OIF Marketwatch: SI to the forefront

Tom Palkert

Molex

Overview

- > System requirements drive diversity
- > ASIC requirement drive commonality

>Solutions

- 50G PAM with FEC
- NRZ with FFE, CTLE, DFE
- ENRZ

25G and 50G Interfaces

25G and 50G VSR channel (Best solution is NRZ)

2m 26AWG passive copper cable

molex

ASICs promote commonality

Constraints on switch ASICs

- Single SERDES design reduces R&D costs.
- Ability to 'turn' ASIC promotes multiple use parts
- 2.5G/10G/25G: First designs supported chip to module, 2nd Generation supports all: (chip to module, chip to chip, backplane, copper cable)
- 50G: More applications but still one SERDES
 - First design supports all applications

Diversity vs commonality

Diversity vs commonality chart

IL

R	1.5dB@14GHz 3dB@28GHz	Bump-to-bump Inside MCM or 3D Stack
२ २।	4dB@14GHz 8dB@28GHz	Ball-to-ball Across PCB
R M	10dB@14GHz 20dB@28GHz	Ball-to-ball
R C	20dB@14GHz 40dB@28GHz	Ball-to-ball
F	35dB@14GHz	Ball-to-ball

Goergen_3bs_03a_0114

Where did we end up?

> Ethernet will use PAM for all 50G electrical interfaces

- Solved the PAM 9dB noise penalty problem thru the use of strong FEC
- Low latency applications will use NRZ (i.e. HPC/InfiniBand)
- >Not clear what will happen with memory interface

Challenges with 50G NRZ designs

>Requires best input sensitivity

- To reduce the impact of higher losses
- > Requires advanced materials
 - Would benefit from reduced Meg7 pricing

> Requires better signal integrity of designs

- Surface roughness
- Control of via stubs
- Reduce trace impedance (85 ohms?)

Improved PCB material

Approx. 20% improvement in loss could be achieved for 50G NRZ designs

mo

Lee Ritchey Source Designcon 2015

Surface Roughness

Improvements in surface roughness could reduce channel loss by 1dB for 50G NRZ VSR designs 2.2

Challenges with 50G PAM4 designs

> Requires Low crosstalk

To reduce the impact of reduced SNR

Requires equalization for ISI (nonlinearity)

– DFE, FFE, CTLE

> Requires FEC

To reduce the impact of reduced SNR

Crosstalk measurements

molex

FEC coding

Performance of various block codes

