

IA # OIF-DPC-RX-01.2 IA for Integrated Intradyne Coherent Receivers

Implementation Agreement for Integrated Dual Polarization Intradyne Coherent Receivers

IA # OIF-DPC-RX-01.2

November 14, 2013

Implementation Agreement to be revised and approved by the Optical Internetworking Forum www.oiforum.com

Working Group:

Physical and Link Layer (PLL) Working Group

TITLE: Implementation Agreement for Intradyne Coherent Receivers IA # OIF-DPC-RX-01.2

SOURCE: MAINTENANCE EDITOR

John E. Johnson, Ph.D. Avago Technologies, Inc. 9999 Hamilton Blvd. Breinigsville, PA 18031 Phone: +1-484-397-2368 Email: john.johnson@avagotech.com

WORKING GROUP VICE CHAIR

Karl Gass Sandia National Laboratories P. O. Box 5800 MS-0874 Phone: +1-505-844-8849 Email: <u>iamthedonutking@mac.com</u>

WORKING GROUP CHAIR

David R. Stauffer, Ph.D. IBM Corporation 1000 River Road, MC 862J Essex Jct., VT 05452 Phone: +1-802-769-6914 Email: dstauffe@us.ibm.com

ABSTRACT: This contribution reflects the results from the first maintenance cycle of IA# OIF-DPC-RX-01.1 Implementation Agreement for Intradyne Coherent Receivers.

The OIF is an international non profit organization with over 90 member companies, including the world's leading carriers and vendors. Being an industry group uniting representatives of the data and optical worlds, OIF's purpose is to accelerate the deployment of interoperable, cost-effective and robust optical internetworks and their associated technologies. Optical internetworks are data networks composed of routers and data switches interconnected by optical networking elements.

With the goal of promoting worldwide compatibility of optical internetworking products, the OIF actively supports and extends the work of national and international standards bodies. Working relationships or formal liaisons have been established with IEEE 802.1, IEEE 802.3ba, IETF, IP-MPLS Forum, IPv6 Forum, ITU-T SG13, ITU-T SG15, MEF, ATIS-OPTXS,ATIS-TMOC, TMF and the XFP MSA Group.

For additional information contact: The Optical Internetworking Forum, 48377 Fremont Blvd., Suite 117, Fremont, CA 94538 510-492-4040 ◆ info@oiforum.com

www.oiforum.com

Notice: This Technical Document has been created by the Optical Internetworking Forum (OIF). This document is offered to the OIF Membership solely as a basis for agreement and is not a binding proposal on the companies listed as resources above. The OIF reserves the rights to at any time to add, amend, or withdraw statements contained herein. Nothing in this document is in any way binding on the OIF or any of its members.

The user's attention is called to the possibility that implementation of the OIF implementation agreement contained herein may require the use of inventions covered by the patent rights held by third parties. By publication of this OIF implementation agreement, the OIF makes no representation or warranty whatsoever, whether expressed or implied, that implementation of the specification will not infringe any third party rights, nor does the OIF make any representation or warranty whatsoever, whether expressed or implied, with respect to any claim that has been or may be asserted by any third party, the validity of any patent rights related to any such claim, or the extent to which a license to use any such rights may or may not be available or the terms hereof.

© 2013 Optical Internetworking Forum

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such as by removing the copyright notice or references to the OIF, except as needed for the purpose of developing OIF Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted above are perpetual and will not be revoked by the OIF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE OIF DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY, TITLE OR FITNESS FOR A PARTICULAR PURPOSE.

1 <u>Table of Contents</u>

4	0	Cover Sheet	1
5	1	Table of Contents	4
6	2	List of Figures	5
7	3	List of Tables	5
8	4	Document Revision History	6
9	5	Introduction	7
10	6	Functionality	8
11	7	High Speed Electrical Interface	9
12	8	Low Speed Electrical Interface	12
13	9	Environmental and Operating Characteristics	14
14	10	Mechanical	15
15	11	References	20
16		11.1 Normative references	20
17		11.2 Informative references	20
18	12	Appendix A: Glossary	20
19	13	Appendix B: Opto-Electrical Properties (informative)	21
20	14	Appendix C: Open Issues / current work items	24
21	15	Appendix D: List of companies belonging to OIF when document is	
22		approved	25
23			

2 List of Figures

4	FIGURE 1: FUNCTIONAL DIAGRAM OF A DUAL POLARIZATION INTRADYNE RECEIVER 9
5	FIGURE 2.1: HIGH-SPEED ELECTRICAL INTERFACE DEFINITION, TYPE 1 FORM FACTOR 11
6	FIGURE 2.2: HIGH-SPEED ELECTRICAL INTERFACE DEFINITION, TYPE 2 FORM FACTOR 12
7	FIGURE 3.1: MECHANICAL DIAGRAM, TYPE 1 FORM FACTOR
8	FIGURE 3.2: MECHANICAL DIAGRAM, TYPE 2 FORM FACTOR 17
9	FIGURE 4.1: DC/CONTROL PIN LANDING PAD LOCATION, TYPE 1 FORM FACTOR 17
10 11	FIGURE 4.2: MOUNTING FLANGE AND DC/CONTROL PIN LANDING PAD LOCATION, TYPE 2 FORM FACTOR
12	FIGURE 5: RECOMMENDED MAXIMUM ALLOWABLE LOCAL OSCILLATOR POWER MASK. 23
13	FIGURE 6: CMRR DEFINITION
14	FIGURE 7: TEST METHOD AND NOMENCLATURE FOR THE SIGN OF I-Q PHASE 24
15	

3 <u>List of Tables</u>

19	TABLE 1: HIGH-SPEED ELECTRICAL INTERFACE DESCRIPTION
20	TABLE 2: HIGH-SPEED ELECTRICAL INTERFACE DIMENSIONS. 10
21	TABLE 3.1: LOW SPEED ELECTRICAL INTERFACE PIN DEFINITION, TYPE 1 FORM FACTOR. 13
22	TABLE 3.2: LOW SPEED ELECTRICAL INTERFACE PIN DEFINITION, TYPE 2 FORM FACTOR. 13
23	TABLE 4: OPERATING CHARACTERISTICS 14
24	TABLE 5: FIBER CHARACTERISTICS
25	TABLE 6: MECHANICAL DIMENSIONS. 19
26	TABLE 7: OPTO-ELECTRICAL PROPERTIES

4 Document Revision History

Version	Date	Description
OIF-DPC-RX-01.0 Initial release	16 April 2010	Initial release
OIF-DPC-RX-01.1	20 Sept 2011	Various editorial corrections. Various additions to the descriptive text. Addition of table of operating characteristics to section 9 specifying several parameters. Addition of table of fiber characteristics to section 10 specifying several parameters. Update or addition of several mechanical dimensions of package including reduction of body length from 60mm to 50mm. Designation of DC pins 5&6 for connecting internal monitor photodiode. Removal of subscripts distinguishing PD bias pins to accommodate multiple versions already in use. Removal from appendix of items now specified in IA body.
OIF-DPC-RX-01.2	14 Nov 2013	Multiple editorial changes to refer to the original Integrated Intradyne Coherent Receiver form factor as "Type 1." Multiple revisions to add the definition of a new "Gen-2" reduced size form factor as "Type 2." Delete the 6V photodiode bias option in Table 4. Add an informative test method and nomenclature for the sign of I- Q phase as Figure 7. Delete Appendix C, FPC Interfaces (Informative)

5 <u>Introduction</u>

This document details an implementation agreement for an integrated intradyne coherent receiver initially targeting 100G PM-QPSK applications with nominal symbol rates up to 32 GBaud. While specifically addressing 100G PM-QPSK applications, this Implementation Agreement strives to remain modulation format and data rate agnostic whenever practical to maximize applicability to future market requirements. This document is not a multi-source agreement, but is expected to be the foundation of future MSAs.

11

1

2

3

12 100G DWDM represents a significant development expense for component and 13 system suppliers. Currently available photonics components addressing the 14 market are discrete and varied. A need for integration has been identified in order 15 to meet cost and size objectives. This implementation agreement aims to reduce 16 risk to component suppliers and users by identifying and specifying common 17 features and properties of the devices that will enable them to broadly meet the 18 needs of this emerging market.

19

20 This Implementation Agreement originates from the "100G long-distance DWDM 21 integrated photonics" project, undertaken in the Physical Link Layer working 22 group. This Implementation Agreement defines: (1) Required functionality. (2) 23 High speed electrical interfaces. (3) Low speed electrical interfaces. (4) 24 Mechanical requirements. (5) Environmental requirements. Also included are 25 informative specifications for (6) opto-electronic interfaces. Two distinct electro-26 mechanical form factors are defined in this revision of the Implementation 27 Agreement. This Implementation Agreement does not define the type of 28 technology used in photonics sub-components, nor expected optical transmission 29 performance of systems using receivers conforming to this Implementation Agreement. This Implementation Agreement is intentionally structured not to 30 31 preclude differentiation of product or system performance.

- 32
- 33

2

3

11

12

13

14

15

16

17 18

19 20

21

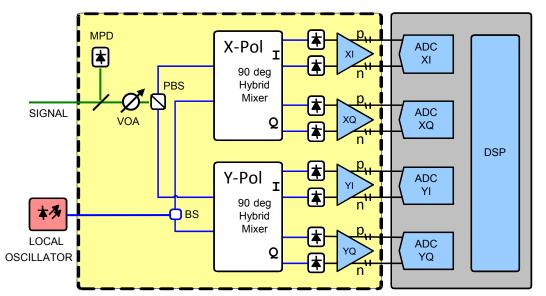
6 <u>Functionality</u>

The required functionality for the integrated coherent receiver is shown within the dashed line in Figure 1. A single component containing the described functionality is not required to meet the objectives of this implementation agreement.

- 8
 9 As indicated in Figure 1, the coherent receiver requires the following basic
 10 functionality:
 - 1. Eight (8) photo-detectors, comprised of 4 sets of balanced detectors
 - 2. Four (4) linear amplifiers with differential output
 - 3. Two (2) ninety degree hybrid mixers with differential outputs
 - 4. A polarization splitting element, separating the input signal into two orthogonal polarizations, with each polarization delivered to a hybrid mixer
 - 5. A polarization maintaining power splitter or polarization splitting element, splitting the local oscillator power equally to the two hybrid mixers.
 - 6. An optical power tap and monitor photodiode in the signal input path.
 - 7. A variable optical attenuator in the signal input path between the signal power tap and the signal polarization splitting element.

At a minimum, the first 3 of the above functions must be contained in a single photonics component to meet the objectives of this implementation agreement for the Type 1 form factor integrated coherent receiver. The first 5 of the above functions must be contained in a single photonics component to meet the objectives for the Type 2 form factor integrated coherent receiver. The remaining features are optional in both cases.

29 The polarization channels are indicated in Figure 1 as 'X-Pol' and 'Y-Pol' and the 30 phase channels for each labeled XI, XQ and YI, YQ respectively. The 31 complementary outputs for each channel are labeled 'p' and 'n'. X and Y indicate 32 a pair of mutually orthogonal polarizations of any orientation. I and Q are 33 mutually orthogonal phase channels in each polarization. I and Q are 34 established relative to the phase of the Local Oscillator where the relationship of 35 the phase of the Signal in the Q channel to the Local Oscillator is either advanced or delayed by nominally 90 degrees as compared to the relationship in 36 37 the I channel. The relative advance or delay of the Q channel in the Y 38 polarization channel should correspond to that in the X polarization channel. The 39 testing method and nomenclature of Figure 7 in Appendix B shall be used to 40 establish the relative advance or delay of the Q channel with respect to the I 41 channel. Outputs 'p' and 'n' are the complementary outputs for each 42 polarization-phase channel and are such that the output voltage for 'p' increases as the Signal and Local Oscillator approach the in-phase condition to form 43 44 constructive interference, and the output voltage for 'n' decreases under the 45 same conditions.


1 Additional required functionality for the integrated coherent receiver includes:

- Automatic Gain Control (AGC) and/or Manual Gain Control (MGC)
 - User settable output voltage swing
 - Independent output swing adjustment for each of the four outputs
 - Peak indicators for each output
- 5 6 7

2

3

4

9

Figure 1: Functional diagram of a dual polarization intradyne coherent receiver. The yellow
 area enclosed by the dashed line indicates the functionality specified in this
 implementation agreement.

13

- 14
- 15 16

17

7 <u>High Speed Electrical Interface</u>

The high speed electrical interface is co-planar waveguide, consistent with the pitch and pin definition detailed in Table 1, Table 2, and Figure 2.1 and 2.2. It is noted for the channel pin-out shown in Figure 2.1 and 2.2 that X, Y, I, Q, p, and n are consistent with the descriptions in Section 6. It is also noted that alternate polarities for the differential signals specified in Figure 2.1 and 2.2 are acceptable.

2 Table 1: High-speed electrical interface description.

Parameter	Form Factor	Value	Notes
Interface Type	All	Differential	
Channel Number	All	4	
Channel Configuration	Туре 1 Туре 2	G-S-G-S-G G-S-S-G	Per Figure 2.1 Per Figure 2.2
Signal Line Coupling	All	AC	
Signal Line Impedance	Туре 1 Туре 2	50 ohm to Ground 100 ohm Differential	
Channel Pin-out	All	XI XQ YI YQ	Per Figure 2.1 and Figure 2.2
Differential Pin-Out	All	Signal Complimentary Signal	p n

34 56 7

1

Table 2: High-speed electrical interface dimensions.

Parameter	Symbol	Form Factor	Min	Тур	Max	Units
Lead Pitch	А	All		1.0		mm
Lead Length (referenced from outside wall of package, as defined by dimension LP2 in Section 10)	В	Type 1 Type 2	2.00 1.50		3.00	mm
Signal Lead Width	С	All	0.10		0.30	mm
Ground Lead Width	D	All	0.10		0.50	mm
Channel Pitch	Е	Type 1 Type 2		5.0 3.0		mm
Signal to Complimentary Signal Pitch	F	Туре 1 Туре 2		2.0 1.0		mm

- 2 Figure 2.1: High-speed electrical interface definition for Type 1 form factor.
- 3

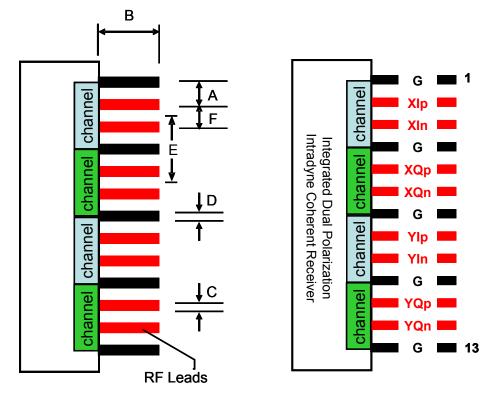


Figure 2.2: High-speed electrical interface definition for Type 2 form factor.

8 Low Speed Electrical Interface

The low speed electrical connections for the Type 1 form factor are provided through 40 pins, located and numbered as shown in Figure 3.1. The low speed electrical connections for the Type 2 form factor are provided through 34 pins, located and numbered as shown in Figure 3.2. Unused pins are not required to be present.

The photocurrent of each photodiode, or a representative equivalent quantity,shall be measurable.

The pin pitch is specified to be 1.27 mm for Type 1 and 1.0 mm for Type 2 form factor.

The pin definitions for the low speed electrical interfaces are provided in Tables

24 3.1 and 3.2.

25

19

1 2

Pin #	Symbol	Description	Pin #	Symbol	Description
1	SD-Y	Shutdown YI (optional)	40	RFU	Reserved for Future Use
2	PI-YI	Peak Indicator YI	39	PI-XQ	Peak Indicator XQ
3	GA-YI	Gain Adjust YI	38	GA-XQ	Gain Adjust XQ
4	OA-YI	Output Amplitude Adjust YI	37	OA-XQ	Output Amplitude Adjust XQ
5	MPD+	Monitor Photodiode Cathode (optional)	36	RFU	Reserved for Future Use
6	MPD-	Monitor Photodiode Anode (optional)	35	MC/AGC-X	MGC/AGC Selection X (optional)
7	VCC-YI	Supply Voltage Amplifier YI	34	VCC-XQ	Supply Voltage Amplifier XQ
8	GND	Ground Reference	33	GND	Ground Reference
9	PD-YI	Photodiode Bias Voltage YI ¹	32	PD-XQ	Photodiode Bias Voltage XQ ¹
10	PD-YI	Photodiode Bias Voltage YI ¹	31	PD-XQ	Photodiode Bias Voltage XQ ¹
11	PD-YQ	Photodiode Bias Voltage YQ ¹	30	PD-XI	Photodiode Bias Voltage XI ¹
12	PD-YQ	Photodiode Bias Voltage YQ ¹	29	PD-XI	Photodiode Bias Voltage XI ¹
13	GND	Ground Reference	28	GND	Ground Reference
14	VCC-YQ	Supply Voltage Amplifier YQ	27	VCC-XI	Supply Voltage Amplifier XI
15	MC/AGC-Y	MGC/AGC Selection Y (optional)	26	RFU	Reserved for Future Use
16	RFU	Reserved for Future Use	25	RFU	Reserved for Future Use
17	OA-YQ	Output Amplitude Adjust YQ	24	OA-XI	Output Amplitude Adjust XI
18	GA-YQ	Gain Adjust YQ	23	GA-XI	Gain Adjust XI
19	PI-YQ	Peak Indicator YQ	22	PI-XI	Peak Indicator XI
20	RFU	Reserved for Future Use	21	SD-X	Shutdown XI (optional)

2 Table 3.1: Low speed electrical interface pin definition for Type 1 form factor.

1

¹PD-YI, PD-YQ, PD-XI, PD-XQ each represent 2 pins wherein each one of the two pins independently supplies the bias voltage to correspondingly each one of the two photodiodes for the labeled Polarization / Phase channel.

Table 3.2: Low speed electrical interface pin definition for Type 2 form factor.

Pin #	Symbol	Description	Pin #	Symbol	Description
1	RFU	Reserved for Future Use	34	RFU	Reserved for Future Use
2	RFU	Reserved for Future Use	33	RFU	Reserved for Future Use
3	MC/AGC	MGC/AGC Selection (optional)	32	SD	Shutdown (optional)
4	MPD+	Monitor Photodiode Cathode (optional)	31	VOA1	VOA1 Adjust Voltage (optional) ²
5	MPD-	Monitor Photodiode Anode (optional)	30	VOA2	VOA2 Adjust Voltage (optional) ²
6	PD-YI	Photodiode Bias Voltage YI ¹	29	PD-XQ	Photodiode Bias Voltage XQ ¹
7	PD-YI	Photodiode Bias Voltage YI ¹	28	PD-XQ	Photodiode Bias Voltage XQ ¹
8	PD-YQ	Photodiode Bias Voltage YQ ¹	27	PD-XI	Photodiode Bias Voltage XI ¹
9	PD-YQ	Photodiode Bias Voltage YQ ¹	26	PD-XI	Photodiode Bias Voltage XI ¹
10	PI-YI	Peak Indicator YI	25	PI-XQ	Peak Indicator XQ
11	GA-YI	Gain Adjust YI	24	GA-XQ	Gain Adjust XQ
12	OA-YI	Output Amplitude Adjust YI	23	OA-XQ	Output Amplitude Adjust XQ
13	VCC-Y	Supply Voltage Amplifier Y	22	VCC-X	Supply Voltage Amplifier X
14	GND	Ground Reference	21	GND	Ground Reference
15	OA-YQ	Output Amplitude Adjust YQ	20	OA-XI	Output Amplitude Adjust XI
16	GA-YQ	Gain Adjust YQ	19	GA-XI	Gain Adjust XI
17	PI-YQ	Peak Indicator YQ	18	PI-XI	Peak Indicator XI

¹ PD-YI, PD-YQ, PD-XI, PD-XQ each represent 2 pins wherein each one of the two pins independently supplies the bias voltage to correspondingly each one of the two photodiodes for the labeled Polarization / Phase channel.

² Pins 31 and 30 (VOA1 and VOA2) shall not be connected internally to Ground.

7

Basic operating characteristics are listed in Table 4.

Table 4: Operating Characteristics

9

Parameter		Unit	Min	Тур	Max	Note	
Symbol Rate	GBaud		32				
Operating Frequency	C-Band	THz	191.35		196.20	#1	
Operating riequency	L-Band	1112	186.00		191.50		
Amplifier Supply Voltage	V		3.3				
Photodiode Bias Voltage	Option 3.3	v	3.135	3.3	3.465	#2	
Filolouloue blas vollage	Option 5.0	v	4.75	5.0	5.25		
Monitor Photodiode Bias	Option 3.3	V	3.135	3.3	3.465		
Voltage	Option 5.0	v	4.75	5.0	5.25		
Operating Temperature	Standard	°C	-5		75	#3	
Operating remperature	Preferred	C	-5		80	#3	
Operating Humidity	%RH	5		85	#4		

Environmental and Operating Characteristics

#1 Minimum supported range. On 50 GHz grid, as defined in G694.1. At least one of the two frequency bands to be supported.

#2 Vendor to state which Bias Voltage option or options are allowed both for signal Photodiodes and Monitor Photodiodes.

#3 Max temperature is the outside surface temperature of the photonic module and is to be

15 measured in the "hot zone" of the case.

16 #4 Non condensing.

10 <u>Mechanical</u>

The mechanical requirements for the integrated coherent receiver are detailed in Figures 3.1, 3.2, 4.1 and 4.2, and Tables 5 and 6. The requirements include:

- Fiber input and high speed electrical output located on opposite sides
- Signal input fiber to be Single Mode Fiber (SMF)
- Local oscillator fiber to be Polarization Maintaining Single Mode Fiber (PM SMF)
- DC supply and control voltages applied from remaining sides
- The thermal transfer path shall be through the PCB side of the device
- The devices hot region shall be within the area indicated in Figures 3.1 and 3.2.
- Use of appropriate strain relief in high speed electrical pins
- For Type 1 form factor implementations with BS and/or PBS functions located external to the main photonics component, the maximum envelope shall pertain only to the main photonics component.
- 20

1

2

3 4

5

6 7

8

9 10

11

12

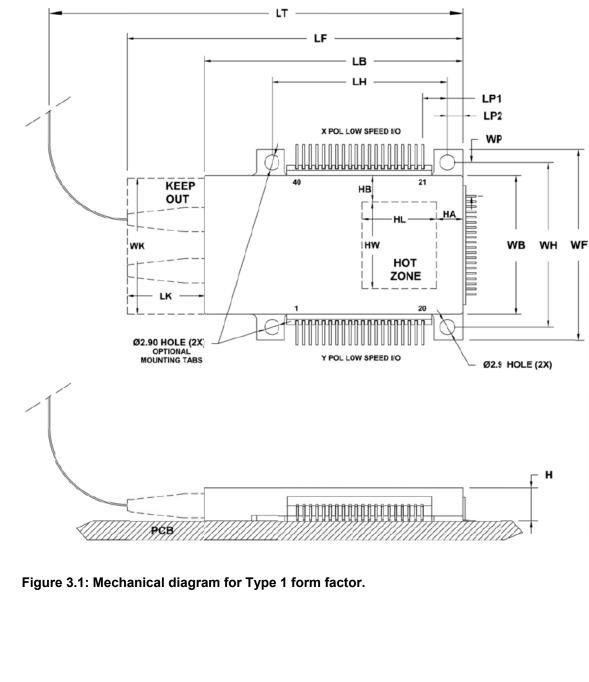
13

14

15

16

21 Table 5: Fiber Characteristics


Parameter	Unit	Min	Тур	Max	Note	
Minimum Fiber Bend Radius: SM-PMF on Local Oscillator	Standard	22			20	
Input	Preferred	mm			15	#1 #2
Minimum Fiber Bend Radius: S Input	mm			15	#3	

#1 The polarization state in any PM fiber shall be aligned to the slow axis of the PM fiber.

#2 The slow axis of any PM fibers shall be aligned to the connector key.

#3 All fibers to be uniquely identified.

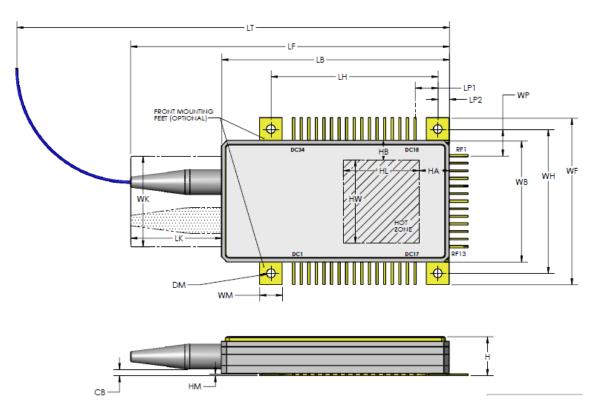
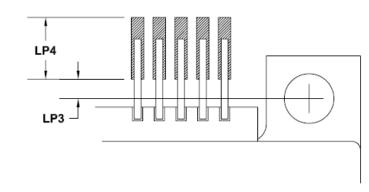
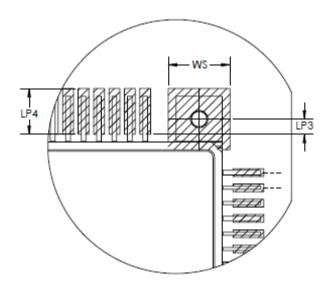




Figure 3.2: Mechanical diagram for Type 2 form factor.

- 7 Figure 4.1: DC/control pin landing pad location for Type 1 form factor.

2 Figure 4.2: Mounting flange and DC/control pin landing pad location for Type 2 form factor.

2 Table 6: Mechanical dimensions. All dimensions in mm.

Cumhal	Description	Тур	e 1 Form F	actor	Тур	e 2 Form F	Nata	
Symbol	Description	Min	Nom	Max	Min	Nom	Max	Note
Н	Package height			9	3.5		6.5	
LT	Total length, including 90 degree fiber bend			90			60	
LF	Full length of package, including fiber boots			70			45	
LB	Length of package body			50			33	
LH	Distance between mounting holes (optional)		34			22		
LP1	Distance between mounting hole center and center of last dc pin		4.935			3.0		
LP2	Distance between mounting hole center and RF end of package		3			1.5		
LP3	DC/Control pin landing pad location relative to mounting hole center			1.5		1.0		Note #2
LP4	DC/Control pin landing pad length	2.5				3.0		
WF	Width of package, including mounting flanges and DC pins			41			22	
WH	Distance between mounting holes		32			19		
WB	Width of package body		27			16	17	
WP	Distance between mounting hole center and first RF pin center		6.5			3.5		
HA	Location of hot region relative to package edge	3		4	3		4	
HB	Location of hot region relative to package edge	HW to be	centered in	package	HW to be	centered in	package	
НW	Width of hot region			WB			WB	Centered in package
HL	Length of hot region			25			20	
WK	Width of boot area Keep-Out region			22			12	Centered to Package
LK	Length of boot area Keep-Out region	(Max LF) - L	B	(Max LF) - L	В	Maximum
WM	Width of mounting flanges				2.5	3	4	
HM	Height of mounting flanges					0.2	0.4	Note #1
СВ	Clearance under fiber boots				0.3			
DM	Diameter of mounting holes		2.9		1.55	1.60	1.65	
WS	Width of mounting foot pad					3.5		

1 2

#1 Type 1 mounting flanges are screw-down type. Type 2 mounting flanges are screw-down and/or solder type.

#2. For Type 1 form factor LP3 is offset away from the package body. For Type 2 form factor LP3 is offset towards the package body. Refer to Figures 4.1 and 4.2.

1		
2	11	References
3		
4	11.1	Normative references
5	11.2	Informative references
6		
7		
8	12	<u>Appendix A: Glossary</u>
9		
10	ADC	Analog to Digital Converter
11	AGC	Automatic Gain Control
12	BS	Beam Splitter
	CMRR	Common Mode Rejection Ratio
14	DSP	Digital Signal Processor
15 16	GBaud IA	10 ⁹ Symbols per second
17	LO	Implementation Agreement Local Oscillator
18	MGC	Manual Gain Control
19	MPD	Monitor Photodiode
20	MSA	Multi-Source Agreement
21	OIF	Optical Internetworking Forum
22	PBS	Polarization Beam Splitter
23	PCB	Printed Circuit Board
24	PM-QPSK	Polarization Multiplexed Quadrature Phase Shift Keying
25	THD	Total Harmonic Distortion
26	VOA	Variable Optical Attenuator
27		
28		
29		

3

13 Appendix B: Opto-Electrical Properties (informative)

Opto-electrical properties consistent with the application and objectives
described in the 100G framework document are provided in Table 7. These
values are to be interpreted as target values. It is expected that values will be
updated as necessary and become normative and moved to the main body of
this document as the technology matures.

9

10 Table 7: Opto-electrical properties

Parameter	Units	Min	Тур	Max	Comments
Symbol Rate	GBaud			32	
Operating Signal Power	dBm	-18	-10	0	Average optical power
Local Oscillator Power	dBm				See Figure 5 for recommended operating conditions.
Linear output swing adjustment range Standard Extended	mVppd mVppd	300 400	500	700 900	Peak to peak, differential, AC coupled
Maximum Gain Control Bandwidth	MHz		5		Settable via external control. Measured by applying step at gain control node such that output changes 5%. BW is estimated by 0.22/Tr where Tr is 20-80% rise/fall of the output envelope step.
Total Harmonic Distortion (THD) DC current = 1.3 mA AC = 0.36mApp in to each PD $V_{OUT DIFF} = 500mVpp$ $F_{IN} = 1GHz \pm 10\%$	%			5	Assumptions: P(SIG) = -10dBm P(LO) = 13dBm Excess loss = 2dB, PD Responsivity = 0.8A/W
Common Mode Rejection Ratio (CMRR _{DC}) Signal to I & Q LO to I & Q	dBe dBe			-20 -12	See Figure 6 for definition
Common Mode Rejection Ratio (CMRR _{22GHz}) Signal to I & Q LO to I & Q	dBe dBe			-16 -10	See Figure 6 for definition

Small Signal Bandwidth (3dB)	GHz		22		
Low Frequency Cutoff	kHz			100	AC coupling
Phase Error	±deg			5	Between XI and XQ and between YI and YQ See Figure 7 for test method and nomenclature.
Optical Reflectance	dB			-27	Signal and LO ports. Per ITU-T G.959.1
Output Electrical Return Loss (S22): f < 16 GHz 16 GHz < f < 24 GHz 24 GHz < f < 32 GHz	dB dB dB	10 8 6			
Skew: p, n	ps			2	
Channel skew	ps			10	Time difference between earliest and latest channel. Includes channel skew variation.
Channel skew variation	ps			5	Temporal variation in the skew between any 2 channels due to case temperature, wavelength, input optical power, amplifier gain, and aging. Time for channel defined as mean of p and n.
Signal MPD responsivity	A/W		0.05		Optional feature
Signal MPD to LO input optical isolation	dB		45		Optional feature
VOA Type		Normally Open			Optional feature
VOA control voltage	V			9	Optional feature
VOA attenuation range	dB	10			Optional feature

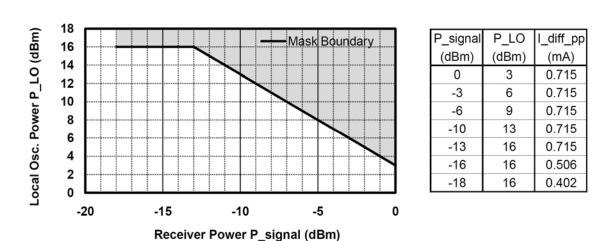
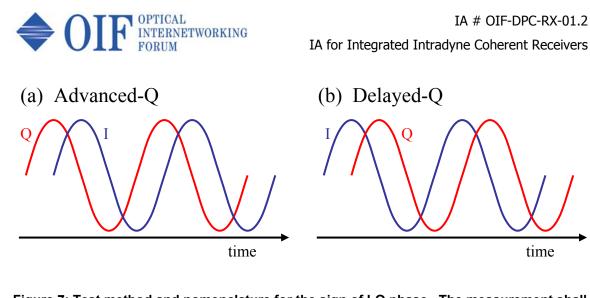



Figure 5: Recommended maximum allowable local oscillator power mask as a function of signal power to the integrated receiver for linear operation. A photodiode responsivity of 0.8A/W, NRZ coding, back to back operation, 0.715mA peak to peak differential linear input dynamic range, and an excess loss of 2dB are assumed . P_LO power level is as applied prior to the splitter equally dividing LO between X and Y partitions.

Sig | LO 90 deg Hybrid Mixer I2

CMRR (electrical) = $20\log[|I_1-I_2|/(I_1+I_2)]$ Figure 6: CMRR definition.

1

Figure 7: Test method and nomenclature for the sign of I-Q phase. The measurement shall be made by the heterodyne technique with the frequency of the Signal input greater than the frequency of the LO input and the I and Q channel electrical outputs measured in the time domain. The relative phase shown in (a) shall be referred to as "Advanced-Q" and the relative phase shown in (b) shall be referred to as "Delayed-Q" for the case where 'p' and 'n' RF outputs have the same relative order for both I and Q.

Appendix C: Open Issues / current work items 14

time

15 <u>Appendix D: List of companies belonging to OIF when</u> <u>document is approved</u>

Acacia Communications ADVA Optical Networking Agilent Technologies Alcatel-Lucent Altera AMCC Amphenol Corp. Anritsu **Applied Communication Sciences** AT&T Avago Technologies Inc. Broadcom Brocade Centellax, Inc. China Telecom Ciena Corporation **Cisco Systems ClariPhy Communications** Coriant Cortina Systems CPaD Department of Defense Deutsche Telekom Emcore Ericsson FCI USA LLC Fiberhome Technologies Group Finisar Corporation Fujitsu Furukawa Electric Japan Google Hewlett Packard Hitachi Hittite Microwave Corp Huawei Technologies **IBM** Corporation Infinera Inphi Intel JDSU Juniper Networks Kaiam

Kandou **KDDI R&D Laboratories** LeCroy LSI Corporation Luxtera M/A-COM Technology Solutions, Inc. Marben Products Metaswitch Mindspeed Mitsubishi Electric Corporation Molex MoSys, Inc. MultiPhy Ltd NEC **NeoPhotonics** NTT Corporation Oclaro Optelian Orange PETRA PMC Sierra QLogic Corporation Ranovus Semtech **Skorpios Technologies** Sumitomo Electric Industries Sumitomo Osaka Cement TE Connectivity Tektronix Tellabs **TELUS** Communications, Inc. TeraXion **Texas Instruments** Time Warner Cable **TriQuint Semiconductor** u_{2t} Photonics AG **US** Conec Verizon Xilinx **Xtera Communications** Yamaichi Electronics Ltd.