
Network Processing Forum Software Working Group

 Packet Handler Task Group 1

Packet Handler API
Implementation Agreement

Revision 1.0

Editor(s):

Rajeev Muralidhar, Intel Corporation, rajeev.d.muralidhar@intel.com

Copyright © 2003 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THIS DOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED TO THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", “MAY", and "OPTIONAL" in the remainder of this
document are to be interpreted as described in the NPF Software API Conventions Implementation
Agreement revision 2.0.

For additional information contact:
The Network Processing Forum, 39355 California Street,

Suite 307, Fremont, CA 94538
+1 510 608-5990 phone info@npforum.org

Network Processing Forum Software Working Group

 Packet Handler Task Group 2

Table of Contents
1 Revision History... 4
2 Introduction .. 5

2.1 Packet Handler API Dependencies.. 5
3 Packet Handler Architecture... 6

3.1 Relationship with FEs ... 7
3.2 Clients and FEs.. 7
3.3 Stacked PH API implementations ... 9

4 Packet Handler API Conceptual Elements ... 11
4.1 Metadata and flows ... 11
4.2 Metadata .. 11
4.3 Buffer descriptor and Memory ownership .. 18
4.4 Packet Handler API Events ... 18
4.5 Packet Handler API Statistics ... 18

5 Packet Handler API Data Types... 20
5.1 Common .. 20
5.2 Buffer Descriptor... 20
5.3 Metadata .. 20
5.4 Data Structures for Completion Callbacks .. 28
5.5 Data Structures for Event Callbacks ... 29
5.6 Callbacks .. 31

6 Packet Handler API Function Calls.. 33
6.1 Completion Callback Registration Function ... 33
6.2 Completion Callback De-registration Function .. 34
6.3 Event Callback Registration Function... 35
6.4 Event Callback Deregistration Function ... 36
6.5 Function to Send a Packet ... 37
6.6 Receive Packet Function (upcall).. 39
6.7 Function to Register a Receive Packet Upcall .. 40
6.8 Function to Deregister a Receive Packet Upcall ... 41
6.9 Function to Get Number of Priorities Supported .. 42
6.10 Function to Get Packet Handler Statistics ... 43
6.11 Optional Function to Create a Send Flow ... 44
6.12 Optional Function to Delete a Send Flow ... 46
6.13 Optional Function to Send a Packet using Send Flow Handle .. 47
6.14 Optional Receive Flow Function (upcall) ... 49
6.15 Optional Function to Register a Receive Flow Specification ... 50
6.16 Optional Function to Deregister a Receive Flow Specification .. 51

7 API Summary ... 52
8 References .. 53
Appendix A NPF Packet Handler API Header File - NPF_PH_API.H .. 54
Appendix B List of companies belonging to NPF DURING APPROVAL PROCESS........................ 65

Network Processing Forum Software Working Group

 Packet Handler Task Group 3

Table of Figures
Figure 1: Communication between PH API and FE ... 7
Figure 2 : Various configuration options .. 8
Figure 3: Stacked configuration of PH APIs .. 10
Figure 4: Mapping priorities between the application and the PH API implementation 16

Network Processing Forum Software Working Group

 Packet Handler Task Group 4

1 Revision History

Revision Date Reason for Changes

1.0 09/20/2003 Created Rev 1.0 of the implementation agreement by taking the NPF
Packet Handler API (npf2002.240.29) and making minor editorial
corrections.

Network Processing Forum Software Working Group

 Packet Handler Task Group 5

2 Introduction

Network nodes often do more than simply classify and forward packets; many support applications that
generate and consume network traffic of their own. Such nodes have a packet service interface to the
forwarding plane that lets applications send and receive packets on the node's interfaces. Existing
networking stack implementations have different mechanisms for sending and receiving packets.

The emergence of network processors and efforts at the Network Processing Forum (NPF) to standardize
different layers of software that “drive” the network processor have made it critical to have an industry-
wide standard mechanism and API that will allow control plane applications to be developed using
standard interfaces for packet handling also. This would also foster the development of network
processors that can seamlessly integrate with such control plane applications and protocol stacks.

The NPF Packet Handler (PH) API Implementation Agreement (IA) supports the exchange of packets
between forwarding elements (FEs) and processes executed by controls elements (CEs) in the slow path
of a system. Clients of the PH API (as defined in Section 2, following) could be a network stack in the
slow path, handling exceptions that the fast path was unable to forward, or an application such as the
Open Shortest Path First (OSPF) routing protocol, that maintains Routing Information Management
(RTM) data.

2.1 Packet Handler API Dependencies

1. The NP Forum IPv4 Unicast Forwarding API Implementation Agreement defines the IPv4
Forwarding Information Base Handle and IPv4 Next Hop structures.

2. The (future) NP Forum IPv6 Unicast Forwarding API Implementation Agreement defines the IPv6
Forwarding Information Base Handle and IPv6 Next Hop structures.

3. The NP Forum Interface Management API Implementation Agreement defines the Interface handle
and the ATM VCC Address structure.

Network Processing Forum Software Working Group

 Packet Handler Task Group 6

3 Packet Handler Architecture
The PH API is a conduit for packets that pass between a Control Element (control plane processor or host
processor, in short CE) and Forwarding Elements (FEs) (also referred to as Network Processing Elements,
or NPE) of a system. Forwarding Elements process transit packets and local packets. Transit packets are
forwarded from one external network interface to another external interface. Local packets are sourced or
consumed by the system (in general the CE). Through the PH API, the CE can receive network packets
addressed to the system, and it can send packets destined for other systems out on the network interfaces.
It can also receive, process and retransmit packets not addressed to it, but those which a FE could not
process completely. This is sometimes also referred to as the “slow path” of the forwarding operation.

The PH API is the mechanism which software clients on the CE can use to receive incoming packets from
FEs, and send outgoing packets to FEs, which control the external network interfaces on which packets
are received from or sent to the network. When we refer to this traffic, incoming traffic is with respect to
the PH API client; similarly, outgoing traffic is also with respect to the PH API client. The packets that
pass through the PH API may take this path for multiple reasons, depending on the particulars of the
forwarding design. These may include, among other things:

1. Packets that are addressed specifically to an address (L2 or L3) recognized by the node controlling
the interface as a termination point.

2. Packets that cannot be fully processed by an FE associated with an interface because they contain
options, or are control packets that the FE does not handle.

3. Packets that are intercepted by use of a filter in the FE.

4. Packets that generate errors and need further processing in the control plane.

5. Packets whose address is not recognized.

6. Packets whose protocol is not recognized or handled by the FE.

7. Packets for which L2 address resolution is required.

Metadata consisting of additional information for packet processing accompanies each packet sent or
received through the API. The PH API passes incoming packets to its receiving clients, along with
Receive metadata, which is information supplied by the PH implementation. Sending clients pass
outgoing packets to the PH implementation along with information structured as Send metadata.

On the incoming path, the Client application can register a default upcall function that receives control
when a local packet is received by the PH API implementation. Optionally, a client can also register an
upcall function to receive only packets that match a certain metadata pattern; it can have several of these,
each receiving packets that belong to a different flow. In this document, a flow is defined as a set of
packets whose metadata elements match a certain specification, which can include both fully-specified
and wildcard patterns. In an implementation that supports this feature, the metadata of each packet
received from the FE is compared with a series of patterns (or filters) in order to decide which client (or
clients) should receive the packet.

The Packet Handler API can be used by API clients or by other Packet Handler API implementations. The
Packet Handler API acts as the “upper” interface to these functions layered above it. The “bottom”
interface of the PH API implementation is a proprietary one. It interfaces in a completely proprietary way
to any software layers below, or to the NPE or other devices and software on the FE.

Network Processing Forum Software Working Group

 Packet Handler Task Group 7

3.1 Relationship with FEs
In effect, the PH API is the recipient of information from “taps” in the FE. Several different models can
be used to model the interaction between the FE and the PH API implementations. (See Figure 1.) Packets
may be sent to and received from the FE at specific points in the FE or from any arbitrary point.
Alternately, the PH API “taps” are collectors that multiplex and demultiplex packets to and from the FE.
Example “taps” are shown by the red triangles in Figure 1.

The CE-FE configuration descriptions are not within the scope of this document. The interface between
the PH API implementation and the FE is completely proprietary. Cross-licensing agreements are of
course possible so that one vendor’s PH API implementation can communicate with multiple vendors’
FEs. These are also not in the scope of this document.

P H A P I im p le m e n ta tio n

IN P re fix
lo o k u p N H

O u t

O u t

D is c

M P L S

A R P

P H

P H

P H

A P I C lie n t

P H

P HP H

P H

P HP H

P H

Figure 1: Communication between PH API and FE

3.2 Clients and FEs
In Figure 2 the PH APIs and the FEs are color-coded. This can be interpreted in two ways, both of them
valid. First, matching PH API implementation and FE can represent matching types, that is, a PH API
implementation written for a certain type of FE with a certain set of capabilities. Another valid
interpretation is that the matching PH API implementation and FE are from the same vendor. That is, the
PH API implementation was created to work with a certain vendor’s FE products.

Network Processing Forum Software Working Group

 Packet Handler Task Group 8

PH API 2PH API 1

FE
 1

PH Client A

FE
 3FE

 2
FE

 2

PH API 3

FE
 1

PH Client B

FE
 2

Figure 2 : Various configuration options

Figure 2 shows various options for connecting PH API clients, PH API implementations and FEs. The
various options for servicing FEs are:

1. A single PH API implementation instance services only one FE instance. (PH API3 on Figure 2.)

2. A single PH API implementation instance services only one type of FE, but multiple instances of that
type. (PH API1 on Figure 2.)

3. A single PH API implementation instance services multiple FE types and multiple instances of each
type. (PH API2 on Figure 2.)

4. Multiple PH API implementation instances service a single FE instance. This might be the case, for
example, in a single vendor implementation system where you have both active and backup instances
of a PH API implementation.

Obviously many of these options imply multiple PH API instances running simultaneously in the system.
This can be problematic since there are multiple instances of the same function names being exported by
multiple PH API implementation instances. It is assumed that this is resolved at the system level with
system-specific mechanisms. For example, in UNIX (particularly BSD-derived systems) the dlopen,
dlsym, dlclose suite of functions from the standard C library can be used to access the symbols that would
be duplicated by multiple instances of the PH API.

No assumption is made whether the different Packet Handler implementations run on the same processor
or not. The various PH implementation instances may run on different processors, or even connect the
client to the PH API implementation via some IPC mechanism, for example. In any case, the various
choices are left to the system designer and are out of scope of this document.

Network Processing Forum Software Working Group

 Packet Handler Task Group 9

In Figure 2, the heavy dashed line indicates the “bottom” interface between the PH API implementation
and the FE(s).

On outbound traffic, the binding of the PH API implementation to one or more FEs is done through the
Packet Handler metadata that is associated with a packet. For example, the binding can be made through
an interface handle (see Section 4.2.1) to FE mapping table contained in the API implementation.

On inbound traffic, FEs are bound to a particular PH implementation through system specific means,
either through the configuration of the FEs themselves or through some proprietary and system-specific
method which directs packets to a particular implementation.

In a configuration where a single FE is serviced by more than one PH API implementation instance, the
FE has to be configured so that it knows which packets must be sent to which PH API instance. Since the
interfacing of the PH API implementation with the FE can be proprietary, each type of FE or vendor
family of FE would have to be serviced by a corresponding PH API implementation. So, FEs must be
bound to a particular PH API instance running in the system. Again, this is part of the system design and
configuration and does not require additional API calls in the IA.

As shown also in Figure 2, the PH API implementation may have only one client, or it may have multiple
clients. Likewise, the PH API Client may communicate with multiple PH API implementations. In order
to have a system as shown in Figure 2, it is necessary for the client applications to be able to determine
which packets must be sent to which PH API implementation instances.

If there are multiple clients of a PH API implementation, it is necessary to have the capability to define
flows for which an upcall function for each client can be registered for packets matching different flows.
It would also be possible to have multiple API clients to receive the same packets (either by not
supporting flows, or by allowing multiple upcall functions to be registered for the same flow
specification). Note also that in Figure 2, both Client A and Client B can access the 4 FEs through PH
API number 2: The three type 2 FEs and the second type 1 FE.

3.3 Stacked PH API implementations
It is possible to stack PH API implementations. One obvious reason is to present to API Clients a single
API instance with which to communicate. Note that it is not required to stack API implementations when
there are multiple instances of a PH API implementation in a system (for example from different
vendors). However, by stacking the PH API instances and offering an integrated (generic) PH API for
client application, the task of determining which vendor- or FE-specific instance is correct for a particular
packet is removed from the application. This relieves the application of the necessity of knowing which
PH API instance services a particular FE or set of FEs if there are multiple FE vendor’s products in the
system.

Figure 3 shows an example of a stacked configuration.

Network Processing Forum Software Working Group

 Packet Handler Task Group 10

PH API
Vendor 2

PH Client A PH Client B

PH API
(Integrated)

PH API
Vendor 2

PH API
Vendor 1

FE
 1

FE
 3FE

 2
FE

 2

PH API
Vendor 3

FE
 1

FE
 2

Figure 3: Stacked configuration of PH APIs

The integrated (generic) API implementation can provide some advantages for clients. It can multiplex
and demultiplex traffic to/from the particular FE-specific implementations present.

It may also modify the Packet Handler metadata, for example, based on proprietary information or
headers supplied by vendor-specific extensions to the PH API implementations of which it is a client (see
Figure 3). Also the generic implementation could provide some non-Packet Handler functions, for
example, doing interface or port lookups.

Since the different types and instances of the PH API all have the same function call names, there will be
a system-dependent way to differentiate between them. The system integrator must provide a way for the
application to “connect” to the integrated PH API implementation and also provide a way for the
integrated PH API implementation to “connect” to the type-specific or vendor specific PH API
implementations.

Network Processing Forum Software Working Group

 Packet Handler Task Group 11

4 Packet Handler API Conceptual Elements
The Packet Handler API conceptual elements consist of metadata parameters that are used to identify
packets and packet flows. Metadata information is used to identify key elements of a packet and/or a
packet flow. Metadata information accompany the packet in both transmit and receive directions. The
following subsections provide details about all the metadata information used by the PH API and the
mechanisms available for PH clients for sending and receiving packets.

The remainder of this section is organized as follows: Section 4.1 begins by introducing the concept of
metadata information and its relation to packets and packet flows. Subsequently, the different metadata
parameters used in the send direction are described. Metadata parameters used in the receive direction are
then described, followed by the notion of send and receive flows, which form the optional part of the PH
API. Packet Handler Events and Priorities are then described which aid in flow control of packets
between the PH clients and the PH API implementation. Finally, the different statistics counters
maintained by the PH API are described.

4.1 Metadata and flows
Metadata information identifies key elements of a packet flow – for example, the protocol header type,
the outgoing interface, incoming interface, etc. The metadata information is presented to the API by the
PH client with the packet being sent. Correspondingly, the PH implementation delivers similar metadata
along with the packets when they are being delivered into PH clients. Optionally, applications can build
what are termed flow specifications using these basic data types representing metadata. Thus, a flow
specification is essentially a combination of metadata information that can indicate the kind of packets
being sent (send flow specification) and/or received (receive flow specification) by the application.
Applications can register send and receive flow specifications with the PH API and can subsequently use
the respective flow handles to identify such packet flows. Since receive flows may have wildcards, the PH
API implementation must always include the metadata for all received packets that are delivered to PH
clients.

The PH API flow specification is similar to a packet classification filter. Filters have been traditionally
used to classify packets based on fields in packet headers or payload. The PH API implementation uses
the PH flow specification to determine how and where the packet is sent or received. Specifying function
calls for defining classification filters for the NPE is not in the scope of the PH API.

4.2 Metadata
The PH API provides mechanisms for specifying metadata for packets being sent or received.
Applications must provide metadata for packets they are sending. The API implementation also provides
metadata with the packets that it delivers to applications. The following sub sections describe the
metadata in detail for both sending and receiving packets.

In general, the metadata provided by the API supports the following requirements:

1. Identify the receive interface for packets that are delivered to applications.
2. Identify the header protocol for both sending and receiving packets.
3. Direct output packets to a specific interface or next hop
4. Prioritize traffic through the API (in case there are queues in the API implementation)
5. Allow different FE processing for locally sourced packets and for transit packets
4.2.1 Controlling the path of packets
The PH API allows the application to control the path of a packet in several ways.

Network Processing Forum Software Working Group

 Packet Handler Task Group 12

For outbound unicast, multicast or broadcast packets, an application can take the forwarding decision
about which interface to send the packet to, and subsequently, pass the outgoing interface information
along with the packet to the PH API. For outbound IP unicast packets, an application can take a
forwarding decision, and subsequently pass next hop information, as defined by the "NPF IPv4 or IPv6
Unicast Forwarding API IAs" along with the packet to the PH API. In some systems, for outbound IP
unicast packets, an application may let a layer below take the forwarding decision, and if more
Forwarding Information Bases (FIBs) are present, pass along with the packet to the PH API, a particular
FIB identifier to be used for the forwarding lookup. Note: Applications such as RSVP or RSVP-TE may
insert more specific forwarding information in the packet headers.

Furthermore, optionally, on a system on which there is support for the IPv4, or IPv6 Unicast Forwarding
API "discrete mode", an application may pass the "Next Hop ID", as defined by the "NPF IPv4 or IPv6
Unicast Forwarding API IAs", along with a IP unicast packet to the PH API. In such a case, passing the
"Next Hop ID" instead of next hop or output interface information, allows layers below the application to
forward the IP unicast packet, based on information retrieved from a Next Hop Table Entry, as specified
in the NPF IPv4, or IPv6 Unicast Forwarding API IAs.

For inbound packets, the PH API implementation provides the application with information that identifies
the path the packet arrived on. This information is structured in the "Logical Link Identifier".

4.2.1.1 Logical Link Identifier

Sending specification allows the PH client to specify a particular outgoing/incoming interface by means
of a Logical Link Identifier.

A Logical Link Identifier refers to a physical port, physical/logical interface, and/or ATM VCC, etc. The
logical link identifier is used as metadata for both sending and receiving.

4.2.2 PH API Metadata for sending packets

Applications can have different needs for sending packets, as mentioned earlier. The packets can be sent
with additional information to carry out further processing requirements. Some specific examples are:

1. Layer 3 (e.g. IP) applications might have already performed some routing decision and would like to
specify some “routing hints” to the API that can be used by the NPE. Additionally, L2 encapsulation
needs to be added.

2. Layer 2 applications might have composed their own L2 header also. Such packets must be directed
to the correct output interface/port.

3. The API does not preclude an implementation that might choose to implement higher layer protocol
functionality (Layer 4 and above) so that applications can pass in packets with corresponding headers,
and leave it to the implementation or the NPE to take care of the remaining headers.

Sending metadata consists of:

• Priority – To allow for API implementations to prioritize traffic through the API implementation to
the underlying device. The detailed semantics of the priority metadata field is described in Section
4.2.6.

• Protocol Type – this indicates the protocol header type of the packet being passed in.

• Sending Specification – This specifies “routing hints” that applications can provide about how to send
the packet out. This must be one of:

Network Processing Forum Software Working Group

 Packet Handler Task Group 13

o FIB Identifier: This is used if the application wants to indicate a particular routing table
on the NPE to use for performing a lookup. It depends on the underlying NPE’s
capability to use this information. The FIB identifier could refer to either an IPv4 FIB or
IPv6 FIB.

o Logical Link Identifier: This could be used to indicate a specific output port to use to
send the packet out on. For example, L2 applications that compose their own L2 header
could use this to simply indicate the egress interface.

o Next Hop identifier: This is an additional routing hint that could be used by the
underlying device for sending the packet out.

o Next Hop information: This consists of both a Next Hop IP Address as well as an
Interface Handle. This could be either an IPv4 or IPv6 Next Hop.

• Send Flags - currently, only “Locally sourced” is supported. The purpose of this is to suppress some
filtering, TTL decrement, etc.

4.2.3 PH API Metadata for receiving packets

Packets that are delivered to applications have metadata passed up with them. Applications can register a
default upcall function to receive all packets. Optionally, applications can register receive flows to receive
packets that match certain metadata parameters. If there are no registered applications for the received
packet, the API implementation can choose to drop the packet. The mechanism for registering receive
flows is described in Section 4.2.5. For all packets that are being delivered to PH clients, the PH API
implementation must indicate the link on which the packet arrived on, and the PH client can infer the
protocol type from the logical link identifier.

The PH API receive metadata delivered into the application consists of:

• Priority – This priority can be used in the PH API implementation to prioritize traffic between the
NPE and the application. It is to be noted that this priority might be related to any kind of QoS
priority/treatment the packet gets in the inbound direction although this is not specified by this IA.

• Logical Link Identifier - this identifies the logical link (interface, ATM connection, MPLS path, etc.)
on which the packet arrived. If the client needs to know the protocol identity at the first byte of the
packet, it must be able to infer this value from the logical link. If the NPE removes one or more
headers, the logical link identifier must permit the client to identify the protocol of the header
appearing first in the buffer (the first header following the ones that were removed).

• Optional offset information containing a protocol ID and offset value. These parameters are only used
when the NPE has already performed some packet processing and wishes to share some additional
information with the API client.
o Offset is a number ranging from zero to length-1, where the length refers to the length of the

packet. The first byte of the protocol header (as identified by the protocol ID) is located at offset
bytes from the beginning of the packet.

o The protocol ID of the header indicated at the specified offset. Note that if the offset is zero,
protocol ID is also zero, as the protocol is inferred from the logical link identifier.

• Reason code – This indicates the reason for delivering the packet from the NPE/device to the PH API
implementation. This must be one of:
o Matched a configured filter – this indicates that the incoming packet matched a particular

classification filter installed in the device.

Network Processing Forum Software Working Group

 Packet Handler Task Group 14

o Destination address not found – if the underlying NPE cannot send or forward a packet because
the destination address could not be found in a lookup table, the device might hand off the packet
to the control plane.

o Locally addressed packet – this indicates that the packet being delivered was destined to one of
the local interfaces of the device. This could be destined to some protocol/application on the
control plane. For example, OSPF packets would be destined to one of the local interfaces.

o Supported protocol, unsupported option – if the device cannot handle the options being specified
in the packet, it could hand it off to the control plane. For example, if the packet was an IP packet
and had IP options enabled, but the device cannot process the Record Route option, it could hand
the packet off to the control plane.

o Unsupported protocol – if the device cannot handle the protocol of the incoming packet, it could
hand off the packet to the control plane.

• Reason sub code – this is used to provide more detailed information under certain reason codes. It is
currently defined only for the ‘matched a configured filter’ reason code; in this case it identifies the
filter rule that matched.

4.2.4 Packet Handler Send Flows

Applications can also specify the kind of packets they are sending using flow specifications. A flow
specification is essentially a combination of metadata information that can indicate the kind of packets
being sent and is hence called a send flow specification. Applications can thus register send flow
specifications with the PH API and can subsequently use the respective flow handles to identify such
packet flows. Support for send flow specification in the PH API is optional.

The send flow specification cannot have wildcards for any of its constituent metadata parameters. The
metadata to be specified is similar to that to be used during sending packets as specified in Section 4.2.1.1
and are as follows:

• Priority – This will indicate the priority of the packets that belong to the flow being specified. It is to
be noted that this priority might be related to any kind of QoS priority/treatment the packet gets in
the outbound direction although this is not specified by this IA.

• Protocol type – this indicates the header protocol of the packet being passed in.

• Sending specification – This specifies “routing hints” that applications can provide about how to
send the packet out. This could be one of:

o FIB identifier – This indicates a particular routing table on the NPE to use for performing
a lookup. It depends on the underlying NPE’s capability to use this information. The FIB
identifier could refer to either an IPv4 FIB or IPv6 FIB.

o Logical Link Identifier – This indicates a specific output port to use to send the packet
out on. For example, L2 applications that compose their own L2 header could use this to
simply indicate the egress interface.

o Next Hop identifier – This is an additional routing hint that could be used by the
underlying device for sending the packet out.

o Next Hop information – This consists of both a Next Hop IP Address as well as an
Interface Handle. This IA specifies only information related to IPv4 and IPv6 next hops.

o Send flags – currently, only “Locally sourced” is supported. The purpose of this is to
suppress some filtering, TTL decrement, etc.

Network Processing Forum Software Working Group

 Packet Handler Task Group 15

When a send flow specification is successfully registered with the PH API implementation, the PH client
gets a send flow handle that must be used in subsequent calls to send the packets out. When the send flow
is no longer required, the PH client should delete the send flow specification from the PH API
implementation.

4.2.5 Packet Handler Receive Flows

Applications can also specify the kind of packets they expect to receive using receive flow specifications.
Similar to send flow specification, a receive flow specification is essentially a combination of metadata
information that can indicate the kind of packets expected by the application. Applications can register
receive flow specifications with the PH API; when the PH API receives packets that match registered
flows, the corresponding upcall into the PH client indicates the respective flow handles to identify the
packet flows. Support for receive flow specification in the PH API is optional.

The metadata to be specified for creating a receive flow specification are as follows:

• Logical Link Identifier - this identifies the logical link (interface, ATM connection, MPLS path, etc.)
on which the packet flow is expected. This can be a wildcard value to signify interest in receiving
packets arriving on any logical link.

• Protocol - The protocol of the packet header. This can be a wildcard value – a value of
NPF_PROTO_FAM_ANY indicates interest in all protocol packets.

• Reason code – This indicates the reason for delivering the packet from the NPE/device to the PH
API implementation. A reason code of NPF_PH_RECV_REASON_CODE_ANY indicates interest
in all packets that can be delivered by the forwarding plane. Other reason codes can be one of:

o Matched a configured filter – this indicates that the incoming packet matched a particular
classification filter installed in the device. As mentioned earlier, the PH API does not
specify APIs to install filters and hence the application would have to use some other
mechanism to install filters on the NPE.

o Destination address not found – if the underlying NPE cannot send or forward a packet
because the destination address could not be found in a lookup table, the device might
hand off the packet to the control plane.

o Locally addressed packet – this indicates that the packet being delivered was destined to
one of the local interfaces of the device. This could be destined to some
protocol/application on the control plane. For example, OSPF packets would be destined
to one of the local interfaces.

o Supported protocol, unsupported option – if the device cannot handle the options being
specified in the packet, it could hand it off to the control plane. For example, if the packet
was an IP packet and had IP options enabled, but the device cannot process the Record
Route option, it could hand the packet off to the control plane.

o Unsupported protocol – if the device cannot handle the protocol of the incoming packet,
it could hand off the packet to the control plane.

• Reason sub code – this is used to provide more detailed information under certain reason codes. It is
currently defined only for the ‘matched a configured filter’ reason code; in this case it identifies the
filter rule that matched. A value of NPF_PH_RECV_REASON_SUBCODE_ANY indicates
interest in all sub-codes.

4.2.6 Prioritizing traffic in the Packet Handler API
Priority is a metadata element passed with both receive and transmit packets. It can be used by an API
implementation that has packet queues within it: if its queues become congested, it can relieve congestion

Network Processing Forum Software Working Group

 Packet Handler Task Group 16

by discarding packets in order of priority, lowest priority first. Packets of one priority sent by one client
should be delivered to the FE in the same order they were given by the client. It is to be noted that this
priority might be related to any kind of QoS priority/treatment the packet gets in the inbound/outbound
direction although this is not specified by this IA. There is no other use intended for this priority value.

The API defines 8 different levels of priority indicating precedence in processing packets that can be
supported by the underlying implementation (values 0-7). 0 is normal precedence and 1-7 are relatively
higher. Although there are eight possible priority values, various vendors may differ on the choice of the
number of priority levels supported. A recommended method to merge these two divergent ranges of
priority levels, i.e. eight levels in the application and two to three levels in the NPE would be to map the
priority levels specified by the application to a smaller range used by the NPE. For example, in the case
of a vendor that supports only 2 levels of priority queues underneath, the potential eight priority values
specified by the application may be segregated by the API as shown in Figure 4. Irrespective of how
many priority levels are provided by an implementation, it is important to have a common understanding
of how the priority levels behave; the following should be implemented by PH API vendors to ensure
interoperability between system vendors.

• Priority 0 is always assured to be the lowest and 7 is assured to be the highest.
• Priority N packets are always given lower priority than N+1, for all N.

Application

NPF Packet Handler API

NPE

Priorities between
application and Packet

Handler API

Priorities implemented by
the Packet Handler API

Figure 4: Mapping priorities between the application and the PH API implementation

Table 1 shows how the priorities at the API should be mapped to the priorities supported by the PH
implementation. For example, if there are only 2 levels supported by the PH API implementation, P0 for
low priority traffic and P1 for high priority traffic, the API maps priority levels (as used by the
application) 0-3 to map to priority P0, and priority levels 4-7 to map to priority P1. Similarly the other
priority levels can also be mapped to the actual number of priorities implemented.

The API implementation should maintain statistics for all priority levels that are supported as described in
Section 4.5. If the API implementation does not support all priority levels, the leftmost number in the
middle column of Table 1 is the index to be used for retrieving the appropriate statistics counter.

Number of priorities
implemented

Priorities at the PH API (as
seen by the application)

Implementation Priorities
(P0 is lowest)

Network Processing Forum Software Working Group

 Packet Handler Task Group 17

1 0-7 P0

2 0-3

4-7

P0

P1

3 0-2

3-4

5-7

P0

P1

P2

4 0-1

2-3

4-5

6-7

P0

P1

P2

P3

5 0-1

2-3

4-5

6

7

P0

P1

P2

P3

P4

6 0-1

2-3

4

5

6

7

P0

P1

P2

P3

P4

P5

7 0-1

2

3

4

5

6

7

P0

P1

P2

P3

P4

P5

P6

8 0

1

2

3

4

5

6

7

P0

P1

P2

P3

P4

P5

P6

P7

Network Processing Forum Software Working Group

 Packet Handler Task Group 18

Table 1: Mapping NPF Packet Handler API priorities to underlying implementation

4.3 Buffer descriptor and Memory ownership
The PH API does not define the structure of the packet. The exact nature and structure of the buffer
containing the packet is dependent on the operating system being used and the buffer mechanisms used by
the system. The operating system might use contiguous memory or buffer chaining (like mbufs, for
example). The PH API will not attempt to impose any restriction on what buffer mechanism is being
used. The API simply defines a generic buffer descriptor that will be used to map to different operating
system buffers. The exact manner in which this mapping is accomplished, and other details such as buffer
allocation/de-allocation, buffer ownership mechanisms, etc. are out of the scope of this API definition.

The buffer descriptor contains the following information:
1. Buffer descriptor containing pointer and length.

a. Pointer is either to the first byte of the packet, or to some structure chosen or defined by the
implementer, and such structure MUST provide complete information about the packet's location
in memory. Note that if this pointer refers to a structure then the structure may contain
information redundant with the remainder of the parameters described here, including buffer
length (1.b) and logical link identifier. In such implementations it is the responsibility of the PH
implementation to ensure that the value passed in parameter 1.b and logical link identifier is
consistent with any values contained within the internal structure referred to by this pointer.

b. Length is the total length of the packet, in bytes.

4.4 Packet Handler API Events
The main purpose of events in the PH API is to allow clients to know how fast they can transmit packets
without causing congestion in the PH API implementation. The PH API’s send function returns an error
code if the API implementation’s queues and/or resources are not available. The client can then react to
the backpressure and either try to retransmit at a later time, or depending on which other priorities are
available, it can try to send the packet with a different priority. It can also register with the PH API
implementation to receive an event to get notified when the PH API implementation resources and/or
queues become available; the client can attempt to transmit packets at this time.

Packet Handler events are generated into all applications (that have registered for PH events) when
resources become available after an application previously tried to transmit packets and received an error
(due to some resources being unavailable in the PH API implementation). This means that the error (on
transmit) might be received by one application, but multiple applications would get notified about the
resource becoming available.

The API implementation will not provide any guarantee on delivering the events to all applications
interested in PH events. The PH API implementation will do its best to do, and the application can
implement timeout/retransmit mechanisms, or any other mechanisms to retransmit the packet.

4.5 Packet Handler API Statistics
The PH API maintains queues per priority level in both transmit and receive directions, although this IA
does not specify exactly how many queues are to be supported. Correspondingly, statistics counters must
be maintained by the API implementation. Counters must be differential; that is, they keep their value
after a read and keep incrementing for each object countered, so that when the largest number that can be
represented by the width of the counter is reached, the counter rolls over using twos-complement binary
arithmetic. The counters are unsigned and 32 bits wide. The difference in value between two consecutive

Network Processing Forum Software Working Group

 Packet Handler Task Group 19

reads provides the number of objects counted since the first of the two reads. The counters maintained per
priority level are:

• Number of packets/frames transmitted. The number of packets or frames transmitted to the NPE.
• Number of bytes transmitted. The number of bytes, including packet headers, but excluding metadata

transmitted to the NPE.
• Number of outgoing packets/frames dropped. The number of packets/frames passed into the packet

handler by clients that were dropped, possibly due to congestion.
• Number of packets/frames received. The number of packets or frames received from the NPE.
• Number of bytes received. The number of bytes, including packet headers that are received from the

NPE. So, for example, if there are switch fabric headers that encapsulate a frame coming into the
processor board, these are excluded from the byte count because they should be stripped before the
packet is handed to the PH API implementation. Here the number of bytes counted is taking into
consideration the entire packet, starting from offset 0.

• Number of incoming packets/frames dropped. The number of packets/frames passed into the packet
handler implementation from the NPE, but were dropped, possibly due to congestion.

• Number of incoming packets dropped by the PH API implementation. The number of incoming
packets dropped because they did not belong to any registered flow and there was no default receive
function.

As mentioned in Section 4.2.6, the API implementation should maintain statistics for all priority levels
that are supported. If the API implementation does not support all priority levels, the leftmost number in
the middle column of Table 1 is the index to be used for retrieving the appropriate statistics counter.

Network Processing Forum Software Working Group

 Packet Handler Task Group 20

5 Packet Handler API Data Types

5.1 Common

5.1.1 Callback Handle

typedef NPF_uint32_t NPF_callbackHandle_t;

This is the callback handle defined in the NPF Software Conventions document.

5.2 Buffer Descriptor
/***********************************
NPF Buffer descriptor structure.

1. Buffer descriptor containing pointer and length.
(a) Pointer is either to the first byte of the packet, or to some
structure chosen or defined by the implementer.
(b) Length is the total length of the packet, in bytes.
************************************/
typedef struct {
 NPF_uint8_t *packetStart;
/* pointer to first byte of packet OR some structure containing
the first byte of the packet */
 NPF_uint32_t packetLen; /* payload length */
} NPF_phBufDescr_t;

5.3 Metadata

5.3.1 Protocol Type

NPF_protocol_t is a structure that identifies the protocol type of a header. NPF_protocol_t
consists of two variables: a protocol family identifier, and a protocol number. The following protocol
families are defined:

 LLC LSAP identifiers

 Ethernet Type numbers

 PPP Numbers

 IP Protocol numbers

 NP Forum defined protocol numbers

The actual protocol numbers for each family will be the same as those defined by IANA and other
standards bodies. For convenience, IANA maintains a listing of all these numbers, even though it might
not be in their domain. The protocol numbers of protocols belonging to the families above are available
at:

LLC LSAP protocol numbers: http://www.iana.org/assignments/ieee-802-numbers

Network Processing Forum Software Working Group

 Packet Handler Task Group 21

Ethernet protocol numbers: http://www.iana.org/assignments/ethernet-numbers. Similar information for
Ethernet numbers may also be found at http://standards.ieee.org/regauth/ethertype/type-pub.html.

PPP numbers: http://www.iana.org/assignments/ppp-numbers

IP protocol numbers: http://www.iana.org/assignments/protocol-numbers

/***********************************
Protocol Type Indicator

This structure identifies a protocol by its protocol number.
Protocol numbers are assigned by several different numbering
authorities, so there is a protocol family identifier to say
what number series the protocol number belongs to. The IEEE and
IETF number assignments can be found on the IANA web site,
http://www.iana.org/numbers.html.
************************************/
typedef enum {
 NPF_PROTO_FAM_LLC = 1,/* IEEE 802 LSAP assignments */
 NPF_PROTO_FAM_ET = 2,/* IEEE EtherType assignments */
 NPF_PROTO_FAM_PPP = 3,/* IETF PPP protocol numbers */
 NPF_PROTO_FAM_IP = 4, /* IETF IP protocol numbers */
 NPF_PROTO_FAM_NPF = 5, /* NP Forum-defined numbers */
 NPF_PROTO_FAM_UNK = 6, /* Unknown protocol */
 NPF_PROTO_FAM_ANY = 7 /* Wildcard value */
} NPF_protocolFamily_t;

typedef struct {
 NPF_protocolFamily_t family;
 NPF_uint16_t protocol;
} NPF_protocol_t;

5.3.2 Priority

As described earlier, it can be used by a PH implementation that has packet queues within it: if its queues
become congested, it can relieve congestion by discarding packets in order of priority, lowest priority
first. This priority does not indicate priority of transmission out of the NPE – it only indicates the priority
of service outbound from the PH implementation.

/***********************************
Priority

Priority is a metadata element passed with both receive and
transmit packets. It can be used by an API implementation that
has packet queues within it: if its queues become congested, it
can relieve congestion by discarding packets in order of
priority, lowest priority first. There is no other use intended
for this priority value.
************************************/

Network Processing Forum Software Working Group

 Packet Handler Task Group 22

typedef NPF_uint8_t NPF_phPriority_t;

#define NPF_PH_PRIORITY_LOWEST 0
#define NPF_PH_PRIORITY_HIGHEST 7

5.3.3 Send Flags

The Send Flags metadata element contains flags that can condition the operation of the NPE for
sending specific kinds of packets.
/***********************************
Send Flags

The Send Flags metadata element contains boolean flags that can
condition the operation of the NPE for sending specific kinds of
packets.
************************************/
typedef NPF_uint32_t NPF_phSendFlags_t;

#define NPF_PH_SEND_FLAGS_LOCAL_SOURCE 0x00000001

/* Locally sourced indicates that the packet originates from the
local host system, and should be forwarded as such. This can be
used by the PH implementation and the FE together to make sure
the TTL is not decremented by the FE, that input firewall
filters are bypassed, etc., as appropriate to the
implementation.
*/

5.3.4 Receive Reason and Sub Code

/***********************************
Reason Code and Sub Code
************************************/
typedef enum
{
 NPF_PH_RECV_REASON_CODE_ANY = 0,
 NPF_PH_RECV_REASON_CODE_NO_DEST_ADDR = 1,
 /*destination address was not found */
 NPF_PH_RECV_REASON_CODE_LOCALLY_ADDRESSED = 2,
 /* locally destined packet */
 NPF_PH_RECV_REASON_CODE_UNSUPPORTED_OPTION = 3,
 /* Unsupported option */
 NPF_PH_RECV_REASON_CODE_UNSUPPORTED_PROTOCOL = 4,
 /* Unknown protocol */
 NPF_PH_RECV_REASON_CODE_FILTER_MATCH = 5
 /* Matched a filter */
} NPF_phRecvReasonCode_t;

Network Processing Forum Software Working Group

 Packet Handler Task Group 23

typedef NPF_uint32_t NPF_phRecvReasonSubcode_t;

#define NPF_PH_RECV_REASON_SUBCODE_ANY 0

5.3.5 Logical Link Identifier

/***********************************
Logical Link Identifier Structure

A logical link is like an interface, but more specific. It
identifies an input or output link as a LAN port, a point-to-
point interface like POS, or, for subdivided interfaces like
ATM, it indicates a specific VPI/VCI. It can be extended to
indicate a specific MPLS path as well.
************************************/
typedef struct
{
 NPF_IfHandle_t interfaceHandle;
 NPF_IfType_t intfType;
 union
 {
 NPF_uint32_t unused;
 NPF_VccAddr_t vpiVci;
 } u;
} NPF_LogicalLinkID_t;

#define NPF_INTERFACE_HANDLE_ANY 0
The above definition of NPF_INTERFACE_HANDLE_ANY depends on the NPF Interface
Management implementation. Specifically, an Interface handle of zero is implicitly meant to be null or
invalid (NPF_IF_E_INVALID_HANDLE) in the NPF Interface Management implementation.

The logical link identifier is used to translate to a physical port on the forwarding plane. The interface
handle field could be used to indicate a wildcard. In the case of an ATM interface, for example, the
application will need to indicate the ATM VPI/VCI. This structure could be further extended to include
support for multicast and other kinds of interfaces like Frame Relay, etc.

5.3.6 Sending Specification

These definitions are from the NPF IPv4 Unicast API, the NPF Interface API Implementation Agreement
and NPF IPv6 Unicast API. The FIB handle is a generic handle representing a FIB (Forwarding
Information Base) on the NPE. The output interface could also be used to specify routing hints (for
example, for multicast packets, L2 packets, etc.). The output specification could also be the same
information that is passed into the NPF IPv4 API as described in Section 4.2.1.
/* FIB handles from NPF IPv4 API and NPF IPv6 API*/
typedef NPF_uint32_t NPF_IPv4UC_FwdTableHandle_t;
typedef NPF_uint32_t NPF_IPv6UC_FwdTableHandle_t;

/***********************************

Network Processing Forum Software Working Group

 Packet Handler Task Group 24

Sending Specification

The Sending Specification is metadata that accompanies output
packets. In various ways, it can convey information to the FE
about how a forwarding decision should be made for this packet.
The possibilities are (mutually exclusive):
 - No specification given
 - Send the packet out a specific logical link (i.e.,
interface,
 ATM connection, MPLS path, etc.)
 - Use a particular forwarding table in a case where the FE
 does a destination address lookup to forward the packet
 - Use a particular next hop (interface and next hop IP
address).
It can be extended to include other protocols that may need to
be supported.
************************************/
typedef enum
{
 NPF_PH_SEND_SPEC_NONE = 1,
 NPF_PH_SEND_SPEC_TYPE_OUTPUT_LINK_IDENTIFIER = 2,
 NPF_PH_SEND_SPEC_TYPE_IPv4FIB_IDENTIFIER = 3,
 NPF_PH_SEND_SPEC_TYPE_IPv4NEXTHOP_IDENTIFIER = 4,
 NPF_PH_SEND_SPEC_TYPE_IPv4NEXTHOP_INFO = 5,
 NPF_PH_SEND_SPEC_TYPE_IPv6FIB_IDENTIFIER = 6,
 NPF_PH_SEND_SPEC_TYPE_IPv6NEXTHOP_IDENTIFIER = 7,
 NPF_PH_SEND_SPEC_TYPE_IPv6NEXTHOP_INFO = 8
} NPF_phSendSpecType_t;

typedef struct
{
 NPF_IPv4Address_t nextHopAddr;
 NPF_IfHandle_t interfaceHandle;
} NPF_IPv4NextHopInfo_t;

typedef struct
{
 NPF_IPv6Address_t nextHopAddr;
 NPF_IfHandle_t interfaceHandle;
} NPF_IPv6NextHopInfo_t;

typedef struct
{
 NPF_phSendSpecType_t SendSpecType;
 union
 {
 NPF_uint32_t unused;

Network Processing Forum Software Working Group

 Packet Handler Task Group 25

 NPF_LogicalLinkID_t logicalLink;
 NPF_IPv4UC_FwdTableHandle_t v4fibHandle;
 NPF_IPv6UC_FwdTableHandle_t v6fibHandle;
 NPF_uint32_t nextHopIdentifier;
 NPF_IPv4NextHopInfo_t v4nextHop;
 NPF_IPv6NextHopInfo_t v6nextHop;
 } u;
} NPF_phSendSpec_t;

This Implementation Agreement requires that all API implementations must provide support for all the
above sending specifications.

5.3.7 Packet Handler Send Metadata

This structure contains all the metadata needed for Lsending a packet. It is used when sending a packet
using the NPF_PHPacketSendTo() function. It contains:

• Protocol - this is the header protocol type

• Priority - Priority of the packet (if supported by the implementation)

• Sending Specification - Routing hints for sending the packet out.

• Send Flags - Locally sourced, etc.
/**
Send Metadata
**/
typedef struct
{
 NPF_protocol_t protocolType;
 NPF_phPriority_t priority;
 NPF_phSendSpec_t sendSpec;
 NPF_phSendFlags_t sendFlags;
} NPF_phSendMetadata_t;

5.3.8 Packet Handler Receive Metadata

Receive Metadata is the structure passed up to the client with a received packet. It contains the following:

• Priority – priority that the packet was treated with in the PH API implementation

• Reason code and sub code – indicates why the packet is being delivered to the PH client

• Logical Link Identifier – This identifies the logical link (interface, ATM connection, MPLS path,
etc.) on which the packet arrived. If the client needs to know the protocol identity at the first byte
of the packet, it must be able to infer this value from the logical link.

• Offset information - contains a protocol ID and offset value. These parameters are only used
when the NPE has performed some packet processing already and wishes to share with the API
client some additional information. Offset is a number ranging from zero to length-1. At the
offset (bytes) from the beginning the packet is the first byte of a protocol header identified by the
Protocol ID.

Network Processing Forum Software Working Group

 Packet Handler Task Group 26

The protocol ID of the header indicated at the offset. Note that if offset is zero, this value is also zero, as
the protocol is inferred from the logical link identifier.
/***********************************
Receive Metadata
************************************/

typedef struct
{
 NPF_uint32_t offset;
 NPF_protocol_t protocolID;
 NPF_LogicalLinkID_t logicalLink;
 NPF_phRecvReasonCode_t reasonCode;
 NPF_phRecvReasonSubcode_t reasonSubCode;
 NPF_phPriority_t priority;
} NPF_phRecvMetadata_t;

5.3.9 Packet Handler Send Flow

/**
Send Flow Specification

This structure contains all the metadata needed for sending a
packet. It is used when creating a send flow.

It has the same contents as the Send Metadata
**/
typedef NPF_phSendMetadata_t NPF_phSendFlow_t;

5.3.10 Send Flow Handle

The PH API client supplies sending metadata when it sends packets via the Packet Handler. If it calls the
NPF_PHPacketSend() function, it supplies metadata each time it sends a packet. As an
optimization, the API defines the concept of a Send Flow – a shorthand for metadata that is the same for
every packet in the flow. The client supplies the sending metadata when it creates a flow. The API
implementation stores the metadata and returns a flow handle, which the client can use when sending
packets using the NPF_PHPacketSend() function.
/***********************************
Send Flow Handle
************************************/
typedef NPF_uint32_t NPF_phSendFlowHandle_t;

5.3.11 Packet Handler Receive Flows

Applications register interest in packet flows by specifying receive flows. The API implementation
returns a Recv Flow handle that will be used subsequently when the API implementation hands up
packets to the application. The contents are as follows:

Network Processing Forum Software Working Group

 Packet Handler Task Group 27

• Protocol Type -- matches the protocol type of the first header in the packet, as passed up from the
FE. A value of NPF_PROTO_FAM_ANY in the protocol family variable matches ANY
protocol.

• Logical Link -- Specifies the logical link on which the packet was received. If the Interface
Handle part of this is null, it matches any logical link (i.e. packets that arrive on all/any link).

• Reason Code -- Specifies the reason code to match. A value of
NPF_PH_RECV_REASON_CODE_ANY matches any reason code.

• Reason Subcode -- specifies the reason subcode to match, if the given reason code uses a
subcode. NPF_PH_RECV_REASON_SUBCODE_ANY is a wildcard value.

/***********************************
Receive Flow Specification
**/
typedef struct
{
 NPF_protocol_t protocolType;
 NPF_LogicalLinkID_t logicalLink;
 NPF_phRecvReasonCode_t reasonCode;
 NPF_phRecvReasonSubcode_t reasonSubCode;
} NPF_phRecvFlow_t;

5.3.12 Receive Flow Handle

A receive flow lets a client request delivery of packets that arrive from the FE and that match
certain metadata specifications. When a client registers a receive flow, the API implementation
returns a handle for it.
/***********************************
Receive Flow Handle
************************************/

typedef NPF_uint32_t NPF_phRecvFlowHandle_t;

5.3.13 PH API Statistics

Each priority that is supported has 8 counters. Each item counted has a counter for each of the eight
priorities. In addition, an additional counter is for packets received that were dropped if there were no
flows registered for them.
/***
Packet Handler Statistics
**/
typedef struct
{

NPF_uint32_t npfPHPktsTx[8];
NPF_uint32_t npfPHBytesTx[8];
NPF_uint32_t npfPHTxPktsDropped[8];
NPF_uint32_t npfPHPktsRx[8];
NPF_uint32_t npfPHBytesRx[8];
NPF_uint32_t npfPHRxPktsDropped[8];

Network Processing Forum Software Working Group

 Packet Handler Task Group 28

 NPF_uint32_t npfPHRcvPktsDroppedNoFlow;
} NPF_phStatistics_t;

5.4 Data Structures for Completion Callbacks

typedef NPF_uint32_t NPF_phCallbackType_t;

typedef enum
{
 NPF_PH_CB_TYPE_SEND_PACKET = 1,
 NPF_PH_CB_TYPE_CREATE_SEND_FLOW = 2,
 NPF_PH_CB_TYPE_SEND_PACKET_TO = 3,
 NPF_PH_CB_TYPE_DEL_SEND_FLOW = 4,
 NPF_PH_CB_TYPE_REG_RCV_FLOW = 5,
 NPF_PH_CB_TYPE_GET_NUM_PRIORITIES = 6,
 NPF_PH_CB_TYPE_GET_STATISTICS = 7
} NPF_phCallbackType_t;

typedef NPF_uint32_t NPF_phErrorType_t;
typedef NPF_uint32_t NPF_phErrorCode_t;

/* Error codes and return values */
#define NPF_PH_BASE_ERR (NPF_INTERFACES_MAX_ERR + 1)
#define NPF_PH_MAX_ERR (NPF_PH_BASE_ERR + 99)

#define NPF_PH_E_BAD_CALLBACK_FUNCTION (NPF_PH_BASE_ERR+1)
#define NPF_PH_E_CALLBACK_ALREADY_REGISTERED (NPF_PH_BASE_ERR+2)
#define NPF_PH_E_BAD_CALLBACK_HANDLE (NPF_PH_BASE_ERR+3)
#define NPF_PH_E_UNKNOWN_PROTOCOL (NPF_PH_BASE_ERR+4)
#define NPF_PH_E_UNSUPPORTED_OPTION (NPF_PH_BASE_ERR+5)
#define NPF_PH_E_BAD_FIB_ID (NPF_PH_BASE_ERR+6)
#define NPF_PH_E_BAD_NEXTHOP_IDENTIFIER (NPF_PH_BASE_ERR+7)
#define NPF_PH_E_BAD_LOGICAL_LINK_IDENTIFIER (NPF_PH_BASE_ERR+8)
#define NPF_PH_E_UNSUPPORTED_FLAGS (NPF_PH_BASE_ERR+9)
#define NPF_PH_E_INVALID_SEND_FLOW_HANDLE (NPF_PH_BASE_ERR+10)
#define NPF_PH_E_INVALID_PRIORITY (NPF_PH_BASE_ERR+11)
#define NPF_PH_E_BAD_BUFFER (NPF_PH_BASE_ERR+12)
#define NPF_PH_E_TX_RESOURCE_UNAVAILABLE (NPF_PH_BASE_ERR+13)
#define NPF_PH_E_PARAMETER_NOT_SUPPORTED (NPF_PH_BASE_ERR+14)

/* Error codes from sending packet out of the device
 These errors can be reported only if the device informs
 the PH API implementation of these errors during transmission
*/
#define NPF_PH_E_SEND_FAIL (NPF_PH_BASE_ERR+15)
#define NPF_PH_E_ARP_FAIL (NPF_PH_BASE_ERR+16)
#define NPF_PH_E_INVALID_PORT (NPF_PH_BASE_ERR+17)

Network Processing Forum Software Working Group

 Packet Handler Task Group 29

#define NPF_PH_E_PHYSICAL_ERROR (NPF_PH_BASE_ERR+18)
#define NPF_PH_E_INTERNAL_ERROR (NPF_PH_BASE_ERR+19)

/**
Callback Structure
This is delivered into the application for every API call it
makes. The Callback type can be used by the application to
demultiplex the response. The union contains the corresponding
response data
***/
typedef struct
{
 NPF_phCallbackType_t type;
 NPF_phErrorType_t error;
 union
 {
 NPF_uint32_t unused;
 NPF_phBufDescr_t *bufDescr;
 NPF_uint32_t phNumPriorities;
 NPF_phStatistics_t *phStatistics;
 NPF_phSendFlowHandle_t phSendFlowHandle;
 NPF_phRecvFlowHandle_t phRecvFlowHandle;
 } u;
} NPF_phCallbackData_t;
The following table shows the callback data that is associated with the asynchronous responses of the
respective PH API functions.

Asynchronous Function Callback Type Callback Data
NPF_PHPacketSend NPF_PH_CB_TYPE_SEND_PACKE

T
NPF_phBufDesrcr_t

NPF_PHPacketSendTo NPF_PH_CB_TYPE_SEND_PACKE
T_TO

NPF_phBufDesrcr_t

NPF_PHSendFlowCreate NPF_PH_CB_TYPE_CREATE_SEN
D_FLOW

NPF_phSendFlowHandle
_t

NPF_PHSendFlowDelete NPF_PH_CB_TYPE_DEL_SEND_F
LOW

None

NPF_PHRecvFlowRegister NPF_PH_CB_TYPE_REG_RECV_F
LOW

NPF_phRecvFlowHandle
_t

NPF_PHNumPrioritiesGet NPF_PH_CB_TYPE_GET_NUM_PR
IORITIES

phNumPriorities

NPF_PHStatisticsGet NPF_PH_CB_TYPE_GET_STATIS
TICS

NPF_phStatistics_t

5.5 Data Structures for Event Callbacks
/*
 Event types
*/
typedef enum {
 NPF_PH_TX_RESOURCE_AVAILABLE = 0,

Network Processing Forum Software Working Group

 Packet Handler Task Group 30

} NPF_phEvent_t;

/*
 Data structures for event callback
*/

/* This structure reports the minimum priority level available
for a PH API client for transmission. An array of this structure
can be reported to the client.
*/
typedef struct {
 NPF_phEvent_t phEventType; /* PH Event */
 union {
 NPF_uint16_t minPriority; /* Minimum priority
 level available for transmission */
 } u;
} NPF_phEventData_t;

typedef struct {
 NPF_uint16_t n_data; /* Number of events in array */
 NPF_phEventData_t *eventData; /* Array of events */
} NPF_phEventArray_t;

Network Processing Forum Software Working Group

 Packet Handler Task Group 31

5.6 Callbacks

5.6.1 API Callback

Syntax

typedef void (*NPF_phCallbackFunc_t)(
NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_correlator_t phCorrelator,
NPF_IN NPF_phCallbackData_t *phCallbackdata

);

Description of function

The application registers this callback function with the NPF PH API. The callback function is
implemented by the application, and is registered with the API through the NPF_PHRegister()
function.

Input Parameters

• userContext: The context item that was supplied by the application when the completion
callback function was registered.

• phCorrelator: The correlator item that was supplied by the application when an API
function call was made. The correlator is used by the application mainly to distinguish between
multiple invocations of the same function.

• phCallbackData: Pointer to a structure containing response information related to the API
function call. See NPF_phCallbackData_t for more details.

Output Parameters

None

Return Codes

None

Network Processing Forum Software Working Group

 Packet Handler Task Group 32

5.6.2 Event Callback Function

Syntax

typedef void (*NPF_phEventCallFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_phEventArray_t phEventArray);

Description of function

This is the callback function (handler function) registered by a PH API client for receiving Packet
Handler events. One or more events can be notified to the application through a single invocation of this
event handler function. Packet Handler events are delivered to a PH API client when one or more of the
priority queues are available for packet transmission. Information on which priority levels are available is
represented in an array in the phEventArray structure.

Currently, the event NPF_PH_TX_RESOURCE_AVAILABLE is defined. This indicates to the PH client
that the API implementation can now accept packets for transmission. The API does not impose any
restrictions on the number of resources and/or queues that have to be present in an implementation, or on
how the priority handling is to be implemented.

Input Parameters

• userContext: User context provided during callback function registration.
• phEventArray: The event array being delivered to the PH client. This is defined and

implemented in accordance with the Event Handling mechanisms described in the NPF Software
API Conventions Implementation Agreement.

Output Parameters

None.

Return Codes

None.

Network Processing Forum Software Working Group

 Packet Handler Task Group 33

6 Packet Handler API Function Calls

6.1 Completion Callback Registration Function
Syntax
NPF_error_t NPF_PHRegister(

NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_phCallbackFunc_t phCallbackFunc,
NPF_OUT NPF_callbackHandle_t *phCallbackHandle

);

Description of function

This function is used by an application to register its completion callback function for receiving
asynchronous responses related to API function calls. The application may register multiple callback
functions; each callback function is identified by the tuple {userContext, phCallbackFunc}, and
for each individual pair, a unique phCallbackHandle will be assigned by the API implementation.
Subsequent calls to any of the API functions have to use the callback handle phCallbackHandle
returned here.

It is to be noted that NPF_PHRegister() is a synchronous function and has no callback function
associated with it.

Input Parameters

• userContext: A context item for uniquely identifying the context of the application
registering the callback function. This is returned back to the application through the callback
function when it is invoked. Applications can assign any value to the userContext and the value
is completely opaque to the API implementation.

• phCallbackFunc: Pointer to the callback function to be registered.

Output Parameters

• phCallbackHandle: A unique identifier assigned for the registered userContext and
phCallbackFunc pair. This handle will be used by the application to specify which callback is to
be called when invoking asynchronous API functions. This will also be used when deregistering
the userContext and phCallbackFunc pair.

Return Codes

• NPF_NO_ERROR: The registration was successful.
• NPF_PH_E_BAD_CALLBACK_FUNC: The callback function passed in was NULL.
• NPF_PH_E_CALLBACK_ALREADY_REGISTERED: No new registration was made since the

userContext and phCallbackFunc pair was already registered. Whether this is treated as an error
or not is dependent on the application.

Network Processing Forum Software Working Group

 Packet Handler Task Group 34

6.2 Completion Callback De-registration Function
Syntax
NPF_error_t NPF_PHDeregister(
 NPF_IN NPF_callbackHandle_t phCallbackHandle
);

Description of function

This function is used by an application to deregister its completion callback function for receiving
asynchronous responses related to API function calls. After this function returns successfully, the
application cannot make any subsequent API invocations. It is to be noted that NPF_PHDeregister()
is a synchronous function and has no callback function associated with it.

Input Parameters

• phCallbackHandle: The unique identifier representing the pair of user context and callback
function to be deregistered. This identifier was obtained during a previous call to
NPF_PHRegister().

Output Parameters

None.

Return Codes

• NPF_NO_ERROR: The de-registration was successful.
• NPF_PH_E_BAD_CALLBACK_HANDLE: The API implementation does not recognize the

callback handle. There is no effect to the registered callback functions.

Network Processing Forum Software Working Group

 Packet Handler Task Group 35

6.3 Event Callback Registration Function
Syntax
NPF_error_t NPF_PHEventRegister(

NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_phEventCallFunc_t phEventCallFunc,
NPF_OUT NPF_callHandle_t *phEventHandle

);

Description of function

This function is used by an application to register its callback function for receiving asynchronous events
related to PH API. It is to be noted that NPF_PHEventRegister() is a synchronous function and has
no callback function associated with it.

Input Parameters

• userContext: A context item for uniquely identifying the context of the client registering the event
handler function. This is returned back to the client through the event callback function when it is
invoked.

phEventCallFunc:
Pointer to the event callback function to be registered.

Output Parameters

• phEventHandle: A unique identifier assigned for the registered userContext and
phEventCallFunc pair. This handle will be used by the client to specify which callback is to be
called when invoking asynchronous API functions. This will also be used when deregistering the
event handler function.

Return Codes

• NPF_NO_ERROR: The registration was successful.
• NPF_PH_E_BAD_HANDLER_FUNC: The event handler function passed in was NULL.
• NPF_PH_E_CALLBACK_ALREADY_REGISTERED: The callback function passed in was

previously registered.

Network Processing Forum Software Working Group

 Packet Handler Task Group 36

6.4 Event Callback Deregistration Function
Syntax
NPF_error_t NPF_PHEventDeregister(
 NPF_IN NPF_callHandle_t phEventHandle
);

Description of function

This function is used by an application to deregister its event handler function. After this function returns
successfully, the application will not get any PH API events. It is to be noted that
NPF_PHEventDeregister() is a synchronous function and has no callback function associated with
it.

Input Parameters

• phEventHandle: The unique identifier representing the pair of user context and event
handler function to be deregistered. This identifier was obtained during a previous call to
NPF_PHEventRegister().

Output Parameters

None.

Return Codes

• NPF_NO_ERROR: The de-registration was successful.
• NPF_PH_E_BAD_HANDLE: The API implementation does not recognize the event handle.

There is no effect to the registered callback functions.

Network Processing Forum Software Working Group

 Packet Handler Task Group 37

6.5 Function to Send a Packet
Syntax
NPF_error_t NPF_PHPacketSendTo(

NPF_IN NPF_phCallbackHandle_t phCallbackHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t phErrorReporting,
NPF_IN NPF_phBufDescr_t *packet,
NPF_IN NPF_phSendMetadata_t *phSendMetadata

);

Description of function

This function is used by an application to send a packet by specifying metadata. The application need not
create a send flow handle in order to use this function.

The PH API implementation cannot guarantee that the packet will be transmitted. This is due to the fact
that an error could occur at any stage of sending, for example, L2 address resolution, physical error, etc.
Hence, a successful return from this function only implies that the packet was received successfully and
the API implementation will attempt transmission.

Input Parameters

• phCallbackHandle: Unique callback handle obtained during callback function registration.
• Correlator: The application’s correlator for this call. It is used to distinguish between

multiple invocations of the same API function call.
• phErrorReporting: This is used by the application to indicate if it wishes to receive a

completion callback or not, or only upon errors.
• Packet: This is a pointer to the packet to be transmitted.
• phSendMetadata: Pointer to a Packet Handler Send metadata.

Output Parameters

None.

Return Codes

• NPF_NO_ERROR: The packet was accepted successfully for transmission.
• NPF_PH_E_BAD_CALLBACK_HANDLE: The API implementation does not recognize the

callback handle.
• NPF_PH_E_TX_RESOURCE_UNAVAILABLE : The PH API implementation did not have

enough resources (space in the queues for the priority, etc.) for transmitting the packet.
• NPF_PH_E_INVALID_PRIORITY: The priority indicated in NPF_phSendMetadata_t is

unsupported.
• NPF_PH_E_BAD_FIB_HANDLE: The FIB handle indicated in NPF_phSendMetadata_t

is not a valid FIB handle.
• NPF_PH_E_BAD_NEXTHOP_IDENTIFIER: The next hop identifier indicated in

NPF_phSendMetadata_t is invalid.
• NPF_PH_E_BAD_LOGICAL_LINK_ID: The Logical Link identifier indicated in

NPF_phSendMetadata_t is not valid.

Network Processing Forum Software Working Group

 Packet Handler Task Group 38

• NPF_PH_E_UNSUPPORTED_FLAGS: The send flags indicated in
NPF_phSendMetadata_t are not valid.

• NPF_PH_E_PARAMETER_NOT_SUPPORTED: The PH API implementation does not support
one of the parameters being passed in. This could happen, for instance, if the Next Hop
information being passed in is different from what is supported by the NPF IPv4 Unicast API
implementation running on the system.

Asynchronous Response

The asynchronous response will contain the error code representing status of the call. A pointer to the
buffer descriptor passed in will be passed to the callback function.

Network Processing Forum Software Working Group

 Packet Handler Task Group 39

6.6 Receive Packet Function (upcall)
Syntax
typedef void (*NPF_PHRecvPacketFunc_t) (

NPF_IN NPF_callbackHandle_t phRcvCallbackHandle,
NPF_IN NPF_phBufDescr_t *packet,
NPF_IN NPF_phRecvMetadata_t *phRecvMetadata

);

Description of function

This is the upcall function that will be invoked by the PH API implementation when it receives a packet
that matches the registered flow from the forwarding plane. The API implementation also passes up
metadata information about the packet that is being delivered. This is the default upcall function – that is,
a PH client that has registered this upcall will receive all packets that reach the PH implementation. PH
clients must register receive flows (see Section 6.14) if the PH implementation is expected to de multiplex
packets into PH clients based on metadata.

It is to be noted that that receive flows might intersect between applications (or between flows registered
by the same application); if so, the API implementation would have to de-multiplex the packet into all
registered consumers, possibly by making copies of the packet.

Input Parameters

• phRcvCallbackHandle: The callback returned to the PH client previously during
registration of the upcall function.

• Packet: Pointer to the packet that matched the receive flow.
• phRecvMetadata: Pointer to the receive metadata corresponding to the packet that is being

delivered into the PH client.
Output Parameters

None.

Return Codes

None.

Network Processing Forum Software Working Group

 Packet Handler Task Group 40

6.7 Function to Register a Receive Packet Upcall
Syntax
NPF_error_t NPF_PHRecvPacketRegister(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_PHRecvPacketFunc_t phRcvPktFunc,

NPF_OUT NPF_callbackHandle_t *phRcvCallbackHandle
);

Description of function

This function is used by an application to register a default upcall function. The upcall function specified
will be invoked by the API implementation to deliver packets into the PH client.

Input Parameters

• userContext: A context item for uniquely identifying the context of the application
registering the callback function. This is returned back to the application through the callback
function when it is invoked. Applications can assign any value to the userContext and the value
is completely opaque to the API implementation.

• phRecvPktFunc: Pointer to the upcall function that will be invoked when the PH API
delivers packets into the application.

Output Parameters

• phRcvCallbackHandle: A unique identifier assigned for the registered userContext and
phRcvPktFunc pair. This handle will be delivered into the PH client when packets are delivered
through this upcall. The handle will also be used when deregistering the upcall.

Return Codes

• NPF_NO_ERROR: The registration was successful.
• NPF_PH_E_BAD_CALLBACK_FUNC: The callback function passed in was NULL.
• NPF_PH_E_CALLBACK_ALREADY_REGISTERED: No new registration was made since the

receive upcall was already registered. Whether this is treated as an error or not is dependent on
the application.

Network Processing Forum Software Working Group

 Packet Handler Task Group 41

6.8 Function to Deregister a Receive Packet Upcall
Syntax
NPF_error_t NPF_PHRecvPacketDeregister(

NPF_IN NPF_callbackHandle_t phRcvCallbackHandle
);

Description of function

This function is used by an application to deregister its receive upcall function for packet reception. After
this function returns successfully, the application cannot receive any packets.

Input Parameters

• phRcvCallbackHandle: The callback handle received when the receive upcall was
registered by the PH client.

Output Parameters

None.

Return Values

• NPF_NO_ERROR: The de-registration was successful.
• NPF_PH_E_BAD_CALLBACK_HANDLE: The API implementation does not recognize the

callback handle. There is no effect to the registered callback functions.

Network Processing Forum Software Working Group

 Packet Handler Task Group 42

6.9 Function to Get Number of Priorities Supported
Syntax
void NPF_PHNumPrioritiesGet(

NPF_IN NPF_callbackHandle_t phCallbackHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t phErrorReporting

);

Description of function

This function is used to retrieve the number of priority levels supported by the PH API implementation.

Input Parameters

• phCallbackHandle: Unique callback handle obtained during callback function registration.
• Correlator: The application’s correlator for this call. It is used to distinguish between

multiple invocations of the same API function call.
• phErrorReporting: This is used by the application to indicate if it wishes to receive a

completion callback or not, or only upon errors.
Output Parameters

None.

Return Codes

• NPF_PH_E_BAD_CALLBACK_HANDLE: The API implementation does not recognize the
callback handle.

Asynchronous Response

The asynchronous response will contain the error code representing status of the call. If the error code in
the callback indicates success, the number of supported priority levels will be passed to the callback
function.

Network Processing Forum Software Working Group

 Packet Handler Task Group 43

6.10 Function to Get Packet Handler Statistics
Syntax
void NPF_PHStatisticsGet(

NPF_IN NPF_callbackHandle_t phCallbackHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t phErrorReporting

);

Description of function

This function is used to retrieve the statistics maintained by the PH API. The number of statistics counters
that are filled up by the PH API implementation depends on how many queues are supported in the
implementation. If the number of queues supported is less that the number of priorities (8), then the
indices that return valid counter values should be the left elements of the middle column of Table 1 in
Section 4.2.6. This is to aid inter operability between PH API implementations and also to allow for the
same relative treatment of priorities among different implementations.

Input Parameters

• phCallbackHandle: Unique callback handle obtained during callback function registration.
• Correlator: The application’s correlator for this call. It is used to distinguish between

multiple invocations of the same API function call.
• phErrorReporting: This is used by the application to indicate if it wishes to receive a

completion callback or not, or only upon errors.
Output Parameters

None.

Return Codes

• NPF_PH_E_BAD_CALLBACK_HANDLE: The API implementation does not recognize the
callback handle.

Asynchronous Response

The asynchronous response will contain the error code representing status of the call. If the error code in
the callback indicates success, a pointer to the PH statistics structure NPF_phStatistics_t will be
passed to the callback function.

Network Processing Forum Software Working Group

 Packet Handler Task Group 44

6.11 Optional Function to Create a Send Flow
Syntax
NPF_error_t NPF_PHSendFlowCreate(

NPF_IN NPF_callbackHandle_t phCallbackHandle,
NPF_IN NPF_correlator_t phCbCorrelator,
NPF_IN NPF_errorReporting_t phErrorReporting,
NPF_IN NPF_phSendFlow_t *phSendFlow

);

Description of function

This function is used by an application to create a send flow specification. This is an asynchronous
function and will result in a callback subsequently. The API implementation might have to initialize some
state on the forwarding plane, set up queues (if it implements queues for packets with different priorities),
etc. A unique sending flow handle will be returned to the application in the callback if there were no
errors. When the application subsequently sends a packet using the NPF_PHPacketSend() function, it
uses this handle as a parameter to indicate which flow the packet belongs to. Implementation of this
function is optional.

Input Parameters

• phCallbackHandle: Unique callback handle obtained during callback function registration.
• phCbCorrelator: This is used by the application to distinguish between multiple

invocations of the same call. This value is not interpreted by the API implementation and will be
returned to the application in the callback.

• phErrorReporting: This is used by the application to indicate if it wishes to receive a
completion callback or not, or only upon errors.

• phSendFlow: Pointer to a Packet Handler Send Flow specification, as defined in
NPF_phSendFlow_t.

Output Parameters

None.

Return Codes

• NPF_NO_ERROR: The send flow was accepted successfully.
• NPF_PH_E_BAD_CALLBACK_HANDLE: The API implementation does not recognize the

callback handle.
• NPF_PH_E_UNKNOWN_PROTOCOL_TYPE: The protocol indicated in the Send Flow structure

NPF_phSendFlow_t is unsupported.
• NPF_PH_E_INVALID_PRIORITY: The priority indicated in NPF_phSendFlow_t is

unsupported.
• NPF_PH_E_BAD_FIB_HANDLE: The FIB handle indicated in NPF_phSendFlow_t is not a

valid FIB handle.
• NPF_PH_E_BAD_NEXTHOP_IDENTIFIER: The next hop identifier indicated in

NPF_phSendFlow_t is invalid.
• NPF_PH_E_BAD_LOGICAL_LINK_IDENTIFIER: The interface handle indicated in

NPF_phSendFlow_t is invalid.
• NPF_PH_E_UNSUPPORTED_FLAGS: The send flags indicated in NPF_phSendFlow_t are

not valid.

Network Processing Forum Software Working Group

 Packet Handler Task Group 45

Asynchronous Response

The asynchronous response will contain the error code representing status of the call. A send flow handle
corresponding to the flow created will be passed to the callback function.

Network Processing Forum Software Working Group

 Packet Handler Task Group 46

6.12 Optional Function to Delete a Send Flow
Syntax
NPF_error_t NPF_PHSendFlowDelete (

NPF_IN NPF_callbackHandle_t phCallbackHandle,
NPF_IN NPF_correlator_t phCbCorrelator,
NPF_IN NPF_errorReporting_t phErrorReporting,

 NPF_IN NPF_phSendFlowHandle_t phSendFlowHandle
);

Description of function

This function is used by an application to delete a send flow specification. The API implementation might
have to clean up some state in the forwarding plane, etc. This is an asynchronous function and will result
in a callback subsequently. Implementation of this function is optional.

Input Parameters

• phSendFlowHandle: This is a unique send flow handle returned to the application during a
call to NPF_PHSendFlowCreate().

• phCbcorrelator: The application’s correlator for this call. It is used to distinguish between
multiple invocations of the same API function call.

• phErrorReporting: This is used by the application to indicate if it wishes to receive a
completion callback or not, or only upon errors.

Output Parameters

None.

Return Codes

• NPF_NO_ERROR: The send flow was deleted successfully.
• NPF_PH_E_BAD_CALLBACK_HANDLE: The API implementation does not recognize the

callback handle.
• NPF_PH_E_INVALID_SEND_FLOW_HANDLE: The send flow handle is invalid. This does

not affect currently created send flows.

Network Processing Forum Software Working Group

 Packet Handler Task Group 47

6.13 Optional Function to Send a Packet using Send Flow Handle
Syntax
NPF_error_t NPF_PHPacketSend(

NPF_IN NPF_callbackHandle_t phCallbackHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t phErrorReporting,
NPF_IN NPF_phBufDescr_t *packet,
NPF_IN NPF_phSendFlowHandle_t phSendFlowHandle

);

Description of function

This function is used by an application to send a packet. The PH API implementation cannot guarantee
that the packet actually will be transmitted eventually. This is due to the fact that an error could occur at
any stage of sending – L2 address resolution, physical error, etc. Hence, a successful return from this
function only implies that the packet was received successfully and the API implementation will attempt
transmission to the forwarding plane. Implementation of this function is optional.

Input Parameters

• phCallbackHandle: Unique callback handle obtained during callback function registration.
• correlator: The application’s correlator for this call. It is used to distinguish between

multiple invocations of the same API function call.
• phErrorReporting: This is used by the application to indicate if it wishes to receive a

completion callback or not, or only upon errors.
• packet: This is the packet to be transmitted.
• phSendFlowHandle: Handle that specifies a particular send flow. This handle is obtained in

the asynchronous response that results from a call to NPF_PHSendFlowCreate().
Output Parameters

None.

Return Codes

• NPF_NO_ERROR: The packet was accepted successfully for transmission.
• NPF_PH_E_BAD_CALLBACK_HANDLE: The API implementation does not recognize the

callback handle.
• NPF_PH_E_INVALID_SEND_FLOW_HANDLE: The send flow handle is unrecognized.
• NPF_PH_E_TX_RESOURCE_UNAVAILABLE: The PH API implementation did not have

enough resources (space in the queues for the priority, etc.) for transmitting the packet.
• NPF_PH_E_INVALID_PRIORITY: The priority indicated in the flow information associated

with the NPF_phSendFlowHandle_t is unsupported.
• NPF_PH_E_BAD_FIB_HANDLE: The FIB handle indicated in the flow information associated

with the NPF_phSendFlowHandle_t is not a valid FIB handle.
• NPF_PH_E_BAD_NEXTHOP_IDENTIFIER: The next hop identifier indicated in the flow

information associated with the NPF_phSendFlowHandle_t is invalid.
• NPF_PH_E_UNSUPPORTED_FLAGS: The send flags indicated in the flow information

associated with the NPF_phSendFlowHandle_t are not valid.

Network Processing Forum Software Working Group

 Packet Handler Task Group 48

• NPF_PH_E_PARAMETER_NOT_SUPPORTED: The PH API implementation does not support
one of the parameters being passed in. This could happen, for instance, if the Next Hop
information being passed in is different from what is supported by the NPF IPv4 Unicast API
implementation running on the system.

Network Processing Forum Software Working Group

 Packet Handler Task Group 49

6.14 Optional Receive Flow Function (upcall)
Syntax
typedef void (*NPF_PHRecvFlowFunc_t) (

NPF_IN NPF_phRecvFlowHandle_t phRecvFlowHandle,
NPF_IN NPF_phBufDescr_t *packet,
NPF_IN NPF_phRecvMetadata_t *recvMetadata

);

Description of function

This is the upcall function that will be invoked by the PH API implementation into the PH client when it
receives a packet that matches the registered flow from the forwarding plane. The API implementation
also passes up metadata information about the packet that is being delivered. It is to be noted that that
receive flows might intersect between applications (or between flows registered by the same application);
if so, the API implementation would have to de-multiplex the packet into all registered consumers,
possibly by performing copies of the packet.

Input Parameters

• phRecvFlowHandle: The receive flow handle that was created earlier by the PH client by a
call to NPF_PHRecvFlowRegister ().

• Packet: Pointer to the packet that matched the receive flow.
• recvMetadata: The receive metadata for the packet that matched the receive flow.

Output Parameters

None.

Return Codes

None.

Network Processing Forum Software Working Group

 Packet Handler Task Group 50

6.15 Optional Function to Register a Receive Flow Specification
Syntax
NPF_error_t NPF_PHRecvPacketFlowRegister(

NPF_IN NPF_callbackHandle_t phCallbackHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t phErrorReporting,

 NPF_IN NPF_PHRecvFlowFunc_t phRcvFlowFunc,
 NPF_IN NPF_phRecvFlow_t *phRcvFlow
);

Description of function

This function is used by an application to register a receive flow specification. This will allow the PH API
implementation to perform de-multiplexing of packets into PH clients. The application can register
multiple receive functions, each one associated with a particular receive flow. The API implementation
will assign a unique handle that will be used later for de-registration of the receive flow specification. It is
to be noted that this is an asynchronous function and the callback function associated with it will return
the receive flow handle.

Input Parameters

• phCallbackHandle: The callback handle returned to the PH client during PH registration
through the NPF_PHRegister() function.

• correlator: The application’s correlator for this call. It is used to distinguish between
multiple invocations of the same API function call.

• phErrorReporting: This is used by the application to indicate if it wishes to receive a
completion callback or not, or only upon errors.

• phRecvFlowFunc: Pointer to the upcall function that will be invoked when the PH API
delivers packets into the application that belong to the flow being registered.

• phRecvFlow: The receive flow being registered for.
Output Parameters

None.

Return Codes

• NPF_NO_ERROR: The registration was successful.
• NPF_PH_E_BAD_CALLBACK_FUNC: The callback function passed in was NULL.
• NPF_PH_E_CALLBACK_ALREADY_REGISTERED: No new registration was made since the

receive flow specification was already registered. Whether this is treated as an error or not is
dependent on the application.

• NPF_PH_E_BAD_CALLBACK_HANDLE: The API implementation does not recognize the
callback handle.

Network Processing Forum Software Working Group

 Packet Handler Task Group 51

6.16 Optional Function to Deregister a Receive Flow Specification
Syntax
NPF_error_t NPF_PHRecvPacketFlowDeregister(
 NPF_IN NPF_phRecvFlowHandle_t phRecvFlowHandle
);

Description of function

This function is used by an application to deregister a receive flow specification. After this function
returns successfully, the application cannot receive any packets that matched the flow specification. It is
to be noted that this is a synchronous function and has no callback function associated with it.

In Parameters

• phRecvFlowHandle: The unique identifier representing the receive flow. This identifier was
obtained during a previous call to NPF_PHRecvFlowRegister().

Output Parameters

None.

Return Codes

• NPF_NO_ERROR: The de-registration was successful.
• NPF_PH_E_BAD_HANDLE: The API implementation does not recognize the handle. There is

no effect to the previous registration.

Network Processing Forum Software Working Group

 Packet Handler Task Group 52

7 API Summary
The following table illustrates which parameters (metadata and packet) are present in the send and receive
directions. An entry marked “X” means that the parameter is required for the specified direction. For
example, when receiving packets, metadata that accompanies the packet includes priority, protocol type,
interface/logical link it arrived on, reason code and reason sub-code. Also, no flags are giving into the
application in the receive direction.

Metadata Transmit Receive
Packet X X
Buffer Descriptor X X
Priority X X
Flags X
Reason Code X
Reason Sub code X

The following table summarizes the NPF Packet Handler API.

API Name API Required

NPF_PHRegister YES
NPF_PHDeregister YES
NPF_PHEventRegister YES
NPF_PHEventDeregister YES
NPF_PHPacketSendTo YES
NPF_PHRecvPacketRegister YES
NPF_PHRecvPacketDeregister YES
NPF_PHNumPrioritiesGet YES
NPF_PHStatisticsGet YES
NPF_PHSendFlowCreate NO
NPF_PHSendFlowDelete NO
NPF_PHPacketSend NO
NPF_PHRecvFlowRegister NO
NPF_PHRecvFlowDeregister NO

Table 2: Summary of Packet Handler API

Network Processing Forum Software Working Group

 Packet Handler Task Group 53

8 References
[1] NP Forum - Software API Framework Lexicon Implementation Agreement Revision 1.0

[2] NP Forum – Software API Conventions Implementation Agreement Revision 2.0

[3] NP Forum – Software API Framework Implementation Agreement Revision 1.0

[4] NP Forum – Interface Management API Implementation Agreement Revision 1.0

[5] NP Forum - IPv4 Unicast forwarding API (latest draft)

[6] NP Forum – IPv6 forwarding API (latest draft)

[7] IANA (http://www.iana.org/assignments/ethernet) – EtherType numbers

[8] IANA (http://www.iana.org/assignments/ppp-numbers) – PPP numbers

[9] IANA (http://www.iana.org/assignments/protocol-numbers) – IP Protocol numbers

[10] IANA (http://www.iana.org/assignments/ieee-802-numbers) – IEEE 802 LSAP

Network Processing Forum Software Working Group

 Packet Handler Task Group 54

Appendix A Header File - NPF_PH_API.H

/*
 * This header file defines typedefs, constants and
 * functions of the NPF Packet Handler API
 *
 * This assumes that the definitions common to all NPF APIs
 * are available in a separate manner (a different header
 * file, etc.)
 */

#ifndef __NPF_PH_API_H_
#define __NPF_PH_API_H_

#ifdef __cplusplus
extern "C" {
#endif

/***********************************
* NPF Buffer descriptor structure.
*

1. Buffer descriptor containing pointer and length.
(a) Pointer is either to the first byte of the packet, or to some structure
chosen or defined by the implementer.
(b) Length is the total length of the packet, in bytes.
************************************/

typedef struct {
 NPF_uint8_t *packetStart;
 /* pointer to first byte of packet OR some structure
 containing the first byte of the packet */
 NPF_uint32_t packetLen; /* payload length */
} NPF_phBufDescr_t;

typedef NPF_uint32_t NPF_phOffset_t;

/***********************************
* Protocol Type Indicator
This structure identifies a protocol by its protocol number. Protocol
numbers are assigned by several different numbering authorities, so there
is a protocol family identifier to say what number series the protocol
number belongs to. The IEEE and IETF number assignments can be
found on the IANA web site,http://www.iana.org/numbers.html.
 ************************************/

typedef enum {
 NPF_PROTO_FAM_LLC = 1,/* IEEE 802 LSAP assignments */
 NPF_PROTO_FAM_ET = 2,/* IEEE EtherType assignments */
 NPF_PROTO_FAM_PPP = 3,/* IETF PPP protocol numbers */
 NPF_PROTO_FAM_IP = 4, /* IETF IP protocol numbers */

Network Processing Forum Software Working Group

 Packet Handler Task Group 55

 NPF_PROTO_FAM_NPF = 5, /* NP Forum-defined numbers
 */
 NPF_PROTO_FAM_UNK = 6, /* Unknown protocol */
 NPF_PROTO_FAM_ANY = 7 /* Wildcard value */
} NPF_protocolFamily_t;

typedef struct {
 NPF_protocolFamily_t family;
 NPF_uint16_t protocol;
} NPF_protocol_t;

/***********************************
* Priority
Priority is a metadata element passed with both receive and transmit packets.
It can be used by an API implementation that has packet queues within it:
if its queues become congested, it can relieve congestion by discarding
packets in order of priority, lowest priority first. There is no
other use intended for this priority value.
************************************/
typedef NPF_uint8_t NPF_phPriority_t;

#define NPF_PH_PRIORITY_LOWEST 0
#define NPF_PH_PRIORITY_HIGHEST 7

/***********************************
* Send Flags
The Send Flags metadata element contains boolean flags that
can condition the operation of the FE for sending specific
kinds of packets. Currently the only flag defined is:

Locally Sourced -- means the packet originates from the local host system,
and should be forwarded as such. This can be used by the PH implementation
and the FE together to make sure the TTL is not decremented by the FE, that
input firewall filters are bypassed, etc., as appropriate to the
implementation.
************************************/

typedef NPF_uint32_t NPF_phSendFlags_t;

#define NPF_PH_SEND_FLAGS_LOCAL_SOURCE 0x00000001

/***********************************
* Reason Code and Subcode

These metadata can be used where the FE is capable of indicating a reason
that it chose to send a packet to the Packet Handler. The subcode metadata
may contain more specific information about the reason for diverting the
packet.
************************************/
typedef enum
{
 NPF_PH_RECV_REASON_CODE_NO_DEST_ADDR = 1,
 /*destination address was not found */

Network Processing Forum Software Working Group

 Packet Handler Task Group 56

 NPF_PH_RECV_REASON_CODE_LOCALLY_ADDRESSED = 2,
 /* locally destined packet */
 NPF_PH_RECV_REASON_CODE_UNSUPPORTED_OPTION = 3,
 /* Unsupported option */
 NPF_PH_RECV_REASON_CODE_UNSUPPORTED_PROTOCOL = 4,
 /* Unknown protocol */
 NPF_PH_RECV_REASON_CODE_FILTER_MATCH = 5
 /* Matched a filter */
 } NPF_phRecvReasonCode_t;

typedef NPF_uint32_t NPF_phRecvReasonSubcode_t;

#define NPF_PH_RCV_REASON_SUBCODE_ANY 0

/***********************************
Logical Link Identifier Structure

A logical link is like an interface, but more specific. It
identifies an input or output link as a LAN port, a point-
to- point interface like POS, or, for subdivided interfaces
like ATM, it indicates a specific VPI/VCI. It can be
extended to indicate a specific MPLS path as well.
************************************/
typedef struct
{
 NPF_IfHandle_t interfaceHandle;
 NPF_IfType_t intfType;
 union
 {
 NPF_uint32_t unused;
 NPF_VccAddr_t vpiVci;
 } u;
} NPF_LogicalLinkID_t;

#define NPF_INTERFACE_HANDLE_ANY 0

/* FIB handles from NPF IPv4 API and NPF IPv6 API*/
typedef NPF_uint32_t NPF_IPv4UC_FwdTableHandle_t;
typedef NPF_uint32_t NPF_IPv6UC_FwdTableHandle_t;

/***********************************
Sending Specification

The Sending Specification is metadata that accompanies
output packets. In various ways, it can convey information
to the FE about how a forwarding decision should be made
for this packet. The possibilities are (mutually
exclusive):
 - No specification given
 - Send the packet out a specific logical link (i.e.,
interface,
 ATM connection, MPLS path, etc.)

Network Processing Forum Software Working Group

 Packet Handler Task Group 57

 - Use a particular forwarding table in a case where the
FE
 does a destination address lookup to forward the packet
 - Use a particular next hop (interface and next hop IP
address).
It can be extended to include other protocols that may need
to be supported.
************************************/
typedef enum
{
 NPF_PH_SEND_SPEC_NONE = 1,
 NPF_PH_SEND_SPEC_TYPE_OUTPUT_LINK_IDENTIFIER = 2,
 NPF_PH_SEND_SPEC_TYPE_IPv4FIB_IDENTIFIER = 3,
 NPF_PH_SEND_SPEC_TYPE_IPv4NEXTHOP_IDENTIFIER = 4,
 NPF_PH_SEND_SPEC_TYPE_IPv4NEXTHOP_INFO = 5,
 NPF_PH_SEND_SPEC_TYPE_IPv6FIB_IDENTIFIER = 6,
 NPF_PH_SEND_SPEC_TYPE_IPv6NEXTHOP_IDENTIFIER = 7,
 NPF_PH_SEND_SPEC_TYPE_IPv6NEXTHOP_INFO = 8
} NPF_phSendSpecType_t;

typedef struct
{
 NPF_IPv4Address_t nextHopAddr;
 NPF_IfHandle_t interfaceHandle;
} NPF_IPv4NextHopInfo_t;

typedef struct
{
 NPF_IPv6Address_t nextHopAddr;
 NPF_IfHandle_t interfaceHandle;
} NPF_IPv6NextHopInfo_t;

typedef struct
{
 NPF_phSendSpecType_t SendSpecType;
 union
 {
 NPF_uint32_t unused;
 NPF_LogicalLinkID_t logicalLink;
 NPF_IPv4UC_FwdTableHandle_t v4fibHandle;
 NPF_IPv6UC_FwdTableHandle_t v6fibHandle;
 NPF_uint32_t nextHopIdentifier;
 NPF_IPv4NextHopInfo_t v4nextHop;
 NPF_IPv6NextHopInfo_t v6nextHop;
 } u;
} NPF_phSendSpec_t;

/**
Send Metadata

This structure contains all the metadata needed for sending
a packet.

Network Processing Forum Software Working Group

 Packet Handler Task Group 58

It contains:
- protocol - this is the header protocol type
- Priority - Priority of the packet (if supported by the implementation)
- Sending Specification - Routing hints for sending the packet out.
- Send Flags - Locally sourced, etc.
**/
typedef struct
{
 NPF_protocol_t protocolType;
 NPF_phPriority_t priority;
 NPF_phSendSpec_t sendSpec;
 NPF_phSendFlags_t sendFlags;
} NPF_phSendMetadata_t;

/***********************************
Receive Metadata

Receive Metadata is the structure passed up to the client with a received
packet. It contains the following:

Priority – priority that the packet was treated with in the PH API
implementation
Reason code and sub code – indicates why the packet is being delivered to the
PH client
Logical Link Identifier – This identifies the logical link (interface, ATM
connection, MPLS path, etc.) on which the packet arrived. If the client needs
to know the protocol identity at the first byte of the packet, it must be
able to infer this value from the logical link. If the NPE removes one or
more headers, this logical link identifier must permit the client to
identify the protocol of the header appearing first in the buffer (the first
header following the ones that were removed)
Offset information - contains a protocol ID and offset value. These
parameters are only used when the NPE has performed some packet processing
already and wishes to share with the API client some additional information.
 (a) Offset is a number ranging from zero to length-1. At the offset
(bytes) from the beginning the packet is the first byte of a protocol header
identified by the Protocol ID.
 (b) The protocol ID of the header indicated at the offset. Note that if
offset is zero, this value is also zero, as the protocol is inferred from the
logical link identifier.
************************************/

typedef struct
{
 NPF_uint32_t offset;
 NPF_protocol_t protocolID;
 NPF_LogicalLinkID_t logicalLink;
 NPF_phRecvReasonCode_t reasonCode;
 NPF_phRecvReasonSubcode_t reasonSubCode;
 NPF_phPriority_t priority;
} NPF_phRecvMetadata_t;

Network Processing Forum Software Working Group

 Packet Handler Task Group 59

/**
Send Flow Specification

This structure contains all the metadata needed for sending a packet. It is
used when creating a send flow.

It has the same contents as the Send Metadata
**/
typedef NPF_phSendMetadata_t NPF_phSendFlow_t;

/***********************************
Send Flow Handle

The PH API client supplies sending metadata when it sends
packets via the Packet Handler. If it calls the
NPF_PHPacketSendTo() function, it supplies metadata each time it sends a
packet. As an optimization, the API defines the concept of a Send Flow --
shorthand for metadata that is
the same for every packet in the flow. The client supplies
the sending metadata when it creates a flow. The API
implementation stores the metadata and returns a flow
handle, which the client can use when sending packets using
the NPF_PHPacketSend() function.
************************************/
typedef NPF_uint32_t NPF_phSendFlowHandle_t;

/***********************************
Receive Flow Specification

Applications register interest in packet flows by
specifying receive flows. The API implementation returns a
Recv Flow handle that will be used subsequently when the
API implementation hand up packets to the application. The
contents are as follows:

Protocol Type -- matches the protocol type of the first
header in the packet, as passed up from the FE. A value of
NPF_PROTO_FAM_ANY in the protocol family variable matches
ANY protocol.

Logical Link -- Specifies the logical link on which the
packet was received. If the Interface Handle part of this
is null, it matches any logical link.

Reason Code -- Specifies the reason code to match. A value
of NPF_PH_RCV_REASON_CODE_ANY matches any reason code.

Reason Subcode -- specifies the reason subcode to match, if
the given reason code uses a subcode. NPF_PH_RCV_REASON_SUBCODE_ANY is a
wildcard
value.

Network Processing Forum Software Working Group

 Packet Handler Task Group 60

**/

typedef struct
{
 NPF_protocol_t protocolType;
 NPF_LogicalLinkID_t logicalLink;
 NPF_phRecvReasonCode_t reasonCode;
 NPF_phRecvReasonSubcode_t reasonSubCode;
} NPF_phRecvFlow_t;

/***********************************
Receive Flow Handle

When a client registers a receive flow, the API implementation returns a
handle for it. This is used later or deregistering the receive flow.
************************************/

typedef NPF_uint32_t NPF_phRecvFlowHandle_t;

/***
Packet Handler Statistics
Each priority that is supported has 8 counters
This accounts for 8*6 = 48 counters.
In addition, the 49th counter is for packets recvd that
were dropped if there were no flows registered for it
**/

typedef struct
{
NPF_uint32_t npfPHPktsTx[8];
NPF_uint32_t npfPHBytesTx[8];
NPF_uint32_t npfPHTxPktsDropped[8];
NPF_uint32_t npfPHPktsRx[8];
NPF_uint32_t npfPHBytesRx[8];
NPF_uint32_t npfPHRxPktsDropped[8];
NPF_uint32_t npfPHRcvPktsDroppedNoFlow;
} NPF_phStatistics_t;

typedef enum
{
 NPF_PH_CB_TYPE_SEND_PACKET = 1,
 NPF_PH_CB_TYPE_CREATE_SEND_FLOW = 2,
 NPF_PH_CB_TYPE_SEND_PACKET_TO = 3,
 NPF_PH_CB_TYPE_DEL_SEND_FLOW = 4,
 NPF_PH_CB_TYPE_REG_RCV_FLOW = 5,
 NPF_PH_CB_TYPE_GET_NUM_PRIORITIES = 6,
 NPF_PH_CB_TYPE_GET_STATISTICS = 7
} NPF_phCallbackType_t;

typedef NPF_uint32_t NPF_phErrorType_t;

#define NPF_PH_BASE_ERR (NPF_INTERFACES_MAX_ERR + 1)

Network Processing Forum Software Working Group

 Packet Handler Task Group 61

#define NPF_PH_MAX_ERR (NPF_PH_BASE_ERR + 99)

#define NPF_PH_E_BAD_CALLBACK_FUNCTION (NPF_PH_BASE_ERR+1)
#define NPF_PH_E_CALLBACK_ALREADY_REGISTERED (NPF_PH_BASE_ERR+2)
#define NPF_PH_E_BAD_CALLBACK_HANDLE (NPF_PH_BASE_ERR+3)
#define NPF_PH_E_UNKNOWN_PROTOCOL (NPF_PH_BASE_ERR+4)
#define NPF_PH_E_UNSUPPORTED_OPTION (NPF_PH_BASE_ERR+5)
#define NPF_PH_E_BAD_FIB_ID (NPF_PH_BASE_ERR+6)
#define NPF_PH_E_BAD_NEXTHOP_IDENTIFIER (NPF_PH_BASE_ERR+7)
#define NPF_PH_E_BAD_LOGICAL_LINK_IDENTIFIER (NPF_PH_BASE_ERR+8)
#define NPF_PH_E_UNSUPPORTED_FLAGS (NPF_PH_BASE_ERR+9)
#define NPF_PH_E_INVALID_SEND_FLOW_HANDLE (NPF_PH_BASE_ERR+10)
#define NPF_PH_E_INVALID_PRIORITY (NPF_PH_BASE_ERR+11)
#define NPF_PH_E_BAD_BUFFER (NPF_PH_BASE_ERR+12)
#define NPF_PH_E_TX_RESOURCE_UNAVAILABLE (NPF_PH_BASE_ERR+13)
#define NPF_PH_E_PARAMETER_NOT_SUPPORTED (NPF_PH_BASE_ERR+14)

/* Error codes from sending packet out of the device
 These errors can be reported only if the device informs
 the PH API implementation of these errors during transmission
*/
#define NPF_PH_E_SEND_FAIL (NPF_PH_BASE_ERR+15)
#define NPF_PH_E_ARP_FAIL (NPF_PH_BASE_ERR+16)
#define NPF_PH_E_INVALID_PORT (NPF_PH_BASE_ERR+17)
#define NPF_PH_E_PHYSICAL_ERROR (NPF_PH_BASE_ERR+18)
#define NPF_PH_E_INTERNAL_ERROR (NPF_PH_BASE_ERR+19)

/**
Callback Structure
This is delivered into the application for every API call
it makes. The Callback type can be used by the application
to demultiplex the response. The union contains the
corresponding response data
***/
typedef struct
{
 NPF_phCallbackType_t type;
 NPF_phErrorType_t error;
 union
 {
 NPF_uint32_t unused;
 NPF_phBufDescr_t *bufDescr;
 NPF_uint32_t phNumPriorities;
 NPF_phStatistics_t *phStatistics;
 NPF_phSendFlowHandle_t phSendFlowHandle;
 NPF_phRecvFlowHandle_t phRecvFlowHandle;
 } u;
} NPF_phCallbackData_t;

/*
 Event types
*/

Network Processing Forum Software Working Group

 Packet Handler Task Group 62

typedef enum {
 NPF_PH_TX_RESOURCE_AVAILABLE = 0,
} NPF_phEvent_t;

/*
 Data structures for event callback
*/

/* This structure reports the minimum priority level
available for a PH API client for transmission. An array of
this structure can be reported to the client.
*/
typedef struct NPF_PHEventData {
 NPF_phEvent_t phEventType; /* PH Event */
 union {
 NPF_uint16_t minPriority; /* Minimum priority
 level available for transmission */
 } u;
} NPF_phEventData_t;

typedef struct _PHEventArray_t {
 NPF_uint16_t n_data; /* Number of events in array */
 NPF_phEventData_t *eventData; /* Array of events */
} NPF_phEventArray_t;

/***
 * PACKET HANDLER API FUNCTION CALLS *
 ***/
typedef void (*NPF_phCallbackFunc_t)(
 NPF_userContext_t userContext,
 NPF_correlator_t phCorrelator,
 NPF_phCallbackData_t *phCallbackdata
);

typedef void (*NPF_phEventCallFunc_t) (
 NPF_userContext_t userContext,
 NPF_phEventArray_t phEventArray);

NPF_error_t NPF_PHRegister(
 NPF_userContext_t userContext,
 NPF_phCallbackFunc_t phCallbackFunc,
 NPF_callbackHandle_t *phCallbackHandle
);

NPF_error_t NPF_PHDeregister(
 NPF_callbackHandle_t phCallbackHandle
);

NPF_error_t NPF_PHEventRegister(
 NPF_userContext_t userContext,
 NPF_phEventCallFunc_t phEventHandlerFunc,
 NPF_callHandle_t *phEventHandle

Network Processing Forum Software Working Group

 Packet Handler Task Group 63

);

NPF_error_t NPF_PHEventDeregister(
 NPF_callHandle_t phEventHandle
);

NPF_error_t NPF_PHPacketSendTo(
 NPF_callbackHandle_t phCallbackHandle,
 NPF_correlator_t correlator,
 NPF_errorReporting_t phErrorReporting,
 NPF_phBufDescr_t *packet,
 NPF_phSendMetadata_t *phSendMetadata
);

typedef void (*NPF_PHRecvPacketFunc_t) (
 NPF_callbackHandle_t phRcvCallbackHandle,
 NPF_phBufDescr_t *packet,
 NPF_phRecvMetadata_t *phRecvMetadata
);

NPF_error_t NPF_PHRecvPacketRegister(
 NPF_userContext_t userContext,
 NPF_PHRecvPacketFunc_t phRcvPktFunc,
 NPF_callbackHandle_t *phRcvCallbackHandle
);

NPF_error_t NPF_PHRecvPacketDeregister(
 NPF_callbackHandle_t phRcvCallbackHandle
);

void NPF_PHStatisticsGet(
 NPF_callbackHandle_t phCallbackHandle,
 NPF_correlator_t correlator,
 NPF_errorReporting_t phErrorReporting
);

NPF_error_t NPF_PHSendFlowCreate(
 NPF_callbackHandle_t phCallbackHandle,
 NPF_correlator_t phCbCorrelator,
 NPF_errorReporting_t phErrorReporting,
 NPF_phSendFlow_t *phSendFlow
);

NPF_error_t NPF_PHSendFlowDelete (
 NPF_callbackHandle_t phCallbackHandle,
 NPF_correlator_t phCbCorrelator,
 NPF_errorReporting_t phErrorReporting,
 NPF_phSendFlowHandle_t phSendFlowHandle
);

NPF_error_t NPF_PHPacketSend(
 NPF_callbackHandle_t phCallbackHandle,

Network Processing Forum Software Working Group

 Packet Handler Task Group 64

 NPF_correlator_t correlator,
 NPF_errorReporting_t phErrorReporting,
 NPF_phBufDescr_t *packet,
 NPF_phSendFlowHandle_t phSendFlowHandle
);

typedef void (*NPF_PHRecvFlowFunc_t) (
 NPF_phRecvFlowHandle_t phRecvFlowHandle,
 NPF_phBufDescr_t *packet,
 NPF_phRecvMetadata_t *phRecvMetadata
);

NPF_error_t NPF_PHRecvPacketFlowRegister(
 NPF_callbackHandle_t cbHandle,
 NPF_correlator_t correlator,
 NPF_errorReporting_t phErrorReporting,
 NPF_PHRecvFlowFunc_t phRcvFlowFunc,
 NPF_phRecvFlow_t *phRcvFlow
);

NPF_error_t NPF_PHRecvPacketFlowDeregister(
 NPF_phRecvFlowHandle_t phRecvFlowHandle
);

#ifdef __cplusplus
}
#endif

#endif /* __NPF_PH_API_H_ */

Network Processing Forum Software Working Group

 Packet Handler Task Group 65

Appendix B List of companies belonging to NPF during
approval process

Agere Systems IBM Samsung Electronics

Alcatel IDT Sandburst Corporation

Altera Intel Silicon & Software Systems

AMCC IP Infusion Silicon Access

Analog Devices Kawasaki LSI Sony Electronics

Avici Systems LSI Logic STMicroelectronics

Azanda Network Devices Modelware Sun Microsystems

Cypress Semiconductor Mosaid Teja Technologies

Ericsson Motorola TranSwitch

Erlang Technologies NEC U4EA Group

EZ Chip NetLogic Xelerated

Flextronics Nokia Xilinx

Fujitsu Ltd. Paion Co., Ltd. Zettacom

FutureSoft PMC Sierra ZTE

HCL Technologies RadiSys Hi/fn

