК	XE	XE		
Error Condition Field:	ок		CIP, CII, ERE, EXF, or VSE	RNW, RVE, CIP, CII, ERE, ERO, EXF, or VSE		
Data Value:	See definitions below			0x0000		
	LAR-LAC.LA	EAC, EA- Configured EAR- Field written, EAC:EA incremented	Address unchanged	Error field set Address unchanged		
Execution Time:	See §7.2	See §7.2	See §7.2	See §7.2		
Pending Operation:	Never	Yes ⁴³				

Detailed Description

In order to access a location through the extended addressing interface, the EAC and EA registers must properly configured. This configuration occurs automatically when AEA designated registers are accessed or when the DLConfig process is initiated.

Read or write access of a register that supports AEA returns the number of bytes in the field. The access also configures the AEA-EAC and AEA-EA registers. Subsequent reads or writes on AEA-EAR transfers data sequentially from the physical or virtual memory location where the field is stored. Note that although a write to a register that supports AEA access returns the maximum number of bytes to be written, but no data is actually

⁴³ Note that writes to the AEA-EAR register or the EAR register may result a pending operation (CP flag) if a non-volatile memory "store" cycle takes longer than the 5ms execution time.

written. The write command must be re-issued to the AEA-EAR register in order to complete the write.

Operation on Register Which Support AEA	Data Value Sent	Effect on AEA	Data Value Returned
Read	0x0000	Configured	Number of bytes in the previously stored value.
Write	0x0000	NOT Configured	Maximum number of bytes that can be stored in the field.
	Number of bytes to be stored in the coming AEA transfer.	Configured	0x0000

Reading or writing beyond the field boundaries will generate an execution error.

An execution error on read or write does not increment the extended address register's contents.

A soft reset (ResEna 0x32) or a low to high transition of the MS* line will abort extended address transfers (firmware uploads or AEA transfers).

Data Value Description

See the following sections.

6.4.11.1 <u>Extended Address Configuration (EAC 0x09 & 0x0E)</u> The first register, AEA-EAC (0x09) or EAC (0x0E), configures the extended addressing mode.

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
R/	AI	W	AI	EAM		IN	CR	TBD	High order 6 address bits						

- RAI: Read Auto Increment (Bits 15:14)
 - 0x0 No address change on read
 - 0x1 Address auto post increment by INCR on read
 - 0x2 Address auto post decrement by INCR on read
 - 0x3 Action not defined
- WAI: Write Auto Increment (Bits 13:12)
 - 0x0 No address change on write
 - 0x1 Address auto post increment by INCR on write
 - 0x2 Address auto post decrement by INCR on write
 - 0x3 Action not defined
- EAM: Extended Address Mode (Bits 11:9)

These three bits provide 8 possible address spaces. The default register space is defined with EAM=0x0. A firmware upgrade procedure would select the appropriate "code address space".

	able 0.4-1 Extended Address Space Mode Selection (EAM)
EAM	Address Space
0x0	Default register space (including 0x00 – 0xff)
0x1	Physical data space 1
0x2	Physical data space 2
0x3	Physical code space 1
0x4	Physical code space 2
0x5-0x7	Manufacturer specific

Table 6.4-1 Extended Address Space Mode Selection (EAM)

INCR: Increment register (Bits 8:7)

The auto increment and auto decrement operations modify the address by this unsigned value. For register space, this would typically be 1. If the physical space addressed by bytes, the best increment might more naturally be 2. If the configuration transfers 1 byte per read or write, only the low order byte is transferred and the high order byte is ignored.

- TBD: Reserved (Bit 6)
- High order address bits: (Bits 5:0)

The high order address bits are concatenated with the EA register forming a 22 bit physical or logical address or register number.

6.4.11.2 Extended Address (EA 0x0A & 0x0F)

The second register, EA, contains the lower 16 address bits.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Extended Address (low order16 bits)														

This register is set to the address value. Note with EAM=0x0, this register accesses the default register space. With EAM=0x0, extended addresses from 0x00 to 0xFF are equivalent to registers 0x00 to 0xFF.

6.4.11.3 Extended Address Access Register (EAR 0x0B & 0x10)

A read on EAR causes the value referred to by EAC:EA to be returned. A write to EAR causes the location referred to by EAC:EA to be written, assuming the register is write-able.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Contents of Extended Address														

6.4.12 Assert CRC (WCRC 0x11) [W]

Purpose

WCRC and RCRC can be used to provide complete communications error detection. These commands are only active when RCS=1 in the module configuration register (GenCfg). Executing a WCRC or RCRC with RCS=0 generates an execution error. The WCRC allows the host to assert a CRC value before issuing a command. The CRC-16 is calculated after the transport layer computes and inserts the BIP-4 checksum.

Synopsis:

	Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
	WCRC	0x08	R					
			W	Unsigned short	See §7.2	No		

Returns

		Data Value Returned in Response Upon			
	Successful Read	Successful Write	Error on Read	Error on Write	
Status Field Returned:		ок		XE	
Error Condition Field:		ок		RNW, CIP, CII, EXF, or VSE	
Data Value:		Same as sent		0x0000	
Effect on Module		Assert CRC16 for next command		Error field set	
Execution Time:		See §7.2		See §7.2	
Pending Operation:		Never			

Detailed Description

The WCRC allows the host to assert a checksum value before issuing a command. If this register is written, the next read or write in-bound packet will have its full CRC-16 value computed and compared to this stored value. If the CRC does not match the stored value, a CE=1 (communication error) will be asserted by the Transport Layer (see §5.3 CRC-16) in the outbound response packet. An execution error is generated if a WCRC command immediately precedes another WCRC command.

In-bound packets received without an immediately prior WCRC assertion will not have the packet's CRC-16 computed (unless the module configuration bit RCS=1 in GenCfg (0x08) register.

The CRC-16 checksum is defined by the polynomial $x^{16}+x^{15}+x^2+1$ and is fully described in §5.3 CRC-16.

Data Value Description

An unsigned short computed as detailed in §5.3.

6.4.13 Read CRC (RCRC 0x12) [R]

Purpose

WCRC and RCRC can be used to provide complete communications error detection. These commands are only active when RCS=1 in the module configuration register (GenCfg). Executing a WCRC or RCRC with RCS=0 generates an execution error. The RCRC command allows the host to read a CRC value after receiving a response. The CRC-16 is calculated after the transport layer computes and inserts the BIP-4 checksum.

<u>Synopsis:</u>

	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?		Default Contents
RCRC	0x12	R	Unsigned short	See §7.2	No	-	No default
RURU	UXIZ	W					

<u>Returns</u>

	Data Value Returned in Response Upon					
	Successful Read	Successful Write	Error on Read	Error on Write		
Status Field Returned:	OK		XE			
Error Condition Field:	OK		CIP, CII, EXF, or VSE			
Data Value:	CRC-16		0x0000			
Effect on Module	None		Error field set			
Execution Time:	See §7.2		See §7.2			
Pending Operation:	Never					

Detailed Description

The RCRC command is used to read the CRC-16 value computed for the last response packet. The CRC is computed using the same CRC-16 defined for WCRC operation and is fully described in §5.3 CRC-16. This checksum is computed for all out-bound packets excluding the response from a read RCRC operation.

The host is expected to compare the result returned from the RCRC command to the CRC-16 the host calculated on the received response packet. On detecting an error, the host can force the last response to be returned again via the LstResp (0x13) command.

Data Value Description

An unsigned short computed as detailed in §5.3.

6.4.14 Last Response (LstResp 0x13) [R]

Purpose

WCRC, RCRC and LstResp can be used to provide complete communications error detection.

Reading last response register forces the module to return all four bytes of the last non-RCRC response. This is useful if a CRC-16 or checksum error was detected and the host wants to re-read the last response. Upon completion, the RCRC register contains the same CRC-16 value it had before the register was read. This register is active whether or not RCS=1 in the module configuration register.

Synopsis:

•	Register Number		Data Type Read or Written	Response Generated	Can Be Pending?	Default Contents
LstResp	0x13	R	Last Response	See §7.2	No	Last Response
LSINESP		W				

<u>Returns</u>

		Data Value Returned in Response Upon					
	Successful Read	Successful Write	Error on Read	Error on Write			
Status Field Returned:	OK		XE				
Error Condition Field:	OK		CIP, CII, EXF, or VSE				
Data Value:	Last Response		0x0000				
Effect on Module	None		Error field set				
Execution Time:	See §7.2		See §7.2				
Pending Operation:	Never						

Detailed Description

Note that the RCRC is the only command who's response doesn't affect the value of the LstResp register.

Data Value Description

Note that the entire out-bound packet is returned including all flag values. Example Usage

	Com	mand (Host to Mod	ule)	Response (Module to Host)			
#	Operation	Register	Data Bytes (15:0)	Status	Register	Data Bytes (15:0)	
1	Read	0x00 (NOP)	0x0000	0x00 (Ok)	0xFF (garbled!!)	0x0000	
1	Note: Example showing garbled response, CRC and/or checksum indicate error in receipt of response.						
2	Read	0x13 (LstResp)	0x0000	0x00 (Ok)	0x00 (NOP)	0x0100	
	Note: The module's last response is transmitted again and this time received correctly.						

6.4.15 Download Configuration (DLConfig 0x14) [RW]

Purpose

The DLConfig register configures a host to module download of code or data for reconfiguration purposes or configures a module to host upload of code or data to the host. A file transfer may occur at several locations such as vendor factory, customer site (on the bench), customer system (circuit down), or potentially a customer system (live circuit).

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
DLConfig	0x14	R	Unsigned short	See §7.2	No		0x0000 RUNV<<8
DECOINING		W	Unsigned short	See §7.2	Yes	Lockable 2	

<u>Returns</u>

	Data Value Returned in Response Upon			
	Successful Read	Successful Write	Error on Read	Error on Write
Status Field Returned:	OK	ОК	XE	XE
Error Condition Field:	ОК	ок	CIP, CII, EXF, or VSE	RNW, RVE, CIP, CII, EXF, CIE, or VSE
Data Value:	DL Configuration	Same as sent	0x0000	0x0000
Effect on Module	None	Down Load configured, check initiated, or RUNV execution selected	Error field set	Error field set
Execution Time:	See §7.2	See §7.2	See §7.2	See §7.2
Pending Operation:	Never	Yes		

Detailed Description

The following example describes the actions required to transfer a file from the host to the module and then have the module run that file.

Step	Host Sends	Module Responds
1	Write the DLConfig register indicating the type of transfer coming and asserting INIT_WRITE=1 and TYPE. Code might be boot code, run time code, FPGA code, CPLD code.	Module responds by initializing extended address registers (0x0E-0x0F) and may return a pending operation flag if pre-configuration will take longer than the allowed response time (§7.2).
2	Host writes to the extended address register (0x10) with the file data, 2 bytes at a time.	Module receives file data 2 bytes at a time and asserts a pending operation as necessary. Each out-bound packet response indicates if any errors have occurred.
3	Host writes DLConfig and asserts DONE=1.	Module completes transfer and checks for code consistency. If not, asserts VALID=0 in DLStatus.
4	Host reads DLStatus and checks for VALID=1	When Module has completed transfer, ERDY=1 is asserted.
5	Host writes DLConfig with INIT_RUN=1 and asserts RUNV with the same value as was set in step 1 above.	Module begins running newly transferred code.

Step	Host Sends	Module Responds
1	Write the DLConfig register indicating the type of transfer coming and asserting INIT_READ=1 and TYPE. Code might be boot code, run time code, FPGA code, CPLD code.	Module responds by initializing extended address registers (0x0E-0x0F) and may return a pending operation flag if pre-configuration will take longer than the allowed response time (§7.2).
2	Host reads from the extended address register (0x10), 2 bytes at a time.	Module sends file data 2 bytes at a time. Each out-bound packet response indicates if any errors have occurred.

Table 6.4.15-2 Firmware Upload Example

Data Value Description

When the DLConfig register is read, the RUNV value returns the value for the firmware currently running in the module. This value is unchanged with a power down or reset. The other fields return the default values.

15	14	12	12		10	9	8
		TYPE			F	RUNV	
·							
7	6	5	4	3	2		0
Reserved (0x0)		INIT_RUN	INIT_CHECK	INIT_READ	DONE	ABRT	INIT_WRITE

INIT_WRITE Bit 0

This bit informs the module to prepare for download. The module should perform its necessary housekeeping to be ready for download. Pre-configures the extended address registers (0x0E-0x0F).

- 0 Do not start download. (default)
- 1 Prepare for download.

ABRT Bit 1

This bit informs the module to abort the transfer. Clears the ABRT bit in DLStatus.

- 0 Do not abort transfer. (default)
- 1 Abort the transfer.

DONE Bit 2

This bit informs the module that the transfer is complete.

- 0 Transfer is not done. (default)
- 1 Transfer is done.

INIT_READ Bit 3

This bit informs the module to prepare for upload. Like INIT_WRITE, is preconfigured the extended address register. Pre-configures the extended address registers (0x0E-0x0F).

0 – Do not start upload. (default)

1 – Prepare for upload

INIT_CHECK Bit 4

This bit informs the module to check the segment specified in the TYPE field for consistency. Upon completion, the DLStatus (0x015) register's VALID bit is set or unset to indicate if the

0 – Do not initiate consistency check. (default)

1 – Initiate consistency check (operation may be pending)

INIT_RUN Bit 5

This bit informs the module to run the segment specified in the RUNV field. The module will respond to the request and then take appropriate action to run the code, i.e. restart, reprogram hardware.

- 0 Do not run code specified by RUNV. (default)
- 1 Run code specified by RUNV

RUNV44 – Bit 8-11

Specifies version to run when written with a non-zero value and with INIT_RUN=1. Returns the current version that is currently executing when read. The default setting is vendor specific. Vendors may not support all RUNV values. A RUNV value which contains a code segment with an invalid an internal CRC check on that code segment will return a execution error (EXF).

TYPE Value	Code Type	Effect on Module
0x00	No change to value	None
0x01	Main Version 1	Non-Service interrupting
0x02	Main Version 2	Non-Service interrupting
0x03	Main Version A	Service Interrupting
0x04	Main Version B	Service Interrupting
0x05-0x08	Reserved	
0x09 – 0xFE	Vendor specific	
	Reserved	

TYPE Bit 12-15

Type of code to Transfer (0x0 - default)

TYPE Value	Code Type	Effect on Module	
0x0	No change to value	None	
0x1	FW Version A1	Non-Service interrupting ⁴⁵	
0x2	FW Version B1	Non-Service interrupting	
0x3	FW Version A2	Service Interrupting ⁴⁶	
0x4	FW Version B2	Service interrupting	
0x5-0x8	Reserved		
0x9 – 0xE			
0xF	Reserved		

6.4.16 Download Status (DLStatus 0x15) [R]

Purpose

DLStatus provides information about the status or viability of a code segment.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Generated	Can Be Pending?	Volatile? Access?	Default Contents
DLStatus	0x08	R	Unsigned short	See §7.2	No		Defined upon write to DLConfig
		W					

⁴⁴ Note that the RUNV variable, which may be asserted by the DLConfig register is saved as a non-volatile value when the GenCfg:SDC operation is completed.

⁴⁵ The primary firmware is generally loaded and executed without interrupting traffic (A1, B1). However, there may be technologies for which the firmware download may be service interrupting and would be loaded in slots A2, B2.

⁴⁶ A DLConfig write to initiate a service interrupting download while the module's output is enabled is not allowed and an execution error is returned (CIE).

		Data Value Returned in Response Upon						
	Successful Read	Successful Write		Error on Write				
Status Field Returned:	ОК		XE					
Error Condition Field:	ОК		CIP, CII, EXF, or VSE					
	Defined upon write to DLConfig		0x0000					
Effect on Module	None		Error field set					
Execution Time:	See §7.2		See §7.2					
Pending Operation:	Never							

<u>Returns</u>

Detailed Description

The register provides information on the polling sequence that should be used during the configured download (see §6.4.15) as well as the status of the download.

Data Value Description

15	14	13	12	11	10	9	8	7	6	5	4	3	2		0
														IN_USE	VALID

VALID Bit 0

Indicates that the module has a valid code type at this location. Asserted after the DLConfig (0x14) "TYPE" field is written with a non-zero type field.

0- Indicates that the module does not have a valid code type at this location.

1 – Indicates that the module does have a valid code type at this location.

IN_USE Bit 1

Can be used to indicate that the code type specified in the DLConfig (0x14) "TYPE" field is currently in use.

0 – Indicates that segment is not currently in use

1 – Indicates that segment is currently in use

6.4.17 Register Lockout (Lock 0x16) [RW]

Purpose:

Lock provides a mechanism to restrict write access to certain registers. Registers with the "Lockable" attribute will be unlocked when the Lock register is written with the appropriate value. The locking function is enabled by writing a sequence of unsigned chars to the Lock register through AEA access. Full register lock out is accomplished by writing a single byte 0x00 to the field referenced by the Lock register's configuration of the AEA register.

Synopsis:

•	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
		R	0x00XX				
Lock	0x16	W	AEA (Array of unsigned char)	See §7.2	Yes		Lock level 1

		Data Value Return	ed in Response Upor	ı
	Successful Read	Successful Write	Error on Read	Error on Write
Status Field Returned:		ОК		XE
Error Condition Field:		ок		RNW, RVE, CIP, CII, EXF, or VSE
Data Value:		0xPP00 (pending operation field)		0x0000
Effect on Module		AEA registers configured to reference array Lock level set.		Error field set
		See §7.2		See §7.2
Pending Operation:		Yes		

<u>Returns</u>

Detailed Description

Read access is not allowed for the Lock register.

Writing a 0x0000 to Lock (0x16) will return the maximum field size for the write.

Unlocking the registers requires writing an integer array (a key) to the Lock register through the AEA mechanism. The write is initiated by sending the number of bytes to be written in the write command. The module responds with a pending operation indicating that the write will be pending transfer of desired bytes to be written. Once the intended number of bytes has been written, the pending operation is completed. If the key matches the module's unlock criteria, the associated registers will be unlocked. The value of the lock level can be read via the NOP/Status (0x00) register.

The values (of the key) that unlocks the registers for a non-zero lock level is manufacturer specific.

The value that write-locks all the registers (except write access to the lock register) is the single byte 0x00.

Writing invalid key values to the Lock register field results in an execution error (RVE).

The default value of the configured lockout level is configurable and can be changed via the GenCfg:SDC operation. The current lock level can be read via the NOP/Status register. See §6.4.1.

Data Value Description

Manufacturers may implement keys of any length from 2 to 20 bytes in length.

Lock Level	Description	Key Value	Key Length
0	Fully locked (all lockable registers are write protected	0x0	1
1	Partially unlocked – Lockable registers 1 are unlocked Available for channel tuning etc.	MFG Specific	<20
2	Partially unlocked – Lockable registers 2 are unlocked Available for Reset, firmware uploads, alarm thresholds (Basic module configuration)	MFG Specific	<20
3	All lockable registers are unlocked Normally reserved for manufacturer use.	MFG Specific	<20

Table 6.4-3: Register Lockout Lock Levels

6.5 Module Status Commands

6.5.1 StatusF, StatusW (0x20, 0x21) [RW]

Purpose

The StatusF and StatusW commands return the tunable laser status upon a read and provide a way to clear status flags on a write. There are two status registers, one that primarily indicates FATAL conditions (0x20) and the other that primarily indicates WARNING conditions (0x21).

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	
StatusF	0x20	R	Unsigned short	See §7.2	No		0x0000
Statusi	0,20	W	Typically 0x00FF	See §7.2	No		
StatusW	0x21	R	Unsigned short	See §7.2	No		0x0000
Statusvy		W	Typically 0x00FF	See §7.2	No		

Returns

		Data Value Return	ed in Response Upor	ו
	Successful Read	Successful Write	Error on Read	
Status Field Returned:	OK	ОК	XE	XE
Error Condition Field:	OK	ОК	CIP, CII, EXF, or VSE	CIP, CII, EXF, or VSE
Data Value:	Status value	Same as sent (0x00FF)	0x0000	0x0000
Effect on Module		Clear the corresponding flags where bit=1	Error field set	Error field set
Execution Time:	See §7.2	See §7.2	See §7.2	See §7.2
Pending Operation:	Never	Never		

Detailed Description

The fatal and warning flags have both a latched representation and a non-latched representation. The latched versions of the flags remain set even if the transient condition expires. The fatal and warning flags are available.

Condition	FATAL Co	nditions	Warning Conditions		
Condition	Latching	Non-Latching	Latching	Non-Latching	
Thermal	FTHERML	FTHERM	WTHERML	WTHERM	
Output Power	FPWRL	FPWR	WPWRL	WPWR	
Frequency	FFREQL	FFREQ	WFREQL	WFREQ	
Vendor Specific Fault	FVSFL	FVSF	WVSFL	WVSF	

Fatal flags indicate a serious failure in the tunable laser typically result in optical output shutdown to avoid interference with other channels. Module behavior due to fatal conditions is specified in register MCB (0x33), bit SDF. Fatal conditions vary with laser technology but might be a result of one of the following:

- Gross loss of thermal control primarily impacting frequency and/or output power control of the module. An example would be an inability to determine frequency accurately due to loss of thermal control. The control set point is defined by the manufacturer and the control limits are specified in register FThermTh (0x26).
- Gross loss of optical output power control to within the required tolerance contained in the FPowTh (0x22) register.
- Gross loss of frequency control to within the required tolerance contained in the FFreqTh (x024) register.
- Other vendor specific fatal conditions determined by technology choice.

Warning flags indicate non-fatal conditions in the module and will not cause shutdown. Warning conditions may be precursors to eventual fatal failure. Warning conditions vary with laser technology. The following list contains only some of the possible conditions resulting in a warning. See manufacturer's documentation for a complete list.

- Thermal
 - Module's case temperature exceeds control limits set by TCaseL and TCaseH (0x5D-5E)
 - Module's internal thermal control is marginal. Control limits set by WThermTh (0x27)
 - Power (Control limits set by WpowTh) (0x23)
- Frequency (Control limits set by WfreqTh) (0x25)
- Other vendor specific warning conditions determined by technology choice.

The latched flags are cleared by writing a "1" to the corresponding bit position. Typically, the latched bits are cleared by writing a 0x00FF to each register (0x20, 0x21). Clearing the latched bits will cause de-assertion of the corresponding hardware line (FATAL* and/or SRQ*). If the condition is still occurring, the corresponding latched bit will be set back to "1" triggering re-assertion of the corresponding hardware lines.

Data Value Description

0x20 Current Status (Fatal) – Read Only							
15	14	13	12	11	10	9	8
SRQ	ALM	FATAL	DIS	FVSF	FFREQ	FTHERM	FPWR

0x20 Latched Status (Fatal) – RW							
7	6	5	4		2	1	
XEL		MRL	CRL	FVSFL	FFREQL	FTHERML	FPWRL

0x21 Current Status (Warning) – Read Only							
15	14	13	12	11	10	9	8
	ALM	FATAL	DIS	WVSF		WTHERM	WPWR

0x21 Latched Status (Warning) – RW							
7	6	5	4	3	2	1	0
XEL	CEL	MRL	CRL	WVSFL	WFREQL	WTHERML	WPWRL

The other status flags are defined as follows:

Condition	Latched Flag	Non-Latching Flag
SRQ* asserted	None	SRQ
ALM* asserted	None	ALM
FATAL* asserted	None	
DIS* asserted	None	DIS
Execution error asserted	XEL	XE flag in out-bound byte 0
Communications error asserted	CEL	CE flag in out-bound byte 0
Module Reset asserted	MRL	None
CR asserted	CRL	None

Bits 15:8 in the status registers are non-latching and indicate the current module condition. These bits cannot be cleared. Writing to these bits (0xFF00) does not cause an error.

Bits 7:0 are latching and indicate whether any of the conditions that have occurred since the last time the status registers were cleared. These bits can be cleared by writing a 0x00FF to the status registers.

Bit 15: SRQ – Service Request Bit (read –only) (default 0)

The SRQ bit is read only. It reflects the state of the module's SRQ* line. When the SRQ* line is asserted (low or zero), this bit is set to 1. The SRQ* line is fully configurable through the SRQ* trigger register 0x28.

Bit 14: ALM – ALARM Flag bit (read-only) (default 0)

The ALM bit is read only. It reflects the state of the module's ALM* line. When the ALM* line is asserted (low or zero), this bit is set to 1. The conditions which set the ALM* line are fully configurable through the alarm trigger register (0x2A).

- Bit 13: FATAL FATAL alarm bit (read-only) (default 0) The FATAL bit is read only. It reflects the state of the module's FATAL* line. When the FATAL* line is asserted (low or zero), this bit is set to 1. The conditions which set the FATAL* line are fully configurable through the fatal trigger register (0x29).
- Bit 12: DIS Module's output is hardware disabled (read-only)

The module's laser output disable bit is read only and represents the state of the hardware disable pin (DIS*). When set to one, the module is "hardware" disabled. When the DIS* pin is set to zero, the SENA bit is also cleared. Therefore when DIS* is set to one, the module does not re-enable the output until the SENA is also set. Any state change in DIS can cause SRQ* to be asserted if the appropriate SRQ* trigger is set.⁴⁷

1: Module disabled (DIS* line is low)

- 0: DIS* line is high
- Bit 11: FVSF, WVSF Vendor Specific Fault (read-only) (default 0)

The FVSF bit (0x20) is set to 1 whenever a fatal vendor specific condition is asserted. The WVSF bit (0x21) is set to 1 whenever a warning vendor specific condition is asserted. If either of these bits are set, the vendor will have a register defined which contains vendor specific fault conditions.

Bit 10: FFREQ & WFREQ – Frequency Fatal and Warning (read-only) (default 0) The FFREQ bit (0x20) reports that the frequency deviation has exceeded the frequency fatal threshold (0x24) while WFREQ bit (0x21) reports that the frequency deviation has exceeded the frequency warning threshold (0x25).

When bit 10 is 1, it indicates that the frequency deviation threshold is being exceeded. When bit 10 is 0, the frequency deviation threshold is not being exceeded.

Bit 9: FTHERM & WTHERM – Thermal Fatal and Warning (read-only) (default 0) The FTHERM bit (0x20) reports that the thermal deviation has exceeded the thermal fatal threshold (0x26) while WTHERM bit (0x21) reports that the thermal deviation has exceeded the thermal warning threshold (0x27).

When bit 9 is 1, it indicates that the thermal deviation threshold is being exceeded. When bit 9 is 0, the thermal deviation threshold is not being exceeded.

Bit 8: FPWR & WPWR – Power Fatal and Warning (read-only) (default 0)

⁴⁷ The operation ensures that a tuning operation only occurs under s/w control. The primary purpose of the DIS* pin is to rapidly disable the laser output. In some implementations, the tuning command can make the module de-assert IRDY* during the tuning command. The behavior of clearing the SENA bit allows the IRDY* line to be solely activated by software transfers and simplifies possible sources of confusion.

The FPWR bit (0x20) reports that the power deviation has exceeded the power fatal threshold (0x22) while WPWR bit (0x21) reports that the power deviation has exceeded the power warning threshold (0x23).

When bit 8 is 1, it indicates that the power deviation threshold is being exceeded. When bit 8 is 0, the power deviation threshold is not being exceeded.

Bit 7: XEL – Flags an execution error.

A "1" indicates an exceptional condition. Note that execution errors could be generated by a command just given which failed to execute as well as a command that was currently executing (a pending operation that just complete). The XE bit remains set until cleared.

Bit 6: CEL – Flags a communication error.

A "1" indicates a communication error. The CE bit remains set until cleared.

- Bit 5: MRL Module Restarted (latched) (read-only) (default 1 by definition) The MRL bit is read only. When it is set, it indicates that the module has been restarted either by power up, by hardware or software reset, or by a firmware mandated restart. Depending upon the implementation, this may indicate that the laser's output signal may be invalid. Note that the module can be reset through the communication interface by writing to register 0x32. The bit remains set until cleared.
- Bit 4: CRL Communication Reset (latched) (read-only) (default 1 by definition) The CRL bit is read only. When it is set, it indicates that the module has undergone a communication interface reset. The input buffers were cleared. This can also occur after a manufacturer specific timeout period has elapsed in the middle of a packet transfer.⁴⁸ The bit remains set until cleared.

Bits 3,2,1,0: FVSFL, FFREQL, FTHERML, FPWRL, WVSFL, WFREQL, WTHERML, WPWRL – Latched fatal and warning indicators (RW) (default 0)
 These flags are latched versions of bits 11-8 for the fatal and warning threshold deviations. These bit indicators can be clearfed by writing a "1" to these bit positions.

When any of these bits is 1, it indicates that the corresponding deviation threshold has been exceeded at sometime in past (since the last clear) and may still be occurring.

When any of these bits are "0", the corresponding deviation threshold has not occurred since the last clear.

⁴⁸ Added reference to the capability of a communication interface timeout which would occur if a packet transfer didn't complete. The timeout would be manufacturer specific.

6.5.2 Power Threshold (FPowTh, WPowTh 0x22, 0x23) [RW]

Purpose

FPowTh specifies the maximum power deviation $\pm dB$ at which the fatal alarm is asserted.

WPowTh specifies the maximum power deviation $\pm dB$ at which the warning alarm is asserted.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
FPowTh	0x22	R	Unsigned short	See §7.2	No	Non-volatile	Manufacturer specific
FOWIN	0,22	W	dB*1000	See §7.2	No	Lockable 2	
WPowTh	0x23	R	Unsigned short	See §7.2	No	Non-volatile	Manufacturer specific
VFOWIN	0823	W	dB*1000	See §7.2	No	Lockable 2	

Returns

		Data Value Return	ed in Response Upor	ו		
	Successful Read Successful Write Error on Read Error on Write					
Status Field Returned:	OK	ОК	XE	XE		
Error Condition Field:	ОК	ок	CIP, CII, EXF, or VSE	RNW, RVE, CIP, CII, EXF, or VSE		
Data Value:	dB*1000	dB*1000		0×0000		
Effect on Module	None	New tolerance takes effect	Error field set	Error field set		
Execution Time:	See §7.2	See §7.2	See §7.2	See §7.2		
Pending Operation:	Never	Never				

Detailed Description

The value is stored in dB*1000 as an unsigned integer. Setting a value outside of the usable range causes an execution error. The default is manufacturer specific and can be modified when the module configuration is stored in non-volatile memory.

Data Value Description

The value is stored in dB*1000 as an unsigned integer. The warning threshold (0x23) should typically be equal to or less than the value in register 0x22.

6.5.3 Frequency Threshold (FFreqTh, WFreqTh 0x24, 0x25) [RW]

Purpose

FFreqTh specifies the maximum frequency deviation \pm GHz at which the fatal alarm is asserted.

WFreqTh specifies the maximum frequency deviation \pm GHz at which the warning alarm is asserted.

~			
S.1	mn	psis:	
\mathbf{u}	/110	paia.	

	Register Name	Register Number	Read / Write	Data Type Read or Written	Generated	Can Be Pending?	Volatile? Access?	
	FregTh	0x24	R	Unsigned short	See §7.2	No	Non-volatile	Application specific
1	Fleqin	0824	W	±GHz*10	See §7.2	No	Lockable 2	
,	VFregTh	0x25	R	Unsigned short	See §7.2	No	Non-volatile	Application specific
Ň	vrieqiii	0.25	W	±GHz*10	See §7.2	No	Lockable 2	

		Data Value Return	ed in Response Upor	ı
	Successful Read			
Status Field Returned:	OK	ОК	XE	XE
Error Condition Field:	ОК	ок	CIP, CII, EXF, or VSE	RNW, RVE, CIP, CII, EXF, or VSE
Data Value:	±GHz*10	±GHz*10 (Same as sent)	0x0000	0x0000
Effect on Module	None	New tolerance takes effect	Error field set	Error field set
Execution Time:	See §7.2	See §7.2	See §7.2	See §7.2
Pending Operation:	Never	Never		

<u>Returns</u>

Detailed Description

The value is stored in GHz*10 as an unsigned integer. Setting a value outside of the usable range causes the value to be set to the maximum allowed. The default is manufacturer specific and can be modified when the module configuration is stored in non-volatile memory.

Data Value Description

The value is stored in GHz*10 as an unsigned integer. The warning threshold (0x25) should typically be equal to or less than the value in register 0x24.

Setting a value outside of the usable range generates an execution error. The default is application specific.

6.5.4 Thermal Threshold (FThermTh, WThermTh 0x26, 0x27) [RW]

Purpose

FThermTh specifies the maximum thermal deviation \pm° C at which the fatal alarm is asserted.

WThermTh specifies the maximum frequency deviation \pm° C at which the warning alarm is asserted.

<u> </u>	<u>ynopolo.</u>							
	Register Name	Register Number	Write	Data Type Read or Written	Response Generated	Pending?	Volatile? Access?	Default Contents
	FThermTh	0x26	R	Unsigned short	See §7.2	No	Non-volatile	Manufacturer specific
		0,20	W	±°C*100	See §7.2	No	Lockable 2	
	WThermTh	0x27	R	Unsigned short	See §7.2	No	Non-volatile	Manufacturer specific
		0721	W	±°C*100	See §7.2	No	Lockable 2	

Synopsis:

Returns

		Data Value Return	ed in Response Upor	ו	
	Successful Read Successful Write Error on Read Error on				
Status Field Returned:	OK	ОК	XE	XE	
Error Condition Field:	ОК	ок	CIP, CII, EXF, or VSE	RNW, RVE, CIP, CII, EXF, or VSE	
Data Value:	±ºC*100	±⁰C*100 (Same as sent)	0x0000	0x0000	
Effect on Module	None	New tolerance takes effect	Error field set	Error field set	
Execution Time:	See §7.2	See §7.2	See §7.2	See §7.2	
Pending Operation:	Never	Never			

Detailed Description

The value is stored in ${}^{\circ}C^{*}100$ as an unsigned integer. Setting a value outside of the usable range causes the value to be set to the maximum allowed. The default is manufacturer specific and can be modified when the module configuration is stored in non-volatile memory.

Data Value Description

The value is stored in $^{\circ}C^{*100}$ as an unsigned integer. The warning threshold (0x25) should typically be equal to or less than the value in register 0x24.

Setting a value outside of the usable range generates an execution error. The default is application specific. The registers contain the maximum thermal deviation $\pm^{\circ}C^{*}100$ that is allowed before asserting a FATAL condition. The default is manufacturer specific.

6.5.5 SRQ* Triggers (SRQT 0x28) [RW]

Purpose

The SRQT register identifies the corresponding bits in the status registers (StatusF, StatusW) for which the SRQ* line is asserted.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Access?	Default Contents
SRQT	0x26	R	Unsigned short	See §7.2	No	Non-volatile	0x1FFF or 0x1FBF
Siter	0720	W	Unsigned short	See §7.2	No	Lockable 2	

<u>Returns</u>

		Data Value Return	ed in Response Upor	ı
	Successful Read		Error on Read	Error on Write
Status Field Returned:	OK	ОК	XE	XE
Error Condition Field:	ОК	ок		RNW, CIP, CII, EXF, or VSE
	See bit assignments below	Same as sent	0x0000	0x0000
Effect on Module		New triggers take effect	Error field set	Error field set
Execution Time:	See §7.2	See §7.2	See §7.2	See §7.2
Pending Operation:	Never	Never		

Detailed Description

The SRQT register identifies the corresponding bits in the status registers (StatusF, StatusW) for which the SRQ* line is asserted. The default is manufacturer specific and can be modified when the module configuration is stored in non-volatile memory.

The SRQ* condition is not triggered for frequency, thermal control temperature, or power faults when the laser is not in a locked state. However, a case temperature condition would assert SRQ if WTHERML or FTHERML is selected for in SRQT.

Data Value Description

A "1" bit signifies that the corresponding status register bit triggers the assertion of the SRQ* line. A "0" signifies that the corresponding status register bit does not trigger the assertion of the SRQ* line.

The layout of the SRQT register follows the same format as the status registers (StatusF, StatusW 0x20, 0x21).

15	14	13	12	11	10	9	
			DIS	WVSFL		WTHERML	WPWRL
0	0	0	1	1	1	1	1
7	6	5	4	3	2	1	0
7 XEL	6 CEL	5 MRL	4 CRL	3 FVSFL	2 FFREQL	1 FTHERML	0 FPWRL

The default setting is:

Interface	IOMODE State Latched At Reset/Power Up	IOMODE1 State Latched At Reset/Power Up	Bit
SPI	LOW	LOW	0x1
RS232	HIGH	LOW	0x0
l ² C	LOW	HIGH	0x1
Vendor specific	HIGH	HIGH	Vendor specific

When using RS232 communication, execution errors and communication errors for the immediate command are returned immediately in the module's response packet. However, pending operations can generate execution errors and should generate an SRQ*.

When using SPI and I²C communication, out-bound packets containing the error flags may be retrieved by the host module right away. In this case, the host would probably prefer seeing the SRQ* line asserted.

The SRQ* line can be de-asserted by either changing this register or by clearing the latched fault condition in the status registers (0x20, 0x21).

6.5.6 FATAL* Triggers (FatalT 0x29) [RW]

Purpose

The FatalT register identifies the corresponding bits in the status registers (StatusF, StatusW) for which the FATAL* line is asserted.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
FatalT	0x26	R	Unsigned short	See §7.2	No	Non-volatile	0x000F
raldii	0720	W	Unsigned Short	See §7.2	No	Lockable 2	

<u>Returns</u>

		Data Value Returned in Response Upon					
	Successful Read	Successful Write	Error on Read	Error on Write			
Status Field Returned:	ОК	ОК	XE	XE			
Error Condition Field:	ОК	ок	CIP, CII, EXF, or VSE	RNW, CIP, CII, EXF, or VSE			
Data Value:	See bit assignments below			0x0000			
Effect on Module	None	New triggers take effect	Error field set	Error field set			
Execution Time:	See §7.2	See §7.2	See §7.2	See §7.2			
Pending Operation:	Never	Never					

Detailed Description

The FatalT register identifies the corresponding bits in the status registers (StatusF, StatusW) for which the FATAL* line is asserted. The default is manufacturer specific and can be modified when the module configuration is stored in non-volatile memory.

The FATAL* condition is not triggered for frequency, thermal control temperature, or power faults when the laser is not in a locked state. Data Value Description

A "1" bit signifies that the corresponding status register bit triggers the assertion of the FATAL* line. A "0" signifies that the corresponding status register bit does not trigger the assertion of the FATAL* line.

The layout of the FatalT register follows the same format as the status registers (StatusF, StatusW 0x20, 0x21). This register sets the bits for which the FATAL* line is asserted. It follows the similar format as the status register (0x20, 0x21).

15	14	13	12	11	10	9	8
				WVSFL	WFREQL	WTHERML	WPWRL
0	0	0	0	0	0	0	0
		_	_		_	_	
7	6	5	4	3	2	1	0
		MRL		FVSFL	FFREQL	FTHERML	FPWRL
0	0	0	0	1	1	1	1

The FATAL* line can be de-asserted by either changing this register or by clearing the latched fault condition in the status registers (0x20).

6.5.7 ALM* Triggers (ALMT 0x2A) [RW]

Purpose

The ALMT register identifies the corresponding bits in the status registers (StatusF, StatusW) for which the ALM* line is asserted. The default setting enables the ALM* line to signal "locked to channel".

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
ALMT	0x26	R	Unsigned short	See §7.2	No	Non-volatile	0x0404
	0720	W	Unsigned Short	See §7.2	No	Lockable 2	

<u>Returns</u>

		Data Value Returned in Response Upon					
	Successful Read	Successful Write	Error on Read	Error on Write			
Status Field Returned:	ОК	ОК	XE	XE			
Error Condition Field:	ок	ок	CIP, CII, EXF, or VSE	RNW, CIP, CII, EXF, or VSE			
Data Value:	See bit assignments below	Same as sent	0x0000	0x0000			
Effect on Module		New triggers take effect	Error field set	Error field set			
Execution Time:	See §7.2	See §7.2	See §7.2	See §7.2			
Pending Operation:	Never	Never					

Detailed Description

The ALMT register identifies the corresponding bits in the status registers (StatusF, StatusW) for which the ALM* line is asserted. The default is manufacturer specific and can be modified when the module configuration is stored in non-volatile memory.

The ALM* line can function as a LOCKED line which gets de-asserted during tuning or output disable when the ADT (alarms during tuning) configuration is set in MCB (0x33). <u>Data Value Description</u>

A "1" bit signifies that the corresponding status register bit triggers the assertion of the ALM* line. A "0" signifies that the corresponding status register bit does not trigger the assertion of the ALM* line.

The layout of the ALMT register follows the same format as the status registers (StatusF, StatusW 0x20, 0x21). This register sets the bits for which the ALM* line is asserted. It follows the similar format as the status register (0x20, 0x21).

15	14		12	11	10	9	8
				WVSF	WFREQ	WTHERM	WPWR
0	0	0	0	0	1		0
7	6	5	4	3	2	1	0
				FVSF	FFREQ	FTHERM	FPWR
0	0	0	0	0	1	0	0

The default setting is shown above and is 0x0404 which is useful (along with ADT in the Module configuration register (MCB 0x33) to cause the ALM* line to function as a LOCKED line which gets de-asserted during tuning or output disable. The ALM* line can be de-asserted by changing this register.

6.6 Module Optical Settings

6.6.1 Channel (Channel 0x30) [RW]

Purpose

Channel sets the module's channel starting a tuning event.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Pending?	Volatile?	Default Contents
Channel	0x30	R	Unsigned short	See §7.2	No	Non-volatile	Configured default with SENA=0
		W	Unsigned short	See §7.2	Yes	Lockable 1	

Returns

		Data Value Return	ed in Response Upor	ı
	Successful Read		Error on Read	Error on Write
Status Field Returned:	OK	ОК	XE	XE
Error Condition Field:	ОК	ок	CIP, CII, EXF, or VSE	RNW, RVE, CIP, CII, EXF, or VSE
Data Value:	Unsigned short channel number	Same as sent	0x0000	0x0000
Effect on Module	None	Begin tuning process	Error field set	Error field set
Execution Time:	See §7.2	See §7.2	See §7.2	See §7.2
Pending Operation:	Never	Typically for most technologies		

Detailed Description

The frequency for this channel is defined as:

Freq (GHz) = (Channel –1) *grid_spacing(0x34/10) + Frequency_of_first_channel(0x35,36).

Assuming the module is hardware and software enabled, (DIS*=1 and SENA=1), the module will tune to the channel specified in the Channel register. Otherwise the tuning will be initiated by setting SENA=1. Note that changing the DIS* pin to high will not cause a tune. SENA must be set to "1" after the DIS* pin is set high.

The output is disabled under the following conditions:

Disabled = ((Fatal_Status & Fatal_Trigger) && SDF) | ~SENA | ~DIS Where:

Fatal_Status is register (0x20)

Fatal_Trigger is register (0x29)

SDF is a software enable for fatal alarm to control output [0x0002 & (MCB 0x33)] SENA is a software control of the output [0x0008 & (ResEna 0x32)]

DIS is hardware control of the output. [0x1000 & (StatusF 0x20)]. This is latched and cleared by SENA.

An execution error (XE) resulting from the module's inability to successfully tune to the specified channel (Error = EXF) will leave the optical output off.

The tuning time is technology dependent. See §7.2 Timing Specification.

The default is manufacturer specific and can be modified when the module configuration is stored in non-volatile memory.

Data Value Description

Bits 15:0 16 bit unsigned channel number

A 16 bit unsigned integer representing the desired channel number. Increasing channel may be associated with increasing frequency or decreasing frequency depending upon the sign of the grid_spacing (GRID 0x34) value.

Channel 0 is an undefined channel number. Writing this register with an invalid channel number will not change the register value and will generate an execution error. Writing a value outside of the channel range will generate an execution error. Note that execution errors other than EXF will leave channel unchanged.

Examples

Example 1 shows a configuration where the channel number is frequency in GHz less 180000. Example 2 shows a configuration using 50GHz channel numbers.

Parameter	E	Example 1			Example 2		
Grid Spacing	Grid (0x34)	1 GHz	1 GHz		-50GHz		
First Channel Frequency	FCF (0x35,36)	180000		FCF (0x35,36)	196300		
	Channel=1	180.000 THz (~1655nm)		Channel =1	196.300 THz (~1527nm)		
Frequency	Channel=65535	245.534 THz (~1221nm)		Channel=200	186.350 THz (~1609nm)		
	Channel=X	180000 + X-1		Channel=X	196300 - 50*(X-1)		

The following example shows a channel map configuration followed by a tuning event.

	Com	mand (Host to Mod	ule)	Re	sponse (Module to I	Host)			
#	Operation	tion Register Bytes (15:0)		Register	Data Bytes (15:0)				
	Set up the channel mapping (Grid spacing and first channel frequency)								
1	Write	0x34 (Grid)	0x0032 (50 ₁₀)	0x00 (Ok-flag)	0x30 (Grid)	0x0032			
2	Write	0x35 (FCF1) (first channel frequency)	0x00C4 (196 ₁₀)	0x00 (Ok-flag)	0x35 (FCF1)	0x00C4			
3	Write	0x36 (FCF2)	0x012C (3000 ₁₀)	0x00 (Ok-flag)	0x36 (FCF2)	0x012C			
	command in			ration. For this techn tion #1 (bit 4). (Assu		turns with the hable and h/w enable			
3	Write	0x30 (Channel)	0x0001	0x03 (CP-flag)	0x30 (Channel)	0x0 1 00			
	Host polls m	odule waiting for pen	ding operation	on to complete.					
4	Read	0x00 (NOP)	0x0000	0x00 (Ok-flag)	0x00 (NOP)	0x0100			
5	Read	0x00 (NOP)	0x0000	0x00 (Ok-flag)	0x00 (NOP)	0x0100			
6	Read	0x00 (NOP)	0x0000	0x00 (Ok-flag)	0x00 (NOP)	0x0 <mark>0</mark> 00			
	Operation co	omplete when its pen	ding operation	on bit (bit 8 in this cas	e) returns to zero.				

Note that the default module configuration is to assert an SRQ* for an execution error resulting from a pending operation. The following example shows a tuning failure event.

	Com	mand (Host to Mod	ule)	Re	Response (Module to Host)					
#	Operation	Register	Data Bytes (15:0)	Status	Register	Data Bytes (15:0)				
	Set the channel number causing a tuning operation. For this technology, the channel returns with the command in progress assign it pending operation #3 (bit 6).									
1	Write 0x30 (Channel) 0x0001 0x03 (CP-flag) 0x30 (Channel)					0x0 4 00				
	Host polls m	odule waiting for pen	iding operation	on to complete.						
2	Read	0x00 (NOP)	0x0000	0x00 (Ok-flag)	0x00 (NOP)	0x0 4 00				
3	Read	0x00 (NOP)	0x0000	0x00 (Ok-flag)	0x00 (NOP)	0x0 4 00				
	Execution er	ror occurs and modu	lle asserts Sl	RQ* line for the failed	pending operation					
4										
	Pending operation bit 4 is now zero signaling the termination of the pending operation. The error field contains 0x8 (EXF – execution failure).									

6.6.2 Optical Power Set Point (PWR 0x31) [RW]

Purpose

PWR sets the optical output power set point in dBm*100 as a signed integer. The desired power is not necessarily achieved when the command returns.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
PWR	0x31	R	Signed short int	See §7.2	No	Non-volatile	Manufacturer specific
	0,51	W	(dBm*100)	See §7.2	No	Lockable 1	

Returns

		Data Value Return	ned in Response Upor	า
	Successful Read	Successful Write	Error on Read	Error on Write
Status Field Returned:	OK	ОК	XE	XE
Error Condition Field:	ОК	ок	CIP, CII, EXF, or VSE	RNW, RVE, CIP, CII, EXF, or VSE
Data Value:	dBm*100	Same as sent	0x0000	0x0000
Effect on Module	None	Power set point changed	Error field set	Error field set
Execution Time:	See §7.2	See §7.2	See §7.2	See §7.2
Pending Operation:	Never	Never		

Detailed Description

Typically, the optical power set point is configured prior to the set channel command (Channel 0x30) command is sent. The default is manufacturer specific and can be modified when the module configuration is stored in non-volatile memory.

Setting the optical power set point while locked on channel will cause the output power to change within technology limits and is guaranteed to be traffic non-interrupting). If the requested power change is out of range, an execution error is generated. If the requested power is within the technology limits but requires a traffic interrupting event to achieve the new power setting, an output power alarm will be asserted (FPWR (StatusF) and/or WPWR (StatusW)).

Note: this power is an approximate value since it will typically be measured internally and the correlation between the fiber coupled optical output power and internally measured power will vary. The default is manufacturer specific.

Data Value Description

The optical output power set point is encoded as a signed integer in dBm*100. Therefore, a value of $0x3E8 (1000_{10})$ represents 10dBm.

6.6.3 Reset/Enable (ResEna 0x32) [RW]

Purpose

Writing to the Reset/Enable register can initiate a soft reset or a hard reset of the module or can software enable/disable the optical output.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
ResEna	0x32	R	Unsigned short	See §7.2	No		0x0000
ResLina	07.32	W	Unsigned short	See §7.2	No	Lockable 1	

Returns

		Data Value Return	ed in Response Upor	ı
	Successful Read	Successful Write	Error on Read	Error on Write
Status Field Returned:		ОК		XE
Error Condition Field:		ок		RNW, RVE, CIP, CII, EXF, or VSE
Data Value:		Same as sent		0×0000
Effect on Module		Perform specified reset operation		Error field set
Execution Time:		<200ms		See §7.2
Pending Operation:		Never		

Detailed Description

The Reset/Enable register provides way through software to reset the module or software enable or disable the optical output.

Writing SENA=1 causes the optical output to be enabled and writing SENA=0 causes the optical output to be disabled.

Either a soft reset (SR=1) or a hardware module reset (MR=1) can be selected. In the event that both are selected, the hardware module reset takes precedence.

The soft reset resets the communication's interface and is traffic non-interrupting. Extended address registers are reset.

The hardware reset is typically traffic interrupting since it will reset control loops as well.

The host can poll the communication's interface waiting for IRDY* to be asserted indicating that the interface is ready to communicate.

A response is returned to acknowledge the reset request before the reset is started. IRDY* is left asserted during reset to block further communication from host.

Data Value Description

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												SENA		SR	MR

- Bit 0: MR: Module Reset (write-able) (default 0x00) When set to "1", the module undergoes a "hard" reset. The impact to the optical signal is undefined. This bit is self clearing.
- Bit 1: SR: Soft Reset⁴⁹ (write-able) (default 0x00) When set to "1", the module undergoes a "soft reset". The intention is that the module will undergo a soft reset without impacting the traffic carrying capacity of the optical signal. This bit is self-clearing.
- Bit 3: SENA Software enable of output (default 0)

A "1" indicates that the software is allowing the output to be enabled.

A "0" indicates that the software had disabled the output.

This pin is used in conjunction with the DIS* pin. In order for a signal to appear at the optical output, both the DIS*=high and the SENA=1.

The output is disabled under the following conditions: Disable = (Fatal_Status & Fatal_Trigger & SDF) | ~SENA | ~DIS Where: Fatal_Status is register (0x20) Fatal_Trigger is register (0x29) SDF is a software enable for fatal alarm to control output [0x0004 & (MCB 0x33)] SENA is a software control of the output [0x0008 & (ResEna 0x32)] DIS* is hardware control of the output. [0x1000 & (StatusF 0x20)]. This is latched and cleared by SENA.

6.6.4 Module Configuration Behavior (MCB 0x33) [RW]

Purpose

The MCB register provides a way to configure a number of module behaviors. Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
МСВ	0,22	R	Unsigned short	See §7.2	No	Non-volatile	0x0002 or 0x0012
IVICB	MCB 0x33		Unsigned short	See §7.2	No	Lockable 2	

<u>Returns</u>

		Data Value Returned in Response Upon						
	Successful Read	Successful Write	Error on Read	Error on Write				
Status Field Returned:	OK	ОК	XE	XE				
Error Condition Field:	ОК	ОК	CIP, CII, EXF, or VSE	RNW, RVE, CIP, CII, EXF, CIE, or VSE				
Data Value:	Unsigned short	Same as sent	0x0000	0x0000				
Effect on Module	None	Configured	Error field set	Error field set				
Execution Time:	See §7.2	<200ms	See §7.2	See §7.2				
Pending Operation:	Never	Never						

⁴⁹ The soft reset will include the communication's interface reset. The communication's interface reset can also be accomplished through de-asserting the MS* pin.

Detailed Description

The ADT (Alarm During Tuning) configuration supports alarms to be asserted during a channel tune. As soon as the tuning operation is successful, the alarm is deasserted.

The SDF (Shut Down on Fatal) configuration supports the need to disable the optical output should any of the selected fatal conditions occur (FATAL* line is asserted).

The AXC (Assert Xel and Cel flags in status register) configuration supports the need to signal SRQ when an execution error (XE) or a communication error (CE) occurs with some interfaces. The default is physical interface specific.

The default is manufacturer specific and can be modified when the module configuration is stored in non-volatile memory.

Data Value Description

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											AXC		SDF	ADT	

- Bit 1: ADT Alarm during tuning or disable (warning status flags) The default (0x1) allows alarm conditions during tuning or disable. If set to 0x1, ALM* is asserted during tuning or when the output is disabled. This default causes the ALM* line to function as a LOCKED to channel indicator, even during tuning.
- Bit 2: SDF Shut down optical output on fatal condition.
 A fatal condition occurs when the FATAL is asserted (FATAL* line is low)
 The default (0x0) does not cause the optical output to shutdown on fatal alarm.
 Fatal conditions are somewhat technology specific but would be signaled by any of the bits 10:8 in register 0x20 (StatusF) being set.
- Bit 4: AXC Assert XEL and CEL flags in the status register for the current command. The XEL flag is always asserted when pending commands generate an execution error. In SPI mode, it may be desirable to have the XEL and CEL flags such that an SRQ* can be asserted.

A "1" indicates that XEL and CEL will be asserted for the current command. A "0" indicates that XEL will only be asserted for pending commands that fail. The CEL flag will never be asserted.

Interface	IOMODE State Latched At Reset/Power Up	IOMODE1 State Latched At Reset/Power Up	Default Value of AXC Bit
SPI	LOW	LOW	0x1
RS232	HIGH	LOW	0x0
I ² C	LOW	HIGH	0x1
Vendor specific	HIGH	HIGH	0x0

6.6.5 Grid Spacing (Grid 0x34) [RW]

Purpose

Grid sets the module's grid spacing for the channel to frequency mapping.

Synopsis:

<u> </u>	<u>jnopele.</u>							
	Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
	Grid	0x34	R	Signed short	See §7.2	No	Non-volatile	Manufacturer specific
	Gilu 0x3		W	(GHz*10)	See §7.2	No	Lockable 2	

<u>Returns</u>

		Data Value Return	ed in Response Upor	1
	Successful Read	Successful Write	Error on Read	Error on Write
Status Field Returned:	OK	ОК	XE	XE
Error Condition Field:	ОК	ок		RNW, CIP, CII, EXF, CIE, or VSE
	Signed short (GHz*10)	Same as sent	0x0000	0x0000
Effect on Module	None	Set grid spacing – no immediate impact on frequency		Error field set
Execution Time:	See §7.2	See §7.2	See §7.2	See §7.2
Pending Operation:	Never	Never		

Detailed Description

The frequency for a channel is defined as: Freq (GHz) = (Channel –1) *grid_spacing(0x34/10) + Frequency_of_first_channel(0x35,36).

This value can only be changed when the output is disabled. Changing it while the optical output is enabled generates an execution error. This register is only used during tuning to set the output frequency register. Any grid spacing can be set but may result in many unreachable channel frequencies.

The default is manufacturer specific and can be modified when the module configuration is stored in non-volatile memory.

Data Value Description

The register is a signed integer and allows for grid spacings as high as ± 3.28 THz and as low as 0.1 GHz.

6.6.6 First Channel's Frequency (FCF1, FCF2 0x35 – 0x36) [RW] Purpose

The FCF1 and FCF2 registers provide a way to configure the frequency of channel 1. <u>Synopsis:</u>

Register Name	Register Number	Read / Write	Read or Written	Response Generated	Pending?	Volatile? Access?	Default Contents
FCF1	0x35	R	Unsigned short	See §7.2	No	Non-volatile	Manufacturer specific
FUEL	0,55	W	(THz)	See §7.2	No	Lockable 2	
FCF2	0x36	R	Unsigned short	See §7.2	No	Non-volatile	Manufacturer specific
FUFZ	FCF2 0X30		(GHz*10)	See §7.2	No	Lockable 2	

<u>Returns</u>

		Data Value Return	ed in Response Upor	ı
		Successful Write	Error on Read	Error on Write
Status Field Returned:	OK	ОК	XE	XE
Error Condition Field:	ОК	ок	CIP, CII, EXF, or VSE	RNW, CIP, CII, EXF, VSE, or CIE
Data Value:	Unsigned short	Same as sent	0x0000	0x0000
Effect on Module	None	Configured	Error field set	Error field set
Execution Time:	See §7.2	See §7.2	See §7.2	See §7.2
Pending Operation:	Never	Never		

Detailed Description

This value can only be changed when the output is disabled. Changing it while the output is enabled will generate an execution error. The register contents are unsigned integers. The order in which LF1 and LF2 are written is not significant. Both should be defined properly before either enabling the optical output or saving the module's configuration as the default configuration (See §6.4.9 General Module Configuration (GenCfg 0x08) [RW]).

Data Value Description

The frequency is in GHz is equal to $(0x35*10^3 + 0x36*10^{-1})$.

For instance, 194.175 THz would be represented by

Register	Hex Value	Decimal Value
0x35	0x00C2	194
0x36	0x06D6	1750

Frequency (GHz) is then 194*10³ + 1750*10⁻¹ or 194175.0 GHz. The default value for this register will be manufacturer specific.

6.6.7 Laser Frequency (LF1, LF2 0x40 – 0x41) [R]

Purpose

The LF1 and LF2 registers provide a way to read the frequency of the current channel. Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile?	Default Contents
LF1	0x40	R	Unsigned short (THz)	See §7.2	No		Manufacturer specific
		W					
LF2	0x41	R	Unsigned short (GHz*10)	See §7.2	No		Manufacturer specific
		W					

<u>Returns</u>

	Data Value Returned in Response Upon					
	Successful Read	Successful Write	Error on Read	Error on Write		
Status Field Returned:	OK		XE			
Error Condition Field:	OK		CIP, CII, EXF, or VSE			
Data Value:	Unsigned short		0x0000			
Effect on Module	None		Error field set			
Execution Time:	See §7.2		See §7.2			
	Never					

Detailed Description

The frequency for a channel is computed as follows:

Freq (GHz) = (Channel –1) *grid_spacing(0x34/10) + Frequency_of_first_channel(0x35,36).

The laser may or not have its optical output enabled when the register is read.

Data Value Description

The frequency is in GHz is equal to $(0x40*10^3 + 0x41*10^{-1})$. Default value consistent with Grid spacing register and channel number.

For instance, 194.175 THz would be represented by

Register	Hex Value	Decimal Value
0x40	0x00C2	194
0x41	0x06D6	1750

Frequency (GHz) is then $194*10^3 + 1750*10^{-1}$

6.6.8 Optical Output Power (OOP 0x42) [R]

Purpose

The OOP register provides a way to read the external optical power estimate.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile?	Default Contents
OOP	0x42	R	Signed short (dBm*100)	See §7.2	No		Manufacturer specific
		W					

<u>Returns</u>

	Data Value Returned in Response Upon					
		Successful Write	Error on Read	Error on Write		
Status Field Returned:	ОК		XE			
Error Condition Field:	ОК		CIP, CII, EXF, or VSE			
Data Value:	Signed short (dBm*100)		0x0000			
	None		Error field set			
Execution Time:	See §7.2		See §7.2			
Pending Operation:	Never					

Detailed Description

The optical module's output power. This value is in dBm*1000 and is a signed integer. In units with internal power monitors, this is of course, an approximate value.

Data Value Description

The optical output power is stored as a signed integer as dBm*100.

6.6.9 Current Temperature (CTemp 0x43) [R]

Purpose

The CTemp register provides a way to read the current temperature of the primary control temperature.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	
CTemp	0x43	R	Signed short (°C*100)	See §7.2	No		Manufacturer specific
		W					

<u>Returns</u>

		Data Value Returned in Response Upon					
	Successful Read	Successful Write	Error on Read	Error on Write			
Status Field Returned:	OK		XE				
Error Condition Field:	OK		CIP, CII, EXF, or VSE				
Data Value:	Signed short (°C*100)		0x0000				
Effect on Module	None		Error field set				
	See §7.2		See §7.2				
Pending Operation:	Never						

Detailed Description

The current temperature reported as an integer encoded in 0.01°C. The temperature set point is vendor specific. This register displays the temperature value used to determine if a fatal thermal condition has occurred.

Data Value Description

The temperature is represented as signed short integer with units of °C*100.

6.7 Module's Capabilities

6.7.1 Optical Power Min/Max Set Points (OPSL, OPSH 0x50 – 0x51) [R] Purpose

The OPSL and OPSH registers provide a way to read the minimum and maximum optical power capabilities of the module.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
OPSL (Min)	0x50	R	Signed short (dBm*100)	See §7.2	No		Manufacturer specific
(Min)		W					
OPSH	0x51	R	Signed short (dBm*100)	See §7.2	No		Manufacturer specific
(Max)		W					

Returns

		Data Value Returned in Response Upon					
	Successful Read	Successful Write	Error on Read	Error on Write			
Status Field Returned:	OK		XE				
Error Condition Field:	OK		CIP, CII, EXF, or VSE				
Data Value:	Signed short (dBm*100)		0x0000				
Effect on Module	None		Error field set				
Execution Time:	See §7.2		See §7.2				
Pending Operation:	Never						

Detailed Description

These registers report the minimum optical power setting which is possible (OPSL) and the maximum setting which is possible (OPSH) for the module.

Data Value Description

The value is represented as dBm*100, signed short integer.

6.7.2 Laser's First/Last Frequency (LFL1/2, LFH1/2 0x52-0x55) [R] Purpose

Returns the min and max frequency that the module supports. Synopsis:

<u> </u>								
	Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Access?	Default Contents
	LFL1	0x52	R	Unsigned short (THz)	See §7.2	No		Manufacturer specific
	(Min)		W					
	LFL2	0x53	R	Unsigned short (GHz*10)	See §7.2	No		Manufacturer specific
	(Min)		W					
	LFH1	0x54	R	Unsigned short (THz)	See §7.2	No		Manufacturer specific
	(Min)		W					
	LFH2	0x55	R	Unsigned short (GHz*10)	See §7.2	No		Manufacturer specific
	(Max)		W					

<u>Returns</u>

		Data Value Returned in Response Upon						
	Successful Read	Successful Write		Error on Write				
Status Field Returned:	OK		XE					
Error Condition Field:	OK		CIP, CII, EXF, or VSE					
Data Value:	Unsigned short		0x0000					
Effect on Module	None		Error field set					
Execution Time:	See §7.2		See §7.2					
Pending Operation:	Never							

Detailed Description

The register set (LFL1:LFL2) returns the lowest frequency of the laser. The register set (LFH1:LFH2) returns the highest frequency of the laser.

Data Value Description

The laser's first frequency is in GHz is equal to $(0x52^*10^3 + 0x53^*10^{-1})$. The laser's last frequency is in GHz is equal to $(0x54^*10^3 + 0x55^*10^{-1})$.

For instance, 194.175 THz would be represented by

Register	Hex Value	Decimal Value
0x52, 0x54	0x00C2	194
0x53, 0x55	0x06D6	1750

Frequency (GHz) is then $194*10^3 + 1750*10^{-1}$

6.7.3 Laser's Minimum Grid Spacing (LGrid 0x56)

Purpose

The LGrid register provides a way to read the minimum grid spacing capability of the module.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
LGrid	0x56	R	Unsigned short (GHz*10)	See §7.2	No		Manufacturer specific
		W					

<u>Returns</u>

		Data Value Return	ed in Response Upon	
	Successful Read	Successful Write	Error on Read	Error on Write
Status Field Returned:	OK		XE	
Error Condition Field:	OK		CIP, CII, EXF, or VSE	
Data Value:	Unsigned short (GHz*10)		0x0000	
Effect on Module	None		Error field set	
Execution Time:	See §7.2		See §7.2	
	Never			

Detailed Description

The LGrid register returns the laser's minimum grid spacing.

Data Value Description

The value is represented as GHz*10.

6.8 MSA Commands

6.8.1 Module Currents (Currents 0x57) [R]

Purpose:

Currents returns an array of the technology specific currents. These currents may include diode current(s), TEC currents, and monitor currents.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
Currents	0x57	R	AEA (Array of Unsigned Int)	See §7.2	No		0x00xx → Current Array (mA*10)
		W					

Returns

		Data Value Return	ed in Response Upor	1
	Successful Read		Error on Read	Error on Write
Status Field Returned:	ОК		XE	
	ОК		CIP, CII, EXF, or VSE	
Data Value:	0x00xx ➔ Current Array (mA*10)		0x0000	
Effect on Module	AEA registers configured to reference array		Error field set	
Execution Time:	See §7.2		See §7.2	
Pending Operation:	Never			

Detailed Description

Returns key module currents as an array of signed integers. The first access of the Currents register returns a byte count to be read from the AEA register. At the time the Currents register is accessed, all the current values of the currents are copied into the field region where the AEA register will be configured for reading. The maximum length of the returned array 20 bytes.

All devices will report the following currents:

Number of Bytes	Technology 1	Technology 2
1:2	TEC	TEC
3:4	Diode	Diode 1
5:6		Diode 2
7:8		Diode 3
9:10		Diode 4
11:12		SOA

Data Value Description

Unless otherwise specified, currents are represented as unsigned integers (mA*10).

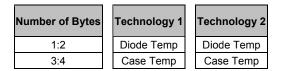
6.8.2 Module Temperatures (Temps 0x58) [R]

Purpose:

Temps returns an array of the technology specific temperatures. These temperatures may include diode temperatures(s), and case temperatures.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
Temps	0x57	R	AEA (Array of Unsigned Int)	See §7.2	No		0x00xx → Temperature Array (°C*100)
		W					


Returns

		Data Value Return	ed in Response Upor	1
	Successful Read	Successful Write	Error on Read	Error on Write
Status Field Returned:	ОК		XE	
	ОК		CIP, CII, EXF, or VSE	
Data Value:	0x00xx → Temperature Array (°C*100)		0x0000	
	AEA registers configured to reference array		Error field set	
Execution Time:	See §7.2		See §7.2	
Pending Operation:	Never			

Detailed Description

Returns key module temperatures as an array of signed integers. The first access of the Temps register returns a byte count to be read from the AEA register. At the time the Temps register is accessed, all the temperature values of the temperatures are copied into the field region where the AEA register will be configured for reading. The maximum length of the returned array 20 bytes.

All devices will report the following currents:

Data Value Description

Unless otherwise specified, currents are represented as unsigned integers (°C*100).

6.8.3 Analog & Digital Dither (Dither(E,R,A,F) 0x59-0x5C) [RW] [Optional] Purpose

The dither registers provide a way to configure dither performance of the units. Both analog and digital dither are optional features. For consistency among the various technologies, digital dither is the preferred implementation.

Synopsis:	-	-		·			
Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
DitherE	0x59	R	Unsigned short	See §7.2	No	Non-volatile	Manufacturer specific
Dimert	0703	W	Unsigned short	See §7.2	Yes	Lockable 1	
DitherR	0x5A	R	Unsigned short	See §7.2	No	Non-volatile	Manufacturer Specific (10KHz – 200kHz)
		W	(KHz)	See §7.2	Yes	Lockable 2	
DitherF	0x5B	R	Unsigned short	See §7.2	No	Non-volatile	Manufacturer specific
Dimen	Dimerr 0x5B	W	(GHz*10)	See §7.2	No	Lockable 2	
DitherA	itherA 0x5C	R	Unsigned short	See §7.2	No	Non-volatile	Manufacturer specific
DiuleiA	0,30	W	(%*10)	See §7.2	No	Lockable 2	

Returns

		Data Value Return	ned in Response Upor	1
	Successful Read	Successful Write	Error on Read	
Status Field Returned:	ОК		XE	XE
Error Condition Field:	ОК	ок	CIP, CII, EXF, or VSE	RNW, CIP, CII, EXF, or VSE
Data Value:	Unsigned short	Same as sent	0x0000	0x0000
Effect on Module	None	Configured	Error field set	Error field set
Execution Time:	See §7.2	See §7.2	See §7.2	See §7.2
Pending Operation:	Never	Technology Dependent		

Detailed Description

The use of dither generally falls into two categories: 1) SBS suppression, and/or 2) signaling. SBS suppression is primarily concerned with FM frequency deviation and traditionally may monitor the AM content as a measure of the FM content. The signaling application makes use of either a sinusoidal tone or an AM modulated signal. The signaling application may also be used in conjunction with SBS suppression.

Some laser technologies must generate AM content to achieve the desired FM content while other can achieve AM and FM contents independently. The configuration registers provides the ability to set the FM deviation with the DitherF register and the AM content with the DitherA register. For a given application, it is recommended that either the DitherA or the DitherF register be configured. Configuring both may lead to an over constrained system.

Enabling or disabling dither is a non-interrupting traffic event.

The default is manufacturer specific and can be modified when the module configuration is stored in non-volatile memory.

Typical Dither Configurations		Register							
Application	DitherE	DitherR	DitherA	DitherF					
AM Tone Signaling	0x0002 (Sinusoidal)	100-200kHz	Configure (~5%)	Not configured					
SBS Suppression (Pure)	0x0012 (Triangular)	10-50kHz⁵⁰	Not configured	0.1-1GHz					
AM Tone + SBS (potentially over constrained) ⁵¹	0x0002 (Sinusoidal)	100-200kHz	Configure (~5%)	Not configured					

DitherF, DitherR, and DitherA can only be changed when the digital dither is disabled. When digital dither is enabled, analog dither is disabled. Changing it while the output is enabled will generate an execution error. Values not supported by the module also generate execution errors. The contents of the registers are unsigned integers.

Data Value Description

DitherR is an unsigned integer specifying the dither rate as kHz. Note that DitherE is used to set the waveform for this frequency.

DitherF is an unsigned short integer encoded as the FM p-p frequency deviation as GHz*10.

DitherA is an unsigned short integer encoded as the AM p-p amplitude deviation as 10*percentage of the optical power.

DitherE is an unsigned short integer encoded as shown below.

15	14	13	12	11	9	8	7	6	5	4	3	2	1	0
									V	VF			DE	E (Dither Enable)

Dither Enable (Bits 1:0)

0x00 – No dither is enabled.

0x01 – Analog dither is enabled (through the Adither pin)

0x02 – Digital dither is enabled (configured through DitherF and DitherA registers) 0x03 – Invalid. Attempt to set this value triggers an execution error.

WF (Waveform) (Bits 5:4)

0x00 – Sinusoidal

0x01 – Triangular (symmetrical)

⁵⁰ The granularity in setting the DitherR rate is manufacturer dependent. The module will default to the closest DitherR value supported.

⁵¹ In technologies where the SBS may be over constrained, the SBS may occur at the "pure SBS" DitherR default value and the AM tone is produced at the specified DitherR value.

6.8.4 TCase Warning Limits (TCaseL, TCaseH 0x5D, 0x5E) [RW]

Purpose

The TCase registers set the warning limits for high and low temperature for the thermal warning.

Syno	psis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Pending?	Volatile? Access?	Default Contents
TCaseL	0x5D	R	Signed short	See §7.2	No	Non-volatile	0xFE0C (-5 °C)
TCaseL	UXSD	W	(°C*100)	See §7.2	No	Lockable 2	
TCaseH	0x5E	R	Signed short	See §7.2	No	Non-volatile	0x1B58 (+70°C)
ICasen	UXDE	W	(°C*100)	See §7.2	No	Lockable 2	

<u>Returns</u>

	Data Value Returned in Response Upon						
	Successful Read	Successful Write	Error on Read	Error on Write			
Status Field Returned:	OK	OK	XE	XE			
Error Condition Field:	ОК	OK CIP, CII, EXF, or VSE R		RNW, RVE, CIP, CII, EXF, or VSE			
Data Value:	Signed short (°C*100)	Same as sent	0x0000	0x0000			
Effect on Module		New warning levels take effect	Error field set	Error field set			
Execution Time:	See §7.2	7.2 See §7.2 S		See §7.2			
Pending Operation:	Never	Never					

Detailed Description

The temperature case limits are set by TCaseH and TCaseL. When the case temperature as determined by the laser module exceeds either of the limits for at least 5 seconds,

- TCase > TCaseH
- TCase < TCaseL

The thermal warning flag (WTHERM) is asserted in the StatusW (0x21) register. If the ALMT, SRQT, or FatalT registers are set to trigger off of the WTHERM or WTHERML flag, the hardware line will be asserted as well.

The default is manufacturer specific and can be modified when the module configuration is stored in non-volatile memory.

Data Value Description

The temperature is encoded as a signed short integer as °C*100 which allows a temperature range of ±327 °C.

6.9 Manufacturer Specific (0x80-0xFE)

These registers are reserved for manufacturer specific needs.

6.9.1 User Data Storage (User1 0xFF)

Purpose

Register User1 provides a data storage area for users to store and retrieve data. The data type is not specified but is treated has an arbitrary array of unsigned short ints.

Synopsis:

Register Name	Register Number	Read / Write	Data Type Read or Written	Response Generated	Can Be Pending?	Volatile? Access?	Default Contents
		R	AEA	See §7.2	No	Non-volatile	Empty string; length=0
User1	0xFF	W	Array of unsigned int Max 32 bytes	See §7.2	Yes	Lockable 1	

Returns

	Data Value Returned in Response Upon						
	Successful Read	Successful Write	Error on Read	Error on Write			
Status Field Returned:	OK	ОК	XE	XE			
Error Condition Field:	ОК	ОК	CIP, CII, EXF, or VSE	RNW, CIP, CII, EXF, or VSE			
Data Valuer	AEA Array of unsigned int	Same as sent	0x0000	0×0000			
Effect on Module	on Module AEA configured for read from user data area. AEA configured for write to user data area.		Error field set	Error field set			
Execution Time:	See §7.2	See §7.2	See §7.2	See §7.2			
Pending Operation:	Never	Yes					

Detailed Description

User data storage areas are provided for storage to application dependent data, if any. The User1 register provides a maximum storage area of 32 bytes.

The default value for the USER1 field can be stored in non-volatile memory with the GenCfg:SDC operation.

Data Value Description

The data is formatted, as the application requires. The module assumes the most generic format, an array of unsigned integers.

Since the storage area is not formatted, it is up to the application to take care of field length boundaries such a null termination of strings.

7 Optical Specifications

Unless otherwise noted, all optical specifications are over life, temperature, and other environmental conditions.

7.1 Optical Characteristics

The required optical specifications for tunable lasers are very dependent upon application.

The optical performance specifications are divided into a matrix of application requirements as shown in Table 7-1.

Optical Specification Matrix			Application Requirement (Tuning Speed)					
			А	В	С			
			SONET/SDH Protection	SONET/SDH Restoration	Provisioning & Sparing			
Annlingtion	1	Ultra Long Haul	A1	B1	C1			
Application Requirement	2	Long Haul	A2	B2	C2			
	3	Metro	A3	B3	C3			

Table 7-1: Optical Specification Requirement Matrix

7.1.1 Optical Parameter Definitions

- For the following optical application requirements, the following terms are defined.
- 7.1.1.1 Spectral Linewidth

The Line width specified is the Lorentzian component. This is related to white phase noise component of the optical field. The standard 3dB width of self-homodyne measurements sets an upper limit on the Lorentzian component, but is dominated by 1/f noise and gives a pessimistic value of LW.

7.1.1.2 SMSR (Side Mode Suppression Ratio)

Defined as the ratio of the average optical power in the dominant longitudinal mode to the optical power of the most significant side mode at CW, in the presence of worst-case reflections

7.1.1.3 RIN (Relative Intensity Noise)

Measured from 10MHz to 10GHz.

7.1.2 Application Requirement 1 (Ultra Long Haul)

Table 7.1.2-1 shows the optical specifications for the CW tunable laser for Application 1.

Item	Paramet		Min	Тур	Мах	Unit	
7.1.2.1	Frequency tuning range ⁵²		v	186.200		196.575	THz
7.1.2.1	Trequency turning range		λ	~1525		~1610	nm
7.1.2.2	Fiber Output Power (Over lifetime and all	20mW	Ρ	12.5	13.5	14.5	dBm
	operating conditions)	10mW		9.5	10.5	11.5	dBill
7.1.2.3	Output power variation ac	ross tuning range	ΔΡ			0.5	dB
7.1.2.4	Frequency error to ITU	50 GHz channel spacing	ΔF	-2.5		+2.5	GHz
7.1.2.5	Grid	25 GHz channel spacing	ΔF	-1.25		+1.25	GHz
7.1.2.6	Side Mode Suppression F	atio	SMSR	43			dB
7.1.2.7	Relative Intensity Noise		RIN			-145	dB/Hz
7.1.2.8	Spectral Linewidth		δf			5	MHz
7.1.2.9	Optical isolation			25			dB
7.1.2.10	Source Spontaneous Emi	ssion	SSE			-40	dBc/nm
7.1.2.11	Polarization Extinction Ratio over tuning range		PER	20			dB
7.1.2.12	Optical attenuation while tuning or while module enabled or disabled (while ΔF > 10GHz) ⁵³		P _{ATT1}	30			dB
7.1.2.13	Optical attenuation while t module enabled or disable (while $ \Delta F \le 10$ GHz)		P _{ATT2}	0			dB

Table 7.1.2-1: Optical Specifications (Application 1)

⁵² This range represents the full C and L bands. Applications will likely require a subset of this tuning range capability. Lasers need not necessarily support the entire tuning range unless required by an application. 53 | Δ F| refers to the frequency error with respect to the desired ITU grid point.

7.1.3 Application Requirement 2 (Long Haul)

Table 7.1.3-1 shows the optical specifications for the CW tunable laser for Application 2.

Item	Parameter			Min	Тур	Мах	Unit
7.1.3.1	Frequency tuning range ⁵⁴		v	186.200		196.575	THz
7.1.5.1	Trequency turning range		λ	~1525		~1610	nm
7.1.3.2	Fiber Output Power (Over lifetime and all	20mW	Р	12.5	13.5	14.5	dBm
7.1.0.2	operating conditions)	10mW		9.5	10.5	11.5	dBiii
7.1.3.3	Output power variation ac	ross tuning range	ΔP			0.5	dB
7.1.3.4	Frequency error to ITU	50 GHz channel spacing	ΔF	-2.5		+2.5	GHz
7.1.3.5	Grid	25 GHz channel spacing	ΔF	-1.25		+1.25	GHz
7.1.3.6	Side Mode Suppression F	Ratio	SMSR	40			dB
7.1.3.7	Relative Intensity Noise		RIN			-135	dB/Hz
7.1.3.8	Spectral Linewidth		δf			10	MHz
7.1.3.9	Optical isolation			25			dB
7.1.3.10	Source Spontaneous Emi	ssion	SSE			-40	dBc/nm
7.1.3.11	Polarization Extinction Ra	tio over tuning range	PER	20			dB
7.1.3.12	Optical attenuation while module enabled or disable (while $ \Delta F > 10$ GHz) ⁵⁵	P _{ATT1}	30			dB	
7.1.3.13	Optical attenuation while module enabled or disable (while $ \Delta F \le 10$ GHz)	0	P _{ATT2}	0			dB

 Table 7.1.3-1: Optical Specifications (Application 2)

⁵⁴ This range represents the full C and L bands. Applications will likely require a subset of this tuning range capability. Lasers need not necessarily support the entire tuning range unless required by an application. 55 | Δ F| refers to the frequency error with respect to the desired ITU grid point.

7.1.4 Application Requirement 3 (Metro)

Table 7.1.4-1: shows the optical specifications for the CW tunable laser for Application 3.

ltem	Para	Sym	Min	Тур	Мах	Unit	
7.1.4.1	Frequency tuning range ⁵⁶		v	186.200		196.575	THz
7.1.4.1		e	λ	~1525		~1610	nm
7.1.4.2	Fiber Output Power (Over lifetime and all	20mW	Р	12.5	13.5	14.5	dBm
7.1. - 7.2	operating conditions)	10mW		9.5	10.5	11.5	dbiii
7.1.4.3	Output power variation	across tuning range	ΔP			0.5	dB
7.1.4. 4	Frequency error to	50 GHz channel spacing	ΔF	-2.5		+2.5	GHz
7.1.4. 5	ITU Grid	25 GHz channel spacing	ΔF	-1.25		+1.25	GHz
7.1.4.6	Side Mode Suppression	n Ratio	SMSR	35			dB
7.1.4.7	Relative Intensity Noise	;	RIN			-130	dB/Hz
7.1.4.8	Spectral Linewidth		δF			20	MHz
7.1.4.9	Optical isolation			25			dB
7.1.4.10	Source Spontaneous E	mission	SSE			-30	dBc/nm
7.1.4.11	Polarization Extinction	Ratio over tuning range	PER	18			dB
7.1.4.12	Optical attenuation while tuning or while module enabled or disabled (while $ \Delta F > 10$ GHz) ⁵⁷		P _{ATT1}	30			dB
7.1.4.13	Optical attenuation whil module enabled or disa (while $ \Delta F \le 10 GHz$)	e tuning or while	P _{ATT2}	0			dB

Table 7.1.4-1: Optical Specifications (Application 3)

⁵⁶ This range represents the full C and L bands. Applications will likely require a subset of this tuning range capability. Lasers need not necessarily support the entire tuning range unless required by an application.

 $^{^{57}}$ $|\Delta F|$ refers to the frequency error with respect to the desired ITU grid point.

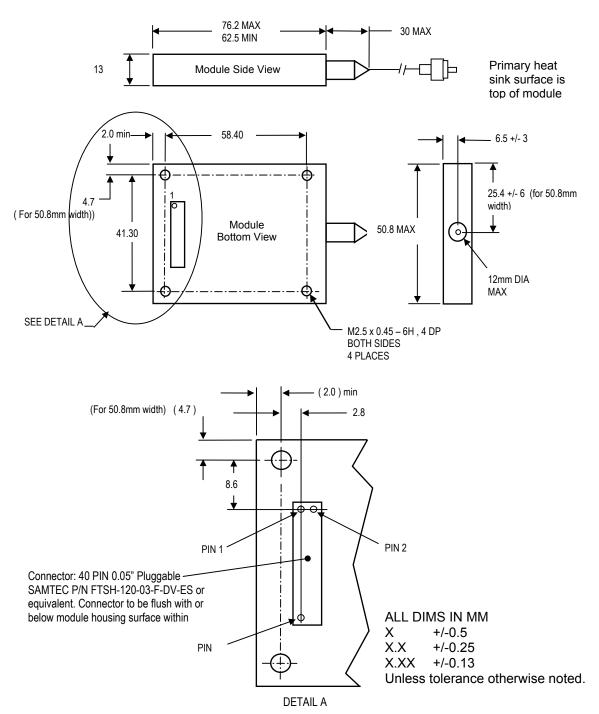
7.2 Timing Specifications

Three application requirements are shown below for tunable laser tuning times.

Item		Parameter		Min	Тур	Max	Unit
7.2.1	Frequency	Application A (SONET/SDH Protection)	t _T			10	ms
7.2.2	tuning time (Frequency is	Application B (SONET/SDH Restoration)	t _T			1	s
7.2.3	within frequency accuracy / stability spec)	Application C (Sparing/Provisioning)	t⊤			15	s
7.2.4	Maximum time	Application A (SONET/SDH Protection)	t _T			5	ms
7.2.5	allowed for module to	Application B (SONET/SDH Restoration)	t _T			50	ms
7.2.6	construct a response packet	Application C (Sparing/Provisioning)	t⊤			50	ms

Table 7.2-1: Timing Specifications

7.3 Module Warm Up Time


Item	Parameter	Sym	Min	Тур	Max	Unit
7.3.1	Module warm up time. (The worst case delay, from power up or hard reset, until the module asserts ready ⁵⁸ (MRDY bit in the NOP (0x00) register)	Τ _{wu}			30	S

⁵⁸ Assuming a valid configuration of the module.

8 Mechanical Specifications

8.1 Module Mechanical Outline Dimensions

Figure 8.1-1 Mechanical Outline Dimensions

9 Appendix – List of OIF Member Companies

The following is a list of companies that are principle members of the OIF at the time of document approval.

Principal Members of the OIF

Accelerant Networks **Accelight Networks** Actel Acterna ADC **Aeluros** Agere Systems Agilent Technologies Agility Communications Alcatel All Optical Networks, Inc. Altamar Networks Altera Alvesta Corporation AMCC America Online Ample Communications Analog Devices **ANDO Corporation** Anritsu Aralight <u>ASTRI</u> AT&T Atrica Avici Systems Axiowave Networks Axonlink Bandwidth9 **Big Bear Networks** Bit Blitz Communications Blaze Network Products Blue Sky Research Bookham Technologies **Booz Allen Hamilton** Broadcom Cable & Wireless **Cadence Design Systems** Calient Networks Calix Networks Caspian Networks Celion Networks Centellax

Larscom Lattice Semiconductor LSI Logic Lucent Technologies Lumentis LuxN LYNX - Photonic Networks Mahi Networks Marconi Communications MathStar Maxim Integrated Products MergeOptics GmbH **Meriton Networks** Metro-OptiX Mintera Mitsubishi Electric Corporation Motorola Multilink Technology Corporation **Multiplex Mysticom** National Semiconductor Nayna Networks NEC NetTest **Network Elements** NIST Nortel Networks **NTT Corporation** NurLogic Design OpNext **Optical Datacom** Optillion **Optium Optix Networks Optobahn OptronX** PacketLight Networks Parama Networks **Paxonet Communications PetaSwitch Solutions PhotonEx** Photuris, Inc.

Centerpoint Broadband Technologies	Phyworks
Centillium Communications	<u>Picarro</u>
Centre Tecnologic de Telecomunicacions de Catalunya	Pine Photonics Communications
Ceyba	PMC Sierra
Chiaro Networks	Polaris Networks, Inc.
China Telecommunications	Princeton Optronics
Chunghwa Telecom Labs	Procket Networks
Ciena Communications	Quake Technologies
Cisco Systems	Qwest Communications
Coherent TeleCom	RedClover Networks
<u>Conexant</u>	RF Micro Devices
CoreOptics	<u>RHK</u>
Coriolis Networks	Sandia National Laboratories
Corrigent Systems	Santec Corporation
Cortina Systems	Santel Networks
Corvis Corporation	Santur Corporation
Cypress Semiconductor	<u>SBC</u>
Data Connection	Scintera Networks
Department of Defense	<u>Siemens</u>
Derivelt	Sierra Monolithics
E2O Communications	Silicon Access Networks
ELEMATICS	Silicon Labs
Elisa Communications	Silicon Logic Engineering
Emcore Fiber Optics	SiOptic Networks, Inc.
Equant Telecommunications SA	Sky Optix
Equipe Communications	<u>Solidum</u>
Ericsson	Southampton Photonics
ETRI	Spirent Communications
Extreme Networks	StrataLight Communications
Ezchip	Stratos Lightwave
Fast-Chip	Sumitomo Electric Industries
Fiberhome Telecommunications	Sun Microsystems
Fiberspace	Sycamore Networks
Finisar Corporation	T-Networks, Inc.
Flextronics	T-Systems Nova
Force 10 Networks	Tektronix
France Telecom	Telcordia Technologies
Free Electron Technology	Telecom Italia Lab
Fujikura	<u>Tellabs</u>
<u>Fujitsu</u>	<u>Tellium</u>
Furukawa America Inc	Tenor Networks
Galazar Networks	TeraBurst Networks
General Dynamics	TeraConnect
Gennum Corporation	<u>Teradyne</u>
Glimmerglass Networks	Texas Instruments
Harris Corporation	Toshiba Corporation
Harting Electro-Optics	Transpectrum

Helix AG

<u>Hi/fn</u> <u>Hitachi</u> Huawei Technologies **IBM Corporation** <u>IDT</u> Ignis Optics Infineon Technologies Infinera **Innovance Networks** Inphi Intel Intelligent Photonics Control Internet Machines Interoute Intune Technologies lolon Industrial Technology Research Institute Japan Telecom JCP Photonics JDS Uniphase Jennic **Juniper Networks** KDDI R&D Laboratories Kirana Networks Kodeos Communications KT Corp.

Transpera Networks **TriQuint Semiconductor Tropic Networks** Tsunami Photonics Turin Networks Tyco Electronics US Conec Vativ Technologies **Velio Communications** Velocium (TRW) Verizon Vitesse Semiconductor **VSK Photonics** Wavecrest Wavium West Bay Semiconductor Winchester Electronics W.L. Gore & Associates **Xanoptix Xelerated** Xignal Technologies <u>Xilinx</u> **Xindium XLight Photonics** Zagros Networks Zarlink Semiconductor

10 Index

A

Absolute Maximum Ratings	
ADT	
AEA	
Alarm line	
ALM*	15, 19, 24, 29, 71, 72, 78, 79, 85
Application space	
Distance	
Long Haul	
Metro	
Tuning Time Specification	
Ultra Long Haul	
AXC	

B

BIP-4	
Bit Numbering	
boot up	

С

СЕ	15, 24, 25, 29, 38, 40, 62, 71, 73, 85. See Communication error
Checksum (BIP-4)	
CII	
CIP	
Command Format	
Command Group	
Generic module commands	
Manufacturer Specific	
Optical Settings	
Status Commands	
Command Paradigms	
Command volatile attribute	
Commands	
Command Description Format	
Error Condition Field	
Response generated attribute	

Returns attribute	
Status Field Returned	
Commands access attribute	
Commands Can be pending	
Commands:	
Communication Byte Numbering	
Communication error	
RS-232	
Communication Interface	
Connector	
Pin assignments	
Conventions	
Bit Numbering	
Byte numbering	
Data Direction	
Data Types	
Numeric Values	
CRC	See CRC-16. See CRC-16. See CRC-16. See CRC-16
CRC-16	
CRL	

D

Data Direction	
Data Types	
Design	
Communications Interface	9
Configurable	
Extensible Platform	
Document	
Background	
Design Objectives	
List of Contributors to the OIF-IA	
Objectives	
Scope	
-	

E

EAM	
Electrical Characteristics	See Specifications
ERE	See Error Field
ERO	See Error Field
Error Condition Field	
Error Detection	
By Host	
By Module	
Error field	
Error Field	
CIE - Command ignored while output enabled	
CII - Command ignored while initializing	
CIP - Command ignored due to pending operation	
ERE - Extended address range error	
ERO - Extended address is read only	

EXF - Execution general failure	
IVC	
OK – No errors	
RNI – Register no implemented	
RNW – Register not write-able	
RVE – Register value range error	
VSE - Vendor specific error	
Example	
CRC-16	
Extended Addressing	
Packet Pacing	
Reading Module Status	
Execution Error Detection	
Execution Error Timing	
RS-232	
EXF	
Extended Addressing	

F

FATAL* FFREQ FFREQL	
flag	
СР	
FPWR	
FPWRL	
FTHERM	
FTHERML	
FVSF	
FVSFL	

Ι

I ² C	
Acknowledge	
Bus Timing	
Complete Data Transfer	
Data Transfer Timing	
I ² C-Bus	
Pins Description	
Start/Stop Timing	
In-Bound packet	
INCR	
Interfaces	
Communication	
Interoperability agreement	See OIF-IA
Invalid configuration, MRDY	
IOCap	
IOCLK	
IOMode	
IOMode1	
IRDY*	18, 23, 28, 29, 34, 36, 40, 72, 83

L

Locked line	
Locked status	
Lockout Levels	
Lockout levels, register	
Lockout, register	
Long haul	
-	

M

Mechanical Specifications	
Module	
Metro	
MRDY	
MRL	
MS*	
multi-byte response	

N

Numeric Values

0

OIF-IA	8
OK	
Optical Characteristics	
Out-Bound packet	
Overview	
Address registers	
Command	
Command Execution Overlap	
Communication	
Communication Layers	
Data Types	
Multi-byte	
Two Byte	
Error Detection	
Extended Addressing	
Lockout levels	
Module Reset	
Physical Interface	
Register configuration	
Register Lockout	
Transport Layer	

Р

Packet Pacing	
Packet status flags	
AEA	
СР	

XE	
Packet status flags	
XE	
Packet Status Flags	
Pending operation	
Pending operations	
Physical Interface	
Selection	
Physical interfaces	
I ² C	
Performance	
Pin Functions	
RS-232	
SPI	
Physical Interfaces	
Pin Assignments	
Pin Functions	

R

RAI	
References	7
Register	
ALMT	
Channel	
CTemp	
Currents	
DevTyp	
Dither(E,R,A,F)	
DLConfig	
DLStatus	
Extended Addressing	
FatalT	
FCF1	
FCF2	
FFreqTh	
FPowTh	
FThermTh	
GenCfg	15, 46, 56, 87
Grid	
IOCap	
LF1	
LF2	
 Lock	
Lockout levels	· · ·
LstResp	
MCB	
MFGDate	
MFGR	
Model	
NOP/Status	
OOP	
OPSH	
OPSL	90

PWR	
RCRC	
RelBack	
Release	
SerNo	
SRQT	
StatusF	
StatusW	
TCaseH	
TCaseL	
Temps	
User1 Data Storage	
WCRC	
WFreqTh	
WPowTh	
WThermTh	
Registers	
Summary	
Reset, module	
Response flag	
Response generated	
RNI	See Error Field
RNW	See Error Field
RS-232	
Alarm Timing	
ASCII	
Baud rates	
Error Timing	
Execution Timing	
RVE	

S

SBS suppression	
SDC - Store default configuration	
SDF	
SENA	
Serial Peripheral Interface	
SPI	
Error Timing	
Execution Timing	
Pin Timing	
Pins Description	
Read/Write Timing	
Transfer Timing	
SRQ*	
Status Flags	

T

Transport Layer	
Transport Layer Field Definitions	38

U	
Ultra long haul	
V	

W

WAI	
WFREQ	
WFREQL	
WPWR	
WPWRL	
WTHERM	
WTHERML	
WVSF	
WVSFL	

X

XE12, 15, 24, 25, 29, 48, 50, 51, 52, 53, 55, 56, 57, 59, 62, 63, 64,	65, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78,
80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98	
IVC	
XEL	