
Network Processing Forum Software Working Group

ATM Traffic Manager LFB and Functional API
Implementation Agreement

August 16, 2005
Revision 1.0

Editor:
Vedvyas Shanbhogue, Intel, vedvyas.shanbhogue@intel.com

Copyright © 2005 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THIS DOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", “MAY", and "OPTIONAL" in the remainder of this document are to be interpreted as
described in the NPF Software API Conventions Implementation Agreement revision 1.0.

For additional information contact:
The Network Processing Forum, 39355 California Street,

Suite 307, Fremont, CA 94538
+1 510 608-5990 phone info@npforum.org

 ATM Task Group 1

mailto:vedvyas.shanbhogue@intel.com
mailto:info@npforum.org

Network Processing Forum Software Working Group

Table of Contents
1 Revision History ... 3
2 Introduction... 4

2.1 Acronyms.. 4
2.2 Assumptions.. 4
2.3 Scope ... 4
2.4 External Requirements and Dependencies.. 4

3 ATM Traffic Manager Description... 6
3.1 ATM Traffic Manager Inputs ... 7
3.2 ATM Traffic Manager Outputs... 7
3.3 Accepted Inputs .. 7
3.4 Cell Modifications .. 8
3.5 Relationship with Other LFBs .. 8

4 Data Types .. 10
4.1 Common LFB Data Types .. 10
4.2 Data Structures for Completion Callbacks ... 10
4.3 Data Structures for Event Notifications.. 11
4.4 Error Codes ... 11

5 Functional API (FAPI).. 13
5.1 Required Functions ... 13
5.2 Conditional Functions... 13
5.3 Optional Functions.. 15

6 References ... 16
Appendix A Header File Information.. 17
Appendix B Acknowledgements... 19
Appendix C List of companies belonging to NPF during approval process 20

Table of Figures
Figure 3.1: ATM Traffic Manager LFB ..6
Figure 3.2: Traffic Manager Instances ..6
Figure 3.3: Cooperation between ATM Traffic Manager and AAL5 Transmit LFB8

List of Tables
Table 3.1: ATM Traffic Manager LFB Inputs ..7
Table 3.2: Input Metadata for ATM Traffic Manager LFB..7
Table 3.3: ATM Traffic Manager LFB Outputs ...7
Table 3.4: Output Metadata for ATM Traffic Manager LFB ...7
Table 4.1: Callback type to callback data mapping table... 11

 ATM Task Group 2

Network Processing Forum Software Working Group

1 Revision History
Revision Date Reason for Changes

1.0 08/16/2005 Rev 1.0 of the ATM Traffic Manager LFB and Functional API
Implementation Agreement. Source: npf2004.156.12.

 ATM Task Group 3

Network Processing Forum Software Working Group

2 Introduction
This contribution defines the ATM Traffic Manager LFB and lists configurations that are required in the
LFB.

2.1 Acronyms
• ABR: Available Bit Rate
• ATM: Asynchronous Transfer Mode
• API: Application Programming Interface
• CLP: Cell Loss Priority
• CBR: Constant Bit Rate
• CDVT: CDV Tolerance
• FAPI: Functional API
• GFR: Guaranteed Frame Rate
• IA: Implementation Agreement
• ID: Identifier
• LFB: Logical Functional Block
• LP: Loss Priority
• MBS: Maximum Burst Size

R

icator

t

l

2.2 A
B obtains its configurations from the ATM Configuration Manager

e of

Scope
he configurations required by the LFB for traffic management on ATM virtual links

s and Dependencies
This document depends on the following documents:

• MCR: Minimum Cell Rate
• MFS: Maximum Frame Size
• Nrt-VBR: Non-Real-time VB
• NNI: Network Node Interface
• PCR: Peak Cell Rate
• PTI: Payload Type Ind
• SCR: Sustainable Cell Rate
• SDU: Service Data Unit
• TM: Traffic Managemen
• UBR: Unspecified Bit Rate
• UNI: User Network Interface
• UPC: Usage Parameter Contro
• VBR: Variable Bit Rate

 ssumptions
The ATM Traffic Manager LF
Functional API implementation. The mechanism used to obtain this configuration is not in the scop
NPF.

2.3
This IA describes t
(VP/VC links) to ensure compliance to the established traffic contract. The IA also specifies the metadata
generated and consumed by this LFB.

2.4 External Requirement

 ATM Task Group 4

Network Processing Forum Software Working Group

• This document depends on the NPF Software API Conventions
ions. (Refer section 5.1 of

 Implementation Agreement
Software API

.0

section 5.2 of Software API Conventions IA Rev 2.0

• Thi
Rev

 Rev

• AT
arch c

document [SWAPICON] for basic type definit
Conventions IA Revision 2.0).

• This document depends on Software API Conventions Implementation agreement Revision 2
for the below type definitions

 – Refer o NPF_error_t
o NPF_callbackHandle_t - Refer section 5.2 of Software API Conventions IA Rev 2.0
o NPF_callbackType_t - Refer section 5.2 of Software API Conventions IA Rev 2.0

 o ev 2.0
o

NPF_userContext_t - Refer section 5.2 of Software API Conventions IA R
NPF_errorReporting_t - Refer section 5.2 of Software API Conventions IA Rev 2.0

s document depends on Topology Manager Functional API Implementation Agreement
ision 1.0 for the below type definitions
o NPF_BlockId_t – Refer section 3.1.1 of Topology Manager Functional API IA Rev 1.0
o NPF_FE_Handle_t – Refer section 3.1.1 of Topology Manager Functional API IA

1.0
M Software API Architecture Framework Implementation Agreement Revision 1.0 defines the
ite tural framework for the ATM FAPIs.

• ATM Configuration Manager Functional API Implementation Agreement Revision 1.0 defines
the functions to configure and manage ATM LFBs on a forwarding element.

 ATM Task Group 5

Network Processing Forum Software Working Group

3 ATM Traffic Manager Description
The ATM Traffic Manager is used to ensure conformance of the traffic on a virtual link to the established
traffic contract for a virtual link by using mechanisms like buffering, traffic shaping, queuing and
scheduling, etc. on the virtual links of the connection. The ATM Traffic Manager LFB is modeled as
shown in Figure 3.1

Figure 3.1: ATM Traffic Manager LFB

The LFB may contain multiple instances of traffic manager each associated with a VP or VC links. Such
instances are depicted in Figure 3.2. Incoming ATM SDU are assigned to appropriate traffic manager
instance according to metadata received with ATM SDU identifying the link on which the SDU is to be
transmitted. More than one traffic manager instances may process an ATM SDU to perform hierarchical
traffic management at VP and VC level. The maximum number of traffic managers is an attribute of the
ATM Traffic Manager LFB and may be queried as such.

Figure 3.2: Traffic Manager Instances

 ATM Task Group 6

Network Processing Forum Software Working Group

3.1 ATM Traffic Manager Inputs

Table 3.1: ATM Traffic Manager LFB Inputs

Symbolic Name Input ID Description
ATM_SDU_IN 0 This is the only input for the ATM Traffic Manager

LFB and is used to receive ATM SDU’s to be
transmitted on the virtual link specified by the
metadata.

3.1.1 Metadata Required

Table 3.2: Input Metadata for ATM Traffic Manager LFB

Metadata tag Access method Description
META_VPL_ID Read Metadata identifying the VP link on which the

ATM cell is to be transmitted.
META_VCL_ID Read Metadata identifying the VC link on which the

ATM cell is to be transmitted. This metadata is
specified only when the corresponding VP link is
terminated at this node.

META_ATM_PTI Read/Re-write Payload Type of ATM cell. May be modified if
EFCI is changed.

META_ATM_LP Read Loss priority of the ATM cell.

3.2 ATM Traffic Manager Outputs

Table 3.3: ATM Traffic Manager LFB Outputs

Symbolic Name Output ID Description
ATM_SDU_OUT 1 This is the normal output for the ATM Traffic

Manager LFB. ATM SDU’s are sent on this output
for transmission on the line.

EXC 2 The cell is sent to this output if the SDU has to be
discarded due to various traffic management
actions, lack of buffer space, etc.

3.2.1.1 Metadata Produced

Table 3.4: Output Metadata for ATM Traffic Manager LFB

Metadata tag Access method Description
META_ATM_PTI Read/Re-write Payload Type of ATM cell to be transmitted. May

be modified if EFCI is changed.

3.3 Accepted Inputs

 ATM Task Group 7

Network Processing Forum Software Working Group

The ATM Traffic Manager LFB can accept any ATM SDU’s for transmission over UNI or NNI.

3.4 Cell Modifications
The ATM SDU’s received by the ATM Traffic Manager LFB are not subject to any modification and are
not consumed by this LFB and always exit through one of the outputs. The ATM Traffic Manager LFB
sequentially processes ATM SDU’s entering the LFB input and belonging to a given virtual link. That
means that ATM Traffic Manager LFB does not change the order of transmission of the ATM SDU’s on a
given virtual link.

3.5 Relationship with Other LFBs
The ATM Traffic Manager LFB is placed in the processing chain before the ATM Header Generator
LFB. The ATM Traffic Manager LFB receives primarily ATM SDU’s from previous LFB and passes
them to the next LFB in chain after suitable traffic management actions like buffering, shaping,
scheduling, etc. The sequence of actions that configures an ATM Traffic Manager LFB and cooperating
AAL5 Transmit LFB instance, and cooperation between these two LFBs is schematically depicted in
Figure 3.3.
The ATM Traffic Manager LFB may be preceded in the topology by any LFB that can produce the
information required by the ATM Traffic Manager LFB at its input. Downstream (not necessarily next) of
the ATM Traffic Manager LFB, there should be LFBs that can utilize the information generated at output
by ATM Traffic Manager LFB. The exact design and connections between the ATM Traffic Manager
LFB and cooperating blocks is specific to the vendor that provides Forwarding Element design and FAPI
implementation.
The EXC output of the ATM Traffic Manager LFB could be connected to an LFB that receives SDU’s
which are the traffic manager considers not fit for transmission on the line due to reasons like lack of
buffer space, etc. Depending on system design this may be either dropper, which drops SDU’s or other
LFB that makes a decision on how to utilize such SDU’s.

Figure 3.3: Cooperation between ATM Traffic Manager and AAL5 Transmit LFB

This figure shows part of example Forwarding Element that contains AAL5 Transmit LFB and ATM
Traffic Manager LFBs. These two blocks are connected in chain and configured by the ATM
configuration manager. The sequence of actions that configure a virtual channel link on the interface may
be defined as follows (see corresponding numbers in circles in the figure):

1. The NPF ATM SAPI is invoked to create a terminated VC link. The system software under the
NPF ATM SAPI assigns a VC Link ID ‘ID1’ to the VC link and invokes the ATM configuration
manager FAPI to create the VC Link. This causes a VC link instance to be created in the AAL5

 ATM Task Group 8

Network Processing Forum Software Working Group

Transmit LFB. An instance of ATM Traffic Manager is created in the ATM Traffic Manager LFB
to manage the traffic sent on the VC Link with VC Link ID ‘ID1’.

2. The AAL5 Transmit LFB receives a packet from the AAL5 service user LFB. The AAL5
Transmit LFB performs the segmentation of the packet in to ATM SDU’s.

3. The ATM SDU is forwarded to the ATM Traffic Manager LFB along with the PTI and LP over
the ATM_SDU_OUT output of the AAL5 Transmit LFB. The ATM Traffic Manager LFB uses the
VC Link ID from the metadata to determine the Traffic Manager instance associated with this VC
link and performs the required traffic management actions like buffering, shaping, etc. as
configured by the service category associated with the VC link. Additionally, the ATM traffic
manager may carry out a another level of traffic management on the ATM SDU using the Traffic
Manager instance configured for the VP Link carrying the VC Link with ID ‘ID1’.

4. When the ATM Traffic Manager determines it is time to schedule transmission of an ATM cell
on that VC Link, the ATM SDU is forwarded to the next LFB in the chain for further processing.

.

 ATM Task Group 9

Network Processing Forum Software Working Group

4 Data Types
4.1 Common LFB Data Types
4.1.1 LFB Type Code

It is possible to use the FAPI Topology Discovery APIs to discover an ATM Traffic Manager LFB in
a forwarding element using a block type value for the ATM Traffic Manager LFB.

#define NPF_F_ATMTRAFFICMANAGER_LFB_TYPE 36

4.1.2 ATM Traffic Manager Configurations
The ATM Traffic Manager LFB requires below configurations for traffic manager configured for each
virtual link.

• Virtual Link ID
• Virtual Link Type – VP or VC Link
• Service category of the connection - CBR, rt-VBR, nrt-VBR, ABR, UBR, GFR, UBR with PCR,

UBR without PCR, UBR with minimum desired cell rate (MDCR), UBR with MDCR and PCR,
other

• Peak cell rate (PCR)
• Sustainable cell rate (SCR)
• Maximum burst size (MBS)
• Minimum cell rate (MCR)
• Maximum frame size (MFS)
• Cell delay variation tolerance (CDVT)
• Priority associated with UBR service
• Buffer threshold configured for each virtual link
• Queueing cell drop policy

4.2 Data Structures for Completion Callbacks
4.2.1 ATM Traffic Manager LFB Attributes query response

The attributes of an ATM Traffic Manager LFB are the following:
typ
 NPF_uint32_t

edef struct {
maxTrafficManagers; /* Maximum possible TMs */

 NPF_uint32_t curNumTrafficManagers; /* Current number of TMs */
} NPF_F_ATMTrafficManagerLFB_AttrQueryResponse_t;

The maxTrafficManagers field contains the maximum number of traffic managers supported in
this ATM Traffic Manager LFB. The curNumTrafficManagers field contains the number of traffic
managers currently established in the ATM Traffic Manager LFB.

4.2.2 Asynchronous Response
The Asynchronous Response data structure is used during callbacks in response to API invocations.

/*
* An asynchronous response contains an error or success code, and in some
* cases a function specific structure embedded in a union.
*/
typedef struct { /* Asynchronous Response Structure */
 NPF_F_ATMTrafficManagerErrorType_t error; /* Error code */
 union {
 /* NPF_F_ATMTrafficManagerLFB_AttributesQuery() */

 ATM Task Group 10

Network Processing Forum Software Working Group

 NPF_F_ATMTrafficManagerLFB_AttrQueryResponse_t LFB_AttrQueryResp;

 to indicate reason for invoking the callback function.

mpletion Callback Types, to be found in the callback

def enum NPF_F_ATMTrafficManagerCallbackType {

onse contains an error or success code and a function-specific structure

e callback function receives the following structure containing

re, along with any other

def struct {
icManagerCallbackType_t type; /* Which function called? */

The callback data that returned for different callback types is summarized in Table 4.1.

Table 4.1: Callback type to callback data mapping table

 } u;
} NPF_F_ATMTrafficManagerAsyncResp_t;

4.2.3 Callback Type
This enumeration is used

/*
* Co
* data structure, NPF_F_ATMTrafficManagerCallbackData_t.
*/
type
 NPF_F_ATMTRAFFICMANAGER_ATTR_QUERY = 1,
} NPF_F_ATMTrafficManagerCallbackType_t;

4.2.3.1 Callback Data
An asynchronous resp
embedded in a union in the NPF_F_ATMTrafficManagerCallbackData_t structure.

/*
* Th
* of a asynchronous responses from a function call. For the completed
* request, the error code is specified in the
* NPF_F_ATMTrafficManagerAsyncResponse_t structu
* information
*/
type
 NPF_F_ATMTraff
 NPF_IN NPF_BlockId_t blockId;/* ID of LFB generating callback */
 NPF_F_ATMTrafficManagerAsyncResp_t resp; /* Response struct */
} NPF_F_ATMTrafficManagerCallbackData_t;

Callback Type Callback Data
NPF_F_ATMTRAFFICMANAGER_ATTR_QUERY NPF_F_ATMTrafficManagerLFB_AttrQueryResponse_t

4.3 Data Structures for Event Notifications
4.3.1 Event Notification Types
None

4.3.2 Event Notification Structures
None

4.4 Error Codes
4.4.1 Common NPF Error Codes

The common error codes that are returned by ATM Traffic Manager LFB are listed below:
nvoked.

• - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative.

• NPF_NO_ERROR - This value MUST be returned when a function was successfully i
This value is also used in completion callbacks where it MUST be the only value used to
signify success.
NPF_E_UNKNOWN

 ATM Task Group 11

Network Processing Forum Software Working Group

• NPF_E_BAD_CALLBACK_HANDLE - A function was invoked with a callback handle that did
not correspond to a valid NPF callback handle as returned by a registration function, or a

•

inter and a user context that was previously used for an

•

•

4.4.2
This sec APIs error codes. These

ults of the requested operations.

/*
typ
efine NPF_ATMTRAFFICMANAGER_BASE_ERR\

_TYPE * 100)
pe_t)\

callback handle was registered with a registration function belonging to a different API than
the function call where the handle was passed in.
NPF_E_BAD_CALLBACK_FUNCTION - A callback registration was invoked with a function
pointer parameter that was invalid.

• NPF_E_CALLBACK_ALREADY_REGISTERED - A callback or event registration was invoked
with a pair composed of a function po
identical registration.
NPF_E_FUNCTION_NOT_SUPPORTED - This error value MUST be returned when an optional
function call is not implemented by an implementation. This error value MUST NOT be
returned by any required function call. This error value MUST be returned as the function
return value (i.e., synchronously).
NPF_E_RESOURCE_EXISTS - A duplicate request to create a resource was detected. No new
resource was created.

• NPF_E_RESOURCE_NONEXISTENT - A duplicate request to destroy or free a resource was
detected. The resource was previously destroyed or never existed.

LFB Specific Error Codes
tion defines ATM Traffic Manager Configuration and management

codes are used in callbacks to deliver res

Asynchronous error codes (returned in function callbacks) */
edef NPF_uint32_t NPF_F_ATMTrafficManagerErrorType_t;

#d
 (NPF_F_ATMTRAFFICMANAGER_LFB
#define ATMTRAFMGR_ERR(n) ((NPF_F_ATMTrafficManagerErrorTy

RR+ (n)) (NPF_ATMTRAFFICMANAGER_BASE_E
#define NPF_E_ATMTRAFMGR_INVALID_TRAFMGR_BLOCK_ID ATMTRAFMGR_ERR(0)

 ATM Task Group 12

Network Processing Forum Software Working Group

5 Functional API (FAPI)

5.1 Required Functions
None

5.2 Conditional Functions
The conditional API functions for registration and de-registration of the completion callback
functions need to be implemented if any of the optional functions defined for this LFB are
implemented.

5.2.1 Completion Callback Function
typedef void (*NPF_F_ATMTrafficManagerCallbackFunc_t) (

NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_correlator_t correlator,

NPF_IN NPF_F_ATMTrafficManagerCallbackData_t data);

5.2.1.1 Description
This callback function is for the application to register an asynchronous response handling routine to
the ATM Traffic Manager API implementation. This callback function is intended to be implemented
by the application, and be registered to the ATM Traffic Manager API implementation through the
NPF_F_ATMTrafficManagerRegister function.

5.2.1.2 Input Parameters
• userContext - The context item that was supplied by the application when the completion

callback routine was registered.
• correlator - The correlator item that was supplied by the application when the ATM

Traffic Manager API function call was invoked.
• data - The response information related to the particular callback type.

5.2.1.3 Output Parameters
None

5.2.1.4 Return Values
None

5.2.2 Completion Callback Registration Function
NPF_error_t NPF_F_ATMTrafficManagerRegister(

NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_F_ATMTrafficManagerCallbackFunc_t callbackFunc,
NPF_OUT NPF_callbackHandle_t *callbackHandle);

5.2.2.1 Description
This function is used by an application to register its completion callback function for receiving
asynchronous responses related to ATM Traffic Manager API function calls. Applications MAY
register multiple callback functions using this function. The pair of userContext and
callbackFunc identifies the callback function. For each individual pair, a unique
callbackHandle will be assigned for future reference. Since the callback function is identified by
both userContext and callbackFunc, duplicate registration of the same callback function with a
different userContext is allowed. Also, the same userContext can be shared among different
callback functions. Duplicate registration of the same userContext and callbackFunc pair has no
effect, and will output a handle that is already assigned to the pair, and will return
NPF_E_ALREADY_REGISTERED.

 ATM Task Group 13

Network Processing Forum Software Working Group

5.2.2.2 Input Parameters
• userContext – A context item for uniquely identifying the context of the application

registering the completion callback function. The exact value will be provided back to the
registered completion callback function as its first parameter when it is called. Applications
can assign any value to the userContext and the value is completely opaque to the API
implementation.

• callbackFunc – The pointer to the completion callback function to be registered.
5.2.2.3 Output Parameters

• callbackHandle - A unique identifier assigned for the registered userContext and
callbackFunc pair. This handle will be used by the application to specify which callback
function to be called when invoking asynchronous NPF ATM Traffic Manager API functions.
It will also be used when deregistering the userContext and callbackFunc pair.

5.2.2.4 Return Values
• NPF_NO_ERROR - The registration completed successfully.
• NPF_E_BAD_CALLBACK_FUNCTION – The callbackFunc is NULL, or otherwise invalid.
• NPF_E_ALREADY_REGISTERED – No new registration was made since the userContext

and callbackFunc pair was already registered.
5.2.2.5 Notes

• This API function may be invoked by any application interested in receiving asynchronous
responses for ATM Traffic Manager API function calls.

• This function operates in a synchronous manner, providing a return value as listed above.

5.2.3 Completion Callback Deregistration Function
NPF_error_t NPF_F_ATMTrafficManagerDeregister(

NPF_IN NPF_callbackHandle_t callbackHandle);

5.2.3.1 Description
This function is used by an application to deregister a user context and callback function pair.

5.2.3.2 Input Parameters
• callbackHandle - The unique identifier returned to the application when the completion

callback routine was registered.
5.2.3.3 Output Parameters

None
5.2.3.4 Return Values

• NPF_NO_ERROR - De-registration was completed successfully.
• NPF_E_BAD_CALLBACK_HANDLE – De-registration did not complete successfully due to

problems with the callback handle provided.
5.2.3.5 Notes

• This API function MAY be invoked by any application no longer interested in receiving
asynchronous responses for ATM Traffic Manager API function calls.
This function operates in a synchronous manner, providing a return valu• e as listed above.

n

• There may be a timing window where outstanding callbacks continue to be delivered to the

callback routine after de-registration function has been invoked. It is the implementation’s
responsibility to guarantee that the callback function is not called after the deregister functio
has returned.

 ATM Task Group 14

Network Processing Forum Software Working Group

5.3 Optional Functions
5.3.1 LFB Attributes Query Function
NPF_error_t NPF_F_ATMTrafficManagerLFB_AttributesQuery(

NPF_IN NPF_callbackHandle_t callbackHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FE_Handle_t feHandle,
NPF_IN NPF_BlockId_t blockId);

5.3.1.1 Description
This function call is used to query ONLY one ATM Traffic Manager LFB’s attributes at a time. If the
ATM Traffic Manager LFB exists, the various attributes of this LFB are returned in the completion
callback.

5.3.1.2 Input Parameters
• callbackHandle - The unique identifier provided to the application when the completion

callback routine was registered.
• correlator - A unique application invocation context that will be supplied to the

asynchronous completion callback routine.
• errorReporting - An indication of whether the application desires to receive an

asynchronous completion callback for this API invocation.
• feHandle - The FE Handle returned by NPF_F_topologyGetFEInfoList() call.
• blockId – The unique identification of the ATM Traffic Manager LFB.

5.3.1.3 Output Parameters
None

5.3.1.4 Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The LFB attributes was not queried due to invalid ATM Traffic Manager

block ID passed in input parameters.
• NPF_E_BAD_CALLBACK_HANDLE - The LFB attributes was not queried because the callback

handle was invalid.
• NPF_E_FUNCTION_NOT_SUPPORTED - The function call is not supported.

5.3.1.5 Asynchronous Response
There may be multiple asynchronous callbacks to this request. Possible error codes are:

• NPF_NO_ERROR – Operation completed successfully.
• NPF_E_ATMTRAFMGR_INVALID_TRAFMGR_BLOCK_ID – LFB ID is not an ID of LFB that

has ATM Traffic Manager functionality
 field of the unioThe LFB_AttrQueryResponse n in the

NPF_F_ATMTrafficManagerAsyncResponse_t structure returned in callback contains response
data. The error code is returned in the error field.

 ATM Task Group 15

Network Processing Forum Software Working Group

6 References
The following documents contain provisions, which through reference in this text constitute provisions of
this specification. At the time of publication, the editions indicated were valid. All referenced documents
are subject to revision, and parties to agreements based on this specification are encouraged to investigate
the possibility of applying the most recent editions of the standards indicated below.

[FORCESREQ] “Requirement for separation of IP control and forwarding”, H.Khosravi,
T.Anderson et al, November, 2003 (RFC 3654).

[FAPITOPO] ”Topology Manager Functional API”,
http://www.npforum.org/techinfo/topology_fapi_npf2002%20438%2023.pdf,
Network Processing Forum.

[SWAPICON] “Software API Conventions Revision 2”,
http://www.npforum.org/techinfo/APIConventions2_IA.pdf, Network Processing
Forum.

[ATMLFBARC] “ATM Software API Architecture Framework”,
http://www.npforum.org/techinfo/npf2004.088.12.pdf, Network Processing Forum.

[ATMMGR] “ATM Configuration Manager Functional API”,
http://www.npforum.org/techinfo/npf2004.165.31.pdf, Network Processing Forum.

 ATM Task Group 16

http://www.npforum.org/techinfo/npf2004.088.12.pdf
http://www.npforum.org/techinfo/npf2004.165.31.pdf

Network Processing Forum Software Working Group

Appendix A Header File Information
/*
 * This header file defines typedefs, constants and structures
 * for the NP Forum ATM Traffic Manager Functional API
 */

#ifndef __NPF_F_ATM_TRAFFICMANAGER_H__
#define __NPF_F_ATM_TRAFFICMANAGER_H__

#ifdef __cplusplus
extern "C" {
#endif

/* It is possible to use the FAPI Topology Discovery
 APIs to discover an ATM Traffic Manager LFB
 in a forwarding element. */
#define NPF_F_ATMTRAFFICMGR_LFB_TYPE 36

/* Asynchronous error codes (returned in function callbacks) */
typedef NPF_uint32_t NPF_F_ATMTrafficManagerErrorType_t;
#define NPF_ATMTRAFFICMANAGER_BASE_ERR\
 (NPF_F_ATMTRAFFICMANAGER_LFB_TYPE * 100)

#define ATMTRAFMGR_ERR(n) ((NPF_F_ATMTrafficManagerErrorType_t)\
 (NPF_ATMTRAFFICMANAGER_BASE_ERR+ (n))

#define NPF_E_ATMTRAFMGR_INVALID_TRAFMGR_BLOCK_ID ATMTRAFMGR_ERR(0)

/**
 * Enumerations and types for ATM Traffic Manager attributes and*
 * completion callback data types *
 **/

/* The attributes of an ATM Traffic Manager */
typedef struct {
 NPF_uint32_t maxTrafficManagers; /* Maximum possible TMs */
 NPF_uint32_t curNumTrafficManagers; /* Current number of TMs */
} NPF_F_ATMTrafficManagerLFB_AttrQueryResponse_t;

/*
* An asynchronous response contains an error or success code, and in some
* cases a function specific structure embedded in a union.
*/
typedef struct { /* Asynchronous Response Structure */
 NPF_F_ATMTrafficManagerErrorType_t error; /* Error code */
 union {
 /* NPF_F_ATMTrafficManagerLFB_AttributesQuery() */
 NPF_F_ATMTrafficManagerLFB_AttrQueryResponse_t LFB_AttrQueryResp;
 } u;
} NPF_F_ATMTrafficManagerAsyncResp_t;

/*
* Completion Callback Types, to be found in the callback
* data structure, NPF_F_ATMTrafficManagerCallbackData_t.
*/
typedef enum NPF_F_ATMTrafficManagerCallbackType {
 NPF_F_ATMTRAFFICMANAGER_ATTR_QUERY = 1, /* Attributes Query */
} NPF_F_ATMTrafficManagerCallbackType_t;

 ATM Task Group 17

Network Processing Forum Software Working Group

/*
* The callback function receives the following structure containing
* of a asynchronous responses from a function call. For the completed
* request, the error code is specified in the
* NPF_F_ATMTrafficManagerAsyncResponse_t structure, along with any other
* information
*/
typedef struct {
 NPF_F_ATMTrafficManagerCallbackType_t type; /* Which function called? */
 NPF_IN NPF_BlockId_t blockId;/* ID of LFB generating callback */
 NPF_F_ATMTrafficManagerAsyncResp_t resp; /* Response struct */
} NPF_F_ATMTrafficManagerCallbackData_t;

/* Type for a callback function to be registered with ATM traffic Mgr */
typedef void (*NPF_F_ATMTrafficManagerCallbackFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_F_ATMTrafficManagerCallbackData_t data);

/* Completion Callback Registration Function */
NPF_error_t NPF_F_ATMTrafficManagerRegister(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_F_ATMTrafficManagerCallbackFunc_t callbackFunc,
 NPF_OUT NPF_callbackHandle_t *callbackHandle);

/* Completion Callback Deregistration Function */
NPF_error_t NPF_F_ATMTrafficManagerDeregister(
 NPF_IN NPF_callbackHandle_t callbackHandle);

/* LFB Attributes Query Function */
NPF_error_t NPF_F_ATMTrafficManagerLFB_AttributesQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId);

#ifdef __cplusplus
}
#endif

#endif /* __NPF_F_ATM_TRAFFICMANAGER_H__ */

 ATM Task Group 18

Network Processing Forum Software Working Group

Appendix B Acknowledgements

Working Group Chair: Alex Conta

Task Group Chair: Per Wollbrand

The following individuals are acknowledged for their participation to ATM Task Group teleconferences,
plenary meetings, mailing list, and/or for their NPF contributions used for the development of this
Implementation Agreement. This list may not be all-inclusive since only names supplied by member
companies for inclusion here will be listed. The NPF wishes to thank all active participants to this
Implementation Agreement, whether listed here or not.

The list is in alphabetical order of last names:

Pål Dammvik, Ericsson
Patrik Herneld, Ericsson
Ajay Kamalvanshi, Nokia
Jaroslaw Kogut, Intel
Arthur Mackay, Freescale
Stephen Nadas, Ericsson
Michael Persson, Ericsson
John Renwick, Agere Systems
Vedvyas Shanbhogue (ed.), Intel
Keith Williamson, Motorola
Weislaw Wisniewski, Intel
Per Wollbrand, Ericsson

 ATM Task Group 19

Network Processing Forum Software Working Group

Appendix C List of companies belonging to NPF during approval process

Agere Systems IDT Sensory Networks

AMCC Infineon Technologies AG Sun Microsystems

Analog Devices Intel Teja Technologies

Cypress Semiconductor IP Fabrics TranSwitch

Enigma Semiconductor IP Infusion U4EA Group

Ericsson Motorola Wintegra

Flextronics Mercury Computer Systems Xelerated

Freescale Semiconductor Nokia Xilinx

HCL Technologies NTT Electronics

Hifn PMC-Sierra

 ATM Task Group 20

	Revision History
	Introduction
	Acronyms
	Assumptions
	Scope
	External Requirements and Dependencies

	ATM Traffic Manager Description
	ATM Traffic Manager Inputs
	Metadata Required

	ATM Traffic Manager Outputs
	Metadata Produced

	Accepted Inputs
	Cell Modifications
	Relationship with Other LFBs

	Data Types
	Common LFB Data Types
	LFB Type Code
	ATM Traffic Manager Configurations

	Data Structures for Completion Callbacks
	ATM Traffic Manager LFB Attributes query response
	Asynchronous Response
	Callback Type
	Callback Data

	Data Structures for Event Notifications
	Event Notification Types
	Event Notification Structures

	Error Codes
	Common NPF Error Codes
	LFB Specific Error Codes

	Functional API (FAPI)
	Required Functions
	Conditional Functions
	Completion Callback Function
	Description
	Input Parameters
	Output Parameters
	Return Values

	Completion Callback Registration Function
	Description
	Input Parameters
	Output Parameters
	Return Values
	Notes

	Completion Callback Deregistration Function
	Description
	Input Parameters
	Output Parameters
	Return Values
	Notes

	Optional Functions
	LFB Attributes Query Function
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	References

