
Page i Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX i

CSIX-L1: Common Switch Interface Specification-L1

1

2

3

4

5

6

7

Summary:8

This specification defines CSIX-L1 a Common Switch Interface (CSIX) between a Traffic9
Manager and a switch fabric for ATM, IP, MPLS, Ethernet, and similar data communications10
applications.11

12

13

14

15

Copyright © 2000 by CSIX

2130 Hanover St.

Palo Alto, CA USA

All Rights reserved

This is the final CSIX-L1 specification. Permission is hereby granted for reproduction of this
document for internal use. Entities seeking permission to reproduce portions of this document
for these or other uses must contact the CSIX Executive Director for permission and
appropriate license.

CSIX

2130 Hanover St.

Palo Alto, CA USA

Page ii Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX ii

TABLE OF CONTENTS1

1 INTRODUCTION ..12

1.1 CSIX-L1 Overview..13

1.2 Objectives and non-objectives for this specification ..34

1.3 Possible implementations using CSIX ..45

1.4 Conventions in this specification ..56
1.4.1 Byte and bit ordering conventions..57
1.4.2 Interface conventions...68
1.4.3 State machine conventions..69
1.4.4 Mandatory features and PICs Pro Forma..610

1.5 Definitions ..611

1.6 Abbreviations...812

1.7 Related Documents ...813

2 OVERVIEW...914

2.1 Architectural overview ..915

2.2 Functional overview ..916

2.3 Fabric Assumptions ..1017
2.3.1 Guarantee of in-order CFrame delivery...1018

2.4 Traffic Manager Assumptions ..1019
2.4.1 Line Ends Connected to the TM ..1020

3 FUNCTIONAL DESCRIPTION ...1121

3.1 Transmit data and receive data..1122

3.2 Unicast Operations...1123
3.2.1 Unicast Destination Address..1224
3.2.2 Unicast Class...1225

3.3 Multicast Operations ...1226
3.3.1 Multicast Destinations..1227
3.3.2 Multicast use of the class variable ...1328

3.4 Broadcast Operations ...1329

3.5 Flow Control...1330
3.5.1 Link-level Flow Control Model Assumptions ..1431

Page iii Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX iii

3.5.2 Fabric Flow Control Model Assumptions ...141
3.5.3 Unicast Fabric Flow Control...142
3.5.4 Multicast Fabric Flow Control ..143
3.5.5 Broadcast Fabric Flow Control ..154

3.6 Command and Status..155

4 PHYSICAL IMPLEMENTATION...166

4.1 Interface signals ..167
4.1.1 TxData[n..0] ...168
4.1.2 TxPar[m..0] ..169
4.1.3 TxClk[k..0]..1710
4.1.4 TxSOF[k..0] ...1711
4.1.5 RxData[n..0]...1712
4.1.6 RxPar[m..0]..1713
4.1.7 RxClk[k..0] ...1814
4.1.8 RxSOF[k..0] ...1815

4.2 32-bit Interface ...1916

4.3 64-bit Interface ...2017

4.4 96-bit Interface ...2218

4.5 128-bit Interface ...2419

5 CFRAME FORMATS ..2620

5.1 Summary of frame overhead ..2621

5.2 Base Header ...2722
5.2.1 Type Field ..2723
5.2.2 Ready Field..2824
5.2.3 Payload Length Field ...2925

5.3 Idle CFrames ..2926
5.3.1 Idle CFrame Format ..2927

5.4 Unicast CFrames ...3028
5.4.1 Unicast CFrame Format ..3029
5.4.2 Unicast Extension Header ...3030

5.5 Multicast Mask CFrames...3131
5.5.1 Multicast Mask CFrame Format ..3132
5.5.2 Multicast Bitmask Extension Header ...3133

5.6 Multicast ID CFrames ..3234
5.6.1 Multicast ID CFrame format...3235
5.6.2 Multicast ID Extension Header ..3336

5.7 Multicast Binary Copy CFrames ..3337

Page iv Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX iv

5.7.1 Multicast Binary Copy CFrame Format..331
5.7.2 Binary Copy Multicast Extension Header...342

5.8 Broadcast CFrames...353
5.8.1 Broadcast CFrame Format ..354
5.8.2 Broadcast Extension Header ...355

5.9 Flow Control CFrames ..356
5.9.1 Flow Control CFrame Format ..357

5.10 Command and Status Cframes ..408
5.10.1 Command and Status CFrame FormatError! Bookmark not defined.9

5.11 Parity...4110
5.11.1 Horizontal Parity...4111
5.11.2 Vertical Parity...4112

6 OPERATION AND TIMING...4213

6.1 Start-up ...4214

6.2 Transmission ...4215

6.3 State Machine Variables: ..4216
6.3.1 State Machine Variables..4217

6.4 State Machines ..4418
6.4.1 Startup State Machine ...4419
6.4.2 Transmission State Machine ...4520

6.5 Pause and Resume operation ..4521

6.6 Fabric Flow Control Response Time ...4622

6.7 Frame Transfer Timing..4623

6.8 Dealing with a parity error ..4724

6.9 Dealing with an unexpected SOF...4725

7 A.C. CHARACTERISTICS..4826

7.1 AC Timing Classes ..4827

7.2 Timing Paradigm ...4828
7.2.1 Source Interface Timing Definitions...4829
7.2.2 Destination Interface Timing Definitions ..4830
7.2.3 Source Clock / Destination Clock Skew ..4931

7.3 AC_Class0 Timings (LVCMOS, 100MHz – 166MHz) ...4932

7.4 AC_Class1 (HSTL, 100MHz – 166MHz) ..5233

Page v Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX v

7.5 AC_Class2 (HSTL, 100MHz – 250MHz) ..531

8 D.C. CHARACTERISTICS..542

8.1 LVCMOS Interface ...543

8.2 HSTL, Class-1 Interface ..554

9 CONFORMANCE REQUIREMENTS..565

6

7

Page 1 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 1

1 Introduction1

1.1 CSIX-L1 Overview2

CSIX-L1 is the Common Switch Interface. It defines a physical interface for transferring3
information between a traffic manager (Network Processor) and a switching fabric, as shown in4
figure 1.5

6

Figure 1--CSIX-L1 Logical Overview7

A CFrame is the base information unit transferred between Traffic Managers and a CSIX8
Fabric. A CFrame consists of a header, payload, and a vertical parity trailer. These three major9
CFrame sections can be seen in figure 2: The CFrame Header contains the information fields10
needed to control the behavior of the Traffic Manger to CSIX Fabric interface. The CFrame11
Header can be further divided into the Base header and Extension header. The format and12
values of the CFrame Header is what is referred to as CSIX-L1 and a major focus of this13
specification. The Payload is variable in length and is passed by the CSIX Fabric from ingress14
Traffic Manager to egress Traffic Manager. The format of the payload is currently not defined15
by CSIX but is the focus of CSIX-L2. While the format of the payload is currently undefined by16
CSIX it’s contents is where the Traffic Manager to Traffic Manager (TM-TM) Interface will17
reside. The TM-TM interface will also use a layered approach and contain sections such as a18
TM Header and TM Payload. The vertical parity trailer is used for error detection at the CSIX-L119
layer.20

CSIX-
L1 Switching

Traffic
Manager

Traffic
Manager

CSIX-L2
(planned)

Page 2 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 2

1

Figure 2-- CFrame Format2

When the TM-TM Interface message size is less than or equal to the maximum CFrame3
Payload, a single CFrame can be used to transfer the information from ingress to egress TM.4

When the TM-TM Interface message size is greater than the maximum CFrame Payload size,5
multiple CFrames must be transferred from ingress to egress TM in order. An ordered6
collection of CFrames is defined as a CFrame Sequence. An example of a CFrame Sequence7
can be seen in figure 3. A frame received at the ingress TM will be classified and forwarded to8
the egress TM across the CSIX Fabric. It is assumed that some amount of classification9
information will need to be associated with the ingress Frame and used by the egress TM.10
Examples of classification information could be a Next Hop IP address, or Egress connection11
identifier. The classification information associated with the ingress frame is defined here as the12
Frame Header for example purposes and beyond the scope of this specification. The Frame13
header and ingress frame is defined here as the TM-TM Frame and is assumed to be 4X larger14
than the maximum CFrame Payload size. In order to send the TM-TM Frame from ingress to15
egress TM, four CFrames must be used forming a CFrame Sequence. In each of the CFrames16
the TM-TM Interface will contain the necessary TM Header and TM payload information needed17
to reassemble the TM-TM Frame at the egress TM.18

Page 3 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 3

1

Figure 3-- CFrame Sequence Example2

Traffic Manager-to-Traffic Manager information goes in the payload. The details of Traffic3
Manager-to-Traffic Manager information transfer will be addressed in CSIX-L2.4

CSIX-L1 is intended to support board-level connectivity with trace length of up to 6-8 inches5
between the traffic manager and the switching fabric. It does not define a connector interface6
and it does not define operations of either the traffic manager or the fabric. Off-board7
connectors may be provided in the fabric.8

CSIX-L1 is designed to support operations up to 32 Gb/s and is optimized to support OC48 and9
above.10

1.2 Objectives and non-objectives for this specification11

The objectives for this specification are:12

• Provide a standard interface for connecting traffic managers to switching fabric.13

• Support the communication of like Traffic Managers through the switch fabric.14

• Support board level connections of 6-8 inches15

• Support both cell-based and packet-based protocols16

The following are “non-objectives” of this specification:17

• Support a connector between traffic managers and fabric18

• Provide interoperability between different traffic manager products19

Page 4 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 4

• Provide interoperability between different switch fabric products1

• Provide end-to-end flow control2

Nothing in this specification precludes TM-TM interoperability, however this specification does3
not address the TM-TM interoperability problem.4

5

1.3 Possible implementations using CSIX6

CSIX-L1 can be used to connect multiple traffic managers to a switching fabric to create the7
core of a switch design as shown in Figure 4.8

9

10

11

Figure 4--Prototype CSIX-based integrated fabric switch design12

Some switching fabric vendors may offer modular fabric systems that support connectors within13
the fabric. When used with such a fabric system, CSIX-based modular designs can be created14
by combining one or more traffic managers on a line card with a portion of the switching fabric15
as shown in Figure 5.16

Fabric System

Traffic Manager

MEMORY

Traffic Manager

MEMORY
8-100Mbps & 1Gbps SwitchOC-48 Uplink

8 100Mbps
MAC portsSONET

Traffic Manager

MEMORY
1Gbps Uplink

PHY

PHY

Traffic Manager

MEMORY
2 port 1Gbps Switch

1Gps
Ethernet

PHY

Traffic Manager

MEMORY
8-100Mbps FDDI Switch

8 100Mbps
FDDI ports PHYMEMORY

serial
port

CPU

........
........

........

........
........

UTOPIA
CSIX-L1 MII

GMII

TMPHY/MAC Fabric TM MAC PHY

CSIX-L1

CSIX-L1

CSIX-L1

CSIX-L1

Page 5 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 5

1

Figure 5--Prototype CSIX-based modular line card design with fabric connector2

1.4 Conventions in this specification3

The following conventions are followed in this specification:4

1.4.1 Byte and bit ordering conventions5

Byte ordering is big-endian; bit ordering follows Utopia conventions (e.g.—highest bit number of6
lowest byte number comes first.) This is shown in figure 6 below.7

Byte0 byte1 byte2 byte38

7-0 7-0 7-0 7-09

31--010

Figure 6-- CSIX-L1 Byte and bit ordering conventions11

Line Card

 Fabric
Core

Fabric
Inter-
face

Traffic
Manager

MEMORY
8-100Mbps FDDI Switch

8 100Mbps

FDDI ports PHY

........

Traffic
Manager

MEMORY 2 port 1Gbps Switch

1Gps

Ethernet
PHY

........

FC-0

Traffic
Manager

MEMORY 8-100Mbps & 1Gbps Switch

8 100Mbps
MAC ports

PHY

........

CSIX-L1
MII

C
o
n
n
e
c
t
o
r

C
o
n
n
e
c
t
o
r

C
o
n
n
e
c
t
o
r

C
o
n
n
e
c
t
o
r

C
o
n
n
e
c
t
o
r

MEMORY

serial
port

CPU

Traffic
Manager

MEMORY
OC-48 Uplink

SONET

........

UTOPIA
CSIX-L1

Traffic
Manager

MEMORY
1Gbps Uplink

PHY

........

GMII

Line Card Fabric Subsystem

C
o
n
n
e
c
t
o
r

CSIX-L1

CSIX-L1

CSIX-L1

CSIX-L1

Fabric
Inter-
face

Fabric
Inter-
face

Fabric
Inter-
face

Fabric
Inter-
face

Fabric
Inter-
face

Page 6 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 6

1.4.2 Interface conventions1

The interface where data flows from traffic manager to switch fabric is labeled the receive2
interface and the interface where data flows from switch fabric to traffic manager is labeled the3
transmit interface.4

1.4.3 State machine conventions5

If there is a conflict between the text of this document and a state machine, the state machine6
takes precedence over the text.7

Table 1 State machine operators8

Character Meaning

* Boolean AND

+ Boolean OR

! Boolean NOT

1.4.4 Mandatory features and PICs Pro Forma9

This specification follows the IEEE802 style of using the verb “shall” to indicate mandatory10
features and provision of a PICs Pro Forma. All features which must be provided to conform to11
this specification are listed in Section 9: Conformance Requirements.12

1.5 Definitions13

The following terms are used throughout this specification:14

CFrame: The information unit transferred between Traffic Managers and CSIX-L1 Fabric. A15
CFrame consists of a header of 2-6 bytes, Payload, and a 16-bit vertical parity field. The16
CFrame payload size is up to a maximum of 256 bytes, making the maximum CFrame size 26417
bytes (up to 6 bytes of header, up to 256 bytes of payload and 2 bytes of vertical parity. The18
size of CFrame (including padding) shall be divisible by the size of a CWord.19

CFrame sequence: A connected series of CFrames.20

Class: An 8-bit variable used to discriminate and manage traffic flows between Traffic21
Managers through the CSIX-L1 interface. Class differentiates CFrames going to the same22
Fabric Port so that the Fabric can handle the CFrames differently. Class services are defined by23
the switching fabric and may be vendor-specific; traffic manager vendors should provide24
sufficient class operation flexibility to accommodate a variety of class implementations.25

Typically, it is expected that vendors will not support all of the 256 possible class values offered26
by the 8-bit Class field. A vendor that implements a smaller number of classes shall encode27
their classes beginning with the most significant Class bit. For example, a fabric with 16 class28
values would take its 4-bits from Class [7:4].29

Different CSIX-L1 addressing systems (e.g., unicast, multicast) make different use of the class30
variable. Unicast, binary copy multicast, and TM-based multicast all use the class variable to31
map the traffic flow to the class structure provided by the fabric vendor. Multicast ID and32

Page 7 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 7

multicast Mask addresses use the class variable to define multicast queue numbers that are1
used by multicast flow control operations.2

3

CSIX Fabric: An intelligent switch fabric that schedules, buffers and switches data between its4
Inputs and Outputs. The Traffic Managers provide the CSIX fabric with information needed to5
perform scheduling and switching by means of a small CSIX header, which is prepended to the6
data payload.7

CSIX Port: Access point to the fabric.8

CSIX Reserved: With regards to fields and encodings, CSIX Reserved means that a field or an9
encoding is not being defined at this time, and is being reserved for future use and therefore10
shall not be used by CSIX compliant devices for proprietary applications. CSIX Reserved bits11
are always set to 0 on transmission, and ignored on reception. It is not implied that CSIX12
Reserved bits are carried through the CSIX fabric.13

CWord: The data transferred in a single bus cycle. A CWord can be 32, 64, 96 or 128 bits.14

Dead cycle: A one-clock-tick period during which there is no information transmitted across the15
CSIX-L1 interface.16

Destination Address: A 12-bit Traffic Manager number representing up to 4k traffic-manager17
ports of a fabric.18

Error Detecting Code: a 16-bit vertical parity field appearing in the last two bytes of the19
CFrame.20

Ingress: Used to designate information/data flow to the fabric.21

Egress: Used to designate Information/data flow from the fabric.22

Padding: Zero (0) characters added between a CFrame payload and the vertical parity field to23
fill in required space when a vendor chooses to support less than the maximum allowed24
capacity of the field. Padding characters shall be ignored when processing the field but shall be25
included in vertical parity calculations (if vertical parity is implemented.)26

Payload: The portion of CFrame that does not include any headers or Error Detection Code.27
The maximum payload size is vendor-specific, but shall not exceed 256 bytes.28

Private: With regards to fields and encodings, Private means that a field or an encoding is not29
and shall not be defined by CSIX. CSIX compliant devices may use private fields for30
proprietary applications. It is not implied that CSIX Private bits are carried through the CSIX31
fabric.32

Receive: Direction defined as from the TM to the Fabric.33

Tick: One clock cycle.34

Traffic Manager (TM): A logical entity performing collection of functions (e.g., fragmentation35
and reassembly, traffic shaping and security processing) implemented by a switch fabric user to36
manage the flow of data between a number of ports (line ends) and the switch fabric.37

Traffic Manager (TM) Port: The physical or logical connections to a Traffic Manager other than38
the connection to the CSIX Fabric. Examples of physical TM Ports (line ends) would be OC-39
192, OC-48, Gigabit Ethernet, and T1/E1. ATM virtual circuits (VCs) would be an example of40
logical TM Ports.41

Page 8 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 8

Traffic Types: Traffic flows supported by CSIX including: Unicast, Multicast Mask, Multicast ID,1
Multicast Binary Copy, and Broadcast.2

Transmit: Direction defined as from Fabric to TM.3

1.6 Abbreviations4

EDC: Error Detecting Code5

Rx: Receive Direction6

TM: Traffic Manager7

Tx: Transmit Direction8

1.7 Related Documents9

EIA/JESD8-5: “2.5V±0.2V (Normal Range), and 1.8V to 2.7 V (Wide Range) Power Supply10
Voltage and Interface Standard for Nonterminated Digital Integrated Circuit.” EIA/JEFEC,11
October 1995.12

EIA/JESD8-6: “High Speed Transceivers Logic (HSTL): A 1.5V Output Buffer Supply Voltage13
Based Interface Standard for Digital Integrated Circuits.” EIA/JEFEC, August 1995.14

Page 9 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 9

2 Overview1

This document defines the system level requirements for the Common Switch Interface (CSIX).2
It specifies the interface between a traffic manager and switch fabric for ATM, Ethernet and3
similar data communications applications.4

2.1 Architectural overview5

Figure 7 illustrates the application of CSIX; additional detail is provided in Section 3.6

A traffic manager is defined as a device that performs the functions defined as layer 2 or higher7
within the Open Systems Interconnect (OSI) 7-layer model. The switch fabric performs the8
physical layer transportation of user data elements from an ingress traffic manager to an egress9
traffic manager. A traffic manager may support any number of physical line ends, although this10
layer of functionality falls outside the scope of this specification.11

12

Figure 7-- The Common Switch Interface-Layer 1 (CSIX-L1)13

2.2 Functional overview14

CSIX-L1 supports up to 4096 CSIX ports for connecting traffic managers to the fabric. The15
number of ports is determined by the fabric and is vendor-specific. The CSIX 8-bit class16
variable provides a mechanism to manage traffic flows between a traffic manager and a fabric17

S
w

itc
h

F
ab

ric

Common
Switch

Interface-
Layer 1

Traffic
Manager

Line
Ends

TxData
TxControl

RxData
RxControl

Traffic
Manager

TxData
TxControl

RxData
RxControl

Line
Ends

Page 10 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 10

port. Classes can be used to manage priority and QOS services provided by the fabric. The1
number of classes supported is also determined by the fabric and is vendor-specific.2

Information is transported across CSIX-L1 via CFrames. CFrames can be used to transfer data3
and control messages across CSIX. The CSIX-L1 data streams can be managed via traffic4
manager-based traffic shaping or via fabric-based flow control. CSIX-L1 provides a flexible5
array of control frame mechanisms to help manage these traffic management functions.6

2.3 Fabric Assumptions7

CSIX-L1 defines a physical interface between traffic managers and switching fabric silicon.8
CSIX-L1 is intended to support point-to-point PC board-level connections of six to eight inches;9
it is not intended to support a physical connector. It is assumed that connectors (e.g., for line10
card connections) will be provided within the switching fabric architecture. While this standard11
does not preclude a wide range of fabric architectures, it has taken into account a trend towards12
cell based fabric architectures with buffering within the switching fabric.13

2.3.1 Guarantee of in-order CFrame delivery14

The CSIX fabric shall ensure that all CFrames of a specific class from a specific ingress TM are15
delivered to the egress TM in exactly the same sequence that they were presented to the fabric16
by the ingress TM. In addition, the fabric shall guarantee this in-order delivery even if the fabric17
internally has multiple routes between ingress TM and egress TM. There are no such18
guarantees with regard to CFrames of different classes presented to the fabric for delivery to19
the same egress TM.20

2.4 Traffic Manager Assumptions21

Like the fabric, there is a wide range of architectural choices that can be made in the design of22
a TM. Some architectures may employ extreme software programmability while others may be23
more hardwired. It is not the intent to limit the architectural choices made by TMs in this24
standard. However, it is generally assumed that where flexibility is needed in the CSIX-L125
standard to support varying Fabric architectures, it is the TM that will absorb the flexibility and26
allow maximum probability of interoperation between that TM and fabrics.27

Each TM needs to support significant numbers of segmentation and reassembly contexts for28
this model. If a fabric has 64 ports each with 8 classes, the desired number of29
segmentation/reassembly contexts would be 512. This number can be reduced if each TM30
limits the number of simultaneous classes that can have outstanding packets to a given31
destination.32

2.4.1 Line Ends Connected to the TM33

CSIX-L1 can be incorporated into a wide range of potential product configurations. CSIX-L134
supports switch architectures with up to 4096 traffic managers. The definition of CSIX-L1 places35
no limits on the number of TM Ports that can be connected to a traffic manager.36

Page 11 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 11

3 Functional description1

CSIX-L1 provides for the transfer of data and control information between the user’s traffic2
manager and a switch fabric. Each function is described in more detail in section 3.1.3

3.1 Transmit data and receive data4

A CSIX Frame (CFrame) is the information unit transferred between Traffic Managers and CSIX5
Fabric. A CFrame consists of a base header and an optional extension header, a variable6
length payload, and a 16-bit Vertical Parity field.7

CFrames are transmitted across the transmit and receive data paths which can be nx32-bit,8
where n= 1,2,3 or 4. At 100 MHz, a 32-bit wide data path can support 2488.32 Mb/s (OC-48);9
at 200 MHz a 64-bit wide transmit data path can support up to 9953.28Mb/s (OC-192.) The10
content of the payload of these frames falls outside the scope of this specification except when11
the frame is of type flow control, for which the contents are specified in this document.12

The interface definition supports several different frame types. The use of different frame types13
provides flexibility to handle many different features.14

The length of the CFrame transferred across CSIX-L1 may be different from the size of the data15
element handled by the switch fabric. Variable length payloads minimize the waste of CSIX-L116
bandwidth on those occasions when it is necessary to carry the small remainder of a17
segmented packet. For example, ignoring any header requirements, if a switch fabric transports18
only 64-byte data elements and a 65-byte data element arrives then this will be segmented into19
two units, one of 64 bytes and one of 1 byte. While this inefficiency must be absorbed by the20
switch fabric, it is not necessary for CSIX-L1 to carry this overhead. In this case the payload21
field of the CSIX frame can be defined to be 1 byte long.22

Different fabric implementers may optimize their designs for different payload sizes. Each fabric23
will have at least one value supported for the parameter MAX_FRAME_PAYLOAD_SIZE that24
can be anywhere between 1 and 256 bytes. A fabric may support a range of values or multiple25
discrete points; if a fabric supports a range of MAX_FRAME_PAYLOAD_SIZE values, the fabric26
shall provide a mechanism for programming this value. The fabric shall support CFrame sizes27
of any size equal to or less than the maximum value specified for28
MAX_FRAME_PAYLOAD_SIZE.29

Each TM should be able to support a range of values for MAX_FRAME_PAYLOAD_SIZE from30
1 byte up to the maximum supported size. The TM shall provide a means of programming the31
exact value of MAX_FRAME_PAYLOAD_SIZE for a given system.32

System integrators should use the smaller of the maximum values for33
MAX_FRAME_PAYLOAD_SIZE specified by the TM and fabric being integrated.34

3.2 Unicast Operations35

Unicast operations carry messages from the source TM to a designated destination TM.36
Unicast messages are subject to flow control operations. All fabrics and all TMs shall support37
unicast operations.38

Page 12 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 12

3.2.1 Unicast Destination Address1

Each user payload that is destined for a single traffic manager shall be accompanied by a2
unicast Destination Address, which consists of a 12-bit Traffic Manager number and indicates3
the final destination of the payload. The switch fabric shall translate the Destination Address4
into a route through to the destination traffic manager. To accomplish this, each traffic manager5
must know how many traffic managers are connected to the switch fabric and must have a6
means of translating a network address to a physical address.7

3.2.2 Unicast Class8

The Class number is an 8-bit variable that specifies traffic isolation within the fabric and9
possibly different quality of service handling.10

Class number should not be used to specify individual TM Ports on a Traffic Manager. Traffic11
Managers are expected to utilize the payload portion of CFrames to specify the TM Port to12
which traffic is directed, flow control for a specific TM Port, etc. If a vendor’s fabric does not13
utilize all 8-bits of the Class field, the fabric vendor MAY choose to not pass the unused class14
bits from TM to TM.15

3.3 Multicast Operations16

Multicast operation carries messages from the source TM to a designated group of other TMs.17
Multicast messages are subject to flow control operations. Support of multicast messages is18
optional.19

3.3.1 Multicast Destinations20

Switch fabric support of multicast operation requires a mechanism for indicating multiple21
destinations. CSIX-L1 defines four options for providing multicast service across CSIX: bitmask22
based, multicast ID based, binary copy and “no-support” (where the multicast service is defined23
by the TM and passed across the interface as unicast messages.) These options are not24
exhaustive. Implementers are cautioned that for each multicast option there may be many fabric25
architectures and approaches that are not addressed in this document.26

Multicast ID works by using a tag or ID to identify a multicast group. This requires that the fabric27
be configured. When the fabric receives a multicast ID frame, it uses the ID to determine which28
CSIX ports should receive copies and then delivers copies of the frame to each of these CSIX29
ports.30

Note: There are several architectural choices regarding this mechanism that are not defined31
here (e.g. should the ID’s be unique on a fabric port basis or are the ID’s shared).32

Multicast bitmask is intended for use with small (16-32 CSIX ports) systems It requires no33
configuration of the fabric with regards to multicast. In multicast bitmask mode, multicast frame34
has attached to it a bitmask representing every output. If a representative bit is ‘1’ then the35
output receives a copy; else the output does not receive a copy. CSIX-L1 uses a modified36
version of bitmask that uses a 16-bit bitmask in combination with a partial address to provide37
multicast support for up to 4096 TMs. The partial address can be used to select a group of38
contiguous fabric ports that can receive copies of a frame. (In the worst case a 4k, port fabric39
would require 256 separate frames to be generated by the TM and sent into the fabric.)40

Page 13 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 13

Binary Copy is a simple extension of unicast addressing to a pair of outputs. Each binary copy1
multicast frame indicates two 12-bit destination ports. The fabric is responsible for copying the2
frame to both of the indicated ports. In the worst case (multicast to 4k ports), 2k frames would3
need to be generated by the TM. Binary copy multicast does not require any state setup in the4
fabric.5

Unicast-only transport by the fabric offers a fourth form of multicast. In this case, the TM is6
completely responsible for all replication. It is the responsibility of the receiving traffic managers7
to provide copies on a per TM Port (line-end or VC) basis, using a secondary look-up8
mechanism. The data supporting this look-up mechanism are considered as ‘user-to-user’9
information and form part of the payload; as such, these data are not visible at the CSIX-L110
level. Obviously, no state setup is required in the fabric for this form of multicast.11

3.3.2 Multicast use of the class variable12

CSIX-L1 offers several methods of multicast operation: binary copy multicast, TM-based13
multicast, multicast ID and multicast mask. Binary copy multicast, and TM-based multicast14
operation both use the class variable in the same way that unicast operation does: to map the15
traffic flow to a class structure provided by the fabric vendor. Multicast ID and multicast Mask16
operation use the class variable to define multicast queue numbers that are used by multicast17
flow control operations.18

3.4 Broadcast Operations19

Broadcast operation carries messages from the source TM to all other TMs. Broadcast20
messages are subject to flow control operations. Support of broadcast messages is optional.21

3.5 Flow Control22

CSIX-L1 provides multiple levels of flow (or congestion) control and supports flow control in23
both (TM-to-fabric and fabric-to-TM) directions.24

At the lowest level there is link level flow control. Link level flow control is symmetric across the25
CSIX-L1 interface and provides independent control for data and control queues. For each26
queue there is a dedicated bit (the ready bit) in every CFrame base header indicating the27
congestion status for the receive queue of the respective traffic type.28

At Ingress, TM to fabric flow control function is intended to resolve short periodic lack of29
buffering resources at the egress TM by temporarily taking advantage of buffering resources30
inside the fabric. When this causes the fabric buffering resources to become depleted,31
appropriate action should be taken by the systems to re-configure traffic distributions and32
resource allocations. At Egress, fabric-to-TM flow control can be used to resolve short-term lack33
of buffer resources at the ingress fabric port by taking advantage of buffer resources within the34
associated TM.35

At the next level, the fabric exerts fabric flow control in response to congestion of fabric buffers.36
This flow control typically indicates a fabric port and class. There are semantics to “wild card”37
fabric port numbers and class numbers. For example, it might be useful to wildcard the class38
number in order to quickly shut off all traffic to a congested output for certain conditions. On the39
other hand, wildcarding of port number might be useful in a fabric where there is a mix of40
dedicated and shared buffering between the ports. (In this architecture it may occasionally be41

Page 14 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 14

necessary to throttle a line card of all traffic for low priority classes while the shared buffering1
drains.)2

While most flow control mechanisms have traditionally used simple Xon/Xoff mechanisms,3
larger systems may require more complicated mechanisms to yield good fabric performance.4
CSIX-L1 flow control CFrames have a 4-bit speed variable which fabric vendors may use to5
provide finer flow control granularity. (See 5.9.1.1.6.)6

3.5.1 Link-level Flow Control Model Assumptions7

Link level flow control assumes a simple XON/XOFF model and uses the ready bits in the8
CFrame base header to perform flow control of data and control traffic.9

3.5.2 Fabric Flow Control Model Assumptions10

CSIX-L1 flow control from the fabric to the TM is based on an event-driven model whereby11
information is only passed across the CSIX interface when there is a change of status in a12
fabric queue. Each CSIX (Traffic Manager and fabric) component shall continuously maintain all13
flow control state information.14

3.5.2.1 Flow Control state recovery15

There is a (low probability) possibility that a CSIX component could lose flow control state16
information. Implementers may wish to periodically resend the state across the interface. Two17
possible approaches to flow control refresh are described below.18

Each component cycles through all classes at very low frequency and transmits the flow control19
status for each class across the CSIX-L1 interface. In the case of flow control message loss, if20
the message was changing the speed variable, change is delayed until the flow control status is21
refreshed. This approach could cause some delay between the loss of the message and the22
flow control state refresh. However, since it is highly probable that only one port would lose a23
flow control message at any point in time, at the very worst the fabric will receive data for the24
congested output at the same rate that the fabric is draining. The period of the refresh would be25
fabric vendor defined.26

Future CSIX work will define a Command and Status frame type that could be used to augment27
Flow Control state recovery operations.28

3.5.3 Unicast Fabric Flow Control29

Flow control CFrames can be used to manage transmissions for any specific TM/class30
combination. Broadcast data CFrames can be used to send global flow control messages.31

3.5.4 Multicast Fabric Flow Control32

While CSIX-L1 supports several forms of multicast, only two forms of multicast flow control are33
defined. One uses multicast mechanisms; the other uses unicast mechanisms.34

The first type of multicast flow control is based on explicit multicast queues. The multicast ID35
and Multicast Mask mechanisms use explicit multicast queues. Multicast queue assignment36
shall be orthogonal to the Multicast ID or the Bitmask. The class field shall be used to indicate37
the multicast queue number for Multicast ID and Multicast Mask operations—both for multicast38
frames and for multicast flow control frames. Vendors of fabrics and Traffic Managers may39

Page 15 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 15

choose not to support 256 multicast queues. The second group of multicast mechanism1
includes the binary copy multicast and the completely TM-based multicast approaches. These2
mechanisms perform group flow control on a unicast basis, where multicast frames are queued3
with the unicast traffic.4

3.5.5 Broadcast Fabric Flow Control5

Broadcast messages can be flow controlled at the link level and by flow control messages.6

3.6 Command and Status7

Command and status frames will be defined in future CSIX work.8

Page 16 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 16

4 Physical Implementation1

CSIX-L1 shall utilize a nx32-bit data path, where n= 1, 2, 3 or 4. The frequency of operation for2
CSIX-L1 is specified for up to 250MHz.3

4.1 Interface signals4

The following signals are used to transfer data, status indications and control information5
across the CSIX-L1 interface:6

TXData7

TxPar8

TxClk9

TxSOF10

RxData11

RxPar12

RxClk13

RxSOF14

Transmit signals carry information from the switch fabric to the traffic manager; receive signals15
carry information from the traffic manager to the switch fabric. Each of these signals is defined16
below.17

4.1.1 TxData[n..0]18

The switch fabric shall present data to the traffic manager via the vector TxData. The size of the19
TxData vector is determined by the application and may be 32, 64, 96 or 128 bits. TxData[n] is20
the most significant bit, where n = 31, 63, 95, or 127.21

4.1.2 TxPar[m..0]22

The switch fabric shall present data parity to the traffic manager via the vector TxPar[m..0]23
(horizontal parity). The size of the TxPar vector is determined by the application and may be 1,24
2, 3 or 4 bits, for m = 0, 1, 2 or 3, respectively.25

4.1.2.1 TxPar definition26

Each bit of the TxPar[m..0] vector is a horizontal odd parity across 32-bits of TxData as27
described below.28

Page 17 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 17

1

 TxPar[j] = !(TxData[32*j+31] ^ TxData[32*j+30]^ ……. TxData[32*j])2

 Where:3

j = 0 for TxData size = 324

j = 0..1 for TxData size = 645

j = 0..2 for TxData size = 966

j = 0..3 for TxData size = 1287

4.1.3 TxClk[k..0]8

The switch fabric shall provide data transfer/synchronization clock(s) to the traffic manager for9
synchronizing transfers on TxData. The number of TxClk signals required is determined by the10
application and may be 1, 2, 3 or 4, for k = 0, 1, 2 or 3, respectively. There is one TxClk signal11
required for a group of at-least 32 bits of TxData.12

4.1.4 TxSOF[k..0]13

The switch fabric asserts TxSOF to indicate start of CFrame. The number of TxSOF signals14
required is determined by the application and may be 1, 2, 3 or 4, for k = 0, 1, 2 or 3,15
respectively. One TxSOF signal is required for each TxCLK clock group. When more than one16
TxSOF signal is required, all TxSOF signals shall have identical values during each TxClk17
cycle.18

TxSOF can take on one of two values of the form:19

TRUE TxSOF is asserted20

FALSE TxSOF is deasserted21

4.1.4.1 When generated22

TxSOF shall be asserted during the first transfer cycle of each CFrame. Sequential TxSOFs23
shall be separated by at least one tick.24

4.1.5 RxData[n..0]25

The traffic manager shall present data to the switch fabric via the vector RxData. The size of26
the RxData vector is determined by the applications and may be 32, 64, 96 or 128 bits.27
RxData[n] is the most significant bit, where n = 31, 63, 95 or 127.28

4.1.6 RxPar[m..0]29

The traffic manager shall present data parity to the switch fabric via the vector RxPar[m..0]30
(horizontal parity). The size of RxPar vector is determined by the application and may be 1, 2, 331
or 4 bits, for m = 0, 1, 2 or 3, respectively.32

Page 18 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 18

4.1.6.1 RxPar definition1

Each bit of the RxPar[m..0] vector is a horizontal odd parity across 32-bits of RxData as2
described below.3

4

 RxPar[j] = !(RxData[32*j+31] ^ RxData[32*j+30]^ ……. RxData[32*j])5

 Where:6

j = 0 for RxData size = 327

j = 0..1 for RxData size = 648

j = 0..2 for RxData size = 969

j = 0..3 for RxData size = 12810

4.1.7 RxClk[k..0]11

The traffic manager shall provide data transfer/synchronization clock(s) to the switch fabric for12
synchronizing transfers on RxData. The number of RxClk signals required is determined by the13
application and may be 1, 2, 3 or 4, for k = 0, 1, 2 or 3, respectively. There is one RxClk signal14
required for a group of at-least 32 bits of RxData.15

4.1.8 RxSOF[k..0]16

The traffic manager asserts RxSOF to indicate start of CFrame. The number of RxSOF signals17
required is determined by the application and may be 1, 2, 3 or 4, for k = 0, 1, 2 or 3,18
respectively. There is one RxSOF signal required for each RxCLK clock group. When multiple19
RxSOF signals are required, they shall have identical values during each RxClk cycle.20

RxSOF can take on one of two values of the form:21

TRUE RxSOF is asserted22

FALSE RxSOF is deasserted23

4.1.8.1 When generated24

RxSOF shall be asserted during the first transfer cycle of each CFrame. Sequential RxSOFs25
shall be separated by at least one tick.26

Page 19 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 19

1

4.2 32-bit Interface2

Fabric Traffic
Manager

TxData[31:0]

RxData[31:0]

TxClk[0]

TxSOF[0]

RxClk[0]

RxSOF[0]

TxPar[0]

RxPar[0]

3
Figure 8-- The 32-bit interface4

5

6

Table 2: 32-bit signals7

Signal Direction Function

RxData[31:0] TM to Fabric Receive Data

RxPar[0] TM to Fabric Receive Data Odd Parity

RxPar[0] -> RxData[31:0]

RxSOF[0] TM to Fabric Receive Start of Frame

RxClk[0] TM to Fabric Receive Clock

TxData[31:0] Fabric to TM Transmit Data

TxPar[0] Fabric to TM Transmit Data Odd Parity

TxPar[0] -> TxData[31:0]

TxSOF[0] Fabric to TM Transmit Start of Frame

TxClk[0] Fabric to TM Transmit Clock

Page 20 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 20

4.3 64-bit Interface1

2

Fabric Traffic
Manager TxClk[0]

TxSOF[0]

TxData[31:0]
TxPar[0]

TxClk[1]
TxSOF[1]

TxData[63:32]
TxPar[1]

RxClk[0]
RxSOF[0]

RxData[31:0]
RxPar[0]

RxClk[1]
RxSOF[1]

RxData[63:32]
RxPar[1]

Tx
C

lk
0

G
ro

up

Tx

C
lk

1
G

ro
up

R
xC

lk
0

G
ro

up

R

xC
lk

1
G

ro
up

3
Figure 9-- The 64-bit Interface4

5

6

Page 21 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 21

1

Table 3: 64-bit signals2

3

Signal Direction Function

RxData[63:0] TM to Fabric Receive Data

RxPar[1:0] TM to Fabric Receive Data Odd Parity

RxPar[0] -> RxData[31:0]

RxPar[1] -> RxData[63:32]

RxSOF[1:0] TM to Fabric Receive Start of Frame

RxClk[1:0] TM to Fabric Receive Clock

RxClk[0] Group: RxData[31:0], RxPar[0] and RxSOF[0]

RxClk[1] Group: RxData[63:32], RxPar[1] and RxSOF[1]

TxData[63:0] Fabric to TM Transmit Data

TxPar[1:0] Fabric to TM Transmit Data Odd Parity

TxPar[0] -> TxData[31:0]

TxPar[1] -> TxData[63:32]

TxSOF[1:0] Fabric to TM Transmit Start of Frame

TxClk[1:0] Fabric to TM Transmit Clock

TxClk[0] Group: TxData[31:0], TxPar[0] and TxSOF[0]

TxClk[1] Group: TxData[63:32], TxPar[1] and TxSOF[1]

4

Page 22 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 22

4.4 96-bit Interface1

2

Fabric Traffic
Manager TxClk[0]

TxSOF[0]

TxData[31:0]
TxPar[0]

TxClk[1]
TxSOF[1]

TxData[63:32]
TxPar[1]

RxClk[0]
RxSOF[0]

RxData[31:0]
RxPar[0]

RxClk[1]
RxSOF[1]

RxData[63:32]
RxPar[1]

TxClk[2]
TxSOF[2]

TxData[95:64]
TxPar[2]

RxClk[2]
RxSOF[2]

RxData[95:64]
RxPar[2]

Tx
C

lk
0

G
ro

up

Tx
C

lk
1

G
ro

up

Tx
C

lk
2

G
ro

up

R
xC

lk
0

G
ro

up

R
xC

lk
1

G
ro

up

R
xC

lk
2

G
ro

up

3
Figure 10-- The 96-bit Interface4

5

Page 23 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 23

1

2

Table 4: 96-bit signals3

Signal Direction Function

RxData[95:0] TM to Fabric Receive Data

RxPar[2:0] TM to Fabric Receive Data Odd Parity

RxPar[0] -> RxData[31:0]

RxPar[1] -> RxData[63:32]

RxPar[2] -> RxData[95:64]

RxSOF[2:0] TM to Fabric Receive Start of Frame

RxClk[2:0] TM to Fabric Receive Clock

RxClk[0] Group: RxData[31:0], RxPar[0] and RxSOF[0]

RxClk[1] Group: RxData[63:32], RxPar[1] and RxSOF[1]

RxClk[2] Group: RxData[95:64], RxPar[2] and RxSOF[2]

TxData[95:0] Fabric to TM Transmit Data

TxPar[2:0] Fabric to TM Transmit Data Odd Parity

TxPar[0] -> TxData[31:0]

TxPar[1] -> TxData[63:32]

TxPar[2] -> TxData[95:64]

TxSOF[2:0] Fabric to TM Transmit Start of Frame

TxClk[2:0] Fabric to TM Transmit Clock

TxClk[0] Group: TxData[31:0], TxPar[0] and TxSOF[0]

TxClk[1] Group: TxData[63:32], TxPar[1] and TxSOF[1]

TxClk[2] Group: TxData[95:64], TxPar[2] and TxSOF[2]

4

Page 24 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 24

4.5 128-bit Interface1

Fabric
Traffic

Manager TxClk[0]
TxSOF[0]

TxData[31:0]
TxPar[0]

TxClk[1]
TxSOF[1]

TxData[63:32]
TxPar[1]

RxClk[0]
RxSOF[0]

RxData[31:0]

RxPar[0]

RxClk[1]

RxSOF[1]

RxData[63:32]

RxPar[1]

TxClk[2]
TxSOF[2]

TxData[95:64]
TxPar[2]

RxClk[2]
RxSOF[2]

RxData[95:64]
RxPar[2]

Tx
Cl

k0
 G

ro
up

Tx

Cl
k1

 G
ro

up

Tx
Cl

k2
 G

ro
up

Rx
Cl

k0
 G

ro
up

Rx

Cl
k1

 G
ro

up

Rx
Cl

k2
 G

ro
up

RxSOF [3]

RxData[127:96]

RxPar[3]
RxClk[3]

TxData[127:96]
TxPar[3]
TxClk[3]
TxSOF[3]

Rx
Cl

k3
 G

ro
up

Tx
Cl

k3
 G

ro
up

2
Figure 11-- The 128-bit interface3

Page 25 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 25

Table 5: 128-bit signals1

Signal Direction Function

RxData[127:0] TM to Fabric Receive Data

RxPar[3:0] TM to Fabric Receive Data Odd Parity

RxPar[0] -> RxData[31:0]

RxPar[1] -> RxData[63:32]

RxPar[2] -> RxData[95:64]

RxPar[3] -> RxData[127:96]

RxSOF[3:0] TM to Fabric Receive Start of Frame

RxClk[3:0] TM to Fabric Receive Clock

RxClk[0] Group: RxData[31:0], RxPar[0] and RxSOF[0]

RxClk[1] Group: RxData[63:32], RxPar[1] and RxSOF[1]

RxClk[2] Group: RxData[95:64], RxPar[2] and RxSOF[2]

RxClk[3] Group: RxData[127:96], RxPar[3] and RxSOF[3]

TxData[127:0] Fabric to TM Transmit Data

TxPar[3:0] Fabric to TM Transmit Data Odd Parity

TxPar[0] -> TxData[31:0]

TxPar[1] -> TxData[63:32]

TxPar[2] -> TxData[95:64]

TxPar[3] -> TxData[127:96]

TxSOF[3:0] Fabric to TM Transmit Start of Frame

TxClk[3:0] Fabric to TM Transmit Clock

TxClk[0] Group: TxData[31:0], TxPar[0] and TxSOF[0]

TxClk[1] Group: TxData[63:32], TxPar[1] and TxSOF[1]

TxClk[2] Group: TxData[95:64], TxPar[2] and TxSOF[2]

TxClk[3] Group: TxData[127:96], TxPar[3] and TxSOF[3]

2

Page 26 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 26

5 CFrame Formats1

A CFrame consists of a base header, an optional (determined by type) extension header, an2
optional payload, optional padding bits and a 16-bit vertical parity field.3

CFrame headers are based on a layered approach to minimize total overhead for varying types4
of frames. Every CFrame begins with the base header, which is 2 bytes in length and contains5
the payload length, frame type, and ready bits (for link level flow control). The base header is6
followed by type-specific extension headers. The extension header format is determined by the7
frame type in the base header. Extension headers contain additional information needed to8
handle the frame, such as the destination fabric port for unicast frames. The Header formats9
and field definitions are described in subsequent sections.10

If needed, padding bits (zero (0) character bits that may need to be added to ensure that the11
CFrame is an appropriate length) are inserted between the payload and the vertical parity field.12
(See 1.5.) In the case of an Idle CFrame, which has no payload, padding bits are inserted13
between the base header and the vertical parity field.14

A 2-byte vertical parity field follows the payload and any padding bits that are added. The parity15
bytes are always highest numbered bytes of the last word (recall that the most significant bytes16
will be the least significant bits of the last word). If the payload does not provide sufficient space17
for the vertical parity field in the last CWord, a new CWord shall be added and the vertical parity18
bytes will appear in the least significant bits of the added word.19

Table 6: CFrame structure20

CFRAME
COMPONENT

Base
Header

Extension
Header

Payload Vertical

Parity

LENGTH 2 bytes 0-4 bytes Maximum allowable length
is 256 bytes.

2 bytes

COMMENTS Number of bytes
determined by
CFrame and
address type

Features of the traffic
manager and fabric
determine actual maximum
length.

Field is
required; use of
field is optional.

21

5.1 Summary of frame overhead22

23

Table 7 summarizes the number of overhead bytes for each frame type.24

Page 27 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 27

1

Table 7: Overhead by frame type2

Type
Encoding

Frame Type Total CSIX-L1 Overhead

(Base Hdr + Extension
Header + EDC)

0 Idle 2+0+2=4 bytes

1 Unicast 2+4+2=8 bytes

2 Multicast Mask 2+4+2=8 bytes

3 Multicast ID 2+4+2=8 bytes

4 Multicast Binary Copy 2+4+2=8 bytes

5 Broadcast 2+4+2=6 bytes

6 Flow Control Frame 2+4*+2=8 bytes

7 Command and Status TBD

8-f CSIX Reserved N/A

* The Flow Control CFrame does not have an extension header, the bytes between the Base3
Header and EDC contain flow control information.4

5.2 Base Header5

Table 8 shows the layout of the base header. Bits 0 and 1 of Byte 0 are CSIX Reserved (CR)6
and Private (P) bits respectively.7

8

Table 8: Base header9

 Byte
Number

Bit Position

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0/1 Ready Type C
R

P Payload Length

5.2.1 Type Field10

The type field (4 bits) encodes the type of CFrame being transferred. The payloads of all the11
frame types except flow control are unspecified by the CSIX-L1 specification. The flow control12
frame payload is fully defined in sub-section 5.8.2.1. The command and status frame payload is13
reserved and will be defined in future CSIX work. For the unicast, broadcast and multicast14
frames there is an extension header defined to follow the base header. The formats for these15
extension headers are defined in the next sub-sections.16

Page 28 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 28

Table 9: Type field values1

Type Encoding Mandatory/Optional

Idle 0x0 M

Unicast 0x1 M

Multicast Mask 0x2 O

Multicast ID 0x3 O

Multicast Binary Copy 0x4 O

Broadcast 0x5 O

Flow Control Frame 0x6 M

Command and Status 0x7 Reserved

CSIX Reserved 0x8-0xb

Private 0xc-0xf

5.2.2 Ready Field2

The ready field (2 bits) is used to indicate when the transmitting entity is ready to receive data.3
A low (0) ready bit indicates that the entity is not ready to receive the specified traffic type; a4
high (1) ready bit indicates that the entity is ready to receive the specified traffic type.5

There are 2 ready bits representing 2 link level queues. The two groups and the CFrame types6
assigned to these groups are given below.7

Ready[0] (bit 6 of byte 0) is for Control traffic8

 -- Command & Status CFrames(TBD in future CSIX work)9

 -- Flow control CFrames10

Ready[1] (bit 7 of byte 0) is for Data Traffic11

 -- Unicast12

 -- Multicast13

 -- Broadcast14

When no data is being transmitted, the ready field is kept alive by regular transmission of idle15
CFrames as specified in 6.2.16

 For purposes of link-level management, any vendor-specific frame types will be grouped with17
either the control or data group by the vendor. Idle frames are neither control or data frames18
and can be sent at any time.19

Both ready bits are deasserted if an error (such as a parity error) is detected on a received20
CFrame.21

Table 10 shows which ready bit controls the transmission of each specific CFrame type.22

23

Page 29 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 29

1

Table 10: Ready bit assignment by CFrame type2

Type Ready Bit

CRdy=Ready[0]

DRdy=Ready[1]

Idle None

Unicast Drdy

Multicast Mask Drdy

Multicast ID Drdy

Multicast Binary Copy Drdy

Broadcast Drdy

Flow Control Crdy

Command and Status Reserved

CSIX Reserved

Private

3

5.2.3 Payload Length Field4

Payload length (8 bits) is the number of bytes in the payload of the message, excluding any5
padding (which is inserted between the payload and the vertical parity field.). Fabric vendors6
may specify the maximum payload length for their product. TMs can enforce their own7
maximum payload size for unicast and multicast CFrames by never injecting into the fabric8
anything over their desired maximum reception size.9

For data CFrames, “0” indicates a payload of 256 bytes; for idle CFrames, the payload length10
field shall be set to “0.” (A “0” payload length for idle frames does not indicate a payload of 25611
bytes.)12

5.3 Idle CFrames13

Idle frames are transmitted during startup and in periods of no activity to maintain both Ready14
bits and synchronization of data clocks.15

5.3.1 Idle CFrame Format16

An Idle CFrame is four bytes and consists of a Base Header and a 2-byte Vertical Parity field.17

Table 11: Idle CFrame format18

Byte Number Contents

0-1 Base Header

Page 30 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 30

2-3 Vertical Parity

1

5.4 Unicast CFrames2

5.4.1 Unicast CFrame Format3

Table 12: Unicast CFrame format4

Byte Number Contents

0-1 Base Header [15:0]

2-3 Unicast Extension Header [15:0]

4-5 Unicast Extension Header [15:0]

6-7 Payload

n End of Payload (pad to interface width)

Vertical Parity

5

5.4.2 Unicast Extension Header6

The unicast extension header is shown in Table 13.7

Table 13: Unicast extension header8

Byte Number Bit Position

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

2/3 Class P CSIX Reserved

4/5 CSIX
Reserved

Destination Address

5.4.2.1 Destination Address9

The 12-bit destination address byte 4 (3:0) and byte 5 (7:0) provides addressing for up to 409610
Traffic Managers. The Destination Address field is valid in the ingress direction; once the fabric11
has delivered the CFrame to the appropriate egress TM(s), the destination address is no longer12
needed and is ‘field not defined.”13

5.4.2.2 Class14

Class is an 8-bit field and in unicast frames represents up to 256 isolated classes for every15
destination address. CFrames are delivered in the same order as received within a class, but16
not across classes. Not all 256 classes need to be supported by a fabric or TM. If less than 25617

Page 31 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 31

classes are supported, the existing class encodings follow the bit ordering conventions of 1.4.1
The Class field is valid in the ingress and egress directions.2

It is not required that the fabric carry the full 8-bits of class from TM to TM if it is not using all 8-3
bits for its own traffic prioritization. If sub-class information is needed that the fabric does not4
use, that information should be embedded within the CFrame payload.5

5.5 Multicast Mask CFrames6

The properties of this method are that for small systems few frames will need to be generated7
by the TM, but as the system grows it is likely that larger number of frames will need to be8
generated to cover the possible multicast groups. The Destination Address field is not defined9
on the egress of the fabric.10

5.5.1 Multicast Mask CFrame Format11

Table 14: Multicast Mask CFrame format12

Byte Number Contents

0-1 Base Header [15:0]

2-3 Multicast Bitmask Ext. Header [15:0]

4-5 Multicast Bitmask Ext. Header [15:0]

6-78-9 Payload

n End of Payload (pad to interface width)

Vertical Parity

13

5.5.2 Multicast Bitmask Extension Header14

The multicast bitmask header is shown in Table 15.15

Table 15: Multicast bitmask extension header16

Byte Number Bit Position

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

2/3 Class[7:0] Bitmask header[7:0]

4/5 Bitmap[15:0] (definable bitmap size)

5.5.2.1 Bitmask header [7:0]17

Multicast bitmask addresses use a combination of a 16-bit bitmap and an 8-bit mask header to18
represent all possible CSIX port addresses (see byte 3 in Table 15.) The bitmap can represent19
16 TMs but not the 4096 possible TMs in a CSIX-L1 system. The multicast mask header20
contains the upper 8 bits of the destination address. In this way it is possible to use this21

Page 32 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 32

multicast frame type to reach all possible TMs in a CSIX-L1 system. The bitmask header field is1
undefined on the egress of the fabric.2

5.5.2.2 Bitmap3

The bitmap is simply 16-bits - ‘1’ indicates the representative output TM should receive a copy4
of the multicast frame. The upper 8 bitmask header bits choose which group of 16 TMs are5
addressed by the bitmap. The bitmap field is undefined on the egress of the fabric.6

5.5.2.3 Class7

The class field in the multicast bitmask header actually represents a multicast queue. A more8
in-depth discussion regarding multicast queues is in 3.3. The class field is valid in both the9
ingress and egress directions. It is not required that the fabric carry the full 8-bits of class from10
TM to TM if it is not using all 8-bits for its own traffic prioritization. If sub-class information is11
needed that the fabric does not use, that information should be embedded within the CFrame12
payload.13

5.6 Multicast ID CFrames14

5.6.1 Multicast ID CFrame format15

Table 16: Multicast ID CFrame format16

Byte Number Contents

0-1 Base Header [15:0]

2-3 Multicast ID Extension Header [15:0]

4-5 Multicast ID Extension. Header [15:0]

6-7 Payload

n End of Payload (pad to interface width)

Vertical Parity

Page 33 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 33

5.6.2 Multicast ID Extension Header1

The multicast ID extension header is shown in Table 17. Bit 7 of byte 3 is Private; bit 6 of byte 32
is CSIX Reserved (CR).3

Table 17: Multicast ID extension header4

Byte Number Bit Position

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

2/3 Class .
P

C

R

Multicast

ID[21:16]

4/5 Multicast ID[15:0]

5.6.2.1 Multicast ID5

The 22-bit Multicast ID communicates a lookup tag to the fabric. The fabric uses this lookup tag6
to determine which set of TMs should receive copies of the frame. The mechanism for co-7
ordinating the state set-up between the fabric and TM is outside the scope of this specification.8
Multicast ID is valid in both the egress and ingress directions.9

5.6.2.2 Class10

The multicast ID header class represents a multicast queue (see 3.3.1). The class field is valid11
in both the ingress and egress directions.12

It is not required that the fabric carry the full 8-bits of class from TM to TM if it is not using all 8-13
bits for its own traffic prioritization. If sub-class information is needed that the fabric does not14
use, that information should be embedded within the CFrame payload.15

5.7 Multicast Binary Copy CFrames16

5.7.1 Multicast Binary Copy CFrame Format17

Table 18: Multicast Binary Copy CFrame format18

Byte Number Contents

0-1 Base Header

2-3 Multicast Binary Copy Extension Header

4-5 Multicast Binary Copy Extension. Header

6-7 Payload

n End of Payload (pad to interface width)

Vertical Parity

Page 34 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 34

1

5.7.2 Binary Copy Multicast Extension Header2

The binary copy multicast extension header from the traffic manager to the fabric is shown in3
Table 19.4

Table 19: Binary Copy Multicast Extension Header5

(Traffic Manager to Fabric)6

7

Byte Number Bit Position

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

2/3 Class Left Destination Address [11:4]

4/5 LDA[3:0] Right Destination Address[11:0]

8

5.7.2.1 Left and Right Destination Addresses9

The binary copy form of multicast includes two TM addresses, each a complete unicast10
Destination Address. These two addresses are designated as left and right, such that an11
indicator bit can be flagged from the fabric to the output TM indicating which copy of the frame12
that TM is receiving. (This could be used so that if dual data structures were placed in the13
payload header of the frame, the indicator bit could indicate which data structure to extract at14
each of the 2 outputs so that output specific information could be passed.) The right and left15
destination addresses are valid in the ingress direction and undefined in the egress direction.16

5.7.2.2 Class17

Class is an 8-bit field and in unicast frames represents up to 256 isolated classes for every18
destination address. CFrames are delivered in the same order as received within a class, but19
not across classes. Not all 256 classes need to be supported by a fabric or TM. If less than 25620
classes are supported, the existing class encodings follow the bit ordering conventions of 1.4.21
The Class field is valid in the ingress and egress directions.22

It is not required that the fabric carry the full 8-bits of class from TM to TM if it is not using all 8-23
bits for its own traffic prioritization. If sub-class information is needed that the fabric does not24
use, that information should be embedded within the CFrame payload.25

Unlike the other 2 forms of multicast discussed in preceding sub-sections, binary copy uses the26
class field like a unicast extension header. Both copies of the multicast are required to be of the27
same class. Flow control for binary copy multicast is performed in a unicast context only.28
Therefore, congestion of a unicast destination address and class will also affect all binary29
multicast frames with matching class, and one of the two destination addresses matching the30
congested destination address.31

Page 35 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 35

5.8 Broadcast CFrames1

5.8.1 Broadcast CFrame Format2

Table 20: Broadcast CFrame format3

Byte Number Contents

0-1 Base Header

2-5 Broadcast Extension Header

6-7 Payload

n End of Payload (pad to interface width)

Vertical Parity

4

5.8.2 Broadcast Extension Header5

The class field in the broadcast extension header indicates one of up to 256 broadcast queues.6

Table 21: Broadcast control extension header7

Byte Number Bit Position

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

2/3 Class Private CSIX Reserved

4/5 CSIX Reserved

5.8.2.1 Class8

Class is an 8-bit field. The class field in the broadcast extension header indicates one of up to9
256 broadcast queues. Class is valid for both Ingress and Egress.10

11

5.9 Flow Control CFrames12

Flow Control CFrames provide a finer level of flow control than link level flow control by13
specifying the specific TM and Class that are oversubscribed. Flow control on a TM Port (line-14
end or VC) basis is the responsibility of cooperating TMs, and is outside the scope of this15
specification. Flow Control frames can go in both the ingress and egress directions.16

5.9.1 Flow Control CFrame Format17

A flow control frame consists of a base header with type set to flow control frame, a variable18
number of 4-byte flow control entries up to the maximum allowed payload size set by the19
combination of the fabric and TM vendors, any padding necessary, and the 2-byte vertical20
parity.21

Page 36 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 36

The flow control frame format is shown in Table 22.1

2

Table 22: Flow Control CFrame format3

Byte Number Contents

0,1 Base Header

2,3 Flow Control Entry 1a

4,5 Flow Control Entry 1b

6,7 Flow Control Entry 2a

8,9 Flow Control Entry 2b

Last Flow Control Entry in frame, bytes 1&2

Last Flow Control Entry in frame, bytes 3&4

n (pad to interface width)

Vertical Parity

5.9.1.1 Flow Control Entry Format4

The Flow Control entry format is shown below.5

6

Table 23: flow control entry format7

Flow Control Entry
Byte Number

Bit Position

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

2/3 Class FC

Entry

Type

C

*

P

*

Speed

4/5 P CSIX Destination Address

8

Bit 5 of Byte 3 is the class wildcard; bit 4 of Byte 2 is the port wildcard.9

Each of the fields is discussed in the following sub-sections.10

5.9.1.1.1 Class11

For unicast the class field is the same 8-bit class field specified in unicast extension headers.12
For Multicast the class field specifies one of the 256 multicast queues13

Page 37 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 37

5.9.1.1.2 Entry Type1

The entry type (see Table 24 below) indicates what resource is being reported. The entry type2
determines what the meaning is and which of the other fields are processed.3

Note that multicast flow control entries will only be generated when the multicast mechanism is4
multicast mask or multicast ID.5

Table 24: Flow control entry type values6

Encoding Name

00 Unicast

01 Multicast

10 Broadcast

11 All

5.9.1.1.3 Class Wildcard7

The class wildcard is used to extend the scope of the flow control message. The impact of class8
wildcard is determined by the message type.9

For unicast messages, setting the class wildcard bit to ‘1’ causes the associated flow control10
message to be applied to all classes associated with the indicated destination address11

For multicast messages, the class value represents one of up to 256 multicast queues that can12
be used to transfer payloads to multiple ports. Setting the class wildcard bit to “1” means that13
the associated flow control message is applied to all extant multicast queues.14

5.9.1.1.4 Port Wildcard15

The port wild card is used to extend the impact of Fabric to TM flow control messages for16
unicast traffic. When the fabric sets the port wild card to “1” for unicast traffic, the flow control17
message is applied to all destinations. The port wild card is not used for Traffic Manager to18
Fabric flow control frames.19

5.9.1.1.5 Destination Address20

The destination address for unicast queues has the same field definition as in the unicast21
extension header. For multicast and broadcast, the destination address field is ignored.22

5.9.1.1.6 Speed23

The speed field specifies how rapidly the TM is allowed to transmit CFrames to the specified24
destination. Although the Speed field is defined to be 4 bits, specific fabric implementations may25
choose to ignore the low order 1, 2, or 3 bits. The 16 possible values range from 1111 (Send26
full speed) to 0000 (Stop – send no CFrames to this queue), with smaller numbers indicating27
proportionally more flow control – fewer CFrames per second allowed to enter the queue.28

Page 38 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 38

The speed field (at least the most significant bit) shall be generated and processed for all entry1
types. All implementations shall be capable of distinguishing and responding to speed field2
values “1111” and “0000”3

5.9.1.1.7 TM to fabric flow control ignore option4

During periods where the TM asserts flow control to the fabric, the fabric may experience a lack5
of available buffering resources to support the flow control request. In this situation, the fabric6
may decide to discard traffic internally. Alternatively, the fabric may decide to time out the7
asserted TM flow control request by increasing transmission rate sufficiently (i.e., ignore TM-to-8
fabric flow control) to avoid activation of any such fabric discard mechanism.9

Note that the fabric is not allowed to perform an equivalent time out function for the link level10
flow control function.11

5.9.2 TM to Fabric flow control summary12

The following table summarizes the functions that can be performed with the TM to Fabric flow13
control frames.14

Page 39 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 39

1

Table 25: TM to Fabric flow control summary2

Flow Control CFrame Fields generated
by TM

Flow Control Function CLASS C* P* DA

Traffic TYPE = Unicast

Adjust speed for unicast traffic for all classes N/A 1 N/A N/A

Adjust speed for unicast traffic for a specific class only Class
data

0 N/A N/A

Traffic TYPE = Multicast (does not affect broadcast traffic)

Adjust speed for multicast traffic for all classes N/A 1 N/A N/A

Adjust speed for multicast traffic for a specific class only Class
data

0 N/A N/A

Traffic TYPE = Broadcast (does not affect multicast traffic)

Adjust speed for broadcast traffic for all classes N/A 1 N/A N/A

Adjust speed for broadcast traffic for a specific class only Class
data

0 N/A N/A

Traffic TYPE = All (Unicast/Multicast/Broadcast)

Adjust speed for all traffic types and all classes N/A 1 N/A N/A

Adjust speed for all traffic types for a specific class only Class
data

0 N/A N/A

1) The SPEED field is valid for all of the above function

2) All fields being N/A should be set to all “0” by the TM

Any flow control function performed with a flow control entry carrying one or more enabled3
wildcard fields (class wildcard C*, port wildcard P* or traffic type TYPE = All) can always4
alternatively be performed using multiple flow control entries where none of the wildcard fields5
are enabled. This means that regardless whether a specific flow control function is performed6
with a single wildcarded flow control entry or multiple non-wildcarded flow control entries, the7
resulting flow control function is 100% identical for the two cases. The advantage of applying8
the wildcard fields whenever possible, is that the bandwidth used for flow control CFrames on9
the physical CSIX interface is minimized10

5.9.3 Fabric to TM flow control summary11

The following table summarizes the functions that can be performed with the Fabric to TM flow12
control frames.13

Page 40 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 40

1

Table 26: Fabric to TM flow control summary2

Flow Control CFrame Fields generated
by Fabric

Flow Control Function CLASS C* P* DA

Traffic TYPE = Unicast

Adjust speed for unicast traffic for a specific destination
(for all classes)

N/A 1 0 DA
data

Adjust speed for unicast traffic for a specific destination
and specific class only

Class
data

0 0 DA
data

Adjust speed for all unicast traffic for all destinations and
all classes

N/A 1 1 N/A

Adjust speed for all unicast traffic for all destinations and
specific class only

Class
data

0 1 N/A

Traffic TYPE = Multicast (does not affect broadcast traffic)

Adjust speed for all multicast traffic for all classes N/A 1 N/A N/A

Adjust speed for all multicast traffic for a specific class
only

Class
data

0 N/A N/A

Traffic TYPE = Broadcast (does not affect multicast traffic)

Adjust speed for all broadcast traffic for all classes N/A 1 N/A N/A

Adjust speed for all broadcast traffic for a specific class
only

Class
data

0 N/A N/A

Traffic TYPE = All (Unicast/Multicast/Broadcast)

Adjust speed for all traffic types and all classes N/A 1 N/A N/A

Adjust speed for all traffic types for a specific class only Class
data

0 N/A N/A

1) The SPEED field is valid for all of the above function

2) All fields being N/A should be set to all “0” by the Fabric

Any flow control function performed with a flow control entry carrying one or more enabled3
wildcard fields (class wildcard C*, port wildcard P* or traffic type TYPE = All) can alternatively4
be performed using multiple flow control entries where none of the wildcard fields are enabled.5
This means that regardless whether a specific flow control function is performed with a single6
wildcarded flow control entry or multiple non-wildcarded flow control entries, the effective flow7
control mechanism is 100% identical for the two cases. The advantage of applying the wildcard8
fields whenever possible, is that the bandwidth used for flow control CFrames on the physical9
CSIX interface is minimized.10

11

5.10 Command and Status CFrames12

Command and Status CFrames are not defined in this (CSIX-L!) specification. Command and13
Status CFrames are reserved and will be defined in future CSIX work.14

Page 41 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 41

5.11 Parity1

CSIX-L1 provides both horizontal and vertical parity to validate information transferred across2
the interface. Horizontal parity is mandatory. Support of the vertical parity field is mandatory, but3
use of vertical parity is optional.4

5.11.1 Horizontal Parity5

Horizontal parity is mandatory and is described in 4.1.2 and 4.1.6.6

5.11.2 Vertical Parity7

Vertical parity provides an optional second set of parity bits that provide a substantial8
improvement (over just horizontal parity) in the probability of error detection. To calculate9
vertical parity bits, the CFrame is treated as a series of 16-bit words, organized in a two-10
dimensional block as shown in Table 27: Vertical parity. A Vertical parity bit is generated for11
each of the 16 bit positions (columns) in the block across all rows required to contain the12
CFrame payload. The resulting 16-bit Error Detecting Code (VPar) is appended to the end of13
the payload.14

Table 27: Vertical parity15

Word 0 B(15,0) b(14,0) B(0,0)

Word 1 B(15,1) b(14,1) B(0,1)

Word m B(15,m) b(14,m) B(0,m)

VPar VPar15 VPar14 VPar0

VPar[i] = !(b(i,0) ^ b(i,1) ^ ….. ^ b(i,m));16

Where,17

Vpar[i] = ith bit of Vertical Parity word.18

b(i,m) = ith bit of data word m19

m+1 = number of 16-bit words (Excluding Vpar word) in CFrame20

Page 42 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 42

1

6 Operation and timing2

CSIX-L1 operation and timing is defined in the same way for both the receive path and the3
transmit path. The width of the receive and transmit paths shall be the same, however other4
parameters (such as the minimum frame time) may be different in the two directions.5

6.1 Start-up6

CSIX-L1 uses a simple, robust startup mechanism based on use of the ready bits (see 5.2.2)7
and the idle CFrame as defined in 6.4.1.8

At Power-Up or RESET, each CSIX port entity (traffic manager and fabric) begins transmitting9
idle CFrames while holding both ready bits low. When an entity detects receipt of idle CFrames,10
it raises both ready bits to high and continues to send idle CFrames. When an entity detects11
receipt of idle CFrames and high ready bits from its connected entity, it assumes regular12
operation. This is depicted in the state machine diagram shown in figure 12.13

When in normal operation, if RESET occurs or if data clock synchronization fails (i.e.14
Receiver_Synchronization=FALSE), then the system resets and restarts.15

6.2 Transmission16

At any point in time the CSIX-L1 interface may contain a data, control or idle CFrame or a Dead17
Cycle. During times when no data is being transmitted, a pattern of alternating idle CFrames18
and Dead Cycles is transmitted to maintain synchronization and keep the ready bits alive. The19
state machine to govern CFrame and Dead Cycle transmission is shown in figure 13. Transition20
variables for the Transmission state machine are shown in 6.3.1.21

22

6.3 State Machine Variables:23

6.3.1 State Machine Variables24

Transmitting_Frame (TF)25

Indicates that a CFRAME is being transmitted26

VALUES: TRUE: Transmission of the current CFRAME is not complete.27

FALSE: A CFRAME is not currently being transmitted28

New_Frame_Ready (NFR)29

Indicates that either a new data CFrame is queued and ready to transmit and that ready30
bits [1] of the receiving entity is high or that a new control CFrame is queued and ready31
to transmit and that ready bit [0] of the receiving entity is high32

VALUES: TRUE: New Frame Ready conditions are satisfied33

FALSE: New Frame Ready conditions are not satisfied34

Ready_Bit_High35

Page 43 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 43

Indicates the value of the ready bits in CFrames received from the entity on the other1
side of the CSIX-L1 interface.2

Values: TRUE: One or both of the two received ready bit is high3

FALSE: Both received ready bits are low or not set.4

Receive_Idle_Cell5

Indicates that the entity is receiving idle cells across the CSIX-L1 interface.6

Values: TRUE: Entity is receiving idle cells7

FALSE: Entity is not receiving idle cells8

Receiver_Synchronization9

The receiver of the CSIX-L1 interface (when data width > 32) must perform data10
alignment across all clock groups.11

Values: TRUE: receiver is synchronized across all clock groups12

FALSE: receiver is not synchronized13

RESET:14

Resets all functions. Reset can be performed hot (when the power is already on) or cold15
(a power-on reset.)16

Values: ON or OFF17

Page 44 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 44

1

6.4 State Machines2

6.4.1 Startup State Machine3

4

Figure 12--Start-up state machine diagram5

6

RST

Tx_Idle Normal

Transmit SOF = 0;

- Transmit Idle Cells
(see transmit state machine)
- Transmit Ready =0
- Receiver Synchronization
 (only applicable when CSIX
data width = 64, 96 or 128)

RESET

Normal
Operation

!RESET RESET +
Receiver_Synchronization = FALSE

Receive_Idle_Cell = TRUE *
Receiver_Synchronization = TRUE*
Ready_Bit_High = TRUE

Page 45 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 45

6.4.2 Transmission State Machine1

2

Figure 13: Transmission state machine3

6.5 Pause and Resume operation4

The pause and resume information (carried with Ready bits in the base header of every5
CFrame) provides a way to control the flow of data across CSIX. Deassertion of a Ready bit6

TF=FALSE *
NFR=FALSE

RST

NFR=FALSE

TF=FALSE *
NFR=TRUE

TF=TRUE

TF=FALSE

NFR=TRUE

Send
Normal

CFrameTF=TRUE

Send
Dead
Cycle

Send
Idle

CFrame

Send
Start
 of

 Frame

RESET = TRUE

RESET=FALSE

Page 46 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 46

indicates that the asserting device can not accept another frame after the one currently being1
transferred for that link level queue. The device receiving the pause shall complete the current2
frame and shall not resume transmission of CFrames until an asserted ready bit is received3
indicating a resume.4

There are 2 link level queues and 2 corresponding Ready bits in every header. One queue is5
for control traffic and the other queue is for data traffic.6

Congestion

0
Stop

Stop
C

L 7
Figure 14-- CSIX-L1 Pause and Resume response requirement8

Response Requirement: From the tick that a frame containing a Pause status leaves one9
component, after maximum response (n*T) time has elapsed, no new frame can begin10
transmission between the components for the congested link level queue.11

Details of the requirement are as follows. From the tick that the ready field leaves a component12
the MAXIMUM response time for a Pause operation is defined as: n*T, n=C+L13

 -- T is the clock period of the interface14

 -- n is the maximum number of ticks for the response15

 -- C is a constant for propagating the field within the "other" component (or chipset as16
the case may be) to the interface logic controlling the reverse direction data flow. C is17
defined to be 32 ticks.18

 -- L is the maximum number of ticks to transport the maximum fabric CFrame size.19

6.6 Fabric Flow Control Response Time20

The response time for fabric flow control is not specified by the CSIX-L1 standard in the same21
detail as link level flow control.22

6.7 Frame Transfer Timing23

The following figures show timing operations under different transmission scenarios. In these24
figures, CFa.n indicates the portion (n) of a specific CFrame (a) sent across CSIX-L1 at each25

Page 47 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 47

tick, DC indicates a dead cycle, ICF indicates an idle CFrame and SOF indicates Start of1
Frame.2

3

Data CF1.1 CF1.2 ….. CF1.n CF2.1 CF2.2 …. CF2.n

SOF HI LO HI LO

Figure 15-- Transmission of two consecutive CFrames with no break4

5

Data CF1.1 CF 1.2 … CF1.n DC CF2.1 CF2.2 …. CF2.n

SOF HI LO HI LO

Figure 16-- Transmission of two CFrames with a one-tick separation6

7

Data CF1.1 CF 1.n DC ICF DC ICF DC CF2.1 CF2.n

SOF HI LO HI LO HI LO HI LO

Figure 17-- Transmission of two CFrames with a multi-tick separation8

6.8 Dealing with a parity error9

When a parity error (horizontal or vertical) is detected on the CFrame, ready bits from the10
CFrame shall be ignored and the device shall interpret them as not ready. This means that the11
device which detects the parity error(s) stops sending further data or control CFrames until it12
receives the next CFrame without any errors and corrects the state of the ready bits.13

6.9 Dealing with an unexpected SOF14

If a device encounters an unexpected SOF, it shall ignore the previous data and commence15
processing the CFrame signaled by the new SOF.16

Page 48 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 48

1

7 A.C. characteristics2

7.1 AC Timing Classes3

CSIX-L1 AC parameters are specified in three different classes as shown in Table 28.4

Different timing classes provide flexibility for devices designed for different max performance.5

Devices with LVCMOS signaling shall be in a separate class due to different IO characteristics6
from HSTL.7

Table 28: Timing classes8

AC

Class

Interface

Signaling

Operating

Frequency

AC_Class0 LVCMOS 100MHz – 166MHz

AC_Class1 HSTL 100MHz – 166MHz

AC_Class2 HSTL 100MHz – 250MHz

7.2 Timing Paradigm9

The following figures describe the definitions of AC parameters for CSIX-L1 source10
synchronous interface.11

7.2.1 Source Interface Timing Definitions12

From a source device, source data is driven along with source clock with the timing parameters13
shown in the figure below. The on-chip delay on the source data and source clock should be14
balanced, hence minimising the total skew. The timing parameters are restricted within one15
clock group, which has 32-bits of data, 1 bit of parity and 1-bit SOF.16

 S ou rc e C loc k

 S ou rc e D a ta

ts rc_ p e rio d

ts rc_ hi_ p ulse
ts rc_ lo _ p ulse

ts rc_ d a ta _ va lid

17

Figure 18-- Source interface timing18

7.2.2 Destination Interface Timing Definitions19

Similar to source device interface, the destination device receives the destination data along20
with destination clock with the timing parameters shown in the figure below. The on-chip delay21

Page 49 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 49

on the destination data and destination clock should be balanced, so that the set-up and hold1
timing requirements on the receiving flip-flops are met. The timing parameters are restricted2
within one clock group, which has 32-bits of data, 1 bit of parity and a 1-bit SOF.3

 D e s tina tio n C lo c k

 D e s tina tio n D ata

td s t_ p e rio d

td s t_ hi_ p u ls e
td s t_ lo _ p u ls e

td s t_ se tup

td s t_ ho ld

4
Figure 19-- Destination interface timing5

7.2.3 Source Clock / Destination Clock Skew6

This timing parameter applies to interfaces where the bus is 64-bits, 96-bits or 128-bits wide7
and split into groups of 32-bit source synchronous busses. It is important to keep the source8
synchronous clocks from each group within certain skew window.9

Note: There is no such requirement for clocks in opposite direction since they are10
asynchronous to each other.11

7.2.3.1 12

 S o u r c e /D e s ti n a ti o n C lo c k [0]

 S o u r c e /D e s ti n a ti o n C lo c k [1]

 S o u r c e /D e s ti n a ti o n C lo c k [2]

t s r c c lk _ s k e w /
td s tc lk _ s k e w /

13
Figure 20-- Source/Destination clock skew14

7.3 AC_Class0 Timings (LVCMOS, 100MHz – 166MHz)15

AC timing data for Class0 devices is shown in Table 29.16

Page 50 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 50

1

Table 29: Class 0 AC timing data2

Name Characteristics Min Max Note

tsrc_freq Source Clock Frequency 166 MHz

tsrc_period Source Clock Period 1/ tsrc_freq 1/ tsrc_freq 1

tsrc_hi_pulse Source Clock High Pulse Width .4 * tsrc_period .6 * tsrc_period 1

tsrc_lo_pulse Source Clock Low Pulse Width .4 * tsrc_period .6 * tsrc_period 2

tsrc_rise_slew Source Clock Rise Slew .5 ns

tsrc_fall_slew Source Clock Fall Slew .5 ns

tsrc_data_valid Source Data Valid from Source Clock
Rising Edge

.5 ns 2.0 ns 3

tsrcclk_skew Skew among Source Clocks from
different clock groups

1.2 ns

tdst_freq Source Clock Frequency 166 MHz

tdst_period Destination Clock Period 1/ tdst_freq 1/ tdst_freq 1

tdst_hi_pulse Dest Clock High Pulse Width .35 * tdst_period .65 * tdst_period 1

tdst_lo_pulse Dest Clock Low Pulse Width .35 * tdst_period .65 * tdst_period 2

tdst_rise_slew Dest Clock Rise Slew .7 ns

tdst_fall_slew Dest Clock Fall Slew .7 ns

tdst_setup Dest Data set-up to Dest Clock
Rising Edge

1.5 ns 3

tdst_hold Dest Data hold from Dest Clock
Rising Edge

0 3

tdstclk_skew Skew among Dest Clocks from
different clock groups

1.5 ns

3

Notes:4

1. This clock timing parameter is measured from VIH to VIH.5

2. This clock timing parameter is measured from VIL to VIL.6

3. The data valid, set-up and hold are measured from the midpoint of the clock (VDD/2) to7
either:8

2.0 V for transitions from Hi-Z or Low logic values to High logic values, or9

0.8 V for transitions from Hi-Z or High logic values to Low logic values.10

Page 51 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 51

The load model for drivers meeting the Class 0 AC timings is assumed to be the following.1

2

3

4

5

6

7

8

Figure 21—Load model for drivers meeting the Class 0 AC timings9

10 pF

Page 52 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 52

AC_Class1 (HSTL, 100MHz – 166MHz)1

Class 1 timing data is shown in Table 30.2

Table 30: Class 1 AC timing data3

Name Characteristics Min Max Note

tsrc_freq Source Clock Frequency 166 MHz

tsrc_period Source Clock Period 1/ tsrc_freq 1/ tsrc_freq 2

tsrc_hi_pulse Source Clock High Pulse Width 0.45 * tsrc_period 0.55 * tsrc_period 2

tsrc_lo_pulse Source Clock Low Pulse Width 0.45 * tsrc_period 0.55 * tsrc_period 2

tsrc_rise_slew Source Clock Rise Slew 0.3 ns 4

tsrc_fall_slew Source Clock Fall Slew 0.3 ns 4

tsrc_data_valid Source Data Valid from Source Clock
Rising Edge

0.3 ns 3.0 ns 1,3

tsrcclk_skew Skew among Source Clocks from
different clock groups

1.2 ns 2

tdst_freq Source Clock Frequency 166 MHz

tdst_period Destination Clock Period 1/ tdst_freq 1/ tdst_freq 2

tdst_hi_pulse Dest Clock High Pulse Width 0.40 * tdst_period 0.60 * tdst_period 2

tdst_lo_pulse Dest Clock Low Pulse Width 0.40 * tdst_period 0.60 * tdst_period 2

tdst_rise_slew Dest Clock Rise Slew 0.4 ns 4

tdst_fall_slew Dest Clock Fall Slew 0.4 ns 4

tdst_setup Dest Data set-up to Dest Clock
Rising Edge

 2.0 ns 1,3

tdst_hold Dest Data hold from Dest Clock
Rising Edge

0 ns 1,3

tdstclk_skew Skew among Dest Clocks from
different clock groups

1.5 ns 2

Notes:4

1. Assuming a perfect board distribution, this spec implies 1ns of set-up margin and 0.3ns of hold margin5
at 166MHz. (Refer to Appendix-A)6

2. The clock timing parameters are measured from VDDQ/2 (VREF cross over point)7

3. The data valid, set-up and hold are measured from VDDQ/2 (VREF cross over point)8

4. Slew rates are measured between VIH and VIL levels9

Page 53 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 53

7.4 AC_Class2 (HSTL, 100MHz – 250MHz)1

Class 2 timing data is shown in Table 31.2

Table 31: Class 2 AC timing data3

Name Characteristics Min Max Note

tsrc_freq Source Clock Frequency 250 MHz

tsrc_period Source Clock Period 1/ tsrc_freq 1/ tsrc_freq 2

tsrc_hi_pulse Source Clock High Pulse Width 0.45 * tsrc_period 0.55 * tsrc_period 2

tsrc_lo_pulse Source Clock Low Pulse Width 0.45 * tsrc_period 0.55 * tsrc_period 2

tsrc_rise_slew Source Clock Rise Slew 0.3 ns 4

tsrc_fall_slew Source Clock Fall Slew 0.3 ns 4

tsrc_data_valid Source Data Valid from Source Clock
Rising Edge

0.3 ns 1.8 ns 1,3

tsrcclk_skew Skew among Source Clocks from
different clock groups

0.8 ns 2

tdst_freq Source Clock Frequency 250 MHz

tdst_period Destination Clock Period 1/ tdst_freq 1/ tdst_freq 2

tdst_hi_pulse Dest Clock High Pulse Width 0.40 * tdst_period 0.60 * tdst_period 2

tdst_lo_pulse Dest Clock Low Pulse Width 0.40 * tdst_period 0.60 * tdst_period 2

tdst_rise_slew Dest Clock Rise Slew 0.4 ns 4

tdst_fall_slew Dest Clock Fall Slew 0.4 ns 4

tdst_setup Dest Data set-up to Dest Clock
Rising Edge

 1.5 ns 1,3

tdst_hold Dest Data hold from Dest Clock
Rising Edge

0 ns 1,3

tdstclk_skew Skew among Dest Clocks from
different clock groups

1.0 ns 2

4

Notes:5

1. Note that assuming a perfect board distribution, this spec implies 0.7 ns of set-up margin and 0.3ns of6
hold margin at 250 MHz. (Refer to Appendix-A)7

2. The clock timing parameters are measured from VDDQ/2 (VREF cross over point)8

3. The data valid, set-up and hold are measured from VDDQ/2 (VREF cross over point)9

4. Slew rates are measured between VIH and VIL levels10

Page 54 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 54

8 D.C. characteristics1

8.1 LVCMOS Interface2

The following LVCMOS interface specifications are consistent with normal range values shown3
in EIA/JEDC standard EIA/JESD8-5: 2.5 0.2V± (Normal Range), and 1.8V to 2.7 V (Wide4
Range) Power Supply Voltage and Interface Standard for Nonterminated Digital Integrated5
Circuit (October 1995.) Refer to that specification for more information.6

Table 32: Class 0 DC characteristics7

Symbol Parameter Min Max Unit Notes

VDD Supply voltage 2.3 2.7 V

VIH Hi-level input voltage 1.7 VDD + 0.3 V 1

VIL Low-level input
voltage

-0.3 0.7 V 2

 IOH = -100µA 2.1 3.5 V 3

 IOH = -1mA 2 V 3

VOH Output high voltage

 IOH = -2mA 1.7 V 3

 IOL = 100µA 0.2 V 3

 IOL = 1mA 0.4 V 3

VOL Output low voltage

 IOL = 2mA 0.7 V 3

 Except I/O
parts

±5 µA 4II Input current

I/O parts ±15 µA 4

Notes8

1. VOUT ≥VOH(min)9

2. VOUT ≤VOL(max)10

3. VDD = VDDMIN11

4. VDD = VDDMAX12

13

14

15

16

17

Page 55 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 55

8.2 HSTL, Class-1 Interface1

Following HSTL single-ended Interface specifications are consistent with EIA/JEDEC standard,2
EIA/JESD8-6 “High Speed Transceivers Logic (HSTL): A 1.5V Output Buffer Supply Voltage3
Based Interface Standard for Digital Integrated Circuits”, Aug 1995. Refer to the specification4
for more information. This applies to AC Class 1 and AC Class 2.5

Table 33: Class 1 DC characteristics6

Symbol Parameter Min Nom Max Unit Notes

VDDQ Output Supply Voltage 1.4 1.5 1.6 V 1

VREF Differential Input
Reference Voltage

0.68 0.75 0.9 V 2

Voh Output High Voltage VDDQ –
0.4

V 3,5

Vol Output Low Voltage 0.4 V 4,5

Vih Input High Voltage VREF+

0.1

VDDQ+

0.3

V 6

Vil Input Low Voltage -0.3 VREF –
0.1

V 6

Notes:7

1. There is no specific device core supply voltage requirement for HSTL compliance.8

2. VREF = VDDQ/29

3. Ioh > 8mA10

4. Iol ≤ -8mA11

5. Push-pull output buffer for unterminated loads.12

6. Inputs should not be within VREF –0.1 and VREF +0.1 V.13

Page 56 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 56

9 Conformance Requirements1

To be conformant with the CSIX-L1 specification, a device shall provide the following functions.2

Item Feature § Support Value/Comment

1. A CFrame shall 1.5 Yes ! be divisible by the size of a CWord.

2. A vendor that
implements less than
256 classes shall

1.5 Yes ! encode their classes beginning with
the most significant Class bit.

3. CSIX Reserved bits 1.5 Yes ! shall not be used for proprietary
messages

4. Padding characters
shall

1.5 Yes ! be ignored when processing fields
but shall be included in vertical
parity calculations (if vertical parity is
implemented.)

5. Maximum payload size
shall not exceed

1.5 Yes ! 256 bytes.

6. The CSIX fabric 2.3.1 Yes ! shall ensure that all CFrames from a
specific ingress TM to a specific
Class queue of a specific egress TM
are delivered to the egress TM in
exactly the same sequence that they
were presented to the fabric by the
ingress TM.

7. The fabric 2.3.1 Yes ! shall guarantee this (see item 6
above) in-order delivery even if the
fabric internally has multiple routes
between ingress TM and egress TM.

8. If a fabric supports a
range of
MAX_FRAME_PAYLO
AD_SIZE values, the
fabric

3.1 Yes ! shall provide a mechanism for
programming this value.

9. The fabric 3.1 Yes ! shall support CFrame sizes of any
size equal to or less than the
maximum value specified for
MAX_FRAME_PAYLOAD_SIZE.

10. The TM 3.1 Yes ! shall provide a means of
programming the exact value of
MAX_FRAME_PAYLOAD_SIZE for
a given system.

11. Each user payload that 3.2.1 Yes ! shall be accompanied by a unicast

Page 57 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 57

is destined for a single
traffic manager

Destination Address, which consists
of a 12-bit Traffic Manager number
indicates the final destination of the
payload.

12. The switch fabric 3.2.1 Yes ! shall translate the Destination
Address into a route through to the
destination traffic manager.

13. All fabrics and all TMs 3.2.1 Yes ! Shall support the unicast frame
type.

14. Each CSIX-L1
component

3.5.2 Yes ! shall continuously maintain all flow
control state information.

15. The class field 3.5.4 Yes ! shall be used to indicate multicast
queue number for Multicast ID and
Multicast Mask.

16. The class field 3.5.4 Yes ! shall be orthogonal to bitmask and
Ids.

17. CSIX-L1 shall utilize a
nx32-bit data path,

4 Yes ! where n=1, 2, 3 or 4.

18. The switch fabric 4.1.1 Yes ! shall present data to the traffic
manager via the vector TxData.

19. The switch fabric 4.1.2 Yes ! shall present data parity to the traffic
manager via the vector TxPar
(horizontal parity).

20. The switch fabric 4.1.3 Yes ! shall provide data
transfer/synchronization clock(s) to
the traffic manager for synchronizing
transfers on TxData.

21. When more than one
TxSOF signal is
required, all TxSOF
signals

4.1.4 Yes ! shall have identical values during
each TxClk cycle.

22. TxSOF 4.1.4.1 Yes ! shall be asserted during the first
transfer cycle of each CFrame

23. Sequential TxSOFs
shall be separated by
at least

4.1.4.1 Yes ! One tick.

24. The traffic manager 4.1.5 Yes ! shall present data to the switch
fabric via the vector RxData.

25. The traffic manager 4.1.6 Yes ! shall present data parity to the
switch fabric via the vector RxPar

Page 58 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 58

(horizontal Parity).

26. The traffic manager 4.1.7 Yes ! shall provide data
transfer/synchronization clock(s) to
the switch fabric for synchronizing
transfers on RxData.

27. When multiple RxSOF
signals are required,
they

4.1.8.1 Yes ! shall have identical values during
each RxClk cycle.

28. RxSOF 4.1.8.1 Yes ! shall be asserted during the first
transfer cycle of each CFrame.

29. Sequential RxSOFs
shall be separated by
at least

4.1.8.1 Yes ! One tick.

30. If the payload does not
provide sufficient space
for the vertical parity
field in the last CWord,

5 Yes ! a new CWord shall be added and
the vertical parity bytes will appear
in the least significant bits of the
added word

31. For idle CFrames, the
payload length field
shall be set to

5.2.3 Yes ! “0.”

32. The speed field (at
least the most
significant bit)

5.9.1.1.
6

Yes ! shall be generated and processed
for all entry types.

33. All implementations
shall be capable of

5.9.1.1.
6

distinguishing and responding to
speed field values “1111” and
“0000”

34. The width of the
receive and transmit
paths

5 Yes ! shall be the same.

35. A device receiving the
pause

6.5 Yes ! shall complete the current frame
and shall not resume transmission
of CFrames until a ready bit is
received asserted indicating a
resume.

36. When a parity error
(horizontal or vertical)
is detected on the
CFrame,

6.8 Yes ! ready bits from the CFrame shall be
ignored and the device shall
interpret them as not ready. This
means that the device which detects
the parity error(s) stops sending
further data or control CFrames until
it receives the next CFrame without
any errors and corrects the state of

Page 59 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 59

the ready bits.

37. If a device encounters
an unexpected SOF

6.9 Yes ! it shall ignore the previous data and
commence processing the CFrame
signaled by the new SOF.

38. Devices with LVCMOS
signaling

7.1 Yes ! shall be in a separate class due to
different IO characteristics from
HTSL.

1

Page 60 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 60

Appendix A: Set-up/hold timing margin calculations1

A.1 AC_Class02

! tsrc_period = tdst_period = 6ns (166 MHz)3

! 4

! tsrc_data_valid (source data valid from source clock rising edge)5

! 0.3ns Min, 2.0ns Max6

! 7

! tdst_setup (dest data setup to dest rising edge)8

! 1.5ns Min9

! 10

! tdst_hold (dest data hold to dest rising edge)11

! 0.0ns Min12

! 13

! board_skew (data and clock on source synchronous path on board)14

! 15

! Setup Margin = tdst_period - tsrc_data_valid(Max) - tdst_setup - board_skew16

! = 6ns – 2ns – 1.5ns - board_skew17

! = 1.5ns - board_skew18

! 19

! i.e. Assuming the perfect board distribution, the spec implies 1.5ns of setup margin20

! 21

! Hold Margin = tsrc_data_valid(Min) - tdst_hold - board_skew22

! = 0.5ns – 0ns – board_skew23

! = 0.5ns - board_skew24

! 25

i.e. Assuming the perfect board distribution, the spec implies 0.5ns of hold margin26

27

A.2 AC_Class128

! tsrc_period = tdst_period = 6ns (166 MHz)29

! 30

! tsrc_data_valid (source data valid from source clock rising edge)31

! 0.3ns Min, 3.0ns Max32

! 33

Page 61 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 61

! tdst_setup (dest data setup to dest rising edge)1

! 2.0ns Min2

! 3

! tdst_hold (dest data hold to dest rising edge)4

! 0.0ns Min5

! 6

! board_skew (data and clock on source synchronous path on board)7

! 8

! Setup Margin = tdst_period - tsrc_data_valid(Max) - tdst_setup - board_skew9

! = 6ns – 3ns – 2ns - board_skew10

! = 1ns - board_skew11

! 12

! i.e. Assuming the perfect board distribution, the spec implies 1ns of setup margin13

! 14

! Hold Margin = tsrc_data_valid(Min) - tdst_hold - board_skew15

! = 0.3ns – 0ns – board_skew16

! = 0.3ns - board_skew17

! 18

i.e. Assuming the perfect board distribution, the spec implies 0.3ns of hold margin19

20

A.3 AC_Class221

22

! tsrc_period = tdst_period = 4ns (250 MHz)23

! 24

! tsrc_data_valid (source data valid from source clock rising edge)25

! 0.3ns Min, 1.8ns Max26

! 27

! tdst_setup (dest data setup to dest rising edge)28

! 1.5ns Min29

! 30

! tdst_hold (dest data hold to dest rising edge)31

! 0.0ns Min32

! 33

Page 62 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 62

! board_skew (data and clock on source synchronous path on board)1

! 2

! Setup Margin = tdst_period - tsrc_data_valid(Max) - tdst_setup -board_skew3

! = 4ns – 1.8ns – 1.5ns - board_skew4

! = 0.7ns - board_skew5

! 6

! i.e. Assuming the perfect board distribution, the spec implies 0.7ns of setup margin7

! 8

! Hold Margin = tsrc_data_valid(Min) - tdst_hold - board_skew9

! = 0.3ns – 0ns - board_skew10

! = 0.3ns - board_skew11

! 12

i.e. Assuming the perfect board distribution, the spec implies 0.3ns of hold margin13

Page 63 Issue: Public Distribution Date: 8/5/2000

Type: Specification Version: 1.0

Copyright  2000 CSIX 63

Appendix B: Example System Requirement for Pause/Resume1

Consider a system integration where the fabric has a maximum CFrame size of 74 bytes, the2
CSIX-L1 interface is 32-bits wide, and the interface clock is 150 MHz.3

The CSIX-L1 response specification is calculated as follows (Assuming the C factor is 32 ticks):4

 --L= ceiling(74/4) = 19 ticks5

 --n=32+19=51 ticks: Response time specification6

Therefore the maximum response time = 6.66 ns * 51 ticks = 340 ns.7

To get an approximate sizing of the link level Receive buffers, the following analysis can be8
done for our example system.9

10

The RxBuffer needs a minimum delta between congestion threshold and the buffer size of (3L +11
C) ticks * bus width12

 -- L within congested component to get ready field into header13

 -- L within other component to error check frame with ready field14

 -- C to get to Tx Logic of other component15

 -- L to transmit current frame before the next frame can be stopped16

The delta between congestion threshold and per link level queue for our example system can17
be calculated to be 3*19+32=89 ticks * 32 bits = 2.8 Kbits.18

With 2-ready bits, and 2 separate link level queues needed, the summed delta is 5.6 Kbits. If19
the queues were dimensioned to be say twice the size of the delta between congestion20
threshold and max buffer size the link level buffers would need to be 11.2 Kbits in size.21

	I
	Introduction
	CSIX-L1 Overview
	Objectives and non-objectives for this specification
	Possible implementations using CSIX
	Conventions in this specification
	Byte and bit ordering conventions
	Interface conventions
	State machine conventions
	Mandatory features and PICs Pro Forma

	Definitions
	Abbreviations
	Related Documents

	Overview
	Architectural overview
	Functional overview
	Fabric Assumptions
	Guarantee of in-order CFrame delivery

	Traffic Manager Assumptions
	Line Ends Connected to the TM

	Functional description
	Transmit data and receive data
	Unicast Operations
	Unicast Destination Address
	Unicast Class

	Multicast Operations
	Multicast Destinations
	Multicast use of the class variable

	Broadcast Operations
	Flow Control
	Link-level Flow Control Model Assumptions
	Fabric Flow Control Model Assumptions
	Flow Control state recovery

	Unicast Fabric Flow Control
	Multicast Fabric Flow Control
	Broadcast Fabric Flow Control

	Command and Status

	Physical Implementation
	Interface signals
	TxData[n..0]
	TxPar[m..0]
	TxPar definition

	TxClk[k..0]
	TxSOF[k..0]
	When generated

	RxData[n..0]
	RxPar[m..0]
	RxPar definition

	RxClk[k..0]
	RxSOF[k..0]
	When generated

	32-bit Interface
	64-bit Interface
	96-bit Interface
	128-bit Interface

	CFrame Formats
	Summary of frame overhead
	Base Header
	Type Field
	Ready Field
	Payload Length Field

	Idle CFrames
	Idle CFrame Format

	Unicast CFrames
	Unicast CFrame Format
	Unicast Extension Header
	Destination Address
	Class

	Multicast Mask CFrames
	Multicast Mask CFrame Format
	Multicast Bitmask Extension Header
	Bitmask header [7:0]
	Bitmap
	Class

	Multicast ID CFrames
	Multicast ID CFrame format
	Multicast ID Extension Header
	Multicast ID
	Class

	Multicast Binary Copy CFrames
	Multicast Binary Copy CFrame Format
	Binary Copy Multicast Extension Header
	Left and Right Destination Addresses
	Class

	Broadcast CFrames
	Broadcast CFrame Format
	Broadcast Extension Header
	Class

	Flow Control CFrames
	Flow Control CFrame Format
	Flow Control Entry Format
	Class
	Entry Type
	Class Wildcard
	Port Wildcard
	Destination Address
	Speed
	TM to fabric flow control ignore option

	TM to Fabric flow control summary
	Fabric to TM flow control summary

	Command and Status CFrames
	Parity
	Horizontal Parity
	Vertical Parity

	Operation and timing
	Start-up
	Transmission
	State Machine Variables:
	State Machine Variables

	State Machines
	Startup State Machine
	Transmission State Machine

	Pause and Resume operation
	Fabric Flow Control Response Time
	Frame Transfer Timing
	Dealing with a parity error
	Dealing with an unexpected SOF

	A.C. characteristics
	AC Timing Classes
	Timing Paradigm
	Source Interface Timing Definitions
	Destination Interface Timing Definitions
	Source Clock / Destination Clock Skew

	AC_Class0 Timings (LVCMOS, 100MHz – 166MHz)
	AC_Class2 (HSTL, 100MHz – 250MHz)

	D.C. characteristics
	LVCMOS Interface
	HSTL, Class-1 Interface

	Conformance Requirements

