
Network Processing Forum Software Working Group

Generic Classifier LFB and Functional API
Implementation Agreement

22 December 2004
Revision 1.0

Editor:
John Renwick, Agere Systems, jrenwick@agere.com

Copyright © 2004 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THIS DOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", “MAY", and "OPTIONAL" in the remainder of this
document are to be interpreted as described in the NPF Software API Conventions
Implementation Agreement revision 1.0.

For additional information contact:

The Network Processing Forum, 39355 California Street,
Suite 307, Fremont, CA 94538

+1 510 608-5990 phone info@npforum.org

© 2004 Network Processing Forum

 FAPI Task Group 1

mailto:vinoj@agere.com
mailto:info@npforum.org

Network Processing Forum Software Working Group

Table of Contents
1 Revision History ... 3
2 Introduction... 3

2.1 Acronyms / Definitions... 3
2.2 Assumptions.. 3
2.3 Scope... 3
2.4 External Requirements and Dependencies.. 4

3 LFB Detailed Description ... 4
3.1 LFB Input Ports... 6
3.2 LFB Output Ports.. 6
3.3 Relationship with other LFBs ... 7

4 Data Types .. 8
4.1 Common LFB Data Types. ... 8
4.2 Data Structures for Completion Callbacks ... 14
4.3 Data Structures for Event Notifications.. 16
4.4 Error Codes ... 16

5 Functional APIs (FAPIs)... 18
5.1 Required Functional APIs... 18
5.2 Functional APIs .. 21

6 References... 39
Appendix A Header file information... 41
Appendix B Acknowledgements... 51

Table of Figures
Figure 1: relationship to other classifiers.. 5
Figure 2: Filter Chaining... 5

 FAPI Task Group 2

Network Processing Forum Software Working Group

1 Revision History
Revision Date Reason for Changes

1.0 10/29/2004 Created Rev 1.0 of the implementation agreement by taking the
Generic Classifier LFB and API document (npf2002.478.16) and
making editorial and minor technical corrections.

2 Introduction
This document describes a Classifier LFB. A Classifier examines a packet and, based on its
content, produces an output ClassID metadata that can affect the processing of that packet in
downstream LFBs.

2.1 Acronyms / Definitions
Terminology

• PDU: Protocol Data Unit. This is the portion of a packet beginning with the header of a
certain protocol. A packet can contain multiple PDUs; for instance there might be a TCP
PDU inside an IP PDU, which is inside a PPP PDU, which is inside an Ethernet MAC
PDU (frame).

• Metadata: information associated with a packet, but not part of its contents. For
example, an identifier of the interface a packet arrived on could be used as metadata.

• Filter: the specification of one or more fields of one or more PDUs in a packet to be
examined.

• Pattern: a set of values to be compared with the packet fields indicated by the filter.
• Action: specification of what is to be done when a packet matches a pattern, consisting of

these alternatives:
o ClassID: a metadata value output by the filter
o NextFilter: the identifier of the next filter (within the same LFB) to process the

packet.
• Rule: a specific combination of a filter, pattern, and action. When a packet matches a

certain rule, the action associated with the rule is taken.

2.2 Assumptions

2.3 Scope
In many network processor designs, the set of defined filters is established at the time the device
is initialized; often it is implicit in microcode or other forms of instructions loaded into the
device. In such devices, patterns and actions typically can be programmed freely at run-time
without interrupting the device’s operation, but the same is not true of filters. The NP Forum
Software Working Group regards booting and initial configuration operations as outside the
scope of its APIs. Accordingly, this agreement supports discovery of available filters, but not the
run-time creation or reconfiguration of them. It does support run-time programming of patterns
and actions, and thus the creation of new rules based on the device’s existing repertoire of filters.

 FAPI Task Group 3

Network Processing Forum Software Working Group

And it supports the “cloning” of filters, or creation of new filters with characteristics identical to
existing ones, under the assumption that the implementation can manage discrete sets of
matching patterns and actions for the same message content.

2.4 External Requirements and Dependencies
This agreement depends on the Protocol Type structure (NPF_protocol_t), first defined in the
NPF Packet Handler Implementation Agreement, version 1.0, September, 2003.

3 LFB Detailed Description

Classification filters are resources of Classifier LFBs in the terms of the NP Forum Functional
API (FAPI). The general function of classification is to examine a packet with its metadata,
determine something about what kind of packet it is, and produce a ClassID, a metadata value
that summarizes its finding. (The value is assigned to a metadata tag of NPF_META_CLASS_ID by
default; however a Generic Classifier instance can assign the value to a different metadata class.)
The basic tool of this API is the filter, which is a process that can locate and parse packet
headers, and locate fields within headers. A filter examines one or more fields in a packet or
metadata, compares them to known values, and acts based on which values match the packet
fields.

Many protocols have requirements for particular kinds of filters, such as diffserv classifiers,
destination address lookup tables, VPI/VCI maps, etc. This API assumes a “generic” filter
capability, upon which the implementations of any of these can be based, but is not required to
be based. Generic classifiers can also be used directly by applications.

NPF Services API or Application that
uses classification and LFB
functionality

Cl

DSCP
Classifier

Protocol- or Function-Specific Classification APIs

LPM
Classifier

Diffserv
Classifier

VPI/VCI
Classifier

Implementation lines
pointing into this layer
implement specific
classification APIs in
terms of the Generic
Classification LFB. Every
Classification function can
be expressed by the
Generic Classifier’s

Generic
assifier LFB
functionality.

FAPI Task Group 4

Network Processing Forum Software Working Group

 Vendor internal APIs

or hardware
Implementation lines pointing
into this layer are provided by
each hardware vendor. The upper
API pointing into this layer is the
API expression of this NPE’s
functionality.

Figure 1: Relationship to other classifiers

We assume a forwarding device that supports filters has been “preloaded” with a set of filters,
and the logic, configuration or microcode needed to process packets through those filters. This
API allows the application to discover the nature and IDs for those filters, and to program their
pattern and action values.

This symbol
denotes a filter

This symbol
denotes NextFilter.

This symbol
denotes returning a
metadata tag.

IPv6 fieldsARP fields

IPv4 fieldsIP Ver

EtherType

Figure 2: Filter Chaining

Filter Chaining
In typical protocol header processing, a field in one protocol’s header will indicate the protocol
of the PDU that follows. Chaining of filters, in which the result of one filter can select the next
filter to be applied (see Figure 2) facilitates this kind of processing. In this very simplified
example, the FE is processing an Ethernet MAC PDU. The first filter examines the EtherType
field, looking for IP (0x800), ARP (0x806), or some other code that it doesn’t know how to
process further. In the latter case, the rule may assign a special ClassID value to the packet,
meaning “unknown or unsupported protocol”. The rules for IP and ARP shift the focus to other
filters specific to those PDU types.

Note: this is an example of one way of parsing a packet. Alternatively, this could be done by a
multi-field filter that looks at key fields of all the possible PDUs in a single filter definition.

 FAPI Task Group 5

Network Processing Forum Software Working Group

p t

Instance Name

Generic Classifier

Figure 1: Generic LF

3.1 Generic Classifier LFB Type Code
The LFB Type code for a Generic Classifier LFB shall

#define NPF_LFB_TYPE_GENERIC_CLASSIFIER 13

3.2 LFB Input Ports
The Generic Classifier LFB as one input port, PKT_IN
classified.

3.2.1 Metadata Required
The Generic Classifier LFB can examine metadata as p
when classifying packets received from an external net
interface can influence the classification result. The im
is used for classification, and if any is used, the client is
represented and what its values mean. The client cause
in filters what metadata to look at and what values to u

3.3 LFB Output Ports
The Generic Classifier LFB has one output port PKT_O
receives, unaltered, along with NPF_META_CLASS_ID (o

 FAPI Task Group
pkt ou
kt in

B Diagram

 be 13.

, on which it receives packets to be

art of packet classification. For example,
work interface, the identity of that
plementation determines what metadata
 responsible for knowing how it is
s metadata to be examined by specifying
se for comparison.

UT, on which it emits the packets it
r other type) metadata.

 6

Network Processing Forum Software Working Group

3.3.1 Metadata Produced
The Generic Classifier LFB produces a ClassID value as metadata. By default, this value is
assigned to a metadata class of NPF_META_CLASS_ID, but any Generic Classifier instance can
assign its output value to a different metadata class. The application can find out what metadata
class is produced by calling the NPF_F_gclassLFB_AttrGet() function.

3.4 Relationship with other LFBs
The Generic Classifier LFB can be preceded in the topology by any LFB type that emits a
packet. Downstream (not necessarily next) there should be an LFB that consumes the ClassID
(or other metadata tag) produced.

 FAPI Task Group 7

Network Processing Forum Software Working Group

4 Data Types

4.1 Common LFB Data Types.
4.1.1 Filter ID
A filter is a resource of a FAPI Classifier Logical Function Block. The LFB assigns each filter
an ID value that identifies it within the context of that LFB.

typedef NPF_uint32_t NPF_FilterID_t;

4.1.2 Filter Class
Filters can classify based on a contiguous string of bits within the packet (single field filter), or
on multiple such fields (multi-field filter). This difference establishes the “class” of a filter. In
the filter definition structure, the number of fields indicates class: one, or more than one.

4.1.3 Filter Type
Each filter obeys a certain definition of the precedence of rules that use it, in case it is possible
that more than one rule could match a given packet. The filter type identifies the method of
establishing precedence between rules:

• No precedence – the rules are constructed such that no packet can match more than one
rule. Flat table lookups and MAC address lookups are examples.

• Ordered precedence – rules are maintained in a specific order, and precedence belongs to
the first rule that matches.

• LPM – Longest Prefix Match. When two patterns could match, the one with the least
number of don’t care bits (or the greatest number of specific pattern bits) matches.

Note: a No Precedence filter is essentially the degenerate case of LPM in which all prefixes have
the same length.

typedef enum {
 NPF_GCLASS_TYPE_NO_PRECEDENCE = 1,
 NPF_GCLASS_TYPE_ORDERED_PRECEDENCE = 2,
 NPF_GCLASS_TYPE_LPM = 3
} NPF_gclassFilterType_t;

4.1.4 Filter Attribute
Each filter can be either fixed (rules may not be changed), configurable (rules can be added and
deleted) or clonable (configurable, and also a new filter can be created using this one as a
pattern).

/*
 * Filter Attribute
 */
typedef enum {
 NPF_GCLASS_FILTER_FIXED = 1, /* Filter cannot be modified */
 NPF_GCLASS_FILTER_CONFIGURABLE= 2, /* Rules may be changed */
 NPF_GCLASS_FILTER_CLONABLE = 3, /* Filter can be cloned */

 FAPI Task Group 8

Network Processing Forum Software Working Group

} NPF_gclassFilterAttr_t;

4.1.5 Protocol Type
The NPF Protocol Type structure (NPF_protocol_t) was published in the NPF Packet Handler
API Implementation Agreement, Revision 1.0 (September, 2003). The definition here extends
the Protocol Family enumeration to include NPF metadata types; this definition supercedes the
previously published one.

The representation of metadata as “protocols” is done as a convenience for the definition of
filters. This does not mean that metadata is a protocol, or that the implementation must represent
metadata as a protocol header of some kind.

/************************************
 Protocol Type Indicator

 This structure identifies a protocol by its protocol number.
 Protocol numbers are assigned by several different numbering
 authorities, so there is a protocol family identifier to say
 what number series the protocol number belongs to. The IEEE
 and IETF number assignments can be found on the IANA web
 site,http://www.iana.org/numbers.html. The “NPF Metadata”
 family identifies a number of metadata types; these type
 codes are used in the “protocol” variable of NPF_protocol_t.
************************************/

typedef enum {
 NPF_PROTO_FAM_LLC = 1, /* IEEE 802 LSAP assignments */
 NPF_PROTO_FAM_ET = 2, /* IEEE EtherType assignments */
 NPF_PROTO_FAM_PPP = 3, /* IETF PPP protocol numbers */
 NPF_PROTO_FAM_IP = 4, /* IETF IP protocol numbers */
 NPF_PROTO_FAM_NPF = 5, /* NP Forum-defined numbers */
 NPF_PROTO_FAM_UNK = 6, /* Unknown protocol */
 NPF_PROTO_FAM_ANY = 7, /* Wildcard value */
 NPF_PROTO_FAM_META = 8 /* NPF Metadata */
} NPF_protocolFamily_t;

typedef struct {
 NPF_protocolFamily_t family;
 NPF_uint16_t protocol;
} NPF_protocol_t;

4.1.6 Field Definition
The following structure specifies a “field” that is examined by a filter. A field consists of a
contiguous string of bits within a PDU, specified by protocol type, bit offset and length.

typedef struct {
 NPF_protocol_t protocol; /* Protocol or metadata type */
 NPF_boolean_t validShID; /* TRUE if subHeaderID is significant */
 NPF_uint32_t subHeaderID;/* Subheader type code (e.g. option #) */
 NPF_uint32_t offset; /* starting bit offset within header */

 FAPI Task Group 9

http://www.npforum.org/techinfo/PacketHandler_IA.pdf
http://www.npforum.org/techinfo/PacketHandler_IA.pdf

Network Processing Forum Software Working Group

 NPF_uint32_t length; /* length of the field in bits */
} NPF_gclassField_t;

Some protocols have variable-length fields that cause the fields following it not to lie in fixed
positions within the PDU; their positions can only be found by examining the preceding fields.
For fields following a variable-length field in a PDU, the sub-header ID identifies a sub-header
within the PDU, so that its subfields can be referenced by a fixed offset.
For example, some protocols have headers that contain type-length-value (TLV) encoded
options. An individual option can be identified using its type code as the subHeaderID, and the
protocol number of the protocol that defines the type code.
The validShID field is a boolean value that indicates whether the subHeaderID field contains
any information. If TRUE, the subHeaderID identifies the relative starting point for the offset
value; if FALSE, the offset is from the beginning of the PDU.

We assume that the underlying implementation of a filter has the means to locate metadata and
the start of the PDU for any protocol ID. In some implementations this is known from the
filter’s context: control is always passed to it with a pointer to the start of a particular PDU it is
supposed to examine. If a multi-field filter examines fields of more than one protocol type, the
underlying implementation is assumed to know how to locate each PDU within the packet.

4.1.7 Filter Definition
The filter definition structure proper points to an array of field definitions. Each field has a
number, according to the order in which field definitions are listed: field 0 is the first one listed;
field 1 is the second, and so on. Each filter has an optional name, an ascii string of up to 16
characters. The filter definition may list fields in any order: not necessarily the order in which
fields appear in the packet.

typedef struct {
 NPF_FilterID_t filterNum; /* FilterID of this filter */
 NPF_gclassFilterType_t type; /* Precedence algorithm type */
 NPF_uint32_t nfields; /* Number of fields examined */
 NPF_gclassField_t *field; /* Array of field definitions */
 NPF_uint32_t nRules; /* Number of active rules */
 NPF_gclassFilterAttr_t attr; /* Filter attribute */
} NPF_gclassFilter_t;

4.1.8 Patterns
A pattern is a value or a range of values (possibly with “don’t-care” bits). The value or range is
compared with one of the fields examined by a filter.

fieldNum: For a multifield filter, this identifies which field the value is compared with. If the
filter examines only one field, this value is not used. Zero refers to the 1st field in the array, 1
refers to the 2nd, and so on.

fieldLen: This is included for convenience. It must be identical to the field length
corresponding to fieldNum in the filter to which the pattern is assigned.

 FAPI Task Group 10

Network Processing Forum Software Working Group

type: A pattern is either of type “value,” “range,” “mask,” or “prefix.” A “value” pattern
matches a single value in a protocol field. A “range” pattern matches a range of values in the
field; any number in the field, lying between the first and second values, inclusive, is considered
a match. A “mask” type pattern uses a single value and a bit-mask. Any field pattern whose bits
match those of the value in positions where the corresponding mask bit is set is considered a
match. A “prefix” type pattern consists of a value and a prefix length n; a field matches if it
contains the same value in its first n bits. Prefix and mask are both ways of indicating “don’t-
care” bits. Whereas a prefix limits the don’t-cares to a contiguous field extending to the least
significant bit of the value, a mask can place don’t-care bits anywhere in the value, with no
requirement that they be contiguous. LPM and No Precedence filters can use patterns of type
“prefix,” “range,” and “value” only. Ordered Precedence filters can use all types; “mask”
patterns are valid only with Ordered Precedence filters.

value: A value is contained in an array of one or more bytes. The length of this array MUST be
equal to or greater than the length of the field in bytes, rounded up. If prefixLen is zero,
*value MUST be a null pointer (zero). A pattern value is stored with its first bit in the most
significant bit position of the first byte of the value array. Values longer than eight bits are
stored in Network Byte Order, meaning, for example, that a 32-bit IPv4 address is stored with its
most significant 8 bits in the first byte, and so on, ending with the least significant eight bits in
the fourth byte. If the pattern type is a range of values, the second value is used; this must be
greater than the first value.

prefixLen: The number of significant bits in the value.

mask: Used only if the pattern type is “mask,” this is a bit-string stored according to the same
rules as value above.

typedef enum {
 NPF_GCLASS_PATTERN_TYPE_VALUE = 1,
 NPF_GCLASS_PATTERN_TYPE_RANGE = 2,
 NPF_GCLASS_PATTERN_TYPE_MASK = 3,
 NPF_GCLASS_PATTERN_TYPE_PREFIX = 4
} NPF_gclassPatternType_t;

typedef struct {
 NPF_uint32_t fieldNum; /* Field number within the filter */
 NPF_uint32_t fieldLen; /* Field length in bits */
 NPF_gclassPattType_t type;
 union {
 struct {
 NPF_uint8_t *value;
 } value;
 struct {
 NPF_uint8_t *minValue;
 NPF_uint8_t *maxValue;
 } range;
 struct {
 NPF_uint8_t *value;
 NPF_uint8_t *mask;
 } mask;

 FAPI Task Group 11

Network Processing Forum Software Working Group

 struct {
 NPF_uint8_t *value;
 NPF_uint32_t prefixLen;
 } prefix;
 } u;
} NPF_gclassPatt_t;

Patterns have different constraints according to the class and type of filter they are used in.
Table 1 summarizes them.

 No Precedence Ordered Precedence LPM
Single Field - Value type only

- no don’t-care
bits

- Value, Range,
Prefix or Mask
types
- each rule has a
position index.

- Range or Prefix
types
- zero or more
don’t-care bits.

Multi-Field - Multiple Value
types
- no don’t-care
bits

- Multiple Value,
Range, Prefix or
Mask types
- each rule has a
position index.

Does not apply

Table 1: Pattern characteristics by filter class and type

Note: Although a “Prefix” type pattern is allowed in Ordered Precedence filters, this is only for
convenience in delimiting the don’t-care bits; it does NOT imply LPM operation within the
filter.

4.1.9 Action Types
Each pattern has an associated action. Actions are of two types:

• Return metadata value
• Go to filter

typedef enum {
 NPF_filActTypeClassID = 1, /* Return a ClassID value */
 NPF_filActTypeNextFilter = 2, /* Go to next filter, same LFB */
} NPF_gclassActionType_t;

typedef struct {
 NPF_gclassActionType_t type;
 union {
 NPF_uint32_t classID; /* Value to be returned */
 NPF_FilterID_t nextFilter; /* next filter, same LFB */
 } u;
} NPF_gclassAction_t;

4.1.10 ClassID Values
One ClassID value, zero, is reserved for use in default rules, to indicate specifically that a packet
matched no other rule in a filter.

#define NPF_F_GCLASS_CLASSID_VALUE_NO_MATCH 0

 FAPI Task Group 12

Network Processing Forum Software Working Group

4.1.11 Rules
A Rule consists of a pattern, or set of patterns, and an action, assigned to a particular filter. A
rule must contain a number of patterns equal to the number of fields in the filter it belongs to. A
packet is considered to “match” a rule if it satisfies, along with any associated metadata, all the
patterns associated with the rule.

typedef struct {
 NPF_uint32_t numPatts; /* Number of patterns in the rule */
 NPF_gclassPatt_t *pattern; /* Pointer to array of patterns */
 NPF_gclassAction_t action; /* Action for this rule */
} NPF_gclassRule_t;

With No-precedence and LPM filters, a rule’s pattern defines its place implicitly with respect to
other rules. For Ordered Precedence filters, more information is needed. The following is the
definitions needed for managing Ordered Precedence filters:

typedef enum {
 NPF_gclassOP_CmdInsert = 1, /* Insert a rule */
 NPF_gclassOP_CmdDelete = 2, /* Delete one or more rules */
 NPF_gclassOP_CmdReplace = 3, /* Replace one or more rules */
} NPF_gclassOP_Cmd_t;

typedef struct {
 NPF_uint32_t ruleNumber; /* ord. of rule inserted or replacing */
 NPF_gclassOP_Cmd_t command; /* Insert, Delete, or Replace */
 NPF_uint32_t from; /* Lower ordinal of affected range */
 NPF_uint32_t to; /* Upper ordinal of affected range */
 NPF_gclassRule_t rule; /* Rule definition structure */
} NPF_gclassOP_Rule_t;

The ruleNumber variable is used in Ordered Precedence filters to indicate where the rule is to be
placed in the set. Rule ordinals are positive integers chosen by the application; the lower the
ordinal, the higher its precedence. (When a packet could match more than one rule, it always
matches the one with the lowest ordinal.) It is not possible to insert a rule between two other
rules whose ordinals differ by one; you the application must first renumber the existing rules to
create an opening in the sequence, by deleting them and adding them again with different
ordinals, or by doing a “replace” operation that replaces the existing rules with renumbered
copies.
The to and from variables are used with Delete and Replace commands, to indicate the range
(inclusive) of existing rules affected. They are ignored on Insert commands. The Insert
command replaces a single existing rule if it has the same ordinal as the new rule being inserted.
The rule and ruleNumber variables are ignored on a Delete command.

We also need structures that comprise a set of rules; these structures are used in callbacks from
rule query functions.

typedef struct {
 NPF_uint32_t nRules; /* Number of rules in the array */
 NPF_gclassRule_t *rules; /* Pointer to array of rules */
} NPF_gclassRuleSet_t;

 FAPI Task Group 13

Network Processing Forum Software Working Group

typedef struct {
 NPF_uint32_t nRules; /* Number of rules in the array */
 NPF_gclassOP_Rule_t *rules; /* Pointer to array of rules */
} NPF_gclassOP_RuleSet_t;

4.1.11.1 Default Rule
A Default Rule is a special usage of the NPF_gclassRule_t structure in which the numPatts
field is zero. When numPatts is zero, the pattern field should be encoded as a null value; the
implementation MUST ignore it. The action field indicates the filter’s action for any packet
that matches no other rule. A filter can have at most one default rule.

N.B. in LPM filters, a rule containing a pattern with zero for the prefixLen value explicitly
matches all packets. Such a rule in an LPM filter SHALL match packets in preference to the
Default Rule.

An implementation MUST incorporate a built-in default rule in each filter. This rule MUST
incorporate the action “return metadata value zero.”

4.2 Data Structures for Completion Callbacks
A completion callback is defined for each of the functions in this API (not included are the
callback and event registration/deregistration functions, which are synchronous). The callback
response contains one of the following codes, indicating the function that was called to cause the
callback. This code tells the application how to interpret the data included in the union that is
part of the response structure.

/*
 * This structure contains an array of filter IDs,
 * along with the array length. It is used in the response
 * from NPF_F_gclassLFB_AttrGet().
 */
typedef struct {
 NPF_uint32_t nFilters; /* Number of filters in LFB */
 NPF_FilterID_t *filters; /* One for each filter */
} NPF_gclassFilterList_t;

/*
 * LFB Attribute Structure
 */
typedef struct {
 NPF_boolean_t canCreate; /* TRUE if new filters can be created */
 NPF_boolean_t canClone; /* TRUE if filters can be cloned */
 NPF_F_Metadata_Id_t metaTag; /* The type of metadata output */
 NPF_gclassFilterList_t filterList; /* List of active filters */
} NPF_gclassLFB_Attr_t;

 FAPI Task Group 14

Network Processing Forum Software Working Group

4.2.1 Asynchronous Response
/*
 * An asynchronous response contains an error/success code,
 * other optional information that correlates the response
 * to an element in a request array, and in some cases a
 * function-specific structure embedded in a union. One or
 * more of these is passed to the callback function as an
 * array within the NPF_gclassCallbackData_t structure.
 */
typedef struct { /* Asynchronous Response Structure */

NPF_gclassReturnCode_t error; /* Error code for this response */
union { /* Function-specific structures: */
 NPF_gclassFilter_t filterAttr; /* NPF_F_gclassFilterAttrGet() */
 NPF_uint32_t ruleNum; /* RuleStore/Set/Del fcns */
 NPF_gclassLFB_Attr_t lfbAttr; /* NPF_F_gclassLFB_AttrGet() */
 NPF_uint32_t nRules; /* FilterAttrQuery() */
 NPF_gclassRuleSet_t ruleSet; /* NPF_F_gclassLPM_RuleGet() */
 NPF_gclassOP_RuleSet_t OP_RuleSet;/* NPF_F_gclassOP_RuleGet() */
 NPF_filterID_t filterID; /* NPF_F_gclassFilterClone() */
 NPF_uint32_t unused; /* All other functions */
} u;

} NPF_gclassAsyncResponse_t;

4.2.2 Callback Type

/*
 * Completion callback types
 */
typedef enum NPF_gclassCallbackType {

NPF_GCLASS_FILTER_ATTR_GET = 1,
NPF_GCLASS_LPM_RULE_STORE = 2,
NPF_GCLASS_LPM_RULE_SET_REPLACE = 3,
NPF_GCLASS_LPM_RULE_DELETE = 4,
NPF_GCLASS_OP_RULE_SET = 5,
NPF_GCLASS_RULE_FLUSH = 6,
NPF_GCLASS_FILTER_ATTR_QUERY = 7,
NPF_GCLASS_FILTER_LIST_GET = 8,
NPF_GCLASS_FILTER_CLONE = 9,
NPF_GCLASS_LPM_RULE_GET = 10,
NPF_GLCASS_OP_RULE_GET = 11

} NPF_gclassCallbackType_t;

4.2.3 Callback Data
/*
 * The callback function receives the following structure containing
 * one or more asynchronous responses from a single function call.
 * There are several possibilities:
 * 1. The called function does a single request
 * - numCallbackResp = 1, and the resp array has just one element.
 * - allOK = TRUE if the request completed without error
 * and the only return value is the response code.
 * - if allOK = FALSE, the "resp" structure has the error code.
 * 2. the called function supports an array of requests
 * a. All completed successfully, at the same time
 * - allOK = TRUE, n_resp = 0.

 FAPI Task Group 15

Network Processing Forum Software Working Group

 * b. Some completed, but not all, or there are values besides
 * the response code to return:
 * - allOK = FALSE, n_resp = the number completed
 * - the "resp" array will contain one element for
 * each completed request, with the error code
 * in the NPF_gclassAsyncResponse_t structure, along
 * with any other information needed to identify
 * which request element the response belongs to.
 * - Callback function invocations are repeated in
 * this fashion until all requests are complete.
 * Responses are not repeated for request elements
 * already indicated as complete in earlier callback
 * function invocations.
 */
typedef struct {
 NPF_gclassCallbackType_t type; /* Identifies the function called */
 NPF_boolean_t allOK; /* TRUE if all requests completed OK*/
 NPF_uint32_t numResp;/* Number of responses in array */
 NPF_gclassAsyncResponse_t *resp; /* Array of response structures */
} NPF_gclassCallbackData_t;

Callback Type Callback Data
NPF_GCLASS_LFB_ATTR_GET NPF_gclassFilterList_t
NPF_GCLASS_FILTER_ATTR_GET NPF_gclassFilter_t
NPF_GCLASS_LPM_RULE_STORE NPF_uint32_t (Rule Number)
NPF_GCLASS_LPM_RULE_SET_REPLACE NPF_uint32_t (Rule Number)
NPF_GCLASS_LPM_RULE_DELETE NPF_uint32_t (Rule Number)
NPF_GCLASS_OP_RULE_SET NPF_uint32_t (Rule Number)
NPF_GCLASS_RULE_FLUSH Unused
NPF_GCLASS_FILTER_ATTR_QUERY NPF_uint32_t (number of rules)
NPF_GCLASS_FILTER_CLONE NPF_filterID_t
NPF_GCLASS_LPM_RULE_GET NPF_gclassRuleSet_t
NPF_GLCASS_OP_RULE_GET NPF_gclassOP_RuleSet_t

Table 2. Callback type to Callback data mapping table

4.3 Data Structures for Event Notifications
The Generic Classifier LFB does not define or generate any events.

4.4 Error Codes
4.4.1 Common NPF Error Codes

� NPF_NO_ERROR -- This value MUST be returned when a function was
successfully invoked. This value is also used in completion callbacks where it
MUST be the only value used to signify success.

� NPF_E_UNKNOWN -- An unknown error occurred in the implementation
such that there is no error code defined that is more appropriate or informative.

� NPF_E_BAD_CALLBACK_HANDLE -- A function was invoked with a
callback handle that did not correspond to a valid NPF callback handle as

 FAPI Task Group 16

Network Processing Forum Software Working Group

returned by a registration function, or a callback handle was registered with a
registration function belonging to a different API than the function call where the
handle was passed in.

� NPF_E_BAD_CALLBACK_FUNCTION -- A callback registration was
invoked with a function pointer parameter that was invalid.

� NPF_E_CALLBACK_ALREADY_REGISTERED -- A callback or event
registration was invoked with a pair composed of a function pointer and a user
context which was previously used for an identical registration.

� NPF_E_FUNCTION_NOT_SUPPORTED -- This error value MUST be
returned when an optional function call is not implemented by an
implementation. This error value MUST NOT be returned by any required
function call. This error value MUST be returned as the function return value
(i.e. synchronously).

� NPF_E_RESOURCE_EXISTS -- A duplicate request to create a resource
was detected. No new resource was created.

� NPF_E_RESOURCE_NONEXISTENT -- A duplicate request to destroy or
free a resource was detected. The resource was previously destroyed or never
existed.

4.4.2 LFB Specific Error Codes

/*
 * Asynchronous error codes (returned in function callbacks)
 */
#define GC_ERRNPF_GC_ERR(n) ((NPF_gclassReturnCode_t) NPF_GCLASS_BASE_ERR +
(n))

#define NPF_E_GCLASS_INVALID_FILTER GC_ERRNPF_GC_ERR(0)
#define NPF_E_GCLASS_NO_SUCH_RULE GC_ERRNPF_GC_ERR(1)
#define NPF_E_GCLASS_UNKNOWN GC_ERRNPF_GC_ERR(2)
#define NPF_E_GCLASS_INVALID_RULE GC_ERRNPF_GC_ERR(3)
#define NPF_E_GCLASS_INVALID_RULE_NUMBER GC_ERRNPF_GC_ERR(4)
#define NPF_E_GCLASS_INVALID_PATTERN GC_ERRNPF_GC_ERR(5)
#define NPF_E_GCLASS_INVALID_ACTION GC_ERRNPF_GC_ERR(6)
#define NPF_E_GCLASS_INVALID_RANGE GC_ERRNPF_GC_ERR(7)
#define NPF_E_GCLASS_INVALID_COMMAND GC_ERRNPF_GC_ERR(8)
#define NPF_E_GCLASS_INVALID_FE_HANDLE GC_ERRNPF_GC_ERR(9)
#define NPF_E_GCLASS_INVALID_LFB_ID GC_ERRNPF_GC_ERR(10)
#define NPF_E_GCLASS_OPTION_NOT_SUPPORTED GC_ERRNPF_GC_ERR(11)
#define NPF_E_GCLASS_FILTER_NOT_CLONABLE NPF_GC_ERR(12)

typedef NPF_uint32_t NPF_gclassReturnCode_t;

 FAPI Task Group 17

Network Processing Forum Software Working Group

5 Functional APIs (FAPIs)

5.1 Required Functional APIs

5.1.1 Completion Callback Function

Syntax
typedef void (*NPF_F_gclassCallBackFunc_t)(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_F_gclassCallbackData_t gclassCallbackData);

Description
This callback function is used by the application to register an asynchronous response
handling routine with the Generic Classifier FAPI implementation. This callback function
is intended to be implemented by the application, and registered with the Generic
Classifier FAPI implementation through the callback registration function.

Input Parameters
• userContext – The context item that was supplied by the application when the

completion callback function was registered.
• correlator – The correlator item that was supplied by the application when the

FAPI function call was made. The correlator is used by the application mainly to
distinguish between multiple invocations of the same function.

• gclassCallbackData – Response information related to the FAPI function call.
Contains information that is common among all functions, as well as information
that is specific to a particular function. See the NPF_F_gclassCallbackData_t
definition, section 3.2.3, for details.

Output Parameters
None.

Return Value
None.

Asynchronous Response
Not Applicable.

Notes
None.

 FAPI Task Group 18

Network Processing Forum Software Working Group

5.1.2 Completion Callback Registration Function

Syntax
NPF_error_t NPF_F_gclassRegister(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_F_gclassCallbackFunc_t gclassCallbackFunc,
 NPF_OUT NPF_callbackHandle_t *gclassCallbackHandle);

Description
This function is used by the application to register its completion callback function for
receiving asynchronous responses related to NPF FAPI function calls. The application may
register multiple callback functions using this function. The callback function is identified
by the pair of userContext and gclassCallbackFunc, and for each individual pair, a unique
gclassCallbackHandle will be assigned for future reference. Since the callback function is
identified by both userContext and gclassCallbackFunc, duplicate registration of same
callback function with different userContext is allowed. Also, the same userContext can be
shared among different callback functions. Duplicate registration of the same userContext
and gclassCallbackFunc pair has no effect, and will output a handle that is already assigned
to the pair, and will return an error that indicates that the callback has already been
registered.

Note : NPF_F_gclassRegister() is a synchronous function and has no completion
callback associated with it.

Input Parameters
• userContext – A context item used for uniquely identifying the context of the

application registering the completion callback function. The exact value will be
provided back to the registered completion callback function as its 1st parameter
when it is called. Application can assign any value to the userContext and the value
is completely opaque to the NPF FAPI implementation.

• gclassCallbackFunc – The pointer to the completion callback function to be
registered.

Output Parameters
• gclassCallbackHandle – A unique identifier assigned for the registered

userContext and gclassCallbackFunc pair. This handle will be used by the
application to specify which callback function to be called when invoking
asynchronous NPF FAPI functions. It will also be used when de-registering the
userContext and gclassCallbackFunc pair.

Return Values
• NPF_NO_ERROR – The registration completed successfully.
• NPF_E_BAD_CALLBACK_FUNCTION – The callback function is NULL.
• NPF_E_CALLBACK_ALREADY_REGISTERED – No new registration was

made since the userContext and gclassCallbackFunc pair were already registered.

 FAPI Task Group 19

Network Processing Forum Software Working Group

Note: Whether this should be treated as an error or not is dependent on the
application.

Asynchronous Response
Not Applicable.

Notes
None.

5.1.3 Completion Callback Deregistration

Syntax
NPF_error_t NPF_F_gclassDeregister(
 NPF_IN NPF_callbackHandle_t gclassCallbackHandle);

Description
This function is used by the application to de-register a pair of user context and callback
function.
Note: If there are any outstanding calls related to the de-registered callback function, the
callback function may be called for those outstanding calls even after de-registration.
Note: NPF_F_gclassDeregister() is a synchronous function and has no completion
callback associated with it.

Input Parameters
• gclassCallbackHandle – The unique identifier representing the pair of user

context and callback function to be de-registered.

Output Parameters
None.

Return Values
• NPF_NO_ERROR – The de-registration completed successfully.
• NPF_E_BAD_CALLBACK_HANDLE – The function does not recognize the

callback handle. There is no effect to the registered callback functions.

unousAsynchronous Response
Not Applicable.

Notes
None.

 FAPI Task Group 20

Network Processing Forum Software Working Group

5.2 Functional APIs
This section describes the functions defined in the Generic Classification API. These functions
are:

• NPF_F_gclassLFB_AttrGet(): given a Generic Classifier LFB ID, returns the LFB
attributes, including a list of filter IDs.

• NPF_F_gclassFilterAttrGet(): given a filter ID, returns filter attributes.
• NPF_F_gclassLPM_RuleStore(): adds or replaces one or more rules in an LPM or No

Precedence filter.
• NPF_F_gclassLPM_RuleSetReplace(): adds a set of rules to an LPM or No Precedence

filter, replacing any it already has.
• NPF_F_gclassLPM_RuleDelete(): Deletes one or more rules from an LPM or No

Precedence filter.
• NPF_F_gclassOP_RuleSet(): Performs operations on Ordered Precedence rule sets.
• NPF_F_gclassRuleFlush(): Removes all rules from a filter.
• NPF_F_gclassFilterAttrQuery(): Queries a filter’s available rule storage capacity.
• NPF_F_gclassFilterClone(): Creates a new filter by cloning an existing one.
• NPF_F_gclassLPM_RuleGet(): Retrieves all the active rules from an LPM or No

Precedence filter.
• NPF_F_gclassOP_RuleGet(): Retrieves all the active rules from an Ordered Precedence

filter.

 FAPI Task Group 21

Network Processing Forum Software Working Group

5.2.1 NPF_F_gclassLFB_AttrGet()

NPF_error_t NPF_F_gclassLFB_AttrGet(
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID);

5.2.1.1 Description
Given an LFB’s ID, this function returns, in a callback response, an LFB Attribute structure
(NPF_gclassLFB_Attr_t) containing a list of the filters this LFB holds. Each filter is known by
a filter ID, consisting of the LFB’s ID and a number value assigned by the LFB.

5.2.1.2 Input Parameters
• cbHandle: the callback handle returned by NPF_F_gclassRegister().
• correlator: a 32-bit value that will be returned in the callback for this function call.
• cbDesired: ignored; the callback cannot be suppressed. This parameter is included only

for consistency.
• feHandle: the handle of the Forwarding Element in which the LFB is located.
• lfbID: the ID of the Classifier logical function block queried.

5.2.1.3 Output Parameters
None.

5.2.1.4 Immediate Return Codes
• NPF_NO_ERROR: function call accepted, and a callback will occur or has already occurred.
• NPF_E_BAD_CALLBACK_HANDLE: the cbHandle parameter is invalid; no callback will

occur.

5.2.1.5 Callback Response
In the callback, the NPF_gclassAsyncResponse_t structure contains a NPF_gclassLFB_Attr_t
within the union. The callback can return one of the following response codes:

• NPF_NO_ERROR: The callback response includes an NPF_gclassFilterList_t structure
indicating how many filters exist, and pointing to an array of the filter IDs defined for
the LFB.

• NPF_E_GCLASS_INVALID_FE_HANDLE: The feHandle parameter is not a valid FE handle.
• NPF_E_GCLASS_INVALID_LFB_ID: The lfbID parameter was not a valid Classifier LFB

ID. No filter IDs are returned.

 FAPI Task Group 22

Network Processing Forum Software Working Group

5.2.2 NPF_F_gclassFilterAttrGet()

NPF_error_t NPF_F_gclassFilterAttrGet(
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter);

5.2.2.1 Description
Given a filter’s ID, this function returns, in a callback response, an NPF_gclassFilter_t
structure containing the attributes of a filter: type, number of fields, field definitions, and number
of rules it contains.

5.2.2.2 Input Parameters
• cbHandle: the callback handle returned by NPF_F_gclassRegister().
• correlator: a 32-bit value that will be returned in the callback for this function call.
• cbDesired: ignored; the callback cannot be suppressed. This parameter is included only

for consistency.
• feHandle: the handle of the Forwarding Element in which the LFB is located.
• lfbID: ID of the Classifier Logical Function Block.
• filter: the filter’s ID value.

5.2.2.3 Output Parameters
None.

5.2.2.4 Immediate Return Codes
• NPF_NO_ERROR: function call accepted, and a callback will occur or has already occurred.
• NPF_E_BAD_CALLBACK_HANDLE: the cbHandle parameter is invalid; no callback will

occur.

5.2.2.5 Callback Response
In the callback, the NPF_gclassAsyncResponse_t structure contains a NPF_gclassFilter_t
within the union. The callback can return one of the following response codes:

• NPF_NO_ERROR: The callback response includes an NPF_gclassFilter_t structure
containing the attributes of the filter.

• NPF_E_GCLASS_INVALID_FE_HANDLE: The feHandle parameter is not a valid FE handle.
• NPF_E_GCLASS_INVALID_LFB_ID: The lfbID parameter was not a valid Classifier LFB

ID.
• NPF_E_GCLASS_INVALID_FILTER: The filter parameter was not a valid filter ID value.

No filter attributes are returned.

 FAPI Task Group 23

Network Processing Forum Software Working Group

5.2.3 NPF_F_gclassLPM_RuleStore()

NPF_error_t NPF_F_gclassLPM_RuleStore(
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter,
NPF_IN NPF_uint32_t nRules,
NPF_IN NPF_gclassRule_t *ruleArray);

5.2.3.1 Description
This function adds or replaces one or more rules in a LPM or No Precedence filter. If a rule in
the ruleArray has the same pattern set and length as an existing rule, the existing rule is
replaced. If a rule in the ruleArray does not match the pattern setand length in any existing
rule, the new rule is added to the set.

5.2.3.2 Input Parameters
• cbHandle: the callback handle returned by NPF_F_gclassRegister().
• correlator: a 32-bit value that will be returned in the callback for this function call.
• cbDesired: desired level of callback verbosity: always, never, or only upon error.
• feHandle: the handle of the Forwarding Element in which the LFB is located.
• lfbID: the ID of the Classifier Logical Function Block
• filter: the ID of the filter to be altered.
• nRules: the number of rules in the ruleArray.
• ruleArray: a pointer to an array of rules.

5.2.3.3 Output Parameters
None.

5.2.3.4 Immediate Return Codes
• NPF_NO_ERROR: function call accepted, and a callback will occur or has already occurred.
• NPF_E_BAD_CALLBACK_HANDLE: the cbHandle parameter is invalid; no callback will

occur.

5.2.3.5 Callback Response
The callback response includes the index (NPF_uint32_t ruleNum) of the element of the
request array (from 0 to N-1) that succeeded or failed. If callbacks are requested for all results,
the total number of response array elements will be equal to the value of nRules given in the
call. The callback can return one of the following response codes:

• NPF_NO_ERROR: A request element completed successfully.
• NPF_E_GCLASS_INVALID_FE_HANDLE: The feHandle parameter is not a valid FE handle.

 FAPI Task Group 24

Network Processing Forum Software Working Group

• NPF_E_GCLASS_INVALID_LFB_ID: The lfbID parameter was not a valid Classifier LFB
ID.

• NPF_E_GCLASS_UNKNOWN: an unknown or unspecified error occurred.
• NPF_E_GCLASS_INVALID_FILTER: The filter parameter was not a valid filter ID. No

action was performed.
• NPF_E_GCLASS_INVALID_RULE: Something about the rule was not acceptable to the

implementation.
• NPF_E_GCLASS_INVALID_PATTERN: Something about the pattern was not acceptable to

the implementation, or the pattern type was not valid for an LPM filter.
• NPF_E_GCLASS_INVALID_ACTION: Something about the action was not acceptable to the

implementation.

 FAPI Task Group 25

Network Processing Forum Software Working Group

5.2.4 NPF_F_gclassLPM_RuleSetReplace()

NPF_error_t NPF_F_gclassLPM_RuleSetReplace(
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter,
NPF_IN NPF_uint32_t nRules,
NPF_IN NPF_gclassRule_t *ruleArray);

5.2.4.1 Description
This function replaces all the rules in a LPM or No Precedence filter with a new set of rules.
Although this is equivalent to calling NPF_F_gclassLPM_RuleFlush() followed by
NPF_F_gclassLPM_RuleStore(), this function is provided so that the operation can be made to
occur atomically – as might be needed in some cases where filters provide security against
attacks or unauthorized access.

5.2.4.2 Input Parameters
• cbHandle: the callback handle returned by NPF_F_gclassRegister().
• correlator: a 32-bit value that will be returned in the callback for this function call.
• cbDesired: desired level of callback verbosity: always, never, or only upon error.
• feHandle: the handle of the Forwarding Element in which the LFB is located.
• lfbID: the ID of the Classifier Logical Function Block.
• filter: the ID value of the filter to be altered.
• nRules: the number of rules in the ruleArray.
• ruleArray: a pointer to an array of rules.

5.2.4.3 Output Parameters
None.

5.2.4.4 Immediate Return Codes
• NPF_NO_ERROR: function call accepted, and a callback will occur or has already occurred.
• NPF_E_BAD_CALLBACK_HANDLE: the cbHandle parameter is invalid; no callback will

occur.

5.2.4.5 Callback Response
The callback response includes the index (NPF_uint32_t ruleNum) of the element of the
request array (from 0 to N-1) that succeeded or failed. If callbacks are requested for all results,
the total number of response array elements will be equal to the value of nRules given in the
call. The callback can return one of the following response codes:

• NPF_NO_ERROR: A request element completed successfully.
• NPF_E_GCLASS_INVALID_FE_HANDLE: The feHandle parameter is not a valid FE handle.

 FAPI Task Group 26

Network Processing Forum Software Working Group

• NPF_E_GCLASS_INVALID_LFB_ID: The lfbID parameter was not a valid Classifier LFB
ID.

• NPF_E_GCLASS_UNKNOWN: an unknown or unspecified error occurred.
• NPF_E_GCLASS_INVALID_FILTER: The filter parameter was not a valid filter ID. No

rules were added or modified.
• NPF_E_GCLASS_INVALID_RULE: Something about the rule was not acceptable to the

implementation.
• NPF_E_GCLASS_INVALID_PATTERN: Something about the pattern was not acceptable to

the implementation, or the pattern type was not valid for an LPM filter..
• NPF_E_GCLASS_INVALID_ACTION: Something about the action was not acceptable to the

implementation.

 FAPI Task Group 27

Network Processing Forum Software Working Group

5.2.5 NPF_F_gclassLPM_RuleDelete()

NPF_error_t NPF_F_gclassLPM_RuleDelete(
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter,
NPF_IN NPF_uint32_t nPatternsnRules,
NPF_IN NPF_gclassPattgclassRule_t *pattArrayruleArray);

5.2.5.1 Description
This function deletes one or more rules in a LPM or No Precedence filter. If a pattern or set of
patterns in the pattArray ruleArray matches an existing rule, the existing rule is deleted (all
patterns must be the same). If a pattern in the pattArray ruleArray does not match the patterns
and length in any existing rule, an error is returned.

5.2.5.2 Input Parameters
• cbHandle: the callback handle returned by NPF_F_gclassRegister().
• correlator: a 32-bit value that will be returned in the callback for this function call.
• cbDesired: desired level of callback verbosity: always, never, or only upon error.
• feHandle: the handle of the Forwarding Element in which the LFB is located.
• lfbID: the ID of the Classifier Logical Function Block.
• filter: the ID of the filter to be altered.
• PatternsnRules: the number of rules in the pattArrayruleArray.
• pattArrayruleArray: a pointer to an array of patternsrules. The action field in these

rules is ignored, and may be given as zero.

5.2.5.3 Output Parameters
None.

5.2.5.4 Immediate Return Codes
• NPF_NO_ERROR: function call accepted, and a callback will occur or has already occurred.
• NPF_E_BAD_CALLBACK_HANDLE: the cbHandle parameter is invalid; no callback will

occur.

5.2.5.5 Callback Response
The callback response includes the index (NPF_uint32_t ruleNum) of the element of the
request array (from 0 to N-1) that succeeded or failed. The callback can return one of the
following response codes:

• NPF_NO_ERROR: A rule was deleted successfully.
• NPF_E_GCLASS_INVALID_FE_HANDLE: The feHandle parameter is not a valid FE handle.

 FAPI Task Group 28

Network Processing Forum Software Working Group

• NPF_E_GCLASS_INVALID_LFB_ID: The lfbID parameter was not a valid Classifier LFB
ID.

• NPF_E_GCLASS_INVALID_PATTERN: The given rule contained a pattern that was not of a
valid type for LPM filters.

• NPF_E_GCLASS_NO_SUCH_RULE: A rule was not deleted because it was not found in the
existing rule set.

• NPF_E_GCLASS_UNKNOWN: an unknown or unspecified error occurred.
• NPF_E_GCLASS_INVALID_FILTER: The filter parameter was not a valid filter ID. No

rules were deleted.

 FAPI Task Group 29

Network Processing Forum Software Working Group

5.2.6 NPF_F_gclassOP_RuleSet()

NPF_error_t NPF_F_gclassOP_RuleSet(
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter,
NPF_IN NPF_uint32_t nRules,
NPF_IN NPF_gclassOP_Rule_t *ruleArray);

5.2.6.1 Description
This function performs insert, delete, and replace operations on rules in an Ordered Precedence
filter. Each rule in the ruleArray contains its own command value to indicate what is to be done
with that rule. Possible commands are:

• NPF_gclassOP_CmdInsert: The rule is added to the filter. If its ordinal matches an
existing rule, it replaces that rule. Otherwise, it is inserted in sequence.

• NPF_gclassOP_CmdDelete: The to and from variables in the rule indicate the range of
rules to delete. The ruleNumber and rule variables in the OP_Rule structure are ignored.

• NPF_gclassOP_CmdReplace: The to and from variables in the rule indicate the range
(inclusive) of rules to replace with the new rule. The existing range is deleted, and the
new rule is inserted using the same behavior as the NPF_gclassOP_CmdInsert command.

5.2.6.2 Input Parameters
• cbHandle: the callback handle returned by NPF_F_gclassRegister().
• correlator: a 32-bit value that will be returned in the callback for this function call.
• cbDesired: desired level of callback verbosity: always, never, or only upon error.
• feHandle: the handle of the Forwarding Element in which the LFB is located.
• lfbID: the ID of the Classifier Logical Function Block.
• filter: the ID of the filter to be altered.
• nRules: the number of rules in the ruleArray.
• ruleArray: a pointer to an array of Ordered Precedence rules.

5.2.6.3 Output Parameters
None.

5.2.6.4 Immediate Return Codes
• NPF_NO_ERROR: function call accepted, and a callback will occur or has already occurred.
• NPF_E_BAD_CALLBACK_HANDLE: the cbHandle parameter is invalid; no callback will

occur.

 FAPI Task Group 30

Network Processing Forum Software Working Group

5.2.6.5 Callback Response
The callback response includes the index (NPF_uint32_t ruleNum) of the element of the
request array (from 0 to N-1) that succeeded or failed. The callback can return one of the
following response codes:

• NPF_NO_ERROR: A request element completed successfully.
• NPF_E_GCLASS_INVALID_FE_HANDLE: The feHandle parameter is not a valid FE handle.
• NPF_E_GCLASS_INVALID_LFB_ID: The lfbID parameter was not a valid Classifier LFB

ID.
• NPF_E_GCLASS_UNKNOWN: an unknown or unspecified error occurred.
• NPF_E_GCLASS_INVALID_FILTER: The filter parameter was not a valid filter ID. No

action was performed.
• NPF_E_GCLASS_INVALID_RULE: Something about the rule was not acceptable to the

implementation.
• NPF_E_GCLASS_INVALID_PATTERN: Something about the pattern was not acceptable to

the implementation.
• NPF_E_GCLASS_INVALID_ACTION: Something about the action was not acceptable to the

implementation.
• NPF_E_GCLASS_INVALID_RULE_NUMBER: The rule number was unacceptable to the

implementation.
• NPF_E_GCLASS_INVALID_COMMAND: The command code in the rule was invalid.
• NPF_E_GCLASS_INVALID_RANGE: The to/from range in the rule was invalid.

 FAPI Task Group 31

Network Processing Forum Software Working Group

5.2.7 NPF_F_gclassRuleFlush()

NPF_error_t NPF_F_gclassRuleFlush(
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter);

5.2.7.1 Description
This function removes all the rules of a filter.

5.2.7.2 Input Parameters
• cbHandle: the callback handle returned by NPF_F_gclassRegister().
• correlator: a 32-bit value that will be returned in the callback for this function call.
• cbDesired: desired level of callback verbosity: always, never, or only upon error.
• feHandle: the handle of the Forwarding Element in which the LFB is located.
• lfbID: the ID of the Classifier Logical Function Block.
• filter: the ID of the filter to be flushed.

5.2.7.3 Output Parameters
None.

5.2.7.4 Immediate Return Codes
• NPF_NO_ERROR: function call accepted, and a callback will occur or has already occurred.
• NPF_E_BAD_CALLBACK_HANDLE: the cbHandle parameter is invalid; no callback will

occur.

5.2.7.5 Callback Response
The union within the NPF_gclassAsyncResponse_t structure in the callback is unused. The
callback can return one of the following response codes:

• NPF_NO_ERROR: The request completed successfully.
• NPF_E_GCLASS_INVALID_FE_HANDLE: The feHandle parameter is not a valid FE handle.
• NPF_E_GCLASS_INVALID_LFB_ID: The lfbID parameter was not a valid Classifier LFB

ID.
• NPF_E_GCLASS_UNKNOWN: an unknown or unspecified error occurred.
• NPF_E_GCLASS_INVALID_FILTER: The filter parameter was not a valid filter ID. No

action is performed.

 FAPI Task Group 32

Network Processing Forum Software Working Group

5.2.8 NPF_F_gclassFilterAttrQuery()

NPF_error_t NPF_F_gclassFilterAttrQuery(
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter);

5.2.8.1 Description
This function returns, in a callback, the approximate amount of free space for new rules for a
given filter. This is returned as an integer, indicating the number of rules that may be added in
future calls.

This is an optional function.

Note: implementations should SHOULD be conservative in the value they return for this
function. In other words, the value should be the amount of free rule space under worst-case
conditions, so that the application can be assured that adding this many new rules will succeed.

5.2.8.2 Input Parameters
• cbHandle: the callback handle returned by NPF_F_gclassRegister().
• correlator: a 32-bit value that will be returned in the callback for this function call.
• cbDesired: ignored; the callback cannot be suppressed. This parameter is included only

for consistency.
• feHandle: the handle of the Forwarding Element in which the LFB is located.
• lfbID: the ID of the Classifier Logical Function Block.
• filter: the ID of the filter to be queried.

5.2.8.3 Output Parameters
None.

5.2.8.4 Immediate Return Codes
• NPF_NO_ERROR: function call accepted, and a callback will occur or has already occurred.
• NPF_E_BAD_CALLBACK_HANDLE: the cbHandle parameter is invalid; no callback will

occur.

5.2.8.5 Callback Response
The union within the NPF_gclassAsyncResponse_t structure in the callback contains
NPF_uint32_t nRules. The callback can return one of the following response codes:

• NPF_NO_ERROR: The request completed successfully. The callback data structure contains
the estimated amount of free space for new rules in this filter, given as an integer number
of rules that may be added.

 FAPI Task Group 33

Network Processing Forum Software Working Group

• NPF_E_GCLASS_INVALID_FE_HANDLE: The feHandle parameter is not a valid FE handle.
• NPF_E_GCLASS_INVALID_LFB_ID: The lfbID parameter was not a valid Classifier LFB

ID.
• NPF_E_GCLASS_UNKNOWN: an unknown or unspecified error occurred. The callback

response does not contain any information about free space.
• NPF_E_GCLASS_INVALID_FILTER: The filter parameter was not a valid filter ID. No

other information is returned.

5.2.9 NPF_F_gclassFilterClone()

NPF_error_t NPF_F_gclassFilterClone(
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter);

5.2.9.1 Description
This function creates a new filter by cloning an existing filter and returns, in a callback, the ID of
the new filter created. The new filter has attributes identical to the original, but the rule set is
empty except for a default rule (if applicable). This operation is not allowed unless the orignal
filter has the NPF_GCLASS_FILTER_CLONABLE attribute.

This is an optional function.

5.2.9.2 Input Parameters
• cbHandle: the callback handle returned by NPF_F_gclassRegister().
• correlator: a 32-bit value that will be returned in the callback for this function call.
• cbDesired: ignored; the callback cannot be suppressed. This parameter is included only

for consistency.
• feHandle: the handle of the Forwarding Element in which the LFB is located.
• lfbID: the ID of the Classifier Logical Function Block.
• filter: the ID of the filter to be cloned.

5.2.9.3 Output Parameters
None.

5.2.9.4 Immediate Return Codes
• NPF_NO_ERROR: function call accepted, and a callback will occur or has already occurred.
• NPF_E_BAD_CALLBACK_HANDLE: the cbHandle parameter is invalid; no callback will

occur.
• NPF_E_FUNCTION_NOT_SUPPORTED: The implementation does not support this function.

 FAPI Task Group 34

Network Processing Forum Software Working Group

5.2.9.5 Callback Response
The union within the NPF_gclassAsyncResponse_t structure in the callback contains the ID of
the new filter, as NPF_filterID_t filterID. The callback can return one of the following
response codes:

• NPF_NO_ERROR: The request completed successfully. The callback data structure contains
the estimated amount of free space for new rules in this filter, given as an integer number
of rules that may be added.

• NPF_E_GCLASS_INVALID_FE_HANDLE: The feHandle parameter is not a valid FE handle.
• NPF_E_GCLASS_INVALID_LFB_ID: The lfbID parameter was not a valid Classifier LFB

ID.
• NPF_E_GCLASS_UNKNOWN: an unknown or unspecified error occurred. The callback

response does not contain any information about free space.
• NPF_E_GCLASS_INVALID_FILTER: The filter parameter was not a valid filter ID. No

other information is returned.
• NPF_E_GCLASS_FILTER_NOT_CLONABLE: The specified filter is not clonable.

5.2.10 NPF_F_gclassLPM_RuleGet()

NPF_error_t NPF_F_gclassLPM_RuleGet(
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter);

5.2.10.1 Description
This function returns, in a callback, the complete set of rules for a given LPM or No Precedence
filter, as an NPF_gclassRuleSet_t structure.

This is an optional function.

5.2.10.2 Input Parameters
• cbHandle: the callback handle returned by NPF_F_gclassRegister().
• correlator: a 32-bit value that will be returned in the callback for this function call.
• cbDesired: ignored; the callback cannot be suppressed. This parameter is included only

for consistency.
• feHandle: the handle of the Forwarding Element in which the LFB is located.
• lfbID: the ID of the Classifier Logical Function Block.
• filter: the ID of the LPM filter to be queried.

5.2.10.3 Output Parameters
None.

 FAPI Task Group 35

Network Processing Forum Software Working Group

5.2.10.4 Immediate Return Codes
• NPF_NO_ERROR: function call accepted, and a callback will occur or has already occurred.
• NPF_E_BAD_CALLBACK_HANDLE: the cbHandle parameter is invalid; no callback will

occur.

5.2.10.5 Callback Response
If successful, the callback returns a NPF_gclassRuleSet_t structure that points to an array of
rules, one element for each active rule in the filter. The callback can return one of the following
response codes:

• NPF_NO_ERROR: The request completed successfully. The callback data structure contains
a pointer to the set of active the estimated amount of free space for new rules in this filter.

• NPF_E_GCLASS_INVALID_FE_HANDLE: The feHandle parameter is not a valid FE handle.
• NPF_E_GCLASS_INVALID_LFB_ID: The lfbID parameter was not a valid Classifier LFB

ID.
• NPF_E_GCLASS_UNKNOWN: an unknown or unspecified error occurred. The callback

response does not contain any information about free space.
• NPF_E_GCLASS_INVALID_FILTER: The filter parameter was not a valid LPM or No

Precedence filter ID. No other information is returned.

 FAPI Task Group 36

Network Processing Forum Software Working Group

5.2.11 NPF_F_gclassOP_RuleGet()

NPF_error_t NPF_F_gclassOP_RuleGet(
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter,
NPF_IN NPF_uint32_t to,
NPF_IN NPF_uint32_t from);

5.2.11.1 Description
This function returns, in a callback, the complete set of rules for a given Ordered Precedence
filter, as an NPF_gclassOP_RuleSet_t structure.

This is an optional function.

5.2.11.2 Input Parameters
• cbHandle: the callback handle returned by NPF_F_gclassRegister().
• correlator: a 32-bit value that will be returned in the callback for this function call.
• cbDesired: ignored; the callback cannot be suppressed. This parameter is included only

for consistency.
• feHandle: the handle of the Forwarding Element in which the LFB is located.
• lfbID: the ID of the Classifier Logical Function Block.
• filter: the ID of the Ordered Precedence filter to be queried.
• to, from: the range of rule numbers to be returned. The function will return all rules

with a number greater than or equal to to, and less than or equal to from. If to and from
are both zero, all active rules will be returned.

5.2.11.3 Output Parameters
None.

5.2.11.4 Immediate Return Codes
• NPF_NO_ERROR: function call accepted, and a callback will occur or has already occurred.
• NPF_E_BAD_CALLBACK_HANDLE: the cbHandle parameter is invalid; no callback will

occur.

5.2.11.5 Callback Response
If successful, the callback returns a NPF_gclassOP_RuleSet_t structure that points to an array
of rules, one element for each active rule returned. The callback can return one of the following
response codes:

 FAPI Task Group 37

Network Processing Forum Software Working Group

• NPF_NO_ERROR: The request completed successfully. The callback data structure contains
the estimated amount of free space for newa pointer to the set of active rules in this filter.

• NPF_E_GCLASS_INVALID_FE_HANDLE: The feHandle parameter is not a valid FE handle.
• NPF_E_GCLASS_INVALID_LFB_ID: The lfbID parameter was not a valid Classifier LFB

ID.
• NPF_E_GCLASS_UNKNOWN: an unknown or unspecified error occurred. The callback

response does not contain any information about free space.
• NPF_E_GCLASS_INVALID_FILTER: The filter parameter was not a valid Ordered

Precedence filter ID. No other information is returned.

 FAPI Task Group 38

Network Processing Forum Software Working Group

6 References

[FORCESREQ] ”Requirements for Separation of IP Control and Forwarding”, H. Khosravi, T.

Anderson et al, November, 2003 (RFC 3654)
[FAPITOPO] ”FAPI Topology Manager API”, work in progress, Network Processing Forum

SWAPI Functional API TG, 2004.
[SWAPICON] “Software API Conventions Revision 2”,

http://www.npforum.org/techinfo/APIConventions2_IA.pdf, Network
Processing Forum SWAPI Foundations TG, September 2003

 FAPI Task Group 39

http://www.npforum.org/techinfo/APIConventions2_IA.pdf

Network Processing Forum Software Working Group

 FAPI Task Group 40

Network Processing Forum Software Working Group

APPENDIX A HEADER FILE INFORMATION

/*
 * npf_f_gclass.h
 *
 * Header file for the NPF Generic Classification Functional API
 */
#ifndef NPF_F_GCLASS__H
#define NPF_F_GCLASS__H

/*
 * LFB Type assignment
 */
#define NPF_LFB_TYPE_GENERIC_CLASSIFIER 13

/*
 * Filter ID (a unique attribute of every filter within the LFB)
 */
typedef NPF_uint32_t NPF_FilterID_t;

/*
 * Filter Type
 */
typedef enum {
 NPF_GCLASS_TYPE_NO_PRECEDENCE = 1,

NPF_GCLASS_TYPE_ORDERED_PRECEDENCE = 2,
NPF_GCLASS_TYPE_LPM = 3

} NPF_gclassFilterType_t;

/************************************
 Protocol Type Indicator

 This structure identifies a protocol by its protocol number.
 Protocol numbers are assigned by several different numbering
 authorities, so there is a protocol family identifier to say
 what number series the protocol number belongs to. The IEEE
 and IETF number assignments can be found on the IANA web
 site,http://www.iana.org/numbers.html. The “NPF Metadata”
 family identifies a number of metadata types; these type
 codes are used in the “protocol” variable of NPF_protocol_t.
************************************/

typedef enum {
 NPF_PROTO_FAM_LLC = 1, /* IEEE 802 LSAP assignments */
 NPF_PROTO_FAM_ET = 2, /* IEEE EtherType assignments */
 NPF_PROTO_FAM_PPP = 3, /* IETF PPP protocol numbers */
 NPF_PROTO_FAM_IP = 4, /* IETF IP protocol numbers */
 NPF_PROTO_FAM_NPF = 5, /* NP Forum-defined numbers */
 NPF_PROTO_FAM_UNK = 6, /* Unknown protocol */
 NPF_PROTO_FAM_ANY = 7, /* Wildcard value */
 NPF_PROTO_FAM_META = 8 /* NPF Metadata */
} NPF_protocolFamily_t;

typedef struct {
 NPF_protocolFamily_t family;
 NPF_uint16_t protocol;

 FAPI Task Group 41

Network Processing Forum Software Working Group

} NPF_protocol_t;

/*
 * Filter Attribute
 */
typedef enum {
 NPF_GCLASS_FILTER_FIXED = 1, /* Filter cannot be modified */
 NPF_GCLASS_FILTER_CONFIGURABLE= 3, /* Rules may be changed */
 NPF_GCLASS_FILTER_CLONABLE = 2, /* Filter can be cloned */
} NPF_gclassFilterAttr_t;

/*
 * The definition of a Field within a filter
 */
typedef struct {
 NPF_protocol_t protocol; /* IDs the protocol header */
 NPF_boolean_t validShID; /* TRUE if subHeaderID is significant */
 NPF_uint32_t subHeaderID;/* Subheader type code (e.g. option #) */
 NPF_uint32_t offset; /* starting bit offset within header */
 NPF_uint32_t length; /* length of the field in bits */
} NPF_gclassField_t;

/*
 * Filter description structure
 */
typedef struct {
 NPF_FilterID_t filterNum; /* ID of this filter */
 NPF_gclassFilterType_t type; /* Precedence algorithm type */
 NPF_uint32_t nfields; /* Number of fields examined */
 NPF_gclassField_t *field; /* Array of field definitions */
 NPF_uint32_t nRules; /* Number of active rules */
 NPF_gclassFilterAttr_t attr; /* Filter attribute */
} NPF_gclassFilter_t;

/*
 * Pattern Types
 */
typedef enum {
 NPF_GCLASS_PATTERN_TYPE_VALUE = 1,
 NPF_GCLASS_PATTERN_TYPE_RANGE = 2,
 NPF_GCLASS_PATTERN_TYPE_MASK = 3,
 NPF_GCLASS_PATTERN_TYPE_PREFIX = 4
} NPF_gclassPatternType_t;

/*
 * Pattern Structure
 */

typedef struct {
 NPF_uint32_t fieldNum; /* Field number within the filter */
 NPF_uint32_t fieldLen; /* Field length in bits */
 NPF_gclassPattType_t type;
 union {
 struct {
 NPF_uint8_t *value;
 } value;

 FAPI Task Group 42

Network Processing Forum Software Working Group

 struct {
 NPF_uint8_t *minValue;
 NPF_uint8_t *maxValue;
 } range;
 struct {
 NPF_uint8_t *value;
 NPF_uint8_t *mask;
 } mask;
 struct {
 NPF_uint8_t *value;
 NPF_uint32_t prefixLen;
 } prefix;
 } u;
} NPF_gclassPatt_t;

/*
 * Action Structure
 */
typedef enum {
 NPF_filActTypeClassID = 1, /* Return a value */
 NPF_filActTypeNextFilter = 2, /* Go to next filter, same LFB */
} NPF_gclassActionType_t;

typedef struct {
 NPF_gclassActionType_t type;
 union {
 NPF_uint32_t classID; /* Value to be returned */
 NPF_FilterID_t nextFilter; /* next filter, same LFB */
 } u;
} NPF_gclassAction_t;

#define NPF_F_GCLASS_CLASSID_VALUE_NO_MATCH 0

/*
 * Rule Definition Structures
 */
typedef struct {
 NPF_uint32_t numPatts; /* Number of patterns in the rule */
 NPF_gclassPatt_t *pattern; /* Pointer to array of patterns */
 NPF_gclassAction_t action; /* Action for this rule */
} NPF_gclassRule_t;

typedef enum {
 NPF_gclassOP_CmdInsert = 1, /* Insert a rule */
 NPF_gclassOP_CmdDelete = 2, /* Delete one or more rules */
 NPF_gclassOP_CmdReplace = 3, /* Replace one or more rules */
} NPF_gclassOP_Cmd_t;

typedef struct {
 NPF_uint32_t ruleNumber; /* ord. of rule inserted or replacing */
 NPF_gclassOP_Cmd_t command; /* Insert, Delete, or Replace */
 NPF_uint32_t from; /* Lower ordinal of affected range */
 NPF_uint32_t to; /* Upper ordinal of affected range */
 NPF_gclassRule_t rule; /* Rule definition structure */
} NPF_gclassOP_Rule_t;

 FAPI Task Group 43

Network Processing Forum Software Working Group

/*
 * Rule list structures returned from xxxRuleGet() functions
 */
typedef struct {
 NPF_uint32_t nRules; /* Number of rules in the array */
 NPF_gclassRule_t *rules; /* Pointer to array of rules */
} NPF_gclassRuleSet_t;

typedef struct {
 NPF_uint32_t nRules; /* Number of rules in the array */
 NPF_gclassOP_Rule_t *rules; /* Pointer to array of rules */
} NPF_gclassOP_RuleSet_t;

/*
 * This structure contains an array of filter numbers,
 * along with the array length. It is used in the response
 * from NPF_F_gclassLFB_AttrGet().
 */
typedef struct {
 NPF_uint32_t nFilters; /* Number of filters in LFB */
 NPF_FilterID_t *filters; /* One for each filter */
} NPF_gclassFilterList_t;

/*
 * LFB Attribute Structure
 */
typedef struct {
 NPF_boolean_t canCreate; /* TRUE if new filters can be created */
 NPF_boolean_t canClone; /* TRUE if filters can be cloned */
 NPF_gclassFilterList_t filterList; /* List of active filters */
} NPF_gclassLFB_Attr_t;

/*
 * Asynchronous error codes (returned in function callbacks)
 */
#define GC_ERRNPF_GC_ERR(n) ((NPF_gclassReturnCode_t) NPF_GCLASS_BASE_ERR +
(n))

#define NPF_E_GCLASS_INVALID_FILTER GC_ERRNPF_GC_ERR(0)
#define NPF_E_GCLASS_NO_SUCH_RULE GC_ERRNPF_GC_ERR(1)
#define NPF_E_GCLASS_UNKNOWN GC_ERRNPF_GC_ERR(2)
#define NPF_E_GCLASS_INVALID_RULE GC_ERRNPF_GC_ERR(3)
#define NPF_E_GCLASS_INVALID_RULE_NUMBER GC_ERRNPF_GC_ERR(4)
#define NPF_E_GCLASS_INVALID_PATTERN GC_ERRNPF_GC_ERR(5)
#define NPF_E_GCLASS_INVALID_ACTION GC_ERRNPF_GC_ERR(6)
#define NPF_E_GCLASS_INVALID_RANGE GC_ERRNPF_GC_ERR(7)
#define NPF_E_GCLASS_INVALID_COMMAND GC_ERRNPF_GC_ERR(8)
#define NPF_E_GCLASS_INVALID_FE_HANDLE GC_ERRNPF_GC_ERR(9)
#define NPF_E_GCLASS_INVALID_LFB_ID GC_ERRNPF_GC_ERR(10)
#define NPF_E_GCLASS_OPTION_NOT_SUPPORTED GC_ERRNPF_GC_ERR(11)
#define NPF_E_GCLASS_FILTER_NOT_CLONABLE NPF_GC_ERR(12)

typedef NPF_uint32_t NPF_gclassReturnCode_t;

/*
 * Completion callback types
 */
typedef enum NPF_gclassCallbackType {

 FAPI Task Group 44

Network Processing Forum Software Working Group

NPF_GCLASS_FILTER_ATTR_GET = 1,
NPF_GCLASS_LPM_RULE_STORE = 2,
NPF_GCLASS_LPM_RULE_SET_REPLACE = 3,
NPF_GCLASS_LPM_RULE_DELETE = 4,
NPF_GCLASS_OP_RULE_SET = 5,
NPF_GCLASS_RULE_FLUSH = 6,
NPF_GCLASS_FILTER_ATTR_QUERY = 7,
NPF_GCLASS_FILTER_LIST_GET = 8,
NPF_GCLASS_FILTER_CLONE = 9,
NPF_GCLASS_LPM_RULE_GET = 10,
NPF_GLCASS_OP_RULE_GET = 11

} NPF_gclassCallbackType_t;

/*
 * The callback function receives the following structure containing
 * one or more asynchronous responses from a single function call.
 * There are several possibilities:
 * 1. The called function does a single request
 * - numCallbackResp = 1, and the resp array has just one element.
 * - allOK = TRUE if the request completed without error
 * and the only return value is the response code.
 * - if allOK = FALSE, the "resp" structure has the error code.
 * 2. the called function supports an array of requests
 * a. All completed successfully, at the same time
 * - allOK = TRUE, n_resp = 0.
 * b. Some completed, but not all, or there are values besides
 * the response code to return:
 * - allOK = FALSE, n_resp = the number completed
 * - the "resp" array will contain one element for
 * each completed request, with the error code
 * in the NPF_gclassAsyncResponse_t structure, along
 * with any other information needed to identify
 * which request element the response belongs to.
 * - Callback function invocations are repeated in
 * this fashion until all requests are complete.
 * Responses are not repeated for request elements
 * already indicated as complete in earlier callback
 * function invocations.
 */
typedef struct {
 NPF_gclassCallbackType_t type; /* Identifies the function called */
 NPF_boolean_t allOK; /* TRUE if all requests completed OK*/
 NPF_uint32_t numResp;/* Number of responses in array */
 NPF_gclassAsyncResponse_t *resp; /* Array of response structures */
} NPF_gclassCallbackData_t;

/*
 * An asynchronous response contains an error/success code,
 * other optional information that correlates the response
 * to an element in a request array, and in some cases a
 * function-specific structure embedded in a union. One or
 * more of these is passed to the callback function as an
 * array within the NPF_gclassCallbackData_t structure.
 */
typedef struct { /* Asynchronous Response Structure */

NPF_gclassReturnCode_t error; /* Error code for this response */

 FAPI Task Group 45

Network Processing Forum Software Working Group

union { /* Function-specific structures: */
 NPF_gclassFilter_t filterAttr; /* NPF_F_gclassFilterAttrGet() */
 NPF_uint32_t ruleNum; /* RuleStore/Set/Del fcns */
 NPF_gclassLFB_Attr_t lfbAttr; /* NPF_F_gclassLFB_AttrGet() */
 NPF_uint32_t nRules; /* FilterAttrQuery() */
 NPF_gclassRuleSet_t ruleSet; /* NPF_F_gclassLPM_RuleGet() */
 NPF_gclassOP_RuleSet_t OP_RuleSet;/* NPF_F_gclassOP_RuleGet() */
 NPF_filterID_t filterID; /* NPF_F_gclassFilterClone() */
 NPF_uint32_t unused; /* All other functions */
} u;

} NPF_gclassAsyncResponse_t;

/**
 *
 * Function Definitions
 *
 **/

/*
 * Client’s Completion Callback Function
 */
typedef void (*NPF_F_gclassCallbackFunc_t)(

NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_gclassCallbackData_t gclassCallbackData);

/*
 * Completion Callback Registration Function
 */
NPF_error_t NPF_F_gclassRegister(

NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_F_gclassCallbackFunc_t gclassCallbackFunc,
NPF_OUT NPF_CallbackHandle_t *gclassCallbackHandle);

/*
 * Completion Callback Derigistration Function
 */
NPF_error_t NPF_F_gclassDeregister(

NPF_IN NPF_CallbackHandle_t callbackHandle);

/*
 * NPF_F_gclassLFB_AttrGet()
 *
 * Retrieve the IDs of filters from the LFB
 */
NPF_error_t NPF_F_gclassLFB_AttrGet(

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN LFB_ID_t lfbID);

/*
 * NPF_F_gclassFilterAttrGet()
 *
 * Discover a filter’s attributes
 */
NPF_error_t NPF_F_gclassFilterAttrGet(

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,

 FAPI Task Group 46

Network Processing Forum Software Working Group

NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter);

/*
 * NPF_F_gclassLPM_RuleStore()
 *
 * Add or replace rules in an LPM or No Precedence filter.
 */
NPF_error_t NPF_F_gclassLPM_RuleStore(

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter,
NPF_IN NPF_uint32_t nRules,
NPF_IN NPF_gclassRule_t *ruleArray);

/*
 * NPF_F_gclassLPM_RuleSetReplace()
 *
 * Replace all the rules in an LPM or No Precedence filter
 */
NPF_error_t NPF_F_gclassLPM_RuleSetReplace(

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter,
NPF_IN NPF_uint32_t nRules,
NPF_IN NPF_gclassRule_t *ruleArray);

/*
 * NPF_F_gclassLPM_RuleDelete()
 *
 * Delete one or more rules in an LPM or No Precedence filter
 */
NPF_error_t NPF_F_gclassLPM_RuleDelete(

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter,
NPF_IN NPF_uint32_t nPatternsnRules,
NPF_IN NPF_gclassPattgclassRule_t *pattArrayruleArray);

/*
 * NPF_F_gclassOP_RuleSet()
 *
 * Insert/delete/replace rules in an Ordered Precedence filter
 */
NPF_error_t NPF_F_gclassOP_RuleSet(

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter,
NPF_IN NPF_uint32_t nRules,
NPF_IN NPF_gclassOP_Rule_t *ruleArray);

 FAPI Task Group 47

Network Processing Forum Software Working Group

/*
 * NPF_F_gclassRuleFlush()
 *
 * Remove all the rules from a filter.
 */
NPF_error_t NPF_F_gclassRuleFlush(

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t ilter);

/*
 * NPF_F_gclassFilterAttrQuery()
 *
 * Returns the estimated amount of free space for new rules
 */
NPF_error_t NPF_F_gclassFilterAttrQuery(

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter);

/*
 * NPF_F_gclassLPM_RuleGet()
 *
 * Retrieve the set of active rules from an LPM or No Precedence filter
 */
NPF_error_t NPF_F_gclassLPM_RuleGet(

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FfilterID_t filter);

/*
 * NPF_F_gclassOP_RuleGet()
 *
 * Retrieve the set of active rules of an Ordered Precedence filter
 */
NPF_error_t NPF_F_gclassOP_RuleGet(

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter,
NPF_IN NPF_uint32_t to,
NPF_IN NPF_uint32_t from);

NPF_error_t NPF_F_gclassRuleFlush(
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter);

NPF_error_t NPF_F_gclassFilterAttrQuery(

 FAPI Task Group 48

Network Processing Forum Software Working Group

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter);

NPF_error_t NPF_F_gclassFilterClone(
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter);

NPF_error_t NPF_F_gclassLPM_RuleGet(
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter);

NPF_error_t NPF_F_gclassOP_RuleGet(
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t cbDesired,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_LFB_ID_t lfbID,
NPF_IN NPF_FilterID_t filter,
NPF_IN NPF_uint32_t to,
NPF_IN NPF_uint32_t from);

#endif /* NPF_F_GCLASS__H */

 FAPI Task Group 49

Network Processing Forum Software Working Group

 FAPI Task Group 50

Network Processing Forum Software Working Group

APPENDIX B ACKNOWLEDGEMENTS

Working Group Chair: Alex Conta

Working Group Editor: John Renwick

Task Group Chair: Alistair Munro

The following individuals are acknowledged for their participation in the FAPI TG
teleconferences, plenary meetings, mailing list, and/or for their NPF contributions used for the
development of this Implementation Agreement. This list may not be all-inclusive since only
names supplied by member companies for inclusion here will be listed. The NPF wishes to
thank all active participants to this Implementation Agreement, whether listed here or not.

The list is in alphabetical order of last names:

Gamil Cain, Intel
Philippe Damon, IBM
Alan DeKok, IDT
Jason Goldschmidt, Sun Microsystems
Zsolt Harszti, Ericsson
Todd Kealy, Solidum
Vinoj Kumar, Agere Systems
David Maxwell, IDT
John Renwick, Agere Systems
Michael Speer, Sun Microsystems
Narender Vangati, Agere Systems

 FAPI Task Group 51

Network Processing Forum Software Working Group

 FAPI Task Group 52

APPENDIX C LIST OF COMPANIES BELONGING TO NPF DURING APPROVAL
PROCESS

Agere Systems HCL Technologies Nortel Networks

Altera Hifn NTT Electronics

AMCC IBM PMC Sierra

Analog Devices IDT Seaway Networks

Avici Systems Infineon Technologies AG Sensory Networks

Cypress Semiconductor Intel Sun Microsystems

Enigma Semiconductor IP Fabrics Teja Technologies

Ericsson IP Infusion TranSwitch

Erlang Technologies Kawasaki LSI U4EA Group

ETRI Motorola Xelerated

EZChip NetLogic Xilinx

Flextronics Nokia

	Revision History
	Introduction
	Acronyms / Definitions
	Assumptions
	Scope
	External Requirements and Dependencies

	LFB Detailed Description
	Generic Classifier LFB Type Code
	LFB Input Ports
	Metadata Required

	LFB Output Ports
	Metadata Produced

	Relationship with other LFBs

	Data Types
	Common LFB Data Types.
	Filter ID
	Filter Class
	Filter Type
	Filter Attribute
	Protocol Type
	Field Definition
	Filter Definition
	Patterns
	Action Types
	ClassID Values
	Rules
	Default Rule

	Data Structures for Completion Callbacks
	Asynchronous Response
	Callback Type
	Callback Data

	Data Structures for Event Notifications
	Error Codes
	Common NPF Error Codes
	LFB Specific Error Codes

	Functional APIs (FAPIs)
	Required Functional APIs
	Completion Callback Function
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Value
	Asynchronous Response
	Notes
	Completion Callback Registration Function
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Completion Callback Deregistration
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	unousAsynchronous Response
	Notes

	Functional APIs
	NPF_F_gclassLFB_AttrGet()
	Description
	Input Parameters
	Output Parameters
	Immediate Return Codes
	Callback Response

	NPF_F_gclassFilterAttrGet()
	Description
	Input Parameters
	Output Parameters
	Immediate Return Codes
	Callback Response

	NPF_F_gclassLPM_RuleStore()
	Description
	Input Parameters
	Output Parameters
	Immediate Return Codes
	Callback Response

	NPF_F_gclassLPM_RuleSetReplace()
	Description
	Input Parameters
	Output Parameters
	Immediate Return Codes
	Callback Response

	NPF_F_gclassLPM_RuleDelete()
	Description
	Input Parameters
	Output Parameters
	Immediate Return Codes
	Callback Response

	NPF_F_gclassOP_RuleSet()
	Description
	Input Parameters
	Output Parameters
	Immediate Return Codes
	Callback Response

	NPF_F_gclassRuleFlush()
	Description
	Input Parameters
	Output Parameters
	Immediate Return Codes
	Callback Response

	NPF_F_gclassFilterAttrQuery()
	Description
	Input Parameters
	Output Parameters
	Immediate Return Codes
	Callback Response

	NPF_F_gclassFilterClone()
	Description
	Input Parameters
	Output Parameters
	Immediate Return Codes
	Callback Response

	NPF_F_gclassLPM_RuleGet()
	Description
	Input Parameters
	Output Parameters
	Immediate Return Codes
	Callback Response

	NPF_F_gclassOP_RuleGet()
	Description
	Input Parameters
	Output Parameters
	Immediate Return Codes
	Callback Response

	References

