
Network Processing Forum Software Working Group

ATM Configuration Manager Functional API
Implementation Agreement

April 11, 2005
Revision 1.0

Editor:
Vedvyas Shanbhogue, Intel, vedvyas.shanbhogue@intel.com

Copyright © 2005 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THIS DOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", “MAY", and "OPTIONAL" in the remainder of this document are to be interpreted as
described in the NPF Software API Conventions Implementation Agreement revision 1.0.

For additional information contact:
The Network Processing Forum, 39355 California Street,

Suite 307, Fremont, CA 94538
+1 510 608-5990 phone info@npforum.org

 ATM Task Group 1

mailto:vedvyas.shanbhogue@intel.com

Network Processing Forum Software Working Group

Table of Contents
1 Revision History ... 4
2 Introduction... 4

2.1 Modeling the system... 5
2.2 Configuration Objects and Operations.. 8
2.3 Acronyms / Definitions... 8
2.4 Assumptions 9
2.5 Scope 9
2.6 External Requirements and Dependencies.. 10

3 ATM Configuration Manager Description ... 10
3.1 ATM Configuration Manager Inputs .. 11
3.2 ATM Configuration Manager Outputs ... 11
3.3 Accepted Cell Types ... 11
3.4 Cell Modifications .. 11
3.5 Relationship with Other LFBs .. 11

4 Data Types .. 12
4.1 Common LFB Data Types .. 12
4.2 ATM Traffic Management and Quality of Service Types.. 16
4.3 ATM Adaptation Layer Types.. 17
4.4 ATM Virtual Link Data Types ... 22
4.5 ATM AAL2 Channel Data Types... 33
4.6 ATM Interface Data Types ... 38
4.7 ATM OAM Data Types .. 39
4.8 ATM Configuration Manager Specific Data Types.. 57

5 Functional API (FAPI).. 67
5.1 Registration/De-Registration Functions.. 67
5.2 ATM Interface Configuration Functions .. 71
5.3 ATM Virtual Link Management Functions .. 78
5.4 AAL2 channel management functions.. 97
5.5 ATM OAM services functions.. 110

6 References 121
Appendix A HEADER FILE INFORMATION.. 122
Appendix B Acknowledgements... 166
Appendix C List of companies belonging to NPF DURING APPROVAL PROCESS 167
Table of Figures

Figure 2.1: ATM Virtual Circuit Connection ...4
Figure 2.2: ATM Virtual Path Connection ...5
Figure 2.3: Example system configuration ..6
Figure 2.4: Backplane switch Headers...7
Figure 2.5: Data Flow Directions with reference to Forwarding Element7
Figure 3.1: Relationship of ATM Configuration Manager to other ATM group LFBs...11

List of Tables

Table 2.1: Operations on Configuration Objects ..8
Table 4.1: Switch address configuration structure parameter usage...............................15
Table 4.2: VC Link cross-connection types ...27
Table 4.3: VP Link cross-connection types..28

 ATM Task Group 2

Network Processing Forum Software Working Group

Table 4.4: AAL2 Channel cross-connection types...36
Table 4.5: Performance Monitoring Configurations ..44
Table 4.6: ATM Configuration Manager API Function to Type Code Mapping61
Table 4.7: ATM Configuration Manager API Function to Return Type mapping62
Table 4.8: Event types and data ...66

 ATM Task Group 3

Network Processing Forum Software Working Group

1 Revision History
Revision Date Reason for Changes

1.0 4/11/2004 Rev 1.0 of the ATM Configuration Manager Functional API
Implementation Agreement. Source was npf2004.165.30.

2 Introduction
This document specifies the APIs for the ATM configuration Manager LFB. The ATM configuration
manager LFB is the entity responsible for configuration and management of ATM LFBs on a FE. The
ATM configuration manager provides APIs for

ATM connection management •

•

•

•

•

•

AAL2 channel management
ATM OAM services
There are two types of ATM connections:
Virtual Path Connections (VPC)
Virtual Circuit Connections (VCC)

An ATM virtual connection (VPC or VCC) consists of series of connection virtual links between two end
points. The cross connection of these virtual links is performed at the ATM switches along the path set up
for the connection between the end points. The virtual links which are part of a VCC are called Virtual
Channel (VC) links and the virtual links which are part of a VPC are called a Virtual Path (VP) link.
Cross connects established (VP or VC cross connects) route the cells between the virtual links based on
the VPI value (for VPC) or the VPI/VCI value (for VCC). When the VCC or VPC are provisioned by the
network management functions, such VCC or VPC is called Permanent Virtual Connections (PVC).
When the VCC or VPC is setup by means of a dynamic signaling procedure, such VCC or VPC are called
Switched Virtual Connections (SVC). A Virtual Connection (SVC or PVC) can be a point-to-point or a
point-to-multipoint connection. Each Virtual Connection (SVC or PVC) has associated with it a traffic
descriptor. The virtual links which form this virtual connection inherit the traffic descriptors of the virtual
connection. A Virtual Circuit Connection is illustrated by Figure 2.1: ATM Virtual Circuit Connection.

Figure 2.1: ATM Virtual Circuit Connection

 ATM Task Group 4

Network Processing Forum Software Working Group

A Virtual Path Connection is illustrated by Figure 2.2: ATM Virtual Path Connection.

Figure 2.2: ATM Virtual Path Connection

2.1 Modeling the system
This specification defines the APIs at the Element Abstraction Layer in the NPF architecture for
configuration and control of ATM objects on forwarding elements. The ATM Configuration Manager
functional APIs hide less of the details of the system, exposing the presence of multiple forwarding
devices and their individual capacities. However the ATM Configuration Manager functional APIs are
vendor neutral, and a program using these APIs should be able to execute correctly on any conforming
vendor’s platform as long as the needed set of logical functions are present.
The physical realization of the NPF model may consist of multiple blades interconnected over a
backplane in the system. In one realization this backplane could be a gigabit Ethernet connecting the
blades in a rack mount system. In other realizations this backplane could be an ATM based switch fabric.
Each forwarding element may terminate zero or more backplane interfaces. The backplane interfaces are
identified by a unique identifier called the backplane interface ID. The traffic is carried between the
blades in the system using an abstraction called the backplane switch link. The backplane switch links are
cross connected to one or more external links on the blade. The external link could be an ATM virtual
channel, ATM virtual path or an AAL2 channel.
Certain systems would need to create a VP/VC link or an AAL2 channel which is visible only within the
forwarding element on which it is provisioned i.e. the scope of the link is limited to the FE on which it is
created as opposed to external VP/VC links or AAL2 channels which are visible outside of the forwarding
element over the ATM interface. To model such systems a concept of an internal and external link is
introduced. An external link (VC link or AAL2 channel) is one which is visible external to the system and
carries traffic across an ATM network interface. Internal links however may not be visible outside of the
system and may be used to carry traffic only within the system.
These internal links may be cross connected to backplane links or to external links. One example of a
cross connection to an external link would be where an external VC link is cross connected to an internal
VC link with the internal VC link being bound to a packet handler interface. This is illustrated in using
the example system below where in the external link #7 is cross connected to internal link #3 which is
bound to a packet handler interface towards the host processor.
As discussed above setting up VPC/VCC would require two external VC or VP links to be cross
connected. Similarly setting up an AAL2 CID cross connects would require two external AAL2 channels
to be cross connected. The cross connect may be realized using an VP/VC cross connect LFB or an AAL2
channel cross connect LFB when the two external VP/VC links or channels to be cross connected are
configured on the same forwarding element. When the external VP/VC links or AAL2 channels are
configured on different forwarding elements, the cross connect is realized by using a backplane switch
link
This concept is illustrated using the example system shown in 0 where two forwarding elements are
connected over a backplane. To cross connect external link 1 on Forwarding element #2 to external link 4
on Forwarding element #1, a backplane link i.e. backplane link #1 is used as the interconnect. The

 ATM Task Group 5

Network Processing Forum Software Working Group

external links 2 and 3 on the forwarding element are locally interconnected on the Forwarding element
#2.

Figure 2.3: Example system configuration

Likewise the internal link 1 and internal link 2 are examples of VC links. These links do not terminate on
any ATM interface. They are cross connected using a backplane switch link i.e. backplane link #2. In this
example configuration, the internal link 1 and 2 are attached to a packet handler interface to carry the data
received on these links to the host processor.
When an external link is cross connected to a backplane link, the payload received over the external link
may be encapsulated with a header containing a backplane switch address to allow routing/switching over
the backplane. The backplane link connects two end points ‘A’ and ‘B’ over the backplane. The headers
used for sending data in the ‘A’ to ‘B’ direction may not be same as those used to send data in the ‘B’ to
‘A’ direction as illustrated by 0.

 ATM Task Group 6

Network Processing Forum Software Working Group

Figure 2.4: Backplane switch Headers

In order to allow such configurations the backplane switch link on a forwarding element it is associated
with a pair of backplane switch addresses i.e. a receive switch address and a transmit switch address.
When a FE sends data to the backplane, it creates the header using the transmit switch address configured
for the backplane link on which the data is to be sent. When data is received from the backplane by an FE,
the switch address in the header is used to determine the ID of the backplane link on which the data was
received.

2.1.1 Data Directions
The conventions used when specifying the direction of data flow for external links and backplane links is
as illustrated in 0.

Figure 2.5: Data Flow Directions with reference to Forwarding Element

When a VP/VC link direction is configured as receive, the direction of traffic flow on that link is from the
network to the forwarding element. When the VP/VC link direction is configured as transmit, the
direction of traffic flow on that link is from the forwarding element to the network. When the VP/VC link
direction is configured as duplex, the traffic flows in both directions i.e. from the network to the
forwarding element as well as from the forwarding element to the network.
When a backplane switch link is configured as receive, the direction of traffic flow on that link is from the
backplane to the forwarding element. When the backplane switch link is configured as transmit, the
direction of the traffic flow on that link is from the forwarding element to the backplane. When the
backplane switch link is configured as duplex, the traffic flows in both directions i.e. from the backplane
to the forwarding element as well as from the forwarding element to the backplane.

 ATM Task Group 7

Network Processing Forum Software Working Group

2.2 Configuration Objects and Operations
The ATM configuration manager functional API is used to manipulate the following objects in the
forwarding element:

ATM Interfaces •

•

•

•

•

•

•

Virtual Channel (VC) Links
Virtual Path (VP) Links
AAL2 channels
VC Link cross connect
VP Link cross connect
AAL2 channel cross connect

Each object is identified by a unique identifier (ID) that is assigned by the FAPI client. The objects ID can
be assigned any value by the FAPI client and is completely opaque to the FAPI implementation. In
general each object has the following basic type of operations defined:

Table 2.1: Operations on Configuration Objects
Operation Description
Set This operation is used to configure the object or to modify the

characteristics of a previously configured object
Delete This operation is used to delete a previously configured object
Query This operation is used to query the configuration of a previously

configured object. The API functions allow performing a bulk query to
retrieve the configurations of all objects of a given type configured in the
forwarding element.

StatsGet Operation is used to query the statistics accumulated by the queried
object

StatsEnable Enable statistics collection for the specified object
StatsDisable Disable statistics collection for the specified object

Additional operations in addition to these basic operations are defined as needed for the objects.

2.3 Acronyms / Definitions
AAL: ATM Adaptation Layer •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

ABR: Available Bit Rate
AIS: Alarm Indication Signal
ATM: Asynchronous Transfer Mode
BR: Backward Reporting
CBR: Constant Bit Rate
CC: Continuity Check
CDV: Cell Delay Variation
CDVT: CDV Tolerance
CE: Control Element
CLP: Cell Loss Priority
CP: Control Plane
CPCS: Common Part Convergence Sub layer
CPS: Common Part Sub layer
F4: OAM flow on virtual path level

 ATM Task Group 8

Network Processing Forum Software Working Group

F5: OAM flow on virtual channel level •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

FE: Forwarding Element
FEC: Forward Error Correction
FPM: Forward Performance Monitoring
GFR: Guaranteed Frame Rate
ID: Identifier
IP: Internet Protocol
LB: Loopback
LES: Loop Emulation Service
MBS: Maximum Burst Size
MCR: Minimum Cell Rate
MFS: Maximum Frame Size
NNI: Network Node Interface
Nrt-VBR: Non-Real-time VBR
OAM: Operation and Maintenance
PCR: Peak Cell Rate
PM: Performance Monitoring
PTI: Payload Type Indicator
PVC: Permanent Virtual Connection
QoS: Quality of Service
RDI: Remote Defect Indication
rt-VBR: Real-Time VBR
SCR: Sustainable Cell Rate
SDT: Structured Data Transfer
SDU: Service Data Unit
SRTS: Synchronous Residual Time Stamp
SVC: Switched Virtual Connection
TM: Traffic Management
UBR: Unspecified Bit Rate
UNI: User Network Interface
UPC: Usage Parameter Control
VBR: Variable Bit Rate
VC: Virtual Connection
VCC: Virtual Channel Connection
VCI: Virtual Channel Identifier
VPC: Virtual Path Connection
VPI: Virtual Path Identifier

2.4 Assumptions
None

2.5 Scope
This document covers ATM Configuration Manager related data structure definitions. The NPF Software
Conventions Implementation Agreement Document [SWAPICON] documents data types and structures

 ATM Task Group 9

Network Processing Forum Software Working Group

generally used by all API specifications; however, specific structures are defined in this document. The
document also specifies the syntax and semantics of the functions provided by the ATM configuration
manager.

2.6 External Requirements and Dependencies
This document depends on the following documents:

This document depends on the NPF Software API Conventions Implementation Agreement
document [SWAPICON] for basic type definitions (Refer section 5.1 of Software API
Conventions IA Revision 2.0).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

ATM Software API Architecture Framework defines the architectural framework for the ATM
FAPIs
This document depends on Interface Management API Implementation Agreement (Core
Function Set) Revision 3.0 for below data types definitions:

o NPF_IfHandle_t – Defined in section 3.1.3 of on Interface Management API
Implementation Agreement (Core Function Set) Revision 3.0.

This document depends on Software API Conventions Implementation agreement Revision 2.0
for below type definitions

o NPF_error_t – Refer section 5.2 of Software API Conventions IA Rev 2.0
o NPF_callbackHandle_t - Refer section 5.2 of Software API Conventions IA Rev 2.0
o NPF_callbackType_t - Refer section 5.2 of Software API Conventions IA Rev 2.0
o NPF_userContext_t - Refer section 5.2 of Software API Conventions IA Rev 2.0
o NPF_eventMask_t - Refer section 5.2 of Software API Conventions IA Rev 2.0
o NPF_errorReporting_t - Refer section 5.2 of Software API Conventions IA Rev 2.0

This document depends on Topology Manager Functional API Implementation Agreement
Revision 1.0 for below type definitions

o NPF_BlockId_t – Refer section 3.1.1 of Topology Manager Functional API IA Rev 1.0
o NPF_FE_Handle_t – Refer section 3.1.1 of Topology Manager Functional API IA Rev

1.0

3 ATM Configuration Manager Description
The ATM Configuration Manager provides an aggregation of the FAPI function calls provided by the
ATM LFB to present a unified view to the ATM FAPI clients. The FAPI client invokes FAPI function
calls provided by the ATM Configuration Manager. The ATM Configuration Manager then distributes
the configurations to the underlying LFBs. The mechanism used to distribute such configurations is
vendor specific and thus not in the scope of NPF.
ATM being connection oriented by nature requires that multiple LFBs in an FE be updated for a given
circuit establishment. For example, establishment of a bi-directional AAL2 terminated virtual connection
requires the following LFB data structures to be updated:

ATM Header Classifier
ATM OAM Receive
ATM Policer
AAL2 CPS Receive
AAL2 SAR SSCS Receive
AAL2 CPS Transmit
AAL2 SAR SSCS Transmit
ATM Traffic Manager
ATM OAM Transmit
ATM Header Generator

 ATM Task Group 10

Network Processing Forum Software Working Group

When these LFBs are located on the same FE, the number of function calls required to be made by the
FAPI client to carry out operations (create, delete etc.) is optimized by having a ATM Configuration
Manager that aggregates the parameters of the function calls to be invoked on individual LFBs to
configure various ATM objects like connections, channels, interfaces etc.

3.1 ATM Configuration Manager Inputs
The ATM Configuration Manager has no packet/cell inputs and does not do any data path processing.

3.2 ATM Configuration Manager Outputs
The ATM Configuration Manager has no packet/cell outputs and does not do any data path processing.

3.3 Accepted Cell Types
The ATM Configuration Manager has no packet/cell outputs and does not do any data path processing

3.4 Cell Modifications
The ATM Configuration Manager has no packet/cell outputs and does not do any data path processing.

3.5 Relationship with Other LFBs
The relationship of the ATM Configuration Manager with other LFBs in the ATM group is as shown
below:

ATM Configuration M anager

AT
M

 C
on

fig
ur

at
io

n
M

an
ag

er
FA

PI

 O ther ATM LFB FAPI

FAPI CLIENT

LF
B

Sp
ec

ifi
c

AP
Is

 (e
.g

. L
FB

at
tri

bu
te

s
qu

er
y

et
c.

) a
nd

 e
ve

nt
s

AT
M

 C
on

fig
ur

at
io

n
M

an
ag

er
 F

AP
I

As
yn

ch
ro

no
us

 R
es

po
ns

e

D istribute
Configuration

to other ATM LFBs

Figure 3.1: Relationship of ATM Configuration Manager to other ATM group LFBs

The ATM Configuration Manager exports APIs for carrying out specific operations like creating a
connection, deleting a connection, querying statistics etc. In order to carry out the configuration, query or
control operations required by a given ATM Configuration Manager functions one or more underlying
ATM LFBs in the FE may need to be configured or their configuration queried.

 ATM Task Group 11

Network Processing Forum Software Working Group

The mechanism used by the ATM Configuration Manager to distribute configurations, query statistics or
retrieve configurations – like messaging, shared memory etc. – from underlying ATM LFBs is not in the
scope of NPF.
On successfully carrying out the requested operation, the ATM Configuration Manager invokes the
completion callback into the FAPI client to indicate the result of the operation.

4 Data Types

4.1 Common LFB Data Types
4.1.1 Relationship with the Topology Discovery API

It is possible to use the FAPI Topology Discovery APIs to discover an ATM. Configuration Manager
in a forwarding element using the block type value defined here.

#define NPF_F_ATMCONFIGMGR_LFB_TYPE 40 /* ATM Config. Mgr. LFB type code */

4.1.2 ATM Virtual Path Identifier
The simple data types below provide meaningful names for the VPI.

/*
* ATM VPI types
*/
typedef NPF_uint16_t NPF_F_ATM_VPI_t; /* VPI is 8 or 12 bits */

4.1.3 ATM Virtual Channel Identifier
The simple data types below provide meaningful names for the VCI.

/*
* ATM VCI types
*/
typedef NPF_uint16_t NPF_F_ATM_VCI_t; /* VCI is 16 bits */

4.1.4 ATM Virtual Channel Address Types
The VPI and VCI in the ATM header are used to identify the VC on an interface.

typedef struct { /* ATM Vc Address (VPI/VCI) structure */
 NPF_F_ATM_VPI_t vpi; /* VPI number */
 NPF_F_ATM_VCI_t vci; /* VCI number */
} NPF_F_ATM_VcAddr_t;

4.1.5 ATM Virtual Link Type
This section defines the ATM virtual link type which is used to identify a virtual link as a VP link or
a VC link

typedef enum {
 NPF_F_ATM_VP_LINK = 0, /* Virtual Path Link */
 NPF_F_ATM_VC_LINK = 1 /* Virtual channel link */
} NPF_F_ATM_VirtLinkType_t;

4.1.6 Virtual link Scope
Virtual links which are visible outside of a forwarding element are distinguished from Virtual links
which are not visible outside.

/* Scope of an ATM virtual link. Internal virtual links are not visible *
 * to the network and are used for transporting data within the system */
typedef enum {
 NPF_F_ATM_VIRT_LINK_INTERNAL = 0, /* Internal VP/VC link */
 NPF_F_ATM_VIRT_LINK_EXTERNAL = 1 /* External VP/VC link */
} NPF_F_ATM_VirtLinkScope_t;

 ATM Task Group 12

Network Processing Forum Software Working Group

4.1.7 ATM Virtual Link Identifier
This section defines the ATM virtual link identifier that is used to uniquely identify a virtual path or
virtual channel link. The FAPI client can assign any value to the ATM virtual link identifier and the
value is completely opaque to the implementation.

typedef NPF_uint32_t NPF_F_ATM_VirtLinkID_t; /* Virtual Link ID */

typedef struct {
 NPF_F_ATM_VirtLinkType_t atm_linkType; /* VP link or VC link */
 NPF_F_ATM_VirtLinkID_t atm_linkID; /* Virtual Link ID */
} NPF_F_ATM_VirtLink_t;

4.1.8 Backplane Switch Link Identifier
This section defines the backplane interface identifier that is used to uniquely identify a backplane
switch link in the system.

/* Identifies a backplane switch link */
typedef NPF_uint32_t NPF_F_ATM_BpLinkID_t; /* Backplane Link ID */

4.1.9 ATM Interface Identifier
The ATM interface identifier is used to uniquely identify an ATM interface in the system. The ATM
interfaces are created using the Interface Management API functions. This variable is the ID assigned
to the ATM interface by the Interface Management API.

typedef NPF_uint32_t NPF_F_ATM_IfID_t; /* Interface ID */

4.1.10 Backplane Interface Identifier
This section defines the backplane interface identifier that is used to uniquely identify a backplane
interface in the system.

/* Identifies a backplane interface to a FE */
typedef NPF_uint32_t NPF_F_ATM_BpIfID_t; /* Backplane Interface ID */

4.1.11 AAL2 Channel Identifier
This section defines the AAL2 channel identifier that is used to uniquely identify an AAL2 channel.
The FAPI client can assign any value to the AAL2 channel identifier and the value is completely
opaque to the implementation.

typedef NPF_uint32_t NPF_F_AAL2ChanId_t; /* AAL2 channel ID */

4.1.12 Virtual Channel Cross Connect Identifier
This section defines the identifier that is used to uniquely identify a virtual channel cross connection.
The FAPI client can assign any value to the virtual channel cross connect identifier and the value is
completely opaque to the implementation.

typedef NPF_uint32_t NPF_F_VcXcId_t; /* ATM VC Cross Connect ID */

4.1.13 Virtual Path Cross Connect Identifier
This section defines the identifier that is used to uniquely identify a virtual path cross connection. The
FAPI client can assign any value to the virtual path cross connect identifier and the value is
completely opaque to the implementation.

typedef NPF_uint32_t NPF_F_VpXcId_t; /* ATM VP Cross Connect ID */

4.1.14 AAL2 Channel Cross Connect Identifier
This section defines the identifier that is used to uniquely identify an AAL2 channel cross connection.
The FAPI client can assign any value to the AAL2 channel cross connect identifier and the value is
completely opaque to the implementation.

typedef NPF_uint32_t NPF_F_AAL2ChnlXcId_t; /* AAL2 channel Xconnect ID */

 ATM Task Group 13

Network Processing Forum Software Working Group

4.1.15 Timer Value
The FAPI client configures timers using a timer unit and a value. This data type provides
enumerations for possible timer units.

typedef enum {
 NPF_F_ATM_TIME_UNIT_NS = 0, /* Timers specified in nanoseconds */
 NPF_F_ATM_TIME_UNIT_US = 1, /* Timers specified in microseconds */
 NPF_F_ATM_TIME_UNIT_MS = 2, /* Timers specified in milliseconds */
 NPF_F_ATM_TIME_UNIT_1S = 3 /* Timers specified in seconds */
} NPF_F_ATM_TimerUnit_t;

4.1.16 Timer Configuration
The FAPI client configures timers using a timer unit and a value. This data type is used to configure
timers.

typedef struct {
 NPF_F_ATM_TimerUnit_t timeUnit; /* Unit in which timer specified */
 NPF_uint32_t timeValue; /* Timer value in units specified */
} NPF_F_ATM_Timers_t;

4.1.17 Object Status
This data type provides the possible values that can be assumed by the status of an object. This
enumeration could be used to specify either the operational or administrative status of an object. This
is a global type defined at NPF level

typedef enum {
 /* The below status can be used to denote operational or admin status
 * of an object, depending on the context in which they are used
 */
 NPF_STATUS_UP = 1, /* Status marked UP */
 NPF_STATUS_DOWN = 2, /* Status marked DOWN */
 NPF_STATUS_TESTING = 3, /* Object in some test mode */

 /* The below status can be used to denote operational status of object */
 NPF_STATUS_UNKNOWN = 4, /* Cannot be determined due to some reason */
 NPF_STATUS_DORMANT = 5, /* Ready but waiting for external action */
 NPF_STATUS_NOT_PRESENT = 6,/* Object has missing components like h/w */
 NPF_STATUS_LOWER_LYR_DOWN = 7 /* Lower layer down */
} NPF_ObjStatus_t;

4.1.18 Direction
The below data type is used to specify the direction of data flow on the configured link with respect to
FE being configured.

/*
* Link direction
*/
typedef enum{
 NPF_F_ATM_RECEIVE = 0, /* link is receive only */
 NPF_F_ATM_TRANSMIT = 1, /* link is transmit only */
 NPF_F_ATM_DUPLEX = 2 /* link is bidirectional */
} NPF_F_ATM_Direction_t;

4.1.19 Backplane Switch Address
This data type is used to configure the headers to be used to encapsulate data (ATM SDU/AAL2
SDU) received on a VP/VC link or an AAL2 channel to be transported over the backplane used to
connect forwarding elements. The format used to encapsulate data is out of the scope of NPF. The
txAddress is used in the header to encapsulate the data when sending to the backplane. The data
received from the backplane would be encapsulated with a header using the rxAddress and is used to

 ATM Task Group 14

Network Processing Forum Software Working Group

identify the backplane switch link on which the data is received. The rxBpIfId is the backplane
interface on which the data is received from backplane switch link. The txBpIfId is the backplane
interface on which data is transmitted to the backplane switch link.

/* Structure is used to pass the headers to be used to tunnel data *
 * received over AAL2 channels or VP/VC links to backplane */
typedef struct { /* Switch Address structure */
 NPF_F_ATM_BpLinkID_t bpLinkID; /* Backplane switch Link ID */
 NPF_F_ATM_Direction_t direction; /* Direction of data flow */
 NPF_F_ATM_BpIfID_t rxBpIfId; /* Receive Backplane I/F ID */
 NPF_uint32_t rxaddressLength; /* Length of the Switch Address */
 NPF_uint8_t *rxAddress; /* Array of octets containing */
 /* the Switch Address. */
 NPF_F_ATM_BpIfID_t txBpIfId; /* Transmit Backplane I/F ID */
 NPF_uint32_t txaddressLength; /* Length of the Switch Address */
 NPF_uint8_t *txAddress; /* Array of octets containing */
 /* the Switch Address. */
} NPF_F_SwitchAddress_t;

The direction field usage and the relationship between the various parameters in the
NPF_F_SwitchAddress_t structure are as described in the table below.

Table 4.1: Switch address configuration structure parameter usage

direction

rxBpIfId/
rxaddressLength/
rxAddress

txBpIfId/
txaddressLength/
txAddress

NPF_F_ATM_RECEIVE Mandatory

The backplane switch link is only used
to receive data from the backplane.
These fields are mandatory for the
backplane switch link configuration.

Not applicable

The backplane switch link
is only used to receive data
from the backplane. These
fields are ignored in the
NPF_F_SwitchAddress_t
structure

NPF_F_ATM_TRANSMIT Not applicable.

The backplane switch link is only used
to transmit data to the backplane.
These fields are ignored in the
NPF_F_SwitchAddress_t structure

Mandatory

The backplane switch link
is only used to transmit
data to the backplane.
These fields are mandatory
for the backplane switch
link configuration.

NPF_F_ATM_DUPLEX Mandatory

The backplane switch link is only used
to receive data from the backplane.
These fields are mandatory for the
backplane switch link configuration.

Mandatory

The backplane switch link
is used to receive and
transmit data to the
backplane. These fields are
mandatory for the

 ATM Task Group 15

Network Processing Forum Software Working Group

backplane switch link
configuration.

4.2 ATM Traffic Management and Quality of Service Types
Providing differentiated quality of service (QoS) is a key element of traffic management in ATM
networks that allows ATM networks to support a wide array of services and applications.
/*
* Service Category
* The service category of this virtual connection.
*/
typedef enum {
 NPF_F_ATM_OTHER_SRV_CAT = 0, /* Unspecified service cat */
 NPF_F_ATM_CBR = 1, /* Constant bit rate */
 NPF_F_ATM_rtVBR = 2, /* Variable bit rate – real time */
 NPF_F_ATM_nrtVBR = 3, /* Variable bit rate – non real time*/
 NPF_F_ATM_ABR = 4, /* Available bit rate */
 NPF_F_ATM_UBR_WITHOUT_PCR = 5, /* Unspecified bit rate–no peak rate*/
 NPF_F_ATM_UBR_WITH_PCR = 6, /* Unspecified bit rate w/ peak rate*/
 NPF_F_ATM_UBR_WITH_MDCR = 7, /* Unspecified bit rate w/ minimum */
 /* Desired cell rate */
 NPF_F_ATM_UBR_WITH_MDCR_PCR = 8, /* Unspecified bit rate w/ minimum */
 /* Desired cell rate and peak rate */
 NPF_F_ATM_GFR = 9 /* Guaranteed frame rate */
} NPF_F_ATM_ServiceCategory_t;

The UPC/NPC functions or buffer congestion within the system may lead to dropping of cells as per the
configured policy. The drop policy is configured using a bit mask as defined below. Setting both
NPF_F_ATM_CELL_CLP0_DROP and NPF_F_ATM_CELL_CLP1_DROP bits will cause dropping to occur
irrespective of the CLP value. The NPF_F_ATM_PACKET_EP_DROP and NPF_F_ATM_PACKET_PP_DROP
bits are used to indicate how the frames discard should be performed. Setting drop policy bit mask to 0
indicates no dropping of cells is performed.
typedef NPF_uint16_t NPF_F_ATM_DropPolicy_t;

#define NPF_F_ATM_CELL_CLP0_DROP 0x0001 /* Drop CLP=0 cells */
#define NPF_F_ATM_CELL_CLP1_DROP 0x0002 /* Drop CLP=1 cells */
#define NPF_F_ATM_PACKET_EP_DROP 0x0004 /* Drop frames; *
 * Early pkt discard */
#define NPF_F_ATM_PACKET_PP_DROP 0x0008 /* Drop frames; *
 * Partial pkt discard */

The NPF_F_ATM_QoS_t structure is used to configure the traffic management parameters
for a virtual link.
/*
* ATM QOS profile,
* used in the ATM virtual link attribute structure
*/
typedef struct {

 NPF_F_ATM_ServiceCategory_t rxSrvCat; /* ATM Service Category */
 NPF_uint32_t pcr; /* Ingress Peak Cell Rate */
 NPF_uint32_t scr; /* Ingress Sustainable Cell Rate */
 NPF_uint32_t mbs; /* Ingress Maximum Burst Size */
 NPF_uint32_t mcr; /* Ingress Minimum Cell Rate */
 NPF_uint32_t maxFrmSize; /* Ingress Maximum Frame Size */
 NPF_uint32_t cdvt; /* Ingress Cell Delay Var. Tolerance */
 NPF_uint16_t ubrPrio; /* Ingress Priority for UBR with prio. */

 ATM Task Group 16

Network Processing Forum Software Working Group

 NPF_F_ATM_DropPolicy_t upcPolicy; /* Usage Parameter control policy */
 NPF_boolean_t tagging; /* Tag CLP=0 cells as per UPC */

} NPF_F_ATM_Policing_Char_t;

typedef struct {

 NPF_F_ATM_ServiceCategory_t srvCat; /* ATM Service Category */
 NPF_uint32_t pcr; /* Egress Peak Cell Rate */
 NPF_uint32_t scr; /* Egress Sustainable Cell Rate */
 NPF_uint32_t mbs; /* Egress Maximum Burst Size */
 NPF_uint32_t mcr; /* Egress Minimum Guaranteed Cell Rate */
 NPF_uint32_t maxFrmSize; /* Egress Maximum Frame Size */
 NPF_uint32_t cdvt; /* Egress Cell Delay Var. Tolerance */
 NPF_uint16_t ubrPrio; /* Egress Priority for UBR with prio. */
 NPF_uint32_t bfrThresh; /* Buffer congestion threshold for VC */
 NPF_uint32_t warnThresh; /* Overflow early warn threshold for VC */
 NPF_F_ATM_DropPolicy_t dropPolicy; /* Drop policy based on buffer use */

} NPF_F_ATM_Queuing_Char_t;

The bfrThresh and warnThresh parameters should be specified in units of cells.

typedef struct {
 NPF_F_ATM_Policing_Char_t policeParams; /* Policing parameters */

 NPF_F_ATM_Queuing_Char_t queueParams; /* Shaping/queuing parameters */
} NPF_F_ATM_QoS_t;

4.3 ATM Adaptation Layer Types
The ATM adaptation layers to support multiple protocols to fit the needs of different service users
enhance the services provided by the ATM layer. This data type is used to identify the various adaptation
layers in used in ATM networks. The value NPF_F_ATM_AAL_UNKNOWN indicates that the AAL cannot be
determined on this connection.
/*
 * ATM Vc AAL type code, used in the ATM Vc
 * attribute structure
 */
typedef enum {
 NPF_F_ATM_AAL0 = 0, /* RAW cell transfer. No AAL */
 NPF_F_ATM_AAL1 = 1, /* AAL 1 */
 NPF_F_ATM_AAL2 = 2, /* AAL 2 */
 NPF_F_ATM_AAL5 = 3, /* AAL 5 */
 NPF_F_ATM_AAL_UNKNOWN= 4, /* AAL cannot be determined */
} NPF_F_ATM_AAL_t;

4.3.1 ATM Adaptation Layer Profile Types
The ATM AAL profile is used to configure AAL specific parameters for the VC. This is a union type and
the AAL type component of the enclosing structure is used to select the appropriate union member.
/*
* AAL Profile
*/
typedef union {
 NPF_F_ATM_AAL1Profile_t aal1Profile; /* ATM Adaptation Layer Type 1 */
 NPF_F_ATM_AAL2Profile_t aal2Profile; /* ATM Adaptation Layer Type 2 */
 NPF_F_ATM_AAL5Profile_t aal5Profile; /* ATM Adaptation Layer Type 5 */
} NPF_F_ATM_AAL_Profile_t;

4.3.2 ATM Adaptation Layer Type 1 (AAL1) Profile
/*

 ATM Task Group 17

Network Processing Forum Software Working Group

* AAL type 1 subtype used by the CBR service application (e.g. 64
* KBPS voice band signal transport, circuit transport)
*/
typedef enum {
 NPF_F_ATM_NULL = 0,
 NPF_F_ATM_VOICEBAND = 1,
 NPF_F_ATM_CIRCUIT_EMULATION_SYNCHRONOUS = 2,
 NPF_F_ATM_CIRCUIT_EMULATION_ASYNCHRONOUS =3,
 NPF_F_ATM_HIGH_QUALITY_AUDIO = 4,
 NPF_F_ATM_VIDEO = 5
} NPF_F_ATM_AAL1Subtype_t;

/*
* Rate of CBR service supported by the AAL
*/
typedef enum {
 NPF_F_ATM_64_KBPS = 0,
 NPF_F_ATM_1544_KBPS = 1,
 NPF_F_ATM_6312_KBPS = 2,
 NPF_F_ATM_32064_KBPS = 3,
 NPF_F_ATM_44736_KBPS = 4,
 NPF_F_ATM_97728_KBPS = 5,
 NPF_F_ATM_2048_KBPS = 6,
 NPF_F_ATM_8448_KBPS = 7,
 NPF_F_ATM_34368_KBPS = 8,
 NPF_F_ATM_139264_KBPS = 9,
 NPF_F_ATM_N64_KBPS = 10,
 NPF_F_ATM_N8_KBPS = 11
} NPF_F_ATM_CBR_t;

/* Clock recovery type :
* Synchronous,
* Asynchronous-SRTS(Synchronous Residual Time Stamp) or
* Asynchronous-Adaptive Clock Recovery.
*/
typedef enum {
 NPF_F_ATM_SYNCHRONOUS = 0, /* Synchronous clock recovery */
 NPF_F_ATM_ASYNCHRONOUS_SRTS = 1, /* Synchronous Residual Time Stamp*/
 NPF_F_ATM_SYNCHRONOUS_ADAPTIVE = 2 /* Adaptive clock recovery */
} NPF_F_ATM_AAL1ClkRecType_t;

/* FEC method:
* no FEC,
* FEC for Loss Sensitive Signal Transport or
* FEC for Delay Sensitive
*/
typedef enum {
 NPF_F_ATM_NO_FEC = 0,
 NPF_F_ATM_LOSS_SENSITIVE_SIGNAL_FEC = 1,
 NPF_F_ATM_DELAY_SENSITIVE_SIGNAL_FEC = 2
} NPF_F_ATM_AAL1FEC_t;

/* CAS Mode: Valid only for structured interfaces
* No CAS bits carried or
* Carry CAS Bits in E1 multiframe structure or
* Carry CAS bits in DS1 SF multiframe structure or
* Carry CAS bits in DS1 ESF multiframe structure
*/
typedef enum {

 ATM Task Group 18

Network Processing Forum Software Working Group

 NPF_F_ATM_BASIC_MODE = 0,
 NPF_F_ATM_CAS_MODE_E1 = 1,
 NPF_F_ATM_CAS_MODE_DS1SF = 2,
 NPF_F_ATM_CAS_MODE_DS1ESF = 3,
 NPF_F_ATM_CAS_MODE_J2 = 4
} NPF_F_ATM_AAL1CASMode_t;

This structure is used to configure AAL specific parameters for VCC’s carrying AAL1 traffic.
/*
* AAL1 Profile
*/
typedef struct {
 NPF_F_ATM_AAL1Subtype_t subtype; /* AAL1 sub-type */
 NPF_F_ATM_CBR_t cbrRate; /* rate of CBR service */
 NPF_uint32_t rateMultiplier; /* Rate multiplier */
 NPF_F_ATM_AAL1ClkRecType_t clkRecoveryType;/* Clock Recovery Type */
 NPF_F_ATM_AAL1FEC_t fecType; /* Error Correction Method */
 NPF_F_ATM_AAL1CASMode_t casMode; /* CAS Transport mode */

 /* Structured data transfer configuration. When sdtSupport is set
 to TRUE, it indicates structured data transfer. fecType should
 be configured as NPF_F_ATM_NO_FEC to select SDT */
 NPF_boolean_t sdtSupport; /* Whether SDT configured */
 NPF_uint16_t sdtBlockSize; /* SDT Block Size */

 /* partFilledCells set to TRUE causes the cell to be partially filled *
 before transmission in order to avoid excessive latency */
 NPF_boolean_t partFilledCells; /*Enable partial cell method?*/

 /* Amount of user info in bytes that can be carried in partially filled*/
 /* cells. Valid only when partial filled cell method is selected */
 NPF_uint32_t partFilledCellsUserInfoSize;

 /* The maximum cell arrival jitter in 10 usec increments that the
 reassembly process will tolerate in the cell stream. Jitter beyond
 this value may lead to errors. */
 NPF_F_ATM_Timers_t cesCDVRxtolrnc;

 /* Define maximum size in 10 us increments for the reassembly buffer. */
 NPF_F_ATM_Timers_t maxReasmBufSize;

 /* Time in milliseconds for the cell loss integration period. If cells
 are lost for this period of time, the Interworking VCC Termination
 Point entity will generate a cell starvation alarm. */
 NPF_F_ATM_Timers_t cellLossIntegrPeriod;
} NPF_F_ATM_AAL1Profile_t;

4.3.3 ATM Adaptation Layer Type 2 (AAL2) Profile

/* AAL2 SSCS service category */
typedef enum {
 NPF_F_ATM_AUDIO = 1, /* Audio SAP enabled */
 NPF_F_ATM_MULTIRATE = 2, /* Multirate SAP enabled */
 NPF_F_ATM_AUDIO_AND_MULTIRATE =3 /* Audio and Multirate SAP enabled */
} NPF_F_ATM_AAL2SscsServiceCategory_t;

/* PCM encoding */
typedef enum {

 ATM Task Group 19

Network Processing Forum Software Working Group

 NPF_F_ATM_ALAW = 1, /* Companding as per A-Law */
 NPF_F_ATM_ULAW = 2 /* Companding as per u-Law */
} NPF_F_ATM_AAL2SscsPcmEncoding_t;

typedef enum {
 NPF_F_ATM_ITUT = 1, /* Profile defined by ITU-T */
 NPF_F_ATM_OTHER = 2 /* Profile defined by other entities*/
} NPF_F_ATM_AAL2SscsProfileSource_t;

/*
 * The SSCS configued for this AAL2 connection.
 */
typedef enum {
 NPF_F_ATM_AAL2_SSCS_NONE = 0, /* No SSCS */
 NPF_F_ATM_AAL2_SSCS_SAR = 1, /* SSSAR SSCS (I.366.1) */
 NPF_F_ATM_AAL2_SSCS_TRUNK= 2 /* Trunking SSCS (I.366.2) */
} NPF_F_ATM_AAL2SscsType_t;

/*
 * Maximum possible AAL2- CPS SDU length for an AAL2 channel
 */
typedef enum {
 NPF_F_ATM_AAL2_CPS_SDU_LEN_45 = 0, /* Maximum SDU length is 45 */
 NPF_F_ATM_AAL2_CPS_SDU_LEN_64 = 1 /* Maximum SDU length is 64 */
} NPF_F_ATM_AAL2_CpsSduLen_t;

The AAL2 channels created on an AAL2 path may be offered differential service with respect to the
bandwidth usage and service delay. One or more AAL2 channels may be associated with a priority
level. The bandwidth of the configured AAL2 path is shared between these priority levels
proportionate to the weight configured for the priority level. The structure detailed below is used to
specify the weight associated with each priority level. Setting maxPrio to 0 is used to indicate that
there is no prioritization for traffic on different AAL2 channels within the AAL2 path i.e. all AAL2
channels are treated equal.

/*
 * AAL2 QoS Profile
 */
typedef struct {
 NPF_uint32_t maxPrio; /* Number of priority levels */
 NPF_uint32_t *weight; /* Array specifying Weight used to *
 * share path bandwidth among AAL2 *
 * groups on this AAL2 path */
 NPF_uint32_t *discThrsh;/* Threshold specified in number of *
 * packets pending in a priority queue *
 * waiting for transmit opportunity *
 * If queue length exceeds this figure *
 * then new packets are received on *
 * this queue are discarded */
} NPF_F_ATM_AAL2QosProfile_t;

/*
* AAL2 Trunking SSCS Profile
*/
typedef struct{
 /* Common SSCS Parameters(SSCS type = Trunking)as specified in I.366.2 */
 NPF_F_ATM_AAL2SscsServiceCategory_t srvCategory;/*Service category */
 NPF_boolean_t audioServiceTransport; /* Audio Transport enabled ?*/
 NPF_F_ATM_AAL2SscsProfileSource_t profileSource; /* profile source */
 NPF_uint32_t predefinedProfileIdentifier; /* predefined profile id */

 ATM Task Group 20

Network Processing Forum Software Working Group

 NPF_F_ATM_AAL2SscsPcmEncoding_t pcmEncoding; /* PCM encoding type */
 NPF_boolean_t faxDemodTransport; /* demod. fax data support ? */
 NPF_boolean_t casTransport; /* CAS support ? */
 NPF_boolean_t dtmfDigitPacketTransport; /* DTMF dialed digit support?*/
 NPF_boolean_t mfR1DigitPacketTransport; /* MF-R1 dial digit support ?*/
 NPF_boolean_t mfR2DigitPacketTransport; /* MF-R2 dial digit support ?*/
 NPF_boolean_t circuitModeDataTransport; /* Circuit mode data support?*/
 NPF_uint32_t circuitModeDataNumChannels; /* Multiplier N in N*64kbit/s
 circuit mode data? */
 NPF_boolean_t loopbackEnabled; /* I.366.2 loopback enabled */
} NPF_F_ATM_AAL2TrunkSscsProfile_t;

/*
* AAL2 CPS Profile
*/
typedef struct{

 /* This parameter indicates the maximum size CPS-SDU, in octets, that
 is transported on any AAL type 2 channel of an ATM connection. This
 parameter can take on the values "45" or "64" and is set by the
 signaling or management procedures.(See Max_CPS-SDU_Length;I.363.2)*/
 NPF_F_ATM_AAL2_CpsSduLen_t cpsMaxSduLength;/*Maximum CPS-SDU size */

 /* If the singleCpsPacketPerCpsPduNoOverlap option is selected */
 /* then the TIMER CU is nor applicable and the AAL2 payload cannot be */

 /* greater than 44 bytes. */
 NPF_boolean_t singleCpsPerPduNoOverlap; /* CPS interleave control */

 /* The Combined use timer value configured for this connection. This is*
 * valid only when singleCpsPerPduNoOverlap is set as FALSE */
 NPF_F_ATM_Timers_t cpsTimer_CU; /* Combined Use Timer_CU */

} NPF_F_ATM_AAL2CpsProfile_t;

/*
* AAL2 Profile
*/
typedef struct{
 /* AAl2 QoS Profile */
 NPF_F_ATM_AAL2QosProfile_t aal2QosProfile;

 /* AAL2 CPS Profile */
 NPF_F_ATM_AAL2CpsProfile_t aal2CpsProfile;

 /* AAL2 service specific convergence sub layer configured for this VC */
 NPF_F_ATM_AAL2SscsType_t sscsType;

 /* I.366.2 Trunking SSCS Profile; Used if SSCS Type is set to
 * NPF_F_ATM_AAL2_SSCS_TRUNK */
 NPF_F_ATM_AAL2TrunkSscsProfile_t aal2TrkSscsProf;
} NPF_F_ATM_AAL2Profile_t;

4.3.4 ATM Adaptation Layer Type 5 (AAL 5) Profile
/*
* This attribute indicates whether the AAL for the supporting VCC
* operating in message mode or streaming mode, assured or non assured
*/

 ATM Task Group 21

Network Processing Forum Software Working Group

typedef enum {
 NPF_F_ATM_MESSAGE = 0,
 NPF_F_ATM_STREAMING = 1,
} NPF_F_ATM_AAL5_Mode_t;

/*
* SSCS type
*/
typedef enum{
 NPF_F_ATM_NULL_SSCS = 0,/* NULL SSCS */
 NPF_F_ATM_DATA_ASSURED = 1,/* Data SSCS on SSCOP(non assured) */
 NPF_F_ATM_DATA_NON_ASSURED = 2,/* Data SSCS on SSCOP(assured) */
 NPF_F_ATM_FRAME_RELAY = 3,/* Frame relay SSCS */
} NPF_F_ATM_AAL5_SscsType_t;

When the deliverCorruptSdu option in the AAL5 profile is set to TRUE, any partially reassembled
SDU will be delivered to the AAL service user if the reassembly process is aborted due to errors. The
maximum length of the SDU delivered to service user in this case is specified by
maxCorruptSduDeliverLen.
The reassembly process may be be guared by a reassembly timer specified in the rasTimer field.
Setting the timer value to ‘0’ indicates that the reassembly timer is disabled.

/*
* AAL5 Profile
*/
typedef struct{
 NPF_uint32_t maxCpcsSduSizeForward; /* Max o/g CPCS_SDU sz */
 NPF_uint32_t maxCpcsSduSizeBackward;/* Max i/c CPCS_SDU sz */
 NPF_F_ATM_AAL5_Mode_t aalMode; /* AAL Mode */
 NPF_F_ATM_AAL5_SscsType_t sscsType; /* SSCS Type */
 NPF_boolean_t deliverCorruptSdu; /*If delivery of corrupt
 * SDU is enabled */
 NPF_uint32_t maxCorruptSduDeliverLen; /* Maximum size of
 * delivered corrupt SDU */
 /* Timer configured to guard re-assembly process */
 NPF_F_ATM_Timers_t rasTimer; /* Reassembly Timer */

}NPF_F_ATM_AAL5Profile_t;

4.4 ATM Virtual Link Data Types
4.4.1 ATM Virtual Channel Characteristics

This structure is used to configure a virtual channel on an interface in the system. The aalType is
used to select the appropriate AAL provide from the aalProfile union.
The VC configuration structure allows mapping of the VC being provisioned to another set of VCs on
the same FE or to the backplane by mapping to a backplane link. Each cross connection established in
this manner is identified by a unique VC channel cross connect identifier. This identifier is assigned
by the FAPI client and is transparently used by the FAPI implementation. The identifier may be used
by the FAPI client to delete one or all the cross connections established at the time of VC
provisioning by using the NPF_F_ATM_ConfigMgr_VcLinkXcDelete function. The FAPI client
may also add more cross connection if required using the NPF_F_ATM_ConfigMgr_VcLinkXcSet
function. The ‘B’ links to be cross connected should be established ahead of the link being
configured. The maximum number of such cross connections allowed is defined by the FAPI
implementation and is out of the scope of NPF.

/*

 ATM Task Group 22

Network Processing Forum Software Working Group

* ATM VC attributes
*/
typedef struct {
 /* The ATM virtual link identifier that is used to uniquely identify *
 * a virtual channel link. The FAPI client can assign any value to the *
 * ATM virtual link identifier and the value is completely opaque to *
 * the implementation. */
 NPF_F_ATM_VirtLinkID_t vcLinkId; /* Unique ID of this VC link */

 /* The below field is used to specify the VPI and VCI of this VC */
 NPF_F_ATM_VcAddr_t vc; /* VPI/VCI of virtual channel */

 /* The scope of VC i.e. whether it is an external VC or an internal VC *
 * Internal VCs are used to carry data within the system and have no *
 * external network terminations. */

 NPF_F_ATM_VirtLinkScope_t vcScope; /* External or internal VC */

 /* This field defines the ATM interface identifier that is used *
 * to uniquely identify an ATM interface in the system. The FAPI *
 * client SHOULD assign the interface index defined by the *
 * Interface Management APIs to this field. */
 NPF_F_ATM_IfID_t ifId; /* ATM Interface ID */

 /* The ATM adaptation layers to support multiple protocols to fit *
 * the needs of different service users enhance the services provided *
 * by the ATM layer. This data type is used to identify the various *
 * adaptation layers used in ATM networks. The value *
 * NPF_F_ATM_AAL_UNKNOWN indicates that the AAL cannot be determined *
 * on this connection. */
 NPF_F_ATM_AAL_t aalType; /* AAL type */

 /* AAL specific configurations. The members of below union selected *
 * based on the configured aalType. */
 NPF_F_ATM_AAL_Profile_t aalProfile; /* AAL Profile */

 /* The below field is used to specify the direction of data flow on *
 * the configured VC link with respect to FE being configured */
 NPF_F_ATM_Direction_t direction; /* receive/transmit/duplex */

 /* The NPF_F_ATM_QoS_t structure is used to configure the traffic *
 * management parameters for this virtual channel. If the direction of *
 * of the VC is configured as received then only policing parameters *
 * are valid for the VC. If the direction is configured as transmit *
 * the queuing parameters are valid. When the direction is configured *
 * as duplex, both policing and queuing params need to be configured */
 NPF_F_ATM_QoS_t qos; /* QoS profile */

 /* The below field provides the administratively configured status of *
 * the VC. The actual status i.e operational status assumed by the *
 * link may be different based on the actual physical status. The *
 * actual operational status queried may be using function provided *
 * to query the operational status */
 /* Administrative status can be NPF_STATUS_UP, NPF_STATUS_DOWN *
 * or NPF_STATUS_TESTING */
 NPF_ObjStatus_t admStatus; /* Status of VC – UP/DOWN/TESTING */

 /* The below field provides the status of statistics collections on the*
 * VC. When set to NPF_TRUE, statistics collection is enabled on this *

 ATM Task Group 23

Network Processing Forum Software Working Group

 * VC. The statistics collection may also be enabled or disabled at a *
 * future point in time by issueing the statistics enable/disable *
 * function call. The current statistics collection state may be *
 * queried using the function provided to query the VC information */
 NPF_boolean_t statsEnabled; /* Statistic collecting state*/

 /* The below field is used to cross connect the VC link to another *
 * VC link on the same FE or to a backplane switch link. When the *
 * numLink_B field is set 0, it indicates there is no cross connection *
 * established for this link. For a unicast mapping, the VC link being *
 * provisioned may be connected to another VC link or backplane link *
 * and the numLink_B is set to 1. For multicast mapping, the numLink_B *
 * is set to the number of cross connections to be made. */
 NPF_uint32_t numLink_B; /* Number of links connected to the link *
 being provisioned */
 NPF_F_ATM_ConfigMgr_VcLinkXcInfo_t *link_B; /* Mapped link ‘B’ */
} NPF_F_ATM_ConfigMgr_Vc_t;

4.4.2 ATM Virtual Channel Information
This structure is used to return below information in response to virtual channel information query by
the FAPI client.

Virtual Channel Configuration Information •

•

•

•

OAM procedures and status
Virtual Channel Bindings
Statistics collection state

/*
* ATM VC query response
*/
typedef struct {
 NPF_F_ATM_ConfigMgr_Vc_t vcConfig; /* VC configuration info. */

 /* vcBound indicates if the VC is bound to a child interface. If set *
 * to TRUE, the interface handle of the child interface is returned *
 * in the ifChildHandle field */
 NPF_boolean_t vcBound; /* Whether bound to child I/F*/
 NPF_IfHandle_t ifChildHandle; /* Bound interface */

 NPF_ObjStatus_t operStatus;/* Operational status of VC */

 /* OAM configuration and status information. Depending on the conn. *
 * point type either eteFlowInfo, segFlowInfo or both may be valid */
 NPF_F_ATM_OAM_CP_Type_t connPtType; /* Connection Pt. type */
 NPF_F_ATM_ConfigMgr_OamInfo_t eteFlowInfo; /* E-T-E Flow Information */
 NPF_F_ATM_ConfigMgr_OamInfo_t segFlowInfo; /* SEG Flow Information */
} NPF_F_ATM_ConfigMgr_VcInfo_t;

4.4.3 ATM Virtual Path Characteristics
This structure is used to configure a virtual path on an interface in the system.
The VP configuration structure allows mapping of the VP being provisioned to another set of VPs on
the same FE or to the backplane by mapping to a backplane link. Each cross connection established in
this manner is identified by a unique VP channel cross connect identifier. This identifier is assigned
by the FAPI client and is transparently used by the FAPI implementation. The identifier may be used
by the FAPI client to delete one or all cross connections established at the time of VP provisioning by
using the NPF_F_ATM_ConfigMgr_VpLinkXcDelete function. The FAPI client may also add more
cross connections if required using the NPF_F_ATM_ConfigMgr_VpLinkXcSet function. The ‘B’

 ATM Task Group 24

Network Processing Forum Software Working Group

links to be cross connected should be established ahead of the link being configured. The maximum
number of such cross connections allowed is defined by the FAPI implementation and is out of the
scope of NPF.

/*
* ATM VP link attributes
*/
typedef struct {
 /* The ATM virtual link identifier that is used to uniquely identify *
 * a virtual path link. The FAPI client can assign any value to the *
 * ATM virtual link identifier and the value is completely opaque to *
 * the implementation. */
 NPF_F_ATM_VirtLinkID_t vpLinkId; /* ID assigned to this VP link */

 /* The VPI of the VP link being configured */
 NPF_F_ATM_VPI_t vpi; /* VPI of virtual connection */

 /* The scope of VP i.e. whether it is an external VP or an internal VP *
 * Internal VPs are used to carry data within the system and have no *
 * external network terminations. */

 NPF_F_ATM_VirtLinkScope_t vpScope; /* External or internal VP */

 /* This section defines the ATM interface identifier that is used *
 * to uniquely identify an ATM interface in the system. The FAPI *
 * client SHOULD assign the interface index defined by the *
 * Interface Management APIs to this field. */
 NPF_F_ATM_IfID_t ifId; /* ATM Interface ID */

 /* The below field is used to specify the direction of data flow on *
 * the configured VP link with respect to FE being configured */
 NPF_F_ATM_Direction_t direction; /* receive/transmit/duplex */

 /* This field specifies if the specified VP is terminated in this FE. *
 * If the VP is terminated then the ATM header is analysed further to *
 * identify the VC link using the VCI in the ATM header */
 NPF_boolean_t terminated; /* Switched/Terminated VP */

 /* The NPF_F_ATM_QoS_t structure is used to configure the traffic *
 * management parameters for this virtual path . */
 NPF_F_ATM_QoS_t qos; /* QoS profile */

 /* The below field provides the administratively configured status of *
 * the VP. The actual status assumed by the link may be different based*
 * on the actual physical status. The operation status may be queried*
 * using the function provided to query the operational status */
 /* Administrative status can be NPF_STATUS_UP, NPF_STATUS_DOWN *
 * or NPF_STATUS_TESTING */
 NPF_ObjStatus_t admStatus; /* Status of VP – UP/DOWN/TESTING */

 /* The below field provides the status of statistics collections on the*
 * VP. When set to NPF_TRUE, statistics collection is enabled on this *
 * VP. The statistics collection may also be enabled or disabled at a *
 * future point in time by issueing the statistics enable/disable *
 * function call. The current statistics collection state may be *
 * queried using the function provided to query the VP information */
 NPF_boolean_t statsEnabled; /* Statistic collecting state*/

 /* The below field is used to cross connect the VP link to another *
 * VP link on the same FE or to a backplane switch link. When the *

 ATM Task Group 25

Network Processing Forum Software Working Group

 * numLink_B field is set 0, it indicates there is no cross connection *
 * established for this link. For a unicast mapping, the VP link being *
 * provisioned may be connected to another VP link or backplane link *
 * and the numLink_B is set to 1. For multicast mapping, the numLink_B *
 * is set to the number of cross connections to be made. */
 NPF_uint32_t numLink_B; /* Number of links connected to the link *
 being provisioned */
 NPF_F_ATM_ConfigMgr_VpLinkXcInfo_t *link_B; /* Mapped link ‘B’ */
} NPF_F_ATM_ConfigMgr_Vp_t;

4.4.4 ATM Virtual Path Information
This structure is used to return below information in response to virtual path information query by the
FAPI client.

Virtual Path Configuration Information •

•

•

•

•

•

OAM procedures enabled and current status
Virtual Channel Bindings
Statistics collection state

/*
* ATM VP query response
*/
typedef struct {
 NPF_F_ATM_ConfigMgr_Vp_t vpConfig; /* VP configuration info. */
 NPF_ObjStatus_t operStatus; /* Operational status of VP */

 /* OAM configuration and status information. Depending on the conn. *
 * point type either eteFlowInfo, segFlowInfo or both may be valid */
 NPF_F_ATM_OAM_CP_Type_t connPtType; /* Connection Pt. type */
 NPF_F_ATM_ConfigMgr_OamInfo_t eteFlowInfo; /* E-T-E Flow Information */
 NPF_F_ATM_ConfigMgr_OamInfo_t segFlowInfo; /* SEG Flow Information */
} NPF_F_ATM_ConfigMgr_VpInfo_t;

4.4.5 Cross Connection Type
This enumeration specifies the type of cross connection for a VP/VC link or an AAL2 channel. The
VP/VC link may be connected to either another VP/VC link or an AAL2 channel on the same FE or
they may be connected to a backplane destination over a backplane switch link. An external VP/VC
links or AAL2 channels may be cross connected to an internal VP/VC links or AAL2 channels
respectively on the same FE.

typedef enum {
 NPF_F_ATM_EXT_TO_EXT = 0, /* Connect to an external VP/VC *
 * link or AAL2 channel */
 NPF_F_ATM_EXT_TO_BACK = 1, /* Connect to a backplane switch link */
 NPF_F_ATM_BACK_TO_INT = 2, /* Connect to an internal VP/VC *
 * link or AAL2 channel */
 NPF_F_ATM_EXT_TO_INT = 3 /* Connect to a external VP/VC link *
 * or AAL2 channel or a *
 * corresponding internal VP/VC link *
 * or AAL2 channel */
} NPF_F_ATM_XcType_t;

4.4.6 Cross Connection of ATM virtual channel links
This structure is used to configure a VC link cross connect to connect link ‘A’ to one or more link
‘B’. The number of cross connections to be made is specified by the numLink_B field. The link ‘B’
for cross connection of the VC link ‘A’ is one of the below:

A external or internal VC link configured on the same FE as the VC link ‘A’
A backplane link

 ATM Task Group 26

Network Processing Forum Software Working Group

When the VC link is connected to a VC link located on the same FE, the ID of the Virtual link to
which the cross connection is required is specified using the virtual link ID of the link ‘B’. When the
VC link is connected to a backplane link, the cross connection is specified using the backplane switch
headers of the backplane switch link and the backplane interface on which the backplane link is
carried. Multicast connections may be created by cross connecting link ‘A’ to multiple destinations.
The link ‘B’ to connect to the link ‘A’ is determined using the xcType field as below:

Table 4.2: VC Link cross-connection types
xcType Description
NPF_F_ATM_EXT_TO_EXT The external VC link ‘A’ is connected to an external VC

link ‘B’ on the same FE. The mapVcLink in the union of
the structure below specifies the VC link ID of VC link
‘B’ connected to the VC link A.

NPF_F_ATM_EXT_TO_BACK The external VC link ‘A’ is connected to a backplane link.
The backplane link is specified using the mapSwLink field
of the union.

NPF_F_ATM_BACK_TO_INT The internal VC link ‘A’ is connected to a backplane link.
The backplane link is specified using the mapSwLink field
of the union.

NPF_F_ATM_EXT_TO_INT The external/internal VC link ‘A’ is connected to an
external/internal VC link ‘B’ on the same FE. The
mapVcLink in the union of the structure below specifies
the VC link ID of VC link ‘B’ connected to the VC link A.

/*
* ATM VC Link Cross connect Information
 */
typedef struct {
 NPF_F_VcXcId_t vcXcId; /* ID of this cross connection */
 NPF_F_ATM_XcType_t xcType; /* Type of cross connection */
 union {
 NPF_F_ATM_VirtLinkID_t mapVcLink; /* Mapped to a VC Link */
 NPF_F_SwitchAddress_t mapSwLink; /* Mapped to backplane */
 }u;
} NPF_F_ATM_ConfigMgr_VcLinkXcInfo_t;

/*
* ATM VC link cross connect
*/
typedef struct {
 NPF_F_ATM_VirtLinkID_t link_A; /* VC Link ‘A’ */
 NPF_uint32_t numLink_B; /* Number of ‘B’ links *
 * connected to link ‘A’ */
 NPF_F_ATM_ConfigMgr_VcLinkXcInfo_t *link_B; /* Mapped link ‘B’ */
} NPF_F_ATM_ConfigMgr_VcLinkXc_t;

The direction of data flow between the link ‘A’ and link ‘B’ is determined by the direction configured
for the link ‘A’. When the VC link ‘A’ direction is configured as NPF_F_ATM_RECEIVE, the
frames/cells received over the link ‘A’ are transmitted over the link ‘B’ to the connected VC link or to
the backplane. When the VC link ‘A’ direction is configured as NPF_F_ATM_TRANSMIT, the
frames/cells received over the link ‘B’ are transmitted over the VC link specified as link ‘A’. When
the VC link ‘A’ is configured as NPF_F_ATM_DUPLEX, the frames/cells received over the link ‘A’ are
transmitted over the link ‘B’ to the connected VC or to the backplane and vice-versa.

 ATM Task Group 27

Network Processing Forum Software Working Group

4.4.7 Cross Connection of ATM virtual path links
This structure is used to configure a VP link cross connect to connect link ‘A’ to one or more link ‘B’.
The number of cross connections to be made is specified by the numLink_B field. The link ‘B’ for
cross connection of the VP link ‘A’ is one of the below:

An external or internal VP link configured on the same FE as the VP link ‘A’ •

• A backplane link
When the VP link is connected to a VP link located on the same FE, the ID of the Virtual link to
which the cross connection is required is specified using the virtual link ID of the link ‘B’. When the
VP link is connected to a backplane link, the cross connection is specified using the backplane switch
headers of the backplane switch link and the backplane interface on which the backplane link is
carried. Multicast connections may be created by cross connecting link ‘A’ to multiple destinations.
The link ‘B’ to connect to the link ‘A’ is determined using the xcType field as below:

Table 4.3: VP Link cross-connection types
xcType Description
NPF_F_ATM_EXT_TO_EXT The external VP link ‘A’ is connected to an external VP

link ‘B’ on the same FE. The mapVpLink in the union of
the structure below specifies the VP link ID of VP link ‘B’
connected to the VP link A.

NPF_F_ATM_EXT_TO_BACK The external VP link ‘A’ is connected to a backplane link.
The backplane link is specified using the mapSwLink field
of the union.

NPF_F_ATM_BACK_TO_INT The external VP link ‘A’ is connected to a backplane link.
The backplane link is specified using the mapSwLink field
of the union.

NPF_F_ATM_EXT_TO_INT The external/internal VP link ‘A’ is connected to an
external/internal VP link ‘B’ on the same FE. The
mapVpLink in the union of the structure below specifies
the VP link ID of VP link ‘B’ connected to the VP link A.

/*
 * ATM VP Link Cross connect Information
 */
typedef struct {
 NPF_F_VcXcId_t vpXcId; /* ID of this cross connection */
 NPF_F_ATM_XcType_t xcType; /* Type of cross connection */
 union {
 NPF_F_ATM_VirtLinkID_t mapVpLink; /* Mapped to a VP Link */
 NPF_F_SwitchAddress_t mapSwLink; /* Mapped to backplane */
 }u;
} NPF_F_ATM_ConfigMgr_VpLinkXcInfo_t;

/*
* ATM VC link cross connect – Connect link ‘A’ to link ‘B’
*/
typedef struct {
 NPF_F_ATM_VirtLinkID_t link_A; /* VP Link ‘A’ */
 NPF_uint32_t numLink_B; /* Number of ‘B’ links *
 * connected to link ‘A’ */
 NPF_F_ATM_ConfigMgr_VpLinkXcInfo_t *link_B;/* Array of Mapped link ‘B’ */
} NPF_F_ATM_ConfigMgr_VpLinkXc_t;

 ATM Task Group 28

Network Processing Forum Software Working Group

The direction of data flow between the link ‘A’ and link ‘B’ is determined by the direction configured
for the link ‘A’. When the VP link ‘A’ direction is configured as NPF_F_ATM_RECEIVE, the
frames/cells received over the link ‘A’ are transmitted over the link ‘B’ to the connected VP link or to
the backplane. When the VP link ‘A’ direction is configured as NPF_F_ATM_TRANSMIT, the
frames/cells received over the link ‘B’ are transmitted over the VP link specified as link ‘A’. When
the VP link ‘A’ is configured as NPF_F_ATM_DUPLEX, the frames/cells received over the link ‘A’ are
transmitted over the link ‘B’ to the connected VP or to the backplane and vice-versa.

4.4.8 Virtual Channel statistics
The below structure is used to return the statistics information for the queried virtual channel.
Statistics counters are non negative integers which wrap around on reaching maximum value using
twos complement arithmetic. When the AAL type specified by aal field is set to
NPF_F_ATM_AAL_UNKNOWN the AAL associated with this VC cannot be determined and AAL level
statistics are not valid.

/*
* ATM Per-Vc Statistics, returned in asynchronous
*/
typedef struct {
 NPF_F_ATM_Stats_t atmStats; /* ATM Level statistics */
 NPF_F_ATM_AAL_t aal; /* AAL type */
 union {
 NPF_F_ATM_AAL1Stats_t aal1_stats; /* AAL1 Statistics */
 NPF_F_ATM_AAL2Stats_t aal2_stats; /* AAL2 Statistics */
 NPF_F_ATM_AAL5Stats_t aal5_stats; /* AAL5 Statistics */
 }u;
} NPF_F_ATM_ConfigMgr_VcStats_t;

4.4.9 ATM Layer Statistics
Statistics counters are non negative integers which wrap around on reaching maximum value using
twos complement arithmetic. These statistics cover all cells including OAM cells received on the
ATM connection.

/*
 * ATM Traffic Management Statistics
 */
typedef struct {
 /* Count of received cells tagged/discarded due to policing actions */
 NPF_uint64_t cellsTaggedRx; /* Receive Cells changed CLP0 to CLP1 */
 NPF_uint64_t cellsClp01DiscRx; /* Receive Cells discarded (CLP0+1) */
 NPF_uint64_t cellsClp0DiscRx; /* Receive Cells discarded (CLP0) */

 /* Count of cells tagged/discarded due to congestion in outgoing queue */
 NPF_uint64_t cellsTaggedTx; /* Transmit Cells changed CLP0 to CLP1*/
 NPF_uint64_t cellsClp01DiscTx; /* Transmit Cells discarded (CLP0+1) */
 NPF_uint64_t cellsClp0DiscTx; /* Transmit Cells discarded (CLP0) */

 /* Queuing statistics in the transmit direction */
 NPF_uint32_t curQueueLenTx; /* Transmit connection queue lengths */
 NPF_uint32_t maxQueueLenTx; /* Maximum queue length seen so far */
} NPF_F_ATM_TMStats_t;

/*
 * ATM Level Statistics
 */
typedef struct {
 /* Count of total number of cells received on this connection */

 ATM Task Group 29

Network Processing Forum Software Working Group

 NPF_uint64_t cellsClp01Rx; /* Receive Total Cells (CLP0 + CLP1) */
 NPF_uint64_t cellsClp0Rx; /* Receive High Priority Cells (CLP0) */

 /* Count of received cells dropped due to resource unavailability *
 * like buffers to hold/reassemble the cells etc. */
 NPF_uint32_t cellsDiscResErrRx;

 /* Count of total number of cells transmitted on this connection */
 NPF_uint64_t cellsClp01Tx; /* Transmit Total Cells (CLP0 + CLP1) */
 NPF_uint64_t cellsClp0Tx; /* Transmit High Priority Cells (CLP0)*/

 /* Statistics counters for policing and queuing (TM) functions */
 NPF_F_ATM_TMStats_t atmTrafficManagementStats;
} NPF_F_ATM_Stats_t;

4.4.10 ATM Adaptation Layer type 1 statistics
Statistics counters are non negative integers which wrap around on reaching maximum value using
twos complement arithmetic.

typedef struct {
 /* Number of AAL1 header errors detected, including those corrected.
 Header errors include correctable and uncorrectable CRC plus bad
 parity. */
 NPF_uint32_t errSnp; /* No. of AAL1 cells with SNP errors */

 /* Sequence Count total violations: i.e., the count of incoming AAL Type1
 SAR-PDUs where the sequence count in the PDU header causes a
 transition from the SYNC state to the OUT OF SEQUENCE state as defined
 by ITU-T Recommendation I.363.1. (optional)

- lost cell: i.e., the number of lost cells, as detected by the
AAL1 sequence number processing, for example. This count records
the number of cells detected as lost in the network prior to the
destination interworking function AAL1 layer processing.
(optional)

- misinserted cells: i.e., the number of sequence violation events
which the AAL CS interprets as misinserted of cells as defined by
ITU-T Recommendation I.363.1. (optional)*/

 NPF_uint32_t errSeqNoRx; /* No. of AAL1 cells with SN errors */

 /* Number of times the reassembly buffer overflows. If the interworking
 function is implemented with multiple buffers, such as a cell level
 buffer and a bit level buffer, then either buffer overflow will cause
 this count to be incremented). */
 NPF_uint32_t errBfrOverflowRx; /* No. of times buffer overflow at CS*/

 /* Number of times the reassembly buffer underflows. In the case of a
 continuous underflow caused by a loss of ATM cell flow, a single
 buffer underflow should be counted. If the interworking function is
 implemented with multiple buffers, such as a cell level buffer and a
 bit level buffer, then either buffer underflow will cause this count
 to be incremented. */
 NPF_uint32_t errBfrUndrflowRx; /* No. of times buffer undrflow at CS*/

 /* Number of events in which the AAL1 reassembler found that a structured
 data pointer is not where it is expected, and the pointer must be re
 acquired. This count is only meaningful for structured data transfer
 modes as unstructured modes do not use pointers. (mandatory for
 structured data transfer) */
 NPF_uint32_t errSdtPtrReframesRx;

 ATM Task Group 30

Network Processing Forum Software Working Group

 /* Number of times the AAL reassembler detects a parity check failure at
 the point where a structured data pointer is expected. This count is
 only meaningful for structured data transfer modes as unstructured
 modes do not use pointers.)*/
 NPF_uint32_t errSdtPtrParityRx;
} NPF_F_ATM_AAL1Stats_t;

4.4.11 ATM Adaptation Layer type 2 statistics
Statistics counters are non negative integers which wrap around on reaching maximum value using
twos complement arithmetic. The statistics counters are grouped into CPS level statistics and SAR
SSCS level statistics. The packet and byte counters for CPS packets transmitted and received on an
AAL2 path are reported for each priority level configured for the AAL2 path.

/* CPS Packet and Byte counters */
typedef struct {
 NPF_uint64_t cpsPktRx; /* No. of AAL2 CPS packets received */
 NPF_uint64_t cpsBytesRx; /* No. CPS packet bytes received */

 NPF_uint64_t cpsPktTx; /* No. of AAL2 CPS packets transmitted*/
 NPF_uint64_t cpsBytesTx; /* No. CPS packet bytes transmitted */

 /* The below counters specify the number CPS packets discarded in *
 * the transmit direction due to various errors and the *
 * corresponding byte counts for the discarded packets */
 NPF_uint32_t cpsPktDisc; /* No. of AAL2 CPS packets discarded */
 NPF_uint32_t cpsBytesDisc; /* No. CPS packet bytes discarded */

} NPF_F_ATM_AAL2CpsPktByteCtrs_t ;

This structure specifies the statistics counters accumulated by the CPS sub-layer.

typedef struct {
 /* errno = 0; I.363.2 */
 /* The parity of the STF indicates transmission errors */
 NPF_uint32_t errCpsParityRx; /* CPS PDU with parity error */

 /* errno = 1; I.363.2 */
 /* The sequence number of the STF is wrong */
 NPF_uint32_t errCpsSeqNoRx; /* CPS PDU with sequence no. error */

 /* errno = 2; I.363.2 */
 /* The number of octets expected for a CPS-Packet overlapping into
 this CPS-PDU does not match the information contained in the STF */
 NPF_uint32_t errCpsOsfUnex; /* CPS PDU with unexpected offset */

 /* errno = 3; I.363.2 */
 /* The OSF of the STF contains a value 48 or greater */
 NPF_uint32_t errCpsOffsetRx; /* CPS PDU with offset field error */

 /* errno = 4; I.363.2 */
 /* The Header Error Control (HEC) Code of a CPS-Packet header
 indicates transmission errors in the CPS-Packet header */
 NPF_uint32_t errCpsHecRx; /* CPS packets with CRC error */

 /* errno = 5; I.363.2 */
 /* The length of the received CPS-Packet Payload (CPS-SDU) exceeds

 ATM Task Group 31

Network Processing Forum Software Working Group

 the maximum length indicated in "Max_SDU_Deliver_Length". */
 NPF_uint32_t errCpsLenRx;

 /* errno = 6; I.363.2 */
 /* Number of times reassembly cancelled due to errno = 0, 1 or 2 */
 NPF_uint32_t numReasmCancel;

 /* errno = 7; I.363.2 */
 /* The Header Error Control (HEC) Code of a CPS-Packet header that
 * was overlapping a CPS-PDU boundary indicates transmission errors in
 * the CPS-Packet header; if the value of the OSF is less than 47,
 * processing starts at the octet pointed to by the OSF. */
 NPF_uint32_t numPhBfrResetErrHec;

 /* errno = 8; I.363.2 */
 /* The UUI field in the received CPS-Packet header contains a value
 ("28" or "29") that is reserved for future standardization. */
 NPF_uint32_t errBadUUIRx; /* Reserved UUI; unexpected UUI Rx */

 /* errno = 9; I.363.2 */
 /* The CID value in the received CPS-Packet header is not associated
 with a SAP. */
 NPF_uint32_t errBadCIDRx; /* Reserved CID;Unknown CID value Rx */

 /* The packet and byte counters for the number of CPS packets received*
 * and transmitted are maintained per priority level and are returned *
 * as an array. The number of elements in the array is equal to number*
 * of priority levels configured in the QoS profile for the AAL2 path */
 NPF_F_ATM_AAL2CpsPktByteCtrs_t *cpsPktByteCtrArr;
} NPF_F_ATM_AAL2CpsStats_t;

This structure specifies the statistics counters accumulated by the SAR SSCS sub-layer.

typedef struct {
 /* errno = 10; I.366.1 */
 /* The maximum permissible size for a reassembled SSSAR-SDU
 ("Max_SDU_Length") has been exceeded. */
 NPF_uint32_t errSscsOversizedSssarSduRx; /* Oversized SSSAR SDU */

 /* errno = 11; I.366.1 */
 /* The reassembly timer RAS_Timer has expired. */
 NPF_uint32_t errSscsSssarRasTimerExpiryRx; /* Reassembly timeout */

 /* errno = 20; I.366.1 */
 /* An SSTED-PDU of length 8 or less has been received. */
 NPF_uint32_t errSscsUndersizedSstedPduRx; /* PDU<8 bytes received*/

 /* errno = 21; I.366.1 */
 /* The value of the Length field in the SSTED-PDU does not match the
 length of the received SSTED-PDU. */
 NPF_uint32_t errSscsSstedPduLengthMismatchRx; /* Length mismatch */

 /* errno = 22; I.366.1 */
 /* The value of the CRC field is not equal to the CRC calculated over
 the received information. */
 NPF_uint32_t errSscsSstedCrcMismatchRx; /* SSTED CRC mismatch */

} NPF_F_ATM_AAL2SarSscsStats_t;

 ATM Task Group 32

Network Processing Forum Software Working Group

This structure specifies the statistics counters accumulated for AAL2 paths. The SAR SSCS statistics
are collected only when the SAR SSCS is configured for the path.

typedef struct {
 /* CPS sub layer statistics */
 NPF_F_ATM_AAL2CpsStats_t cpsStats;

 /* SAR SSCS sub layer statistics. Accumulated if the SAR SSCS is
 * associated with the AAL2 channels */
 NPF_F_ATM_AAL2SarSscsStats_t sarSscsStats;
} NPF_F_ATM_AAL2Stats_t;

4.4.12 ATM Adaptation Layer type 5 statistics
Statistics counters are non negative integers which wrap around on reaching maximum value using
twos complement arithmetic.

typedef struct {
 NPF_uint64_t framesRx; /* Receive AAL5 Frames */
 NPF_uint32_t errBadCrcRx; /* Receive AAL5 Frames with CRC error */
 NPF_uint32_t errBadLenRx; /* Receive AAL5 frames with length err */
 NPF_uint64_t bytesRx; /* Receive Bytes */

 NPF_uint64_t framesTx; /* Transmit AAL5 Frames */
 NPF_uint64_t bytesTx; /* Transmit Bytes */
} NPF_F_ATM_AAL5Stats_t;

4.4.13 Virtual Path statistics
The below structure is used to return the statistics information for the queried virtual path. Statistics
counters are non negative integers which wrap around on reaching maximum value using twos
complement arithmetic. These statistics cover all cells including OAM cells received on the virtual
path.

/*
* ATM Per-Vp Statistics, returned in asynchronous response
*/
typedef struct {
 NPF_F_ATM_Stats_t atmStats; /* ATM Level statistics */
} NPF_F_ATM_ConfigMgr_VpStats_t;

4.5 ATM AAL2 Channel Data Types
4.5.1 AAL2 Channel Configuration

The below structure describes the configuration parameters for an AAL2 channel. The connection ID
and the CID are used to uniquely identify an AAL2 channel. Each channel is assigned a handle called
the AAL2 channel ID which identifies an AAL2 channel uniquely in the system.

/*
 * AAL2 channel CPS configuration
 */
typedef struct {
 NPF_F_AAL2ChanId_t aal2ChanId; /* ID assigned to this AAL2 chnl. */
 NPF_F_ATM_VirtLinkID_t aal2path; /* ID of VC constituting AAL2 path */
 NPF_uint8_t aal2Cid; /* The CID for this channel */

 NPF_uint32_t chnlPrio; /* Priority of this AAL2 channel */
 /* must be < maxPrio configured on *
 * the corresponding AAL2 path */

 ATM Task Group 33

Network Processing Forum Software Working Group

 /* This parameter indicates the maximum size CPS-SDU, in octets, that is
 transported on a particular AAL type 2 channel. It also indicates the
 maximum size CPS-SDU that may be delivered to the corresponding CPS
 user. This parameter can take on the values "45" or "64" and is set
 by signaling or management procedures. The following inequality must
 be maintained - maxSduDeliverLen <=cpsMaxSduLen */
 NPF_F_ATM_AAL2_CpsSduLen_t maxSduDeliverLength;
} NPF_F_ATM_AAL2_Chnl_CpsCfg_t;

/*
 * AAL2 channel SAR SSCS configuration – filled when SSCS configured for the
 * the AAL2 path is SAR SSCS
 */
typedef struct {
 /* Common SSCS Parameters (SSCS type = SAR)as specified in I.366.1 */
 /* Selection of the transmission error detection mechanisms (SSTED) */
 NPF_boolean_t sstedStatus; /* SSTED selected? */

 /* Selection of the assured data transfer mechanism (SSADT) */
 /* When ssadtStatus is set to TRUE, the sstedStatus MUST be set to TRUE*/
 NPF_boolean_t ssadtStatus; /* SSADT selected? */

 /* Maximum SSSAR SDU length in bytes */
 /* This parameter indicates the maximum size SSSAR-SDU, in octets, that
 * is allowed to be reassembled. Valid values are between 1 and 65568 */
 NPF_uint32_t maxSssarSduLength; /* Max SSSAR-SDU size? */

 /* Maximum size of segments used to create SSSAR PDU */
 /* This must bet set between 1 and maxSduDeliverLength specified in the*/
 /* CPS configuration portion of the AAL2 channel configuration struct */
 /* This parameter can assume a value between 1 to 45 or 1 to 64 based *
 * on the configuration of the maxSduDeliverLength field */
 NPF_uint8_t maxSssarSegLength;

 /* Timer configured to guard re-assembly process for SSSAR segments */
 NPF_F_ATM_Timers_t rasTimer; /* RAS Timer */

} NPF_F_ATM_AAL2_Chnl_SarSscsCfg_t;

The AAL2 channels may be bound to a higher level interface. The AAL2 channel is then an endpoint
of the connection terminated in this VC. This mechanism allows other applications like PPP over
AAL2 and so on.
The AAL2 channel configuration structure also allows mapping of the AAL2 channel being
provisioned to another set of AAL2 channels on the same FE or to the backplane by mapping to a
backplane link. Each cross connection established in this manner is identified by a unique AAL2
channel cross connect identifier. This identifier is assigned by the FAPI client and is transparently
used by the FAPI implementation. The identifier may be used by the FAPI client to delete one or all
the cross connections established at the time of AAL2 channel provisioning by using the
NPF_F_ATM_ConfigMgr_AAL2_ChnlXcDelete function. The FAPI client may also add more cross
connection if required using the NPF_F_ATM_ConfigMgr_AAL2_ChnlXcSet function. The ‘B’
links to be cross connected should be established ahead of the link being configured. The maximum
number of such cross connections allowed is defined by the FAPI implementation and is out of the
scope of NPF.

/*
* AAL2 Channel Config Info.
*/
typedef struct {

 ATM Task Group 34

Network Processing Forum Software Working Group

 /* AAL2 channel CPS sub layer configuration parameters */
 NPF_F_ATM_AAL2_Chnl_CpsCfg_t cpsConfig;

 /* AAL2 channel SAR SSCS sub layer configuration parameters */
 NPF_F_ATM_AAL2_Chnl_SarSscsCfg_t sarSscsConfig;

 /* The below field provides the administratively configured status of *
 * the channel. The actual status assumed by the channel may be *
 * different based on the actual physical status. The operation *
 * status may be queried using the function provided to query *
 * the operational status. *
 * Administrative status can be NPF_STATUS_UP, NPF_STATUS_DOWN *
 * or NPF_STATUS_TESTING */
 NPF_ObjStatus_t admStatus; /*Status of channel–UP/DOWN/TESTING */

 /* The below field provides the status of statistics collections on the*
 * channel. When set to NPF_TRUE, statistics collection is enabled. *
 * The statistics collection may also be enabled or disabled at a *
 * future point in time by issueing the statistics enable/disable *
 * function call. The current statistics collection state may be *
 * queried using the function provided to query the channel information*/
 NPF_boolean_t statsEnabled; /* Statistic collecting state*/

 /* The below field is used to cross connect AAL2 channel to another *
 * AAL2 channel on the same FE or to a backplane switch link. When *
 * the numLink_B field is set to 0, it indicates there is no cross *
 * connection established for this AAL2 channel. For a unicast mapping,*
 * the AAL2 channel being provisioned may be connected to another *
 * AAL2 channel or backplane link and the numLink_B is set to 1. *
 * For multicast mapping, the numLink_B is set to the number of *
 * cross connections to be made. */
 NPF_uint32_t numLink_B; /* Number of links connected to the AAL2 *
 Channel being provisioned */
 NPF_F_ATM_AAL2_ChnlXcInfo_t *link_B; /* Mapped link ‘B’ */

} NPF_F_ATM_ConfigMgr_AAL2_Channel_t;

4.5.2 AAL2 Channel Information
This structure is used to return below information in response to AAL2 channel information query by
the FAPI client.

AAL2 Channel Configuration Information •

•

•

AAL2 Channel Bindings
Statistics collection state

/*
* AAL2 Channel query response
*/
typedef struct {
 /* AAL2 channel configuration information */
 NPF_F_ATM_ConfigMgr_AAL2_Channel_t chnlCfg;

 /* chnlBound indicates if the channel is bound to a child interface. *
 * If TRUE, the interface handle of the child interface is returned *
 * in the ifChildHandle field */
 NPF_boolean_t chnlBound; /* Whether bound to child I/F*/
 NPF_IfHandle_t ifChildHandle; /* Bound interface */

 NPF_ObjStatus_t operStatus; /* Operational status of chnl*

 ATM Task Group 35

Network Processing Forum Software Working Group

 * i.e UP/DOWN/TESTING */
} NPF_F_ATM_ConfigMgr_AAL2_ChannelInfo_t;

4.5.3 Cross Connection of AAL2 channels
This structure is used to configure a AAL2 channel cross connect to connect AAL2 channel ‘A’ to
link ‘B’. The link ‘B’ could be one below type:

An AAL2 channel configured on the same FE as the AAL2 channel ‘A’ •

• A backplane link
When the AAL2 channel is connected to a AAL2 channel located on the same FE, the ID of the
AAL2 channel to which the cross connection is required is specified for the cross connection. When
the AAL2 channel is connected to a backplane link, the link ‘B’ for the cross connection is specified
using the backplane switch headers of the backplane switch link and the backplane interface on which
the backplane link is carried. Multicast connections may be created by cross connecting AAL2
channel ‘A’ to multiple destinations.
The channel ‘B’ to connect to the channel ‘A’ is determined using the xcType field as below:

Table 4.4: AAL2 Channel cross-connection types
xcType Description
NPF_F_ATM_EXT_TO_EXT The external AAL2 channel ‘A’ is connected to an

external AAL2 channel ‘B’ on the same FE. The
mapAal2Chnl in the union of the structure below
specifies the AAL2 channel ID of channel ‘B’ connected
to the AAL2 channel A.

NPF_F_ATM_EXT_TO_BACK The external AAL2 channel ‘A’ is connected to a
backplane link. The backplane link is specified using the
mapSwLink field of the union.

NPF_F_ATM_BACK_TO_INT The internal AAL2 channel ‘A’ is connected to a
backplane link. The backplane link is specified using the
mapSwLink field of the union.

NPF_F_ATM_EXT_TO_INT The external/internal AAL2 channel ‘A’ is connected to
an external/internal AAL2 channel ‘B’ on the same FE.
The mapAal2Chnl in the union of the structure below
specifies the AAL2 channel ID of channel ‘B’ connected
to the AAL2 channel A.

/*
 * ATM AAL2 channel Link Cross connect Information
 */
typedef struct {
 NPF_F_AAL2ChnlXcId_t aal2ChnlXcId; /* ID of AAL2 chnl. Cross cnct */
 NPF_F_ATM_XcType_t xcType; /* Type of cross connection */
 union {
 NPF_F_AAL2ChanId_t mapAal2ChanId; /* Mapped AAL2 channel ID */
 NPF_F_SwitchAddress_t mapSwLink; /* Mapped to backplane */
 }u;
} NPF_F_ATM_AAL2_ChnlXcInfo_t;

/*
* ATM AAL2 channel cross connect – Connect channel ‘A’ to channel ‘B’
*/
typedef struct {
 /* AAL2 channel ‘A’ to connect to second AAL2 channel or backplane */

 ATM Task Group 36

Network Processing Forum Software Working Group

 NPF_F_AAL2ChanId_t aal2ChanId_A;

 /* Number of ‘B’ links connected to channel ‘A’ */
 NPF_uint32_t numLink_B;

 /* Mapped link ‘B’ – Backplane link or another AAL2 channel on same FE */
 NPF_F_ATM_AAL2_ChnlXcInfo_t *link_B;
} NPF_F_ATM_ConfigMgr_AAL2_ChnlXc_t;

4.5.4 ATM Adaptation Layer type 2 Channel statistics
Statistics counters are non negative integers which wrap around on reaching maximum value using
twos complement arithmetic. The statistics counters are grouped into CPS level statistics and SAR
SSCS level statistics.
This structure specifies the statistics counters accumulated by the CPS sub-layer.

typedef struct {
 /* errno = 5; I.363.2 */
 /* The length of the received CPS-Packet Payload (CPS-SDU) exceeds
 the maximum length indicated in "Max_SDU_Deliver_Length". */
 NPF_uint32_t errCpsLenRx;

 /* errno = 6; I.363.2 */
 /* Number of times reassembly cancelled due to errno = 0, 1 or 2 */
 NPF_uint32_t numReasmCancel;

 /* errno = 7; I.363.2 */
 /* The Header Error Control (HEC) Code of a CPS-Packet header that
 * was overlapping a CPS-PDU boundary indicates transmission errors in
 * The CPS-Packet header; if the value of the OSF is less than 47,
 * Processing starts at the octet pointed to by the OSF. */
 NPF_uint32_t numPhBfrResetErrHec;

 /* errno = 8; I.363.2 */
 /* The UUI field in the received CPS-Packet header contains a value
 ("28" or "29") that is reserved for future standardization. */
 NPF_uint32_t errBadUUIRx; /* Reserved UUI; unexpected UUI Rx */

 NPF_uint64_t cpsPktRx; /* No. of AAL2 CPS packets received */
 NPF_uint64_t cpsBytesRx; /* No. CPS packet bytes received */
 NPF_uint64_t cpsPktTx; /* No. of AAL2 CPS packets transmitted*/
 NPF_uint64_t cpsBytesTx; /* No. CPS packet bytes transmitted */
} NPF_F_ATM_AAL2ChnlCpsStats_t;

This structure specifies the statistics counters accumulated by the SAR SSCS sub-layer.
typedef struct {
 /* errno = 10; I.366.1 */
 /* The maximum permissible size for a reassembled SSSAR-SDU
 ("Max_SDU_Length") has been exceeded. */
 NPF_uint32_t errSscsOversizedSssarSduRx; /* Oversized SSSAR SDU */

 /* errno = 11; I.366.1 */
 /* The reassembly timer RAS_Timer has expired. */
 NPF_uint32_t errSscsSssarRasTimerExpiryRx; /* Reassembly timeout */

 /* errno = 20; I.366.1 */
 /* An SSTED-PDU of length 8 or less has been received. */
 NPF_uint32_t errSscsUndersizedSstedPduRx; /* PDU<8 bytes received*/

 ATM Task Group 37

Network Processing Forum Software Working Group

 /* errno = 21; I.366.1 */
 /* The value of the Length field in the SSTED-PDU does not match the
 length of the received SSTED-PDU. */
 NPF_uint32_t errSscsSstedPduLengthMismatchRx; /* Length mismatch */

 /* errno = 22; I.366.1 */
 /* The value of the CRC field is not equal to the CRC calculated over
 the received information. */
 NPF_uint32_t errSscsSstedCrcMismatchRx; /* SSTED CRC mismatch */
} NPF_F_ATM_AAL2ChnlSarSscsStats_t;

This structure specifies the statistics counters for the AAl2 channels.
typedef struct {

 /* CPS sub layer statistics */
 NPF_F_ATM_AAL2ChnlCpsStats_t cpsStats;

 /* SAR SSCS sub layer statistics. Accumulated if the SAR SSCS is
 * associated with the AAL2 channels */
 NPF_F_ATM_AAL2ChnlSarSscsStats_t sarSscsStats;
} NPF_F_ATM_ConfigMgr_AAL2ChannelStats_t;

4.6 ATM Interface Data Types
4.6.1 ATM Interface Type

This enumeration defines the different ATM interface types. The type of interface is used to
determine the number of bits to parse in the ATM header when classifying ATM cells.

typedef enum {
 NPF_F_ATM_IF_UNI = 0, /* UNI Interface */
 NPF_F_ATM_IF_NNI /* NNI Interface */
} NPF_F_ATM_IfType_t;

4.6.2 ATM Interface Characteristics
This structure is used to configure the attributes of an interface.
The cpId field is set to the identifier of the reference points defined at the ATM layer along a VPC (or
VCC). The connection points are located at the ingress and egress of an ATM network element,
where VP/VC link termination functions operate. Different values are intended to be used for
identifying the ingress and egress of a given ATM network element.

typedef struct {
 NPF_F_ATM_IfID_t ifID; /* Interface handle */
 NPF_F_ATM_IfType_t ifType; /* Interface UNI/NNI */
 NPF_F_ATM_OAM_CPID_t cpId; /* Connect point ID */
} NPF_F_ATM_ConfigMgr_IfCfg_t;

4.6.3 ATM Interface Statistics
This structure is used to return the statistics counters accumulated for each configured interface.

typedef struct {
 NPF_uint64_t cellsClp01Rx; /* Receive Total Cells (CLP0 + CLP1) */
 NPF_uint64_t cellsClp0Rx; /* Receive High Priority Cells (CLP0)*/
 NPF_uint64_t cellsClp01Tx; /* Transmit Total Cells (CLP0 + CLP1)*/
 NPF_uint64_t cellsClp0Tx; /* Transmit High Priority Cells(CLP0)*/
 NPF_uint32_t unexCellsRx; /* Receive cells w/unexpected VPI/VCI*/
 NPF_uint32_t unexSecsRx; /* Rx Seconds of Unexpected VPI/VCI */
 NPF_F_ATM_VcAddr_t lastUnexATMHdr;/* ATM header of last unexpected cell*/
} NPF_F_ATM_ConfigMgr_IfStats_t;

 ATM Task Group 38

Network Processing Forum Software Working Group

4.7 ATM OAM Data Types
4.7.1 Connection Point type

This structure defines the different configurations in which a connection point can exist with respect
to an OAM flow.

/*
* OAM Connection Point Type
*/
typedef enum{
 NPF_ATM_OAM_ETE_ENDPOINT = 0, /* ETE End point */
 NPF_ATM_OAM_SEG_ENDPOINT = 1, /* Segment end point */
 NPF_ATM_OAM_ETE_AND_SEG_ENDPOINT = 2, /* ETE & segment endpoint */
 NPF_ATM_OAM_ETE_INTERMEDIATE = 3, /* Intermediate point - ETE flow */
 NPF_ATM_OAM_ETE_AND_SEG_INTERMEDIATE = 4 /* Intermediate point - ETE
 And segment flow */
} NPF_F_ATM_OAM_CP_Type_t;

The ATM layer contains the two highest OAM levels, F4 and F5, in B-ISDN protocol reference
model. The two OAM levels are as below:

F4 level : Virtual path level •

•

•

•

•

•

F5 level : Virtual channel level
OAM flows are related to bidirectional Maintenance Entities (MEs) corresponding to either the entire
ATM VPC/VCC, referred to as the VPC/VCC ME, or to a portion of this connection referred to as a
VPC/VCC segment ME.
The F4 flow is further classified into two kinds:

End-to-end F4 flows: This flow, identified by a standardized VCI is used for end-to-end VPC
operations communications.
Segment F4 flow: This flow, identified by a standardized VCI is used for communicating
operations information within the boundaries of the VPC segment.

End-to-end F4 flows must be terminated at the endpoints of a VPC. Segment F4 flows must be
terminated at the CPs terminating a VPC segment. The terminating CPs can be intermediate CPs
along the VPC or they can coincide with a VPC endpoint.
The F5 flow is further classified into two kinds:

End-to-end F5 flows: This flow, identified by a standardized PTI, is used for end-to-end VCC
operations communications.
Segment F5 flow: This flow, identified by a standardized PTI, is used for communicating
operations information within the boundaries of the VCC segment

End-to-end F5 flows must be terminated at the endpoints of a VCC. Segment F5 flows must be
terminated at CPs terminating a VCC segment. The terminating CPs can be intermediate CPs along
the VCC or they can coincide with a VCC endpoint.
Configuring the OAM CP as an ETE and/or segment end point enables the AIS/RDI
detection/generation. The other OAM procedures like performance monitoring etc. may be enabled
after the connection point is configured.

4.7.2 Connection Point ID
The connection point ID identifies a connection point along a VPC or a VCC. Different values are
intended to be used for identifying the ingress and egress of a given ATM network element.

typedef struct {
 NPF_uchar8_t cpId[16]; /* Connection point ID */
} NPF_F_ATM_OAM_CPID_t;

 ATM Task Group 39

Network Processing Forum Software Working Group

4.7.3 Response to CC activation request
This structure contains the possible responses to a Continuity Check activate request received by a CP
from a remote end. The activate/de-active requested by the remote end is indicated to the registered
event handlers. The FAPI client is expected to accept or reject the request received from the remote
end for the continuity check procedure.

/*
* OAM CC Response Type
*/
typedef enum {
 NPF_F_ATM_OAM_CC_RSP_ACCEPT = 0, /* Accept requested procedure */
 NPF_F_ATM_OAM_CC_RSP_REJECT = 1, /* Reject requested procedure */
} NPF_F_ATM_OAM_CC_RspType_t;

4.7.4 Response to PM activation request
This structure contains the possible responses to a Performance Monitoring activate request received
by a CP from a remote end. The activate/de-active requested by the remote end is indicated to the
registered event handlers. The FAPI client is expected to accept or reject the request received from
the remote end for the performance monitoring procedure.

/*
* OAM PM Response
*/
typedef enum {
 NPF_IF_ATM_OAM_PM_RSP_ACCEPT = 0, /* Accept requested procedure */
 NPF_IF_ATM_OAM_PM_RSP_REJECT = 1, /* Reject requested procedure */
} NPF_F_ATM_OAM_PM_RspType_t;

4.7.5 OAM Flow Level
The ATM layer contains the two highest OAM levels, F4 and F5, in B-ISDN protocol reference
model. The two OAM levels are as below:

F4 level : Virtual path level •

• F5 level : Virtual channel level
OAM flows are related to bidirectional Maintenance Entities (MEs) corresponding to either the entire
ATM VPC/VCC, referred to as the VPC/VCC ME, or to a portion of this connection referred to as a
VPC/VCC segment ME.

/*
* OAM Flow Level
*/
typedef enum{
 NPF_F_ATM_OAM_FLOW_LEVEL_F4 = 0, /* F4 level flow */
 NPF_F_ATM_OAM_FLOW_LEVEL_F5 = 1, /* F5 Level flow */
} NPF_F_ATM_OAM_FlowLevel_t;

4.7.6 OAM Flow type
The ATM layer besides providing the vertical subdivision into F4 and F5 levels for OAM flows also
provides a horizontal partition i.e. both flows can either cover the entire virtual connection (end-to-
end flow) or only parts of the virtual connection (segment flow). The below data type is used to
enumerate the two horizontal partitions for the OAM flows.

/*
* OAM Flow Type
*/
typedef enum{
 NPF_F_SEGMENT = 0, /* Flow type SEGMENT */
 NPF_F_END_TO_END = 1, /* Flow type ETE */
} NPF_F_ATM_OAM_FlowType_t;

 ATM Task Group 40

Network Processing Forum Software Working Group

4.7.7 Operation Type for OAM procedures
The continuity check and performance monitoring procedures between two connection points may be
activated using either activation/de-activation procedures specified in recommendation I.610 or via
other means like TMN. The operation type NPF_F_ACTIVATE and NPF_F_DEACTIVATE are used by
the FAPI client to request start or stop the CC and PM procedures using the activation/de-activation
cell exchange.
When the activation/de-activation of the procedure have been done through other means like TMN,
the FAPI client can request the initiation/suspension of the CC and PM procedures using the
NPF_F_START and NPF_F_STOP operations. When the NPF_F_START and NPF_F_STOP operations
are invoked, no activation/de-activation cell exchange is carried out prior to initiating/suspending the
requested procedure.
Intermediate connections points may non-intrusively perform performance monitoring by
accumulating statistics for the user traffic on the monitored flows. The non intrusive performance
monitoring may be enabled/disabled using the NPF_F_START/NPF_F_STOP operations at connection
points marked as being intermediate connection points. These connection points will not generate any
FPM/BR cells as part of this performance monitoring.

/*
* OAM Oper Type
*/
typedef enum{
 NPF_F_ACTIVATE = 0, /* Activate procedure */
 NPF_F_DEACTIVATE = 1, /* Deactive procedure */
 NPF_F_START = 2, /* Start procedure */
 NPF_F_STOP = 3, /* Stop Procedure */
} NPF_F_ATM_OAM_OperType_t;

4.7.8 OAM Cell Type
The OAM cells are classified based on the OAM type and the function type in the OAM cells. The
below enumeration provides the various types of OAM cells.

/*
* OAM Fault Management (AIS/RDI/CC/LB)
* OAM Performance Management (FPM/BR)
* OAM Activation/Deactivation (FPM_BR/CC/FPM)
*/
typedef enum{
 NPF_F_AIS_CELL = 0, /* Alarm Indication Signal Cell */
 NPF_F_RDI_CELL = 1, /* Remote Defect Indicator Cell */
 NPF_F_CC_CELL = 2, /* Continuity Check Cell */
 NPF_F_LB_CELL = 3, /* Loopback Cell */
 NPF_F_FPM_CELL = 4, /* Forward Performance Monitoring Cell */
 NPF_F_BR_CELL = 5, /* Backward Reporting Cell */
 NPF_F_ACT_DEACT_FPM_BR = 6, /* Activate/Deactive FPM and associated BR */
 NPF_F_ACT_DEACT_CC = 7, /* Activate/Deactive Continuity check */
 NPF_F_ACT_DEACT_FPM = 8, /* Activate/Deactive FPM */
} NPF_F_ATM_OAM_CellType_t;

4.7.9 OAM Performance Monitoring Block Size
These are nominal block size values, and the actual size of the monitored cell block may vary. The
cell block size may vary up to a maximum margin of 50% of the value of N for end-to-end
performance monitoring. However, for end-to-end performance monitoring, the monitoring cell must
be inserted into the user cells stream no more than N/2 user cells after an insertion request has been
initiated. The actual monitoring block size averages out to approximately N cells. Recommendation
I.356 shows how to choose the block size N.

/*

 ATM Task Group 41

Network Processing Forum Software Working Group

* OAM PM Block Size
*/
typedef enum{
 NPF_F_SIZE_32768 = 0, /* Block size 32768 cells */
 NPF_F_SIZE_16384 = 1, /* Block size 16384 cells */
 NPF_F_SIZE_8192 = 2, /* Block size 8192 cells */
 NPF_F_SIZE_4096 = 3, /* Block size 4096 cells */
 NPF_F_SIZE_2048 = 4, /* Block size 2048 cells */
 NPF_F_SIZE_1024 = 5, /* Block size 1024 cells */
 NPF_F_SIZE_512 = 6, /* Block size 512 cells */
 NPF_F_SIZE_256 = 7, /* Block size 256 cells */
 NPF_F_SIZE_128 = 8 /* Block size 128 cells */
} NPF_F_ATM_OAM_BlkSize_t;

4.7.10 OAM Performance Monitoring Function Type
When performance monitoring and backward reporting are both activated it is specified using the
enumeration NPF_F_PM_FUNC_TYPE_FPM_BR. When only performance monitoring is activated, it is
specified using the enumeration NPF_F_PM_FUNC_TYPE_FPM.

/* OAM PM Function Type */
/* The data type defines PM function types can be set */
typedef enum {
 NPF_F_PM_FUNC_TYPE_FPM_BR = 0,
 NPF_F_PM_FUNC_TYPE_FPM
} NPF_F_ATM_OAM_PM_FuncType_t;

4.7.11 Direction of operation of OAM functions
This enumeration identifies the direction(s) of transmission to activate/deactivate OAM function. The
A-B and B-A notation is used to differentiate between the direction of transmission away or towards
the activator/deactivator, respectively.

/*
* OAM Direction
*/
typedef enum{
 NPF_F_FORWARD = 0, /* A-B direction */
 NPF_F_BACKWARD = 1, /* B-A direction */
 NPF_F_TWO_WAY = 2, /* Both A-B and B-A direction */
 NPF_F_NOT_APPLICABLE = 3 /* Direction not applicable to this function */
} NPF_F_ATM_OAM_Direction_t;

4.7.12 Continuity Check cell insertion method
Two alternative mechanisms exist for the insertion of CC cells after the activation of the CC function:

Option 1: CC cells are sent in the forward direction by a VPC/VCC source point or a
VPC/VCC segment source point when no user cells have been sent for a period of nominally
1 second.

•

• Option 2: CC cells are sent repetitively with a periodicity of nominally 1 cell per second
independent of the user cells flow.

The below enumeration is used to describe these two options.
/*
* OAM Continuity Check Method
*/
typedef enum {
 /* Send CC when no user cells only if no user cells have been sent in
 * CC Duration on link for that flow */
 NPF_F_ATM_OAM_CC_SEND_CC_WHEN_NO_USER_CELLS = 0,

 ATM Task Group 42

Network Processing Forum Software Working Group

 /* Send CC cells periodically Irrespective of user cells flowing on *
 * link for that flow */
 NPF_F_ATM_OAM_CC_SEND_CC_ALWAYS = 1
} NPF_F_ATM_OAM_CC_Method_t;

4.7.13 Connection Point Configuration Data Type
This data type is used to configure the connection point type for a network connection. The
connection points are reference points defined along a network connection defined at a given network
layer. Connection points defined at the ATM layer along a VPC or a VCC are located at the ingress
and egress of an ATM network element where VP or VC link termination functions operate.
If the LLID option is enabled at a CP the CP shall analyze the incoming segment LB cells.
Intermediate points shall return segment LB cells if the LLID matches the CPID or if the LLID is set
to all “0”s value.
By default all connection points shall be considered to be intermediate connection points for segment
and ETE flows. The LLID option shall be considered to be enabled by default. The connection point
type and the state of the LLID option can be reconfigured by issuing the
NPF_F_ATM_ConfigMgr_CP_Set function.

/*
* OAM CP Configuration information
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_ATM_OAM_CP_Type_t cpType; /* Connection point type */
 NPF_boolean_t llidOption; /* Is LLID option enabled ?
*/
} NPF_F_ATM_ConfigMgr_OAM_CP_t;

4.7.14 Continuity Check Configuration Data Type
The continuity check procedure for F4 and F5 flows as specified in recommendation I.610 is
configured using the below data type.

/*
* OAM CC Activation/Deactivation
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_ATM_OAM_FlowType_t flowType; /* segment/end-to-end */
 NPF_F_ATM_OAM_OperType_t operType; /*Activate/Deactivate/Start/Stop*/
 NPF_F_ATM_OAM_Direction_t direction;/* Away/towards/both */
 NPF_F_ATM_OAM_CC_Method_t ccMethod; /* Options to send CC Cell
 0-Send when no user cell
 1-Send periodically */
} NPF_F_ATM_ConfigMgr_OAM_CC_t;

Continuity check procedure may be activated/de-activated as a result of activation/de-activation cell
exchange between the two end points or out of band by other means like TMN.

4.7.15 Continuity Check Response Data Type
This data structure is used by the FAPI client to respond to an activation/de-activation request for
continuity check procedure as specified in recommendation I.610.

/*
* OAM CC Response
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_ATM_OAM_FlowType_t flowType; /* segment/end-to-end */

 ATM Task Group 43

Network Processing Forum Software Working Group

 NPF_F_ATM_OAM_CC_RspType_t ccRsp;
 NPF_F_ATM_OAM_CC_Method_t ccMethod; /* For CC source and ACCEPT only.
 Option to send cc cell
 0 – to send when no user cell
 1 – to force send */
} NPF_F_ATM_ConfigMgr_OAM_CC_Rsp_t;

This ccMethod field is valid in the response only when this node will be the source for the continuity
check procedure and the response from the management application indicates ACCEPT action for the
CC activate request from the requesting CP.

4.7.16 Performance Monitoring Data Type
This data structure is used to activate/de-active/start/stop performance monitoring procedure on the
specified OAM flow as described in recommendation I.610.

/*
* OAM PM Activation/Deactivation – FPM-BR/FPM
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link*/
 NPF_F_ATM_OAM_FlowType_t flowType; /* segment/end-to-end */
 NPF_F_ATM_OAM_PM_FuncType_t funcType; /* FPM-BR/FPM */
 NPF_F_ATM_OAM_Direction_t dir; /* Direction of operation */
 NPF_F_ATM_OAM_BlkSize_t fwdSize; /* A-B block size */
 NPF_F_ATM_OAM_BlkSize_t bwdSize; /* B-A block size */
 NPF_F_ATM_OAM_OperType_t operType; /* Act/Deactivate/Start/Stop */
} NPF_F_ATM_ConfigMgr_OAM_PM_t;

The possible combinations of funcType, dir and operType are as below:

Table 4.5: Performance Monitoring Configurations
funcType dir operType Description

FPM A-B Start The performance monitoring is activated in this case by means like
the TMN and no activation OAM cells are exchanged by the
connection point A and B. The source process for the PM function
is activated at connection point ‘A’ for FPM only performance
monitoring in the A-B direction.

The connection point ‘A’ counts the user cells transmitted in the A-
B direction for the specified OAM flow and generates the FPM
cells in the A-B direction when the configured block size number of
cells has been transmitted.

FPM B-A Start The performance monitoring is activated in this case by means like
the TMN and no activation OAM cells are exchanged by the
connection point A and B. The sink process for the PM function is
activated at connection point ‘A’ for FPM only performance
monitoring in the B-A direction.

The connection point ‘A’ counts the user cells received in the B-A
direction for the specified OAM flow and updates the performance
monitoring statistics for the B-A direction on reception of FPM cell
from connection point B.

FPM Both Start The performance monitoring is activated in this case by means like
h TMN d i i OAM ll h d b h

 ATM Task Group 44

Network Processing Forum Software Working Group

the TMN and no activation OAM cells are exchanged by the
connection point A and B. The source process for PM is activated at
the connection point ‘A’ for FPM only performance monitoring in
the A-B direction and the sink process for PM is activated at
connection point ‘A’ for FPM only performance monitoring in the
B-A direction.

The connection point ‘A’ counts the user cells transmitted in the A-
B direction for the specified OAM flow and generates the FPM
cells in the A-B direction when the configured block size number of
cells has been transmitted.

The connection point ‘A’ counts the user cells received in the B-A
direction for the specified OAM flow and updates the performance
monitoring statistics for the B-A direction when FPM cell is
received from connection point B.

FPM A-B Activate The performance monitoring is activated in this case by an
exchange of activation OAM cells between the initiator i.e.
connection point ‘A’ and the connection point ‘B’ to activate
performance monitoring in the A-B direction. The connection point
‘A’ generates an activation cell to the connection point B.

If the activation request is accepted by the connection point B, the
source process for the PM is activated at connection point ‘A’ for
FPM only performance monitoring in the A-B direction.

The connection point ‘A’ starts counting the user cells transmitted
in the A-B direction for the specified OAM flow and generates the
FPM cells in the A-B direction when the configured block size
number of cells has been transmitted.

FPM B-A Activate The performance monitoring is activated in this case by an
exchange of activation OAM cells between the initiator i.e.
connection point ‘A’ and the connection point ‘B’ to activate
performance monitoring in the B-A direction. The connection point
‘A’ generates an activation cell to the connection point B.

If the activation request is accepted by the connection point B, the
sink process for the PM is activated at connection point ‘A’ for
FPM only performance monitoring in the B-A direction.

The connection point ‘A’ counts the user cells received in the B-A
direction for the specified OAM flow and updates the performance
monitoring statistics for the B-A direction on reception of FPM cell
from connection point B.

FPM Both Activate The performance monitoring is activated in this case by an
exchange of activation OAM cells between the initiator i.e.
connection point ‘A’ and the connection point ‘B’ to activate
performance monitoring in both A-B and B-A direction. The
connection point ‘A’ generates an activation cell to the connection

 ATM Task Group 45

Network Processing Forum Software Working Group

point B.

If the activation request is accepted by the connection point B, the
sink process for the PM is activated at connection point ‘A’ for
FPM only performance monitoring in B-A direction and the source
process for the PM is activated at the connection point ‘A’ for FPM
only performance monitoring in the A-B direction.

The connection point ‘A’ counts the user cells transmitted in the A-
B direction for the specified OAM flow and generates the FPM
cells in the A-B direction when the configured block size number of
cells has been transmitted.

The connection point ‘A’ counts the user cells received in the B-A
direction for the specified OAM flow and updates the performance
monitoring statistics for the B-A direction on reception of FPM cell
from connection point B.

FPM A-B

Stop The performance monitoring is de-activated in this case by means
like the TMN and no de-activation OAM cells are exchanged by the
connection point A and B.

The connection point ‘A’ stops counting of the user cells
transmitted in the A-B direction for the specified OAM flow.

FPM B-A

Stop The performance monitoring is de-activated in this case by means
like the TMN and no de-activation OAM cells are exchanged by the
connection point A and B.

The connection point ‘A’ stops counting the user cells received in
the B-A direction for the specified OAM flow.

FPM Both Stop The performance monitoring is de-activated in this case by means
like the TMN and no de-activation OAM cells are exchanged by the
connection point ‘A’ and ‘B’.

The connection point ‘A’ stops counting of the user cells
transmitted in the A-B direction for the specified OAM flow.

The connection point ‘A’ stops counting the user cells received in
the B-A direction for the specified OAM flow.

FPM A-B

Deactivate The performance monitoring is de-activated in this case by an
exchange of de-activation OAM cells between the initiator i.e.
connection point ‘A’ and the connection point ‘B’ to de-activate
performance monitoring in the A-B direction. The connection point
‘A’ generates a de-activation cell to the connection point B.

 If the de-activation request is accepted by the connection point ‘B’,
the connection Point ‘A’ stops counting of the user cells transmitted
in the A-B direction for the specified OAM flow.

 ATM Task Group 46

Network Processing Forum Software Working Group

FPM B-A Deactivate The performance monitoring is de-activated in this case by an
exchange of de-activation OAM cells between the initiator i.e.
connection point ‘A’ and the connection point ‘B’ to de-activate
performance monitoring in the B-A direction. The connection point
‘A’ generates a de-activation cell to the connection point B.

If the de-activation request is accepted by the connection point ‘B’,
the connection point ‘A’ stops counting the user cells received in
the B-A direction for the specified OAM flow.

FPM Both Deactivate The performance monitoring is de-activated in this case by an
exchange of de-activation OAM cells between the initiator i.e.
connection point ‘A’ and the connection point ‘B’ to de-activate
performance monitoring in the B-A and B-A direction. The
connection point ‘A’ generates a de-activation cell to the
connection point B.

If the de-activation request is accepted by the connection point ‘B’,
the connection point ‘A’ stops counting of the user cells transmitted
in the A-B direction and the user cells received in the B-A direction
for the specified OAM flow.

FPM-BR A-B Start The performance monitoring is activated in this case by means like
the TMN and no activation OAM cells are exchanged by the
connection point A and B. The source process for the PM function
is activated at connection point ‘A’ for performance monitoring in
the A-B direction using FPM and associated BR.

The connection point ‘A’ counts the user cells transmitted in the A-
B direction for the specified OAM flow and generates the FPM
cells in the A-B direction when the configured block size number of
cells has been transmitted. On reception of BR cell from connection
point B, the performance monitoring statistics for A-B direction are
updated.

FPM-BR B-A Start The performance monitoring is activated in this case by means like
the TMN and no activation OAM cells are exchanged by the
connection point A and B. The sink process for the PM function is
activated at connection point ‘A’ for PM in the B-A direction using
FPM and associated BR.

The connection point ‘A’ counts the user cells received in the B-A
direction for the specified OAM flow. When the connection point
‘A’ receives the FPM cell generated by connection point ‘B’, a BR
cells is generated by the connection point ‘A’ in the A-B direction
and the performance monitoring statistics for B-A direction are
updated.

FPM-BR Both Start The performance monitoring is activated in this case by means like
the TMN and no activation OAM cells are exchanged by the
connection point A and B. The sink process for the PM function is
activated at connection point ‘A’ for PM in the B-A direction using
FPM and associated BR. The source process for PM function is also

 ATM Task Group 47

Network Processing Forum Software Working Group

activated at the connection point ‘A’ for PM in the A-B direction
using FPM and associated BR.

The connection point ‘A’ counts the user cells transmitted in the A-
B direction for the specified OAM flow and generates the FPM
cells in the A-B direction when the configured block size number of
cells has been transmitted. On reception of BR cell from connection
point B, the performance monitoring statistics for A-B direction are
updated.

The connection point ‘A’ counts the user cells received in the B-A
direction for the specified OAM flow. When the connection point
‘A’ receives the FPM cell generated by connection point ‘B’, a BR
cells is generated by the connection point ‘A’ in the A-B direction
and the performance monitoring statistics for B-A direction are
updated.

FPM-BR A-B Activate The performance monitoring is activated in this case by an
exchange of activation OAM cells between the initiator i.e.
connection point ‘A’ and the connection point ‘B’ to activate
performance monitoring in the A-B direction using FPM and
associated BR. The connection point ‘A’ generates an activation
cell to the connection point B.

If the activation request is accepted by the connection point B, the
connection point ‘A’ counts the user cells transmitted in the A-B
direction for the specified OAM flow and generates the FPM cells
in the A-B direction when the configured block size number of cells
has been transmitted. On reception of BR cell from connection
point B, the performance monitoring statistics for A-B direction are
updated.

FPM-BR B-A Activate The performance monitoring is activated in this case by an
exchange of activation OAM cells between the initiator i.e.
connection point ‘A’ and the connection point ‘B’ to activate
performance monitoring in the B-A direction using FPM and
associated BR. The connection point ‘A’ generates an activation
cell to the connection point B.

If the activation request is accepted by the connection point B, the
connection point ‘A’ counts the user cells received in the B-A
direction for the specified OAM flow. When the connection point
‘A’ receives the FPM cell generated by connection point ‘B’, a BR
cell is generated by the connection point ‘A’ in the A-B direction
and the performance monitoring statistics for the B-A direction are
updated.

FPM-BR Both Activate The performance monitoring is activated in this case by an
exchange of activation OAM cells between the initiator i.e.
connection point ‘A’ and the connection point ‘B’ to activate
performance monitoring in both A-B and B-A direction using FPM
and associated BR. The connection point ‘A’ generates an

 ATM Task Group 48

Network Processing Forum Software Working Group

activation cell to the connection point B.

If the activation request is accepted by the connection point B, the
connection point ‘A’ counts the user cells transmitted in the A-B
direction for the specified OAM flow and generates the FPM cells
in the A-B direction when the configured block size number of cells
has been transmitted. On reception of BR cell from connection
point B, the performance monitoring statistics for A-B direction are
updated.

If the activation request is accepted by the connection point B, the
connection point ‘A’ counts the user cells received in the B-A
direction for the specified OAM flow. When the connection point
‘A’ receives the FPM cell generated by connection point ‘B’, a BR
cells is generated by the connection point ‘A’ in the A-B direction
and the performance monitoring statistics for B-A direction are
updated.

FPM-BR A-B

Stop The performance monitoring is de-activated in this case by means
like the TMN and no de-activation OAM cells are exchanged by the
connection point A and B.

Connection points ‘A’ stops counting user cells transmitted in the
A-B direction on the specified OAM flow.

FPM-BR B-A

Stop The performance monitoring is de-activated in this case by means
like the TMN and no de-activation OAM cells are exchanged by the
connection point A and B.

Connection points ‘A’ stops counting user cells received in the B-A
direction on the specified OAM flow.

FPM-BR Both Stop The performance monitoring is de-activated in this case by means
like the TMN and no de-activation OAM cells are exchanged by the
connection point A and B.

Connection points ‘A’ stops counting user cells received in the B-A
direction and user cells transmitted in the A-B direction on the
specified OAM flow.

FPM-BR A-B

Deactivate The performance monitoring is de-activated in this case by an
exchange of de-activation OAM cells between the initiator i.e.
connection point ‘A’ and the connection point ‘B’ to de-activate
performance monitoring in the A-B direction. The connection point
‘A’ generates a de-activation cell to the connection point B.

If the de-activation request is accepted by the connection point ‘B’,
the connection points ‘A’ stops counting user cells transmitted in
the A-B direction on the specified OAM flow.

FPM-BR B-A

Deactivate The performance monitoring is de-activated in this case by an
exchange of de-activation OAM cells between the initiator i.e.
connection point ‘A’ and the connection point ‘B’ to de-activate

 ATM Task Group 49

Network Processing Forum Software Working Group

performance monitoring in the B-A direction. The connection point
‘A’ generates a de-activation cell to the connection point B.

If the de-activation request is accepted by the connection point ‘B’,
the connection points ‘A’ stops counting user cells received in the
B-A direction on the specified OAM flow.

FPM-BR Both Deactivate The performance monitoring is de-activated in this case by an
exchange of de-activation OAM cells between the initiator i.e.
connection point ‘A’ and the connection point ‘B’ to de-activate
performance monitoring in the B-A and A-B direction. The
connection point ‘A’ generates a de-activation cell to the
connection point B.

If the de-activation request is accepted by the connection point ‘B’,
the connection points ‘A’ stops counting user cells received in the
B-A direction and the user cells transmitted in the A-B direction on
the specified OAM flow.

4.7.17 Performance Monitoring Statistics Request Data Type
This section defines the data type used by the FAPI client to request the accumulated performance
monitoring counters. As part of the request the FAPI client may request the accumulated statistics to
be zeroed. Zeroing out the counters does not stop/disable the ongoing performance monitoring
procedure.
The ATM configuration manager provides two mechanisms to retrieve performance monitoring
statistics. One is via a registered event handler in which case the FAPI implementation generates
performance monitoring statistics events whenever a FPM or BR cell is received to deliver the
collected statistics. The other mechanism is via the NPF_F_ATM_ConfigMgr_OAM_PM_StatsGet
function call to retrieve the statistics.

/* Performance monitoring statistics request data type */
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_ATM_OAM_FlowType_t flowType; /* segment/end-to-end */
 NPF_boolean_t zeroStats; /* clear stats if TRUE */
} NPF_F_ATM_ConfigMgr_OAM_PM_StatsReq_t;

4.7.18 Performance Monitoring Statistics Data Type
The ATM configuration manager allows the FAPI client to obtain the performance monitoring
statistics using two methods. The first method is to register an event handler to receive the
performance monitoring statistics. The FAPI implementation will deliver the accumulated statistics
for each monitored cell block on reception of a FPM or BR cell.
The second method is for the FAPI client to query the ATM configuration manager for the statistics
information. The FAPI implementation will accumulate and integrate the statistics and provide
accumulated statistics in response to the query. This section defines the data type used to report the
accumulated statistics in response to the query from the FAPI client.

/* Errored cell block statistics; Does not include counts for severely *
 * errored cell blocks which are provided as part of SECB stats */
typedef struct {
 /*Number of misinserted CLP0+1 cells in errored cell blocks */
 NPF_uint32_t numMisinsertedCLP01cells;
 /*Number of misinserted CLP0 cells in errored cell blocks */
 NPF_uint32_t numMisinsertedCLP0cells;
 /* Number of lost CLP0+1 users cells in errored cell blocks */

 ATM Task Group 50

Network Processing Forum Software Working Group

 NPF_uint32_t numLostCLP01cells;
 /* Number of lost CLP0 users cells in errored cell blocks */
 NPF_uint32_t numLostCLP0cells;
 /* Number of errored cell bits in errored cell blocks */
 NPF_uint32_t numErroredCLP01Bits;
 /* Number of cell blocks with CLP0+1 losses */
 NPF_uint32_t numBlocksClp01Loss;
 /* Number of cell blocks with CLP0 losses */
 NPF_uint32_t numBlocksClp0Loss;
 /* Number of cell blocks with CLP0+1 Misinsertions */
 NPF_uint32_t numBlocksClp01Misinsertion;
 /* Number of cell blocks with CLP0 Misinsertions */
 NPF_uint32_t numBlocksClp0Misinsertion;
 /* Number of cell blocks with errors i.e cell loss, misinsertion or *
 * bit errors */
 NPF_uint32_t totalErroredCellBlocks;
} NPF_F_ATM_OAM_ErrCB_Stats_t;
/* Severely errored cell block (SECB) statistics. Please see I.610 and I.356
 * For definition of severely errored cell blocks.
 * The counts here do not include the non severely errored cell blocks
 */
typedef struct {
 /*Number of misinserted CLP0+1 cells in severely errored cell blocks*/
 NPF_uint32_t numMisinsertedCLP01cells;
 /*Number of misinserted CLP0 cells in severely errored cell blocks */
 NPF_uint32_t numMisinsertedCLP0cells;
 /* Number of lost CLP0+1 users cells in severely errored cell blocks*/
 NPF_uint32_t numLostCLP01cells;
 /* Number of lost CLP0 users cells in severely errored cell blocks */
 NPF_uint32_t numLostCLP0cells;
 /* Number of errored cell bits in severely errored cell blocks */
 NPF_uint32_t numErroredCLP01Bits;
 /* Number of severely errored cell blocks with CLP0+1 losses */
 NPF_uint32_t numSECBClp01Loss;
 /* Number of severely errored cell blocks with CLP0 losses */
 NPF_uint32_t numSECBClp0Loss;
 /* Number of severely errored cell blocks with CLP0+1 Misinsertions */
 NPF_uint32_t numSECBClp01Misinsertion;
 /* Number of severely errored cell blocks with CLP0 Misinsertions */
 NPF_uint32_t numSECBClp0Misinsertion;
 /* Total Number of severely errored cell blocks with errors i.e *
 * cell loss, misinsetion or bit errors */
 NPF_uint32_t totalSECB;
} NPF_F_ATM_OAM_SevErrCB_Stats_t;

/* This structure contains the PM stats counters for one direction */
typedef struct {
 NPF_uint32_t averageBlockSize; /* Avg. block size */
 NPF_uint32_t minBlockSize; /* Min block size */
 NPF_uint32_t maxBlockSize; /* Max block size */

 /* Lost PM cells is the count of FPM cell lost in the B->A direction *
 * and the lost of BR cells in the A->B direction */
 NPF_uint32_t lostPMcells; /* PM cells lost */

 /* Errored cell block statistics */
 NPF_F_ATM_OAM_ErrCB_Stats_t erroredCBStats; /* Errored CB stats*/
 /* Severely errored cell block statistics */
 NPF_F_ATM_OAM_SevErrCB_Stats_t secbStats; /* SECB stats */

 ATM Task Group 51

Network Processing Forum Software Working Group

} NPF_F_ATM_OAM_PM_Stats_Info_t;

/* Performance monitoring statistics returned in response to FAPI client *
 * query. The counts are accumulated since the last time the counters *
 * were zeroed by the FAPI client. When performance monitoring is enabled*
 * the counters start from 0. */

typedef struct {
 /* Direction in which performance management procedure is activated *
 * is either Forward (A->B), Backward (B->A) or both A->B and B->A */
 NPF_F_ATM_OAM_Direction_t dir;

 /* Performance monitoring statistics for A->B direction. The counter*
 * in this structure are valid if PM is enabled in forward direction*
 * i.e. A->B direction or in both directions. These counters are *
 * updated on reception of a BR from the B connection point *
 * The direction field indicates direction in which PM is enabled */
 NPF_F_ATM_OAM_PM_Stats_Info_t oamPMStatsAtoB;

 /* Performance monitoring statistics for B->A direction. The counter*
 * in this structure are valid if PM is enabled in forward direction*
 * i.e. B->A direction or in both directions. These counters are *
 * updated on reception of a FPM from the B connection point *
 * The direction field indicates direction in which PM is enabled */
 NPF_F_ATM_OAM_PM_Stats_Info_t oamPMStatsBtoA;
} NPF_F_ATM_ConfigMgr_OAM_PM_Stats_t;

4.7.19 Loopback Operation Data Type
This data structure is used to initiate a loopback procedure as described in recommendation I.610. VP
and VC loopback cells may be inserted by any connection point along a VPC or VCC respectively.
The llId field identifies the CP along the virtual connection or connection segment where the
loopback is to occur. The llId is set to one of the below depending on the desired loopback
operation.

All 1s – Represents the endpoint. This is the segment endpoint for segment loopback and the
connection endpoint for end-to-end loopback.

•

•

•

All 0s – Represents all CPs for which the LLID option is enabled. This includes the segment
endpoint. It is only applicable to segment LB cells.
All other values – Indicates the specific CP where the loopback is to occur.

When the includeSrcId field is set to NPF_TRUE, the CPID configured for the interface on which
the link is created is included in the LB cell. When set to NPF_FALSE, the default all 1’s value shall
be used to form the LB cell.
The remCell field indicates if the CP which inserted the LB cell should remove the returned LB
cells. The CP shall remove the LB cell if the remCell is set to NPF_TRUE and the correlation tag and
source ID in the returned cell match those in the parent cell.

/*
* OAM Loopback
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_ATM_OAM_FlowType_t flowType; /* segment/end-to-end */
 NPF_F_ATM_OAM_CPID_t llId; /* Loopback location Id */
 NPF_boolean_t remCell; /* Remove returned cells ? */
 NPF_boolean_t includeSrcId; /* If source CP ID be included */
 /* in LB cell */
} NPF_F_ATM_ConfigMgr_OAM_LB_t;

 ATM Task Group 52

Network Processing Forum Software Working Group

4.7.20 Loopback Procedure Result Data Type
In response to the loopback cell the CP sending the loopback request could receive multiple loopback
responses. The NPF_F_ATM_ConfigMgr_OAM_LB_Result_t structure is used to return the
responses received to the loopback procedure. The numLbResp may be set to 1 when the results are
returned one by one. Alternately all loopback responses may be collected in a single result structure
and the numLbResp set to the received number of responses. It is an implementation decision to
return the results one by one or all at once.
If no loopback cells are received and the loopback procedure times out, the numLbResp shall be set to
0 in the NPF_F_ATM_ConfigMgr_OAM_LB_Result_t structure used to return the response to the
FAPI client indicating a failure of the loopback procedure.

/*
* Loopback Procedure Result
*/
typedef struct {
 NPF_uint8_t numLbResp; /* Number of Loopback responses */
 NPF_F_ATM_OAM_CPID_t *llId; /* Loopback Location Id */
} NPF_F_ATM_ConfigMgr_OAM_LB_Result_t;

4.7.21 Non Intrusive Monitoring Data Type
Non-intrusive monitoring of any type of end-to-end or segment fault and performance management
VP/VC OAM flows may be performed at any intermediate point along a VPC/VCC. This includes
intermediate points within a VPC/VCC segment as well as the VPC/VCC segment endpoints. The
purpose of the non-intrusive monitoring function is to provide to network providers additional OAM
information which cannot be derived from the content of segment OAM flows.
Non-intrusive monitoring of VP/VC OAM flows consists of detecting and processing the content of
VP/VC OAM cells received on a VP/VC link in passing at an intermediate point without modifying
the characteristics (e.g. cell content, cell sequence) of the aggregated (OAM & monitored cells) flow
observed.
Enabling non intrusive monitoring of fault management cells (AIS/RDI/CC/LB) at intermediate
points allows the connection point to detect faults and declare AIS state when AIS cells are received,
transmission path AIS-defects are detected or defects like loss of continuity is detected on the
monitored flow (segment/end-to-end) on the monitored link (VP/VC link). The AIS (segment_VP-
AIS, e-t-e_VP-AIS, segment_VC-AIS, e-t-e_VC-AIS) state shall be released when a user cell or a CC
cell is received on the monitored flow. The AIS state shall also be released if no AIS cells are seen on
the monitored flow for 2.5 +/- 0.5 seconds. When non-intrusive monitoring is stopped for a specified
flow, the AIS states declared for that flow shall be released. The declaration/release of AIS state and
detection/clearing of the LOC defect on monitored flows shall be indicated to the FAPI clients using
the fault management events listed below:

NPF_F_ATM_AIS_RAISED •

•

•

•

•

•

NPF_F_ATM_RDI_RAISED

NPF_F_ATM_AIS_CLEARED

NPF_F_ATM_RDI_CLEARED

NPF_F_ATM_LOC_RAISED

NPF_F_ATM_LOC_CLEARED

When starting the non-intrusive monitoring of CC flows the FAPI client should by means outside the
scope of NPF determine whether the CC procedure is activated for the monitored flow and link to
avoid generation of spurious LOC defects. Also the FAPI client should by means outside the scope of
NPF stop monitoring of CC flows when the CC procedure is deactivated at the end points terminating
the monitored flow.

 ATM Task Group 53

Network Processing Forum Software Working Group

The FAPI client may additionally register for events delivering the contents of the monitored cells
types.

/*
* OAM Non-Intrusive Monitoring
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_ATM_OAM_OperType_t operType; /* Start/Stop Monitoring */
 NPF_F_ATM_OAM_FlowType_t flowType; /* segment/end-to-end */
 NPF_F_ATM_OAM_CellType_t cellType; /* Type of OAM cell to monitor */
} NPF_F_ATM_ConfigMgr_OAM_Mon_t;

4.7.22 Declare/Release AIS Alarm State Data Type
This structure is used to declare or release AIS alarm state for the specified link at the connection
point. The defect type specified in the below structure is not fully specified as the specific
enumerations for defect type are for further study as specified in recommendation I.610.
When AIS state is declared for a VP, the AIS state is automatically declared for all VCs included
within the VP as specified in recommendation I.610.

/*
* OAM Alarms - Declare and Release AIS alarms
*/
typedef struct {
 NPF_F_ATM_OAM_FlowType_t flowType; /* segment/end-to-end */
 NPF_uint8_t defectType; /* Defect type */
 NPF_uint8_t defectLocation[16]; /* Defect Location */
} NPF_F_ATM_OAM_Alarm_Info_t;

typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_ATM_OAM_Alarm_Info_t alarmInfo; /* Alarm information */
} NPF_F_ATM_ConfigMgr_OAM_Alarm_t;

4.7.23 Response to PM activation/De-activation request
This structure contains the possible responses to a Performance Monitoring activate request received
by a CP from a remote end. The activate/de-active requested by the remote end is indicated to the
registered event handlers. The FAPI client is expected to accept or reject the request received from
the remote end for the performance monitoring procedure using the
NPF_F_ATM_ConfigMgr_OAM_PM_Rsp () function.

/*
* OAM PM Response
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_ATM_OAM_FlowType_t flowType; /* segment/end-to-end */
 NPF_F_ATM_OAM_PM_RspType_t pmRsp; /* Accept/Reject response */
} NPF_F_ATM_ConfigMgr_OAM_PM_Rsp_t;

4.7.24 AIS Cell Information Data Types
This structure is used to pass alarm information received in AIS cells to registered event handlers.

/*
* AIS Alarm event info.
*/
typedef struct {
 NPF_F_ATM_OAM_FlowType_t flowType; /* Segment/ETE */
 NPF_uint16_t defectType; /* Defect type */
 NPF_char8_t defectLocation[16]; /* Defect Location */

 ATM Task Group 54

Network Processing Forum Software Working Group

} NPF_F_ATM_OAM_AIS_Event_t;

4.7.25 RDI Cell Information Data Types
This structure is used to pass alarm information received in RDI cells to registered event handlers.

/*
* RDI Alarm event info.
*/
typedef struct {
 NPF_F_ATM_OAM_FlowType_t flowType; /* Segment/ETE */
 NPF_uint16_t defectType; /* Defect type */
 NPF_char8_t defectLocation[16]; /* Defect Location */
} NPF_F_ATM_OAM_RDI_Event_t;

4.7.26 FPM Cell Information Data Type
This structure is used to pass information received in Forward performance monitoring (FPM) cells to
registered event handlers.

/*
* FPM Cell Info
*/
typedef struct {
 NPF_F_ATM_OAM_FlowType_t flowType; /* Segment/ETE */
 NPF_uchar8_t mscn; /* FPM MCSN */
 NPF_uint16_t totUsrCell01; /* Total User Cell(CLP-0+1) */
 NPF_uint16_t totUsrCell0; /* Total User Cell(CLP-0) */
 NPF_uint16_t blkErrDetCode; /* Block Error Detection Code*/
 NPF_uint32_t timeStamp; /* Time Stamp */
} NPF_F_ATM_OAM_FPM_Event_t;

4.7.27 BR Cell Information Data Type
This structure is used to pass information received in Back Reporting (BR) cells to registered event
handlers.

/*
* BR Cell Info
*/
typedef struct {
 NPF_F_ATM_OAM_FlowType_t flowType; /* Segment/ETE */
 NPF_uchar8_t mscn; /* BR Monitoring Cell Seq. No. */
 NPF_uint16_t totUsrCell01; /* Total User Cell(CLP-0+1) */
 NPF_uint16_t totUsrCell0; /* Total User Cell(CLP-0) */
 NPF_uint32_t timeStamp; /* Time Stamp */
 NPF_uchar8_t repMscn; /* Reported MCSN */
 NPF_uchar8_t secbc; /* Severely Err. Cell block */
 NPF_uint16_t totRcvdUsrCell0;/* Total Rx User Cell(CLP-0) */
 NPF_uint8_t blkErr; /* Block Error Result(CLP-0+1) */
 NPF_uint16_t totRcvdUsrCell1;/* Total Rx User Cell(CLP0+1)*/
} NPF_F_ATM_OAM_BR_Event_t;

4.7.28 LB Cell Information Data Type
This structure is used to pass the received loopback cell information to registered event handlers.

/*
* Loopback Cell Info
*/
typedef struct {
 NPF_F_ATM_OAM_FlowType_t flowType; /* Segment/ETE */
 NPF_boolean_t sourceIdValid; /* If sourceID in Ind */
 NPF_uint8_t sourceId[16]; /* source ID */
 NPF_uint8_t llid[16]; /* loopback location ID */

 ATM Task Group 55

Network Processing Forum Software Working Group

} NPF_F_ATM_OAM_LB_Event_t;

4.7.29 CC Cell Information Data Type
This structure is used to pass the received continuity check cell information to registered event
handlers.

typedef struct
{
 NPF_F_ATM_OAM_FlowType_t flowType; /* Segment/ETE */
} NPF_F_ATM_OAM_CC_Event_t;

4.7.30 Performance Monitoring Statistics Event Data Type
This structure is used to pass the performance monitoring statistics to registered event handlers. The
delivery of the statistics is triggered by reception of either FPM or BR cell and provides the statistics
for one cell block i.e. the cell block for which the FPM or BR was received.
The ATM configuration manager provides two mechanisms to retrieve performance monitoring
statistics. One via a registered event handler in which case the FAPI implementation generates
performance monitoring statistics events whenever a FPM or BR cell is received to deliver the
collected statistics. The other mechanism is the NPF_F_ATM_ConfigMgr_OAM_PM_StatsGet
function call to retrieve the statistics.

typedef enum
{
 NPF_F_ATM_OAM_PM_STATS_TRIGGER_FPM_RECEIVED=0, /* Indication due to FPM */
 NPF_F_ATM_OAM_OAM_PM_STATS_TRIGGER_BR_RECEIVED /* Indication due to BR */
} NPF_F_ATM_OAM_PmStatsTrigger_t;

typedef struct
{
 NPF_F_ATM_OAM_FlowType_t flowType; /* Segment/ETE */
 NPF_F_ATM_OAM_PmStatsTrigger_t pmStatsTrigger; /* FPM or BR received */
 NPF_uint8_t mcsn; /* BR Monitoring cell seq no */
 NPF_uint16_t tuc01; /* Total user cell (CLP 0+1) */
 NPF_uint16_t tuc0; /* Total user cell (CLP 0) */
 NPF_uint32_t tstp; /* Time stamp */
 NPF_uint8_t rMcsn; /* Reported Monitoring Cell seq No. */
 NPF_uint8_t secbc; /* Severely Errored Cell Block Count */
 NPF_uint16_t trcc01; /* Total received user cell(CLP 0+1) */
 NPF_uint16_t trcc0; /* Total received user cell(CLP 0) */
 NPF_uint8_t bler01; /* Block error result (CLP 0+1) */
} NPF_F_ATM_OAM_PM_Stats_Event_t;

4.7.31 PM procedure activation and deactivation event
This structure contains the information received in a PM activate/deactivate request from a peer
network element.

typedef struct {
 NPF_F_ATM_OAM_FlowType_t flowType; /* Segment/ETE */
 NPF_F_ATM_OAM_PM_FuncType_t functionType; /* FPM-BR/FPM */
 NPF_F_ATM_OAM_Direction_t oamDirection; /* A->B/B->A/Bothway */
 NPF_F_ATM_OAM_BlkSize_t fwdBlkSize; /* Forward block size */
 NPF_F_ATM_OAM_BlkSize_t backBlkSize; /* Backward block size */
} NPF_F_ATM_OAM_PM_ActDeact_Event_t;

4.7.32 CC procedure activation and deactivation event
This structure contains the information received in a CC activate/deactivate request from a peer
network element.

typedef struct {

 ATM Task Group 56

Network Processing Forum Software Working Group

 NPF_F_ATM_OAM_FlowType_t flowType; /* Segment/ETE */
 NPF_F_ATM_OAM_Direction_t oamDirection; /* A->B/B->A/Bothway */
} NPF_F_ATM_OAM_CC_ActDeact_Event_t;

4.7.32.1 OAM Information
This structure contains the state of various OAM procedures and the current OAM status of the
queried virtual link.

/*
* OAM Configuration and Status Information
*/
typedef struct {
 /* Continuity Check state and configurations */
 NPF_boolean_t ccActive; /* Whether CC procedure ON */
 /* Below two fields valid if ccActive set to TRUE */
 NPF_F_ATM_OAM_Direction_t ccDir; /* Away/towards/both */
 NPF_F_ATM_OAM_CC_Method_t ccMethod; /* Options to send CC Cell
 0-Send when no user cell
 1-Send periodically */

 /* Performance Monitoring state and configurations */
 NPF_boolean_t pmActive; /* Whether PM procedure ON */
 /* Below four fields valid if pmActive set to TRUE */
 NPF_F_ATM_OAM_PM_FuncType_t pmFuncType; /* FPM-BR/FPM */
 NPF_F_ATM_OAM_Direction_t pmDir; /* Direction of operation */
 NPF_F_ATM_OAM_BlkSize_t pmFwdSize; /* A-B block size */
 NPF_F_ATM_OAM_BlkSize_t pmBwdSize; /* B-A block size */

 /* Alarms states */
 NPF_boolean_t inAISState; /* Whether in AIS state */
 NPF_boolean_t inRDIState; /* Whether in RDI state */

 /* Loopback procedure configuration */
 NPF_boolean_t llidOption; /* Is LLID option enabled ?*/

 /* Non intrusive monitoring of OAM flows. When number of monitored *
 * cell types indicated using numMonCellTypes is set to non zero, *
 * the list of cell types monitored is provided by *cellType array */
 NPF_F_uint32_t numMonCellTypes;
 NPF_F_ATM_OAM_CellType_t *monCellType; /* OAM cell types monitored */
} NPF_F_ATM_ConfigMgr_OamInfo_t;

4.8 ATM Configuration Manager Specific Data Types
4.8.1 LFB Specific Error Codes

This section defines ATM Configuration Manager’s configuration and management APIs error codes.
These codes are used in callbacks to deliver results of the requested operations. The base for the error
codes used in ATM LFBs is derived as LFB_TYPE_CODE * 100.

/*
* Asynchronous error codes (returned in function callbacks)
*/
 #define NPF_F_ATMCMGR_BASE_ERR (NPF_F_ATMCONFIGMGR_LFB_TYPE * 100)
 #define NPF_ATM_F_E_INVALID_VC_ADDRESS (NPF_F_ATMCMGR_BASE_ERR + 0)
 #define NPF_ATM_F_E_INVALID_ATM_AAL (NPF_F_ATMCMGR_BASE_ERR + 1)
 #define NPF_ATM_F_E_INVALID_CHILD_HANDLE (NPF_F_ATMCMGR_BASE_ERR + 2)
 #define NPF_ATM_F_E_VC_NOT_BOUND (NPF_F_ATMCMGR_BASE_ERR + 3)
 #define NPF_ATM_F_E_INVALID_ATM_QOS (NPF_F_ATMCMGR_BASE_ERR + 4)
 #define NPF_ATM_F_E_INVALID_ATTRIBUTE (NPF_F_ATMCMGR_BASE_ERR + 5)

 ATM Task Group 57

Network Processing Forum Software Working Group

 #define NPF_ATM_F_E_INVALID_SUBTYPE (NPF_F_ATMCMGR_BASE_ERR + 6)
 #define NPF_ATM_F_E_INVALID_CBR (NPF_F_ATMCMGR_BASE_ERR + 7)
 #define NPF_ATM_F_E_INVALID_CLK_REC_TYPE (NPF_F_ATMCMGR_BASE_ERR + 8)
 #define NPF_ATM_F_E_INVALID_FEC (NPF_F_ATMCMGR_BASE_ERR + 9)
 #define NPF_ATM_F_E_INVALID_SDT (NPF_F_ATMCMGR_BASE_ERR + 10)
 #define NPF_ATM_F_E_INVALID_PAR_FILL_CELL (NPF_F_ATMCMGR_BASE_ERR + 11)
 #define NPF_ATM_F_E_INVALID_CELL_LOSS_PER (NPF_F_ATMCMGR_BASE_ERR + 12)
 #define NPF_ATM_F_E_INVALID_CPS_ATTR (NPF_F_ATMCMGR_BASE_ERR + 13)
 #define NPF_ATM_F_E_INVALID_SSCS_I3661_ATTR (NPF_F_ATMCMGR_BASE_ERR + 14)
 #define NPF_ATM_F_E_INVALID_SSCS_I3662_ATTR (NPF_F_ATMCMGR_BASE_ERR + 15)
 #define NPF_ATM_F_E_INVALID_ATM_TRUNK_ATTR (NPF_F_ATMCMGR_BASE_ERR + 16)
 #define NPF_ATM_F_E_INVALID_MAX_SIZE_FWD (NPF_F_ATMCMGR_BASE_ERR + 17)
 #define NPF_ATM_F_E_INVALID_MAX_SIZE_BWD (NPF_F_ATMCMGR_BASE_ERR + 18)
 #define NPF_ATM_F_E_INVALID_AAL_MODE (NPF_F_ATMCMGR_BASE_ERR + 19)
 #define NPF_ATM_F_E_INVALID_SSCS_TYPE (NPF_F_ATMCMGR_BASE_ERR + 20)
 #define NPF_ATM_F_E_AAL2_QOS_PRIO_INVALID (NPF_F_ATMCMGR_BASE_ERR + 21)
 #define NPF_ATM_F_E_AAL2_QOS_WEIGHT_INVALID (NPF_F_ATMCMGR_BASE_ERR + 22)
 #define NPF_ATM_F_E_PERF_MONITORING_OFF (NPF_F_ATMCMGR_BASE_ERR + 23)
 #define NPF_ATM_F_E_CONT_OBJS_EXIST (NPF_F_ATMCMGR_BASE_ERR + 24)
 #define NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP (NPF_F_ATMCMGR_BASE_ERR + 25)

4.8.2 Completion Callback Data Type
/*
* Completion Callback Types, to be found in the callback
* data structure, NPF_F_ATM_ConfigMgr_CallbackData_t.
*/
typedef enum NPF_F_ATM_ConfigMgr_CallbackType {
 NPF_F_ATM_CONFIGMGR_IF_SET = 1,
 NPF_F_ATM_CONFIGMGR_IF_DELETE = 2,
 NPF_F_ATM_CONFIGMGR_IF_STATS_GET = 3,
 NPF_F_ATM_CONFIGMGR_IF_STATS_ENABLE = 4,
 NPF_F_ATM_CONFIGMGR_IF_STATS_DISABLE = 5,
 NPF_F_ATM_CONFIGMGR_IF_QUERY = 6,
 NPF_F_ATM_CONFIGMGR_IF_AIS_STATE_SET = 7,
 NPF_F_ATM_CONFIGMGR_IF_AIS_STATE_CLEAR = 8,

 NPF_F_ATM_CONFIGMGR_VC_SET = 9,
 NPF_F_ATM_CONFIGMGR_VP_SET = 10,
 NPF_F_ATM_CONFIGMGR_VC_BIND = 11,
 NPF_F_ATM_CONFIGMGR_VC_UNBIND = 12,
 NPF_F_ATM_CONFIGMGR_VL_DELETE = 13,
 NPF_F_ATM_CONFIGMGR_VL_ENABLE = 14,
 NPF_F_ATM_CONFIGMGR_VL_DISABLE = 15,
 NPF_F_ATM_CONFIGMGR_VL_OPER_STATUS_GET = 16,
 NPF_F_ATM_CONFIGMGR_VL_STATS_ENABLE = 17,
 NPF_F_ATM_CONFIGMGR_VL_STATS_DISABLE = 18,
 NPF_F_ATM_CONFIGMGR_VC_STATS_GET = 19,
 NPF_F_ATM_CONFIGMGR_VC_QUERY = 20,
 NPF_F_ATM_CONFIGMGR_VC_CROSSCONNECT_SET = 21,
 NPF_F_ATM_CONFIGMGR_VC_CROSSCONNECT_DELETE = 22,
 NPF_F_ATM_CONFIGMGR_VC_CROSSCONNECT_QUERY = 23,
 NPF_F_ATM_CONFIGMGR_VP_STATS_GET = 24,
 NPF_F_ATM_CONFIGMGR_VP_QUERY = 25,
 NPF_F_ATM_CONFIGMGR_VP_CROSSCONNECT_SET = 26,
 NPF_F_ATM_CONFIGMGR_VP_CROSSCONNECT_DELETE = 27,
 NPF_F_ATM_CONFIGMGR_VP_CROSSCONNECT_QUERY = 28,

 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_SET = 29,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_BIND = 30,

 ATM Task Group 58

Network Processing Forum Software Working Group

 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_UNBIND = 31,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_DELETE = 32,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_STATS_GET = 33,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_QUERY = 34,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_ENABLE = 35,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_DISABLE = 36,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_OPER_STATUS_GET = 37,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_STATS_ENABLE = 38,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_STATS_DISABLE = 39,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_CROSSCONNECT_SET = 40,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_CROSSCONNECT_DELETE = 41,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_CROSSCONNECT_QUERY = 42,

 NPF_F_ATM_CONFIGMGR_OAM_CP_SET = 43,
 NPF_F_ATM_CONFIGMGR_OAM_CC_SET = 44,
 NPF_F_ATM_CONFIGMGR_OAM_CC_RSP = 45,
 NPF_F_ATM_CONFIGMGR_OAM_PM_SET = 46,
 NPF_F_ATM_CONFIGMGR_OAM_PM_RSP = 47,
 NPF_F_ATM_CONFIGMGR_OAM_PM_STATS_GET = 48,
 NPF_F_ATM_CONFIGMGR_OAM_LB_SET = 49,
 NPF_F_ATM_CONFIGMGR_OAM_MONITOR = 50,
 NPF_F_ATM_CONFIGMGR_OAM_ALARM_SET = 51,
 NPF_F_ATM_CONFIGMGR_OAM_ALARM_CLEAR = 52,
} NPF_F_ATM_ConfigMgr_CallbackType_t;

4.8.3 Asynchronous Response Callback Data Type
/*
* This union is a handy way of representing the various object identifiers
* used by the APIs.
*/
typedef union {
 NPF_F_ATM_IfID_t ifID; /* Interface ID */
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_AAL2ChanId_t aal2ChanId; /* AAL2 channel ID */
 NPF_F_VcXcId_t vcXcId; /* VC cross connect ID */
 NPF_F_VpXcId_t vpXcId; /* VP cross connect ID */
 NPF_F_AAL2ChnlXcId_t chnlXcId; /* AAL2 Chnl cross connect ID */
} NPF_F_ATM_ConfigMgr_Id_t;
/*
* An asynchronous response contains an configuration object ID,
* a error or success code, and in some cases a function-
* specific structure embedded in a union. One or more of
* these is passed to the callback function as an array
* within the NPF_F_ATM_ConfigManager_CallbackData_t structure (below)
*/

typedef struct {
 NPF_error_t error; /* Error code for this resp */
 NPF_F_ATM_ConfigMgr_Id_t objId; /* Object Identifier */
 union {
 /* Function-specific structures: */
 NPF_uint32_t unused;

 /* Queried VC statistics.
 * Completion callback - NPF_F_ATM_CONFIGMGR_VC_STATS_GET */
 NPF_F_ATM_ConfigMgr_VcStats_t vcStats;

 /* Queried virtual path statistics
 * Completion callback - NPF_F_ATM_CONFIGMGR_VP_STATS_GET */

 ATM Task Group 59

Network Processing Forum Software Working Group

 NPF_F_ATM_ConfigMgr_VpStats_t vpStats;

 /* Queried AAL2 channel statistics
 *Completion callback - NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_STATS_GET */
 NPF_F_ATM_ConfigMgr_AAL2ChannelStats_t aal2ChanStats;

 /* Result of get operational status; status of link
 * Completion callback - NPF_F_ATM_CONFIGMGR_VL_OPER_STATUS_GET */
 NPF_ObjStatus_t operStatus;

 /* Result of initiated loopback procedure
 * Completion callback - NPF_F_ATM_CONFIGMGR_OAM_CC_RSP */
 NPF_F_ATM_ConfigMgr_OAM_LB_Result_t lbResult;

 /* ATM virtual channel configuration and status
 * Completion callback - NPF_F_ATM_CONFIGMGR_VC_QUERY */
 NPF_F_ATM_ConfigMgr_VcInfo_t vcConfigInfo;

 /* ATM virtual path configuration and status
 * Completion callback - NPF_F_ATM_CONFIGMGR_VP_QUERY */
 NPF_F_ATM_ConfigMgr_VpInfo_t vpConfigInfo;

 /* AAL2 channel configuration and status
 * Completion callback - NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_QUERY */
 NPF_F_ATM_ConfigMgr_AAL2_ChannelInfo_t chnlConfigInfo;

 /* VC cross connect attributes
 * Completion callback - NPF_F_ATM_CONFIGMGR_VC_CROSSCONNECT_QUERY */
 NPF_F_ATM_ConfigMgr_VcLinkXc_t vcXcConfig;

 /* VP link cross connect attributes
 * Completion callback - NPF_F_ATM_CONFIGMGR_VP_CROSSCONNECT_QUERY */
 NPF_F_ATM_ConfigMgr_VpLinkXc_t vpXcConfig;

 /* AAL2 channel cross connect attributes
 * Completion callback -
 * NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_CROSSCONNECT_QUERY */
 NPF_F_ATM_ConfigMgr_AAL2_ChnlXc_t chnlXcConfig;

 /* Queried Interface statistics
 * Completion callback - NPF_F_ATM_CONFIGMGR_IF_STATS_GET */
 NPF_F_ATM_ConfigMgr_IfStats_t ifStats;

 /* ATM interface attributes
 * Completion callback - NPF_F_ATM_CONFIGMGR_IF_QUERY */
 NPF_F_ATM_ConfigMgr_IfCfg_t ifConfig;

 /* OAM performance monitoring stats for requested flow
 * Completion callback - NPF_F_ATM_CONFIGMGR_OAM_PM_STATS_GET */
 NPF_F_ATM_ConfigMgr_OAM_PM_Stats_t pmStats;

 } u;
} NPF_F_ATM_ConfigMgr_AsyncResponse_t;
/*
* The callback function receives the following structure containing
* one or more asynchronous responses from a single function call.
* There are several possibilities:
* 1. The called function does a single request
* - n_resp = 1, and the resp array has just one element.

 ATM Task Group 60

Network Processing Forum Software Working Group

* - allOK = TRUE if the request completed without error
* and the only return value is the response code.
* - if allOK = FALSE, the "resp" structure has the error code.
* 2. the called function supports an array of requests
* a. All completed successfully, at the same time, and the
* only returned value is the response code:
* - allOK = TRUE, n_resp = 0.
* b. Some completed, but not all, or there are values besides
* the response code to return:
* - allOK = FALSE, n_resp = the number completed
* - the "resp" array will contain one element for
* each completed request, with the error code
* in the NPF_F_ATM_ConfigManager_AsyncResponse_t structure, along
* with any other information needed to identify
* which request element the response belongs to.
* - Callback function invocations are repeated in
* this fashion until all requests are complete.
* Responses are not repeated for request elements
* already indicated as complete in earlier callback function invocations.
*/
typedef struct {
 NPF_F_ATM_ConfigMgr_CallbackType_t type; /* Function called */
 NPF_boolean_t allOK; /* TRUE if all completed OK */
 NPF_uint32_t n_resp; /* Number of responses in array */
 NPF_F_ATM_ConfigMgr_AsyncResponse_t *resp; /* response structures*/
} NPF_F_ATM_ConfigMgr_CallbackData_t;
The following table summarizes the functions in this API and their type code.

Table 4.6: ATM Configuration Manager API Function to Type Code Mapping
Function Name Type Code
NPF_F_ATM_ConfigMgr_VcSet NPF_F_ATM_CONFIGMGR_VC_SET
NPF_F_ATM_ConfigMgr_VpSet NPF_F_ATM_CONFIGMGR_VP_SET
NPF_F_ATM_ConfigMgr_VcBind NPF_F_ATM_CONFIGMGR_VC_BIND
NPF_F_ATM_ConfigMgr_VcUnbind NPF_F_ATM_CONFIGMGR_VC_UNBIND
NPF_F_ATM_ConfigMgr_VirtLinkDelete NPF_F_ATM_CONFIGMGR_VL_DELETE
NPF_F_ATM_ConfigMgr_VirtLinkEnable NPF_F_ATM_CONFIGMGR_VL_ENABLE
NPF_F_ATM_ConfigMgr_VirtLinkDisable NPF_F_ATM_CONFIGMGR_VL_DISABLE
NPF_F_ATM_ConfigMgr_VirtLinkStatsEna
ble

NPF_F_ATM_CONFIGMGR_VL_STATS_ENABLE

NPF_F_ATM_ConfigMgr_VirtLinkStatsDis
able

NPF_F_ATM_CONFIGMGR_VL_STATS_DISABLE

NPF_F_ATM_ConfigMgr_VcOperStatusGet NPF_F_ATM_CONFIGMGR_VL_OPER_STATUS_GET
NPF_F_ATM_ConfigMgr_VcStatsGet NPF_F_ATM_CONFIGMGR_VC_STATS_GET
NPF_F_ATM_ConfigMgr_VcQuery NPF_F_ATM_CONFIGMGR_VC_QUERY
NPF_F_ATM_ConfigMgr_VcLinkXcSet NPF_F_ATM_CONFIGMGR_VC_CROSSCONNECT_SE

T
NPF_F_ATM_ConfigMgr_VcLinkXcDelete NPF_F_ATM_CONFIGMGR_VC_CROSSCONNECT_DE

LETE
NPF_F_ATM_ConfigMgr_VcLinkXcQuery NPF_F_ATM_CONFIGMGR_VC_CROSSCONNECT_QU

ERY
NPF_F_ATM_ConfigMgr_VpStatsGet NPF_F_ATM_CONFIGMGR_VP_STATS_GET
NPF_F_ATM_ConfigMgr_VpQuery NPF_F_ATM_CONFIGMGR_VP_QUERY
NPF_F_ATM_ConfigMgr_VpLinkXcSet NPF_F_ATM_CONFIGMGR_VP_CROSSCONNECT_SE

T
NPF_F_ATM_ConfigMgr_VpLinkXcDelete NPF_F_ATM_CONFIGMGR_VP_CROSSCONNECT_DE

LETE
NPF_F_ATM_ConfigMgr_VpLinkXcQuery NPF_F_ATM_CONFIGMGR_VP_CROSSCONNECT_QU

ERY

 ATM Task Group 61

Network Processing Forum Software Working Group

NPF_F_ATM_ConfigMgr_AAL2_ChannelSet NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_SET
NPF_F_ATM_ConfigMgr_AAL2_ChannelDele
te

NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_DELET
E

NPF_F_ATM_ConfigMgr_AAL2_ChannelStat
sGet

NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_STATS
_GET

NPF_F_ATM_ConfigMgr_AAL2_ChannelQuer
y

NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_QUERY

NPF_F_ATM_ConfigMgr_AAL2_ChnlXcSet NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_CROSS
CONNECT_SET

NPF_F_ATM_ConfigMgr_AAL2_ChnlXcDelet
e

NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_CROSS
CONNECT_DELETE

NPF_F_ATM_ConfigMgr_AAL2_ChnlXcQuery NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_CROSS
CONNECT_QUERY

NPF_F_ATM_ConfigMgr_AAL2_ChannelStat
sEnable

NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_STATS
_ENABLE

NPF_F_ATM_ConfigMgr_AAL2_ChannelStat
sDisable

NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_STATS
_DISABLE

NPF_F_ATM_ConfigMgr_AAL2_ChannelEnab
le

NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_ENABL
E

NPF_F_ATM_ConfigMgr_AAL2_ChannelDisa
ble

NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_DISAB
LE

NPF_F_ATM_ConfigMgr_AAL2_ChannelBind NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_BIND
NPF_F_ATM_ConfigMgr_AAL2_ChannelUnbi
nd

NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_UNBIN
D

NPF_F_ATM_ConfigMgr_AAL2_ChannelOper
StatusGet

NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_OPER_
STATUS_GET

NPF_F_ATM_ConfigMgr_OAM_CP_Set NPF_F_ATM_CONFIGMGR_OAM_CP_SET
NPF_F_ATM_ConfigMgr_OAM_CC_Set NPF_F_ATM_CONFIGMGR_OAM_CC_SET
NPF_F_ATM_ConfigMgr_OAM_CC_Rsp NPF_F_ATM_CONFIGMGR_OAM_CC_RSP
NPF_F_ATM_ConfigMgr_OAM_PM_Set NPF_F_ATM_CONFIGMGR_OAM_PM_SET
NPF_F_ATM_ConfigMgr_OAM_PM_Rsp NPF_F_ATM_CONFIGMGR_OAM_PM_RSP
NPF_F_ATM_ConfigMgr_OAM_PM_StatsGet NPF_F_ATM_CONFIGMGR_OAM_PM_STATS_GET
NPF_F_ATM_ConfigMgr_OAM_LB_Set NPF_F_ATM_CONFIGMGR_OAM_LB_SET
NPF_F_ATM_ConfigMgr_OAM_Mon_Set NPF_F_ATM_CONFIGMGR_OAM_MONITOR
NPF_F_ATM_ConfigMgr_OAM_Alarm_Set NPF_F_ATM_CONFIGMGR_OAM_ALARM_SET
NPF_F_ATM_ConfigMgr_OAM_Alarm_Clear NPF_F_ATM_CONFIGMGR_OAM_ALARM_CLEAR
NPF_F_ATM_ConfigMgr_IfSet NPF_F_ATM_CONFIGMGR_IF_SET
NPF_F_ATM_ConfigMgr_IfDelete NPF_F_ATM_CONFIGMGR_IF_DELETE
NPF_F_ATM_ConfigMgr_IfStatsGet NPF_F_ATM_CONFIGMGR_IF_STATS_GET
NPF_F_ATM_ConfigMgr_IfStatsEnable NPF_F_ATM_CONFIGMGR_IF_STATS_ENABLE
NPF_F_ATM_ConfigMgr_IfStatsDisable NPF_F_ATM_CONFIGMGR_IF_STATS_DISABLE
NPF_F_ATM_ConfigMgr_IfQuery NPF_F_ATM_CONFIGMGR_IF_QUERY
NPF_F_ATM_ConfigMgr_IfAISStateSet NPF_F_ATM_CONFIGMGR_IF_AIS_STATE_SET
NPF_F_ATM_ConfigMgr_IfAISStateClear NPF_F_ATM_CONFIGMGR_IF_AIS_STATE_CLEAR

The following table summarizes information returned by each function in this API.

Table 4.7: ATM Configuration Manager API Function to Return Type mapping
Function Name Structure

Returned
NPF_F_ATM_ConfigMgr_VcSet None
NPF_F_ATM_ConfigMgr_VpSet None
NPF_F_ATM_ConfigMgr_VcBind None
NPF_F_ATM_ConfigMgr_VcUnbind None
NPF_F_ATM_ConfigMgr_VirtLinkDelete None
NPF_F_ATM_ConfigMgr_VirtLinkEnable None
NPF_F_ATM_ConfigMgr_VirtLinkDisable None
NPF_F_ATM_ConfigMgr_VirtLinkStatsEnable None
NPF_F_ATM_ConfigMgr_VirtLinkStatsDisable None

 ATM Task Group 62

Network Processing Forum Software Working Group

NPF_F_ATM_ConfigMgr_VcOperStatusGet operStatus
NPF_F_ATM_ConfigMgr_VcStatsGet vcStats
NPF_F_ATM_ConfigMgr_VcQuery vcConfigInfo
NPF_F_ATM_ConfigMgr_VcLinkXcSet None
NPF_F_ATM_ConfigMgr_VcLinkXcDelete None
NPF_F_ATM_ConfigMgr_VcLinkXcQuery vcXcConfig
NPF_F_ATM_ConfigMgr_VpStatsGet vpStats
NPF_F_ATM_ConfigMgr_VpQuery vpConfigInfo
NPF_F_ATM_ConfigMgr_VpLinkXcSet None
NPF_F_ATM_ConfigMgr_VpLinkXcDelete None
NPF_F_ATM_ConfigMgr_VpLinkXcQuery vpXcConfig
NPF_F_ATM_ConfigMgr_AAL2_ChannelSet None
NPF_F_ATM_ConfigMgr_AAL2_ChannelDelete None
NPF_F_ATM_ConfigMgr_AAL2_ChannelStatsGet aal2ChanStats
NPF_F_ATM_ConfigMgr_AAL2_ChannelQuery chnlConfigInfo
NPF_F_ATM_ConfigMgr_AAL2_ChnlXcSet None
NPF_F_ATM_ConfigMgr_AAL2_ChnlXcDelete None
NPF_F_ATM_ConfigMgr_AAL2_ChnlXcQuery chnlXcConfig
NPF_F_ATM_ConfigMgr_AAL2_ChannelStatsEnable None
NPF_F_ATM_ConfigMgr_AAL2_ChannelStatsDisable None
NPF_F_ATM_ConfigMgr_AAL2_ChannelEnable None
NPF_F_ATM_ConfigMgr_AAL2_ChannelDisable None
NPF_F_ATM_ConfigMgr_AAL2_ChannelBind None
NPF_F_ATM_ConfigMgr_AAL2_ChannelUnbind None
NPF_F_ATM_ConfigMgr_AAL2_ChannelOperStatusGet None
NPF_F_ATM_ConfigMgr_OAM_CP_Set None
NPF_F_ATM_ConfigMgr_OAM_CC_Set None
NPF_F_ATM_ConfigMgr_OAM_CC_Rsp None
NPF_F_ATM_ConfigMgr_OAM_PM_Set None
NPF_F_ATM_ConfigMgr_OAM_PM_Rsp None
NPF_F_ATM_ConfigMgr_OAM_PM_StatsGet pmStats
NPF_F_ATM_ConfigMgr_OAM_LB_Set lbResult
NPF_F_ATM_ConfigMgr_OAM_Mon_Set None
NPF_F_ATM_ConfigMgr_OAM_Alarm_Set None
NPF_F_ATM_ConfigMgr_OAM_Alarm_Clear None
NPF_F_ATM_ConfigMgr_IfSet None
NPF_F_ATM_ConfigMgr_IfDelete None
NPF_F_ATM_ConfigMgr_IfStatsGet ifStats
NPF_F_ATM_ConfigMgr_IfStatsEnable None
NPF_F_ATM_ConfigMgr_IfStatsDisable None
NPF_F_ATM_ConfigMgr_IfQuery ifConfig
NPF_F_ATM_ConfigMgr_IfAISStateSet None
NPF_F_ATM_ConfigMgr_IfAISStateClear None

4.8.4 Event Notification Data Types
This following sections detail the information related to ATM configuration manager LFB events.
When an event notification routine is invoked, one of the parameters will be a structure of
information related to one or more events.

4.8.4.1 Event Notification Types
The event type indicates the type of event data in the union of event structures returned in
NPF_F_ATM_ConfigMgr_Event_t.

/*
* ATM configuration manager Event Types
*/
typedef enum {
 /* ATM OAM Fault Management Event Types */
 NPF_F_ATM_AIS_RAISED = 1, /* AIS defect detected. AIS received */

 ATM Task Group 63

Network Processing Forum Software Working Group

 NPF_F_ATM_RDI_RAISED = 2, /* RDI defect detected. RDI received */
 NPF_F_ATM_AIS_CLEARED = 3, /* AIS defect cleared. */
NPF_F_ATM_RDI_CLEARED = 4, /* RDI defect cleared */
NPF_F_ATM_LOC_RAISED = 5, /* LOC defect detected */
NPF_F_ATM_LOC_CLEARED = 6, /* LOC defect cleared */

 /* ATM OAM Performance Management Event Types */
NPF_F_ATM_PM_STATISTICS = 7, /* Perf. Monitoring Stats */

 /* CC/PM activate/deactivate indication */
 NPF_F_ATM_CC_ACT_DEACT_REQ_INDICATION = 8, /* CC activate/deactivare ind */
 NPF_F_ATM_PM_ACT_DEACT_REQ_INDICATION = 9, /* PM activate/deactivate ind */

 /* Passive Monitoring events */
 NPF_F_ATM_CC_RECEIVED = 10, /* CC cell received ;Passive monitoring */
 NPF_F_ATM_FPM_RECEIVED = 11, /* FPM cell received ;Passive monitoring */
 NPF_F_ATM_BR_RECEIVED = 12, /* BR cell received ;passive monitoring */
 NPF_F_ATM_LB_RECEIVED = 13, /* LB cell received ;passive monitoring */
 NPF_F_ATM_AIS_RECEIVED = 14, /* AIS cell received ;passive monitoring */
NPF_F_ATM_RDI_RECEIVED = 15, /* RDI cell received ;passive monitoring */
NPF_F_ATM_PM_ACT_DEACT_RX = 16, /* PM Act/Deact cell ;passive monitoring */
NPF_F_ATM_CC_ACT_DEACT_RX = 17, /* CC Act/Deact cell ;passive monitoring */

/* Traffic Management threshold crossing event */
NPF_F_ATM_TM_HIT_WARN_THRESH = 18,/*Link Queue length hit warn threshold */
NPF_F_ATM_TM_HIT_DROP_THRESH = 19,/*Link Queue length hit drop threshold */
NPF_F_ATM_TM_HIT_DROP_THRESH = 20,/*AAL2 TM Queue length hit drop thresh */

} NPF_F_ATM_ConfigMgr_Event_t;

4.8.4.2 Event Mask bit definitions
/*
 * Definitions for selectively enabling ATM Configuration Manager Events
 */
#define NPF_F_ATM_AIS_RAISED_ENABLE (1 << 0)
#define NPF_F_ATM_RDI_RAISED_ENABLE (1 << 1)
#define NPF_F_ATM_AIS_CLEARED_ENABLE (1 << 2)
#define NPF_F_ATM_RDI_CLEARED_ENABLE (1 << 3)
#define NPF_F_ATM_LOC_RAISED_ENABLE (1 << 4)
#define NPF_F_ATM_LOC_CLEARED_ENABLE (1 << 5)
#define NPF_F_ATM_PM_STATISTICS_ENABLE (1 << 6)
#define NPF_F_ATM_CC_ACT_DEACT_REQ_INDICATION_ENABLE (1 << 7)
#define NPF_F_ATM_PM_ACT_DEACT_REQ_INDICATION_ENABLE (1 << 8)
#define NPF_F_ATM_CC_RECEIVED_ENABLE (1 << 9)
#define NPF_F_ATM_FPM_RECEIVED_ENABLE (1 << 10)
#define NPF_F_ATM_BR_RECEIVED_ENABLE (1 << 11)
#define NPF_F_ATM_LB_RECEIVED_ENABLE (1 << 12)
#define NPF_F_ATM_AIS_RECEIVED_ENABLE (1 << 13)
#define NPF_F_ATM_RDI_RECEIVED_ENABLE (1 << 14)
#define NPF_F_ATM_PM_ACT_DEACT_RX_ENABLE (1 << 15)
#define NPF_F_ATM_CC_ACT_DEACT_RX_ENABLE (1 << 16)
#define NPF_F_ATM_TM_HIT_WARN_THRESH_ENABLE (1 << 17)
#define NPF_F_ATM_TM_HIT_DROP_THRESH_ENABLE (1 << 18)
#define NPF_F_AAL2_TM_HIT_DROP_THRESH_ENABLE (1 << 19)
#define NPF_F_ATM_CMGR_EV_LAST (1 << 20)

The FAPI client may register for all events using NPF_EV_ALL_EVENTS_ENABLE.

 ATM Task Group 64

Network Processing Forum Software Working Group

4.8.4.3 Event Notification Structures
This section describes the various events which MAY be implemented. It is important to note that
even if an implementation does not support any of these events, the implementation still needs to
provide the register and deregister event function to enable interoperability.
This structure defines all the possible event definitions for the ATM configuration manager. An event
type field indicates which member of the union is relevant in the specific structure.

/*
 * ATM Configuration Manager Event reporting data type
 * This structure represents a single event in an event array. The type
 * field indicates the specific event in the union.
 */
typedef struct {
 NPF_F_ATM_ConfigMgr_Event_t eventType; /* Type of event reported */
 union {
 /* Fault mgmt events */
 NPF_F_ATM_ConfigMgr_OAM_FM_EventData_t fm;
 /* Perf. Mgmt events */
 NPF_F_ATM_ConfigMgr_OAM_PM_EventData_t pm;
 /* Act/deact events */
 NPF_F_ATM_ConfigMgr_OAM_ActDeact_EventData_t actDeact;
 /* Passive Monitoring events */
 NPF_F_ATM_ConfigMgr_OAM_Mon_EventData_t mon;
 /* Traffic Management events */
 NPF_F_ATM_ConfigMgr_TrafMgmt_EventData_t traf;
 } u;
} NPF_F_ATM_ConfigMgr_EventData_t;

The below event is triggered due to ATM OAM fault management procedures.
/*
 * ATM OAM Fault Management Event Notification
 */
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 /* Detailed information for the Alarm being raised/clear */
 NPF_F_ATM_OAM_Alarm_Info_t oamAlarmInfo;
} NPF_F_ATM_ConfigMgr_OAM_FM_EventData_t;

The below event is triggered due to ATM OAM performance management procedures.
/*
* ATM OAM Performance Management Event Notification
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_ATM_OAM_PM_Stats_Event_t oamPmStats; /* Perf. Mon. stats */
} NPF_F_ATM_ConfigMgr_OAM_PM_EventData_t;

The below event is triggered due to ATM OAM performance management or continuity check
activation/deactivation request being received on the specified link.

/*
* ATM OAM activation/deactivation Event Notification
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 union {
 /* PM activate/deactivation Request indication*/

 ATM Task Group 65

Network Processing Forum Software Working Group

 NPF_F_ATM_OAM_PM_ActDeact_Event_t oamPmActDeact;
 /* CC activate/deact Request indication */
 NPF_F_ATM_OAM_CC_ActDeact_Event_t oamCcActDeact;
 }u;
} NPF_F_ATM_ConfigMgr_OAM_ActDeact_EventData_t;

The below event is triggered due to reception of a monitored OAM cell on specified link.
/*
* ATM OAM Passive Monitoring Event Notification
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 union {
 NPF_F_ATM_OAM_AIS_Event_t oamAisInfo; /* AIS cell info */
 NPF_F_ATM_OAM_RDI_Event_t oamRdiInfo; /* RDI cell info */
 NPF_F_ATM_OAM_FPM_Event_t oamFpmInfo; /* FPM cell info */
 NPF_F_ATM_OAM_BR_Event_t oamBrInfo; /* BR cell info */
 NPF_F_ATM_OAM_LB_Event_t oamLBInfo; /* LB cell info */
 NPF_F_ATM_OAM_CC_Event_t oamCCInfo; /* CC cell info */
 NPF_F_ATM_OAM_PM_ActDeact_Event_t pmADInfo; /* PM Act/Deact cell */
 NPF_F_ATM_OAM_CC_ActDeact_Event_t ccADInfo; /* CC Act/Deact cell */
 }u;
} NPF_F_ATM_ConfigMgr_OAM_Mon_EventData_t;

The below event is triggered due to the cells/packets queued at the traffic manager for the specified
link crossing the early warning threshold or the drop threshold. The FAPI/LFB implementation may
implement certain hysteresis around the warning or drop threshold for event notification to avoid a
flurry of events being reported when the queue length is hovering around the threshold. If the link is
an AAL2 path and prioritization of the AAL2 traffic is configured on the AAL2 path, threshold
crossing notifications may be generated for packets queued at a configured priority queue crossing the
discard threshold. The AAL2 path for such notifications is identified by the virtLinkId field in the
event structure.

/*
 * Traffic management threshold crossing notifications
 */
typedef struct {
 NPF_F_ATM_VirtLink_t virtLinkId; /* VP or VC Link */
 union {
 NPF_uint32_t chnlPrio; /* Priority of AAL2 path queue *
 * that hit the discard threshold */
 } u;
} NPF_F_ATM_ConfigMgr_TrafMgmt_EventData_t;

The below table summarizes the various events which may be reported by the ATM configuration
manager and the field in the union of the event data structure carrying data for the event.

Table 4.8: Event types and data
Event Type Description Union Member

NPF_F_ATM_AIS_RAISED AIS defect detected. AIS received fm

NPF_F_ATM_RDI_RAISED RDI defect detected. RDI received fm

NPF_F_ATM_AIS_CLEARED AIS defect cleared fm

NPF_F_ATM_RDI_CLEARED RDI defect cleared fm

 ATM Task Group 66

Network Processing Forum Software Working Group

NPF_F_ATM_LOC_RAISED LOC defect detected fm

NPF_F_ATM_LOC_CLEARED LOC defect cleared fm

NPF_F_ATM_CC_ACT_DEACT
_REQ_INDICATION

Activation/Deactivation cell received for continuity
check activation/deactivation.
The registered event handler must issue function
NPF_F_ATM_ConfigMgr_OAM_CC_Rsp to
accept/reject the activation/deactivation request

actDeact.oamCcA
ctDeact

NPF_F_ATM_PM_ACT_DEACT
_REQ_INDICATION

Activation/Deactivation cell received for
performance monitoring activation/ deactivation.
The registered event handler must issue
NPF_F_ATM_ConfigMgr_OAM_PM_Rsp function
to accept/reject the activation/deactivation request

actDeact.oamPmA
ctDeact

NPF_F_ATM_PM_STATS To report performance monitoring statistics pmStats

NPF_F_ATM_CC_RECEIVED To notify CC cell reception mon.oamCCInfo

NPF_F_ATM_FPM_RECEIVED To notify FPM cell reception mon.oamFpmInfo

NPF_F_ATM_BR_RECEIVED To notify BR cell reception mon.oamBrInfo

NPF_F_ATM_LB_RECEIVED To notify LB cell reception mon.oamLBInfo

NPF_F_ATM_AIS_RECEIVED To notify AIS cell reception mon.oamAisInfo

NPF_F_ATM_RDI_RECEIVED To notify RDI cell reception mon.oamRdiInfo

NPF_F_ATM_TM_HIT_WARN_
THRESH

Link Queue length hit warn threshold traf

NPF_F_ATM_TM_HIT_DROP_
THRESH

Link Queue length hit drop threshold traf

5 Functional API (FAPI)

5.1 Registration/De-Registration Functions
5.1.1 Completion Callback Function

typedef void (*NPF_F_ATM_ConfigMgr_CallBackFunc_t)(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_F_ATM_ConfigMgr_CallbackData_t data);

5.1.1.1 Description
The callback function is implemented by the application, and is registered with the ATM connection
manager through the NPF_F_ATM_ConfigMgr_Register () function. The callback data structure
contains an array of responses, so that callbacks for multiple interfaces or ATM Vc’s referenced in a
single function call can be aggregated into fewer (perhaps just one) callback function invocations.
The application can expect to receive exactly the same number of responses (callback array elements)
as the multiplicity of the request, but the responses may be spread over multiple callback function
invocations. How the function implementation allocates responses to callback invocations is up to the
implementer. As an optimization: if the implementation is able to return success indications
(NPF_NO_ERROR) for all responses from a single request in a single invocation of the callback
function, and there is no information to return besides the success/failure code: instead of returning an
array of responses, the implementation SHALL return a simple code indicating that all requested
actions completed without error.

 ATM Task Group 67

Network Processing Forum Software Working Group

5.1.1.2 Input Parameters
userContext – The context item that was supplied by the application when the completion
callback function was registered.

•

•

•

•

•

•

•

•

•

correlator – The correlator item that was supplied by the application when the function
call was made. The correlator is used by the application mainly to distinguish between
multiple invocations of the same function.
data – Response information related to the function call. Contains information that is
common among all functions, as well as information that is specific to a particular function.

5.1.1.3 Output Parameters
None

5.1.1.4 Return Value
None

5.1.2 Completion Callback Registration Function
NPF_error_t NPF_F_ATM_ConfigMgr_Register(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_F_ATM_ConfigMgr_CallBackFunc_t callbackFunc,
 NPF_OUT NPF_callbackHandle_t *callbackHandle);

5.1.2.1 Description
This function is used by an application to register its completion callback function for receiving
asynchronous responses to function calls. The application may register multiple callback functions
using this function. The pair of userContext and callbackFunc identifies the callback function.
For each individual pair, a unique callbackHandle will be assigned for future reference. Since the
callback function is identified by both userContext and callbackFunc, duplicate registration of the
same callback function with different userContext is allowed. Also, the same userContext can be
shared among different callback functions. Duplicate registration of the same userContext and
callbackFunc pair has no effect, will output a handle that is already assigned to the pair, and will
return NPF_E_ALREADY_REGISTERED.
NPF_F_ATM_ConfigMgr_Register() is a synchronous function and has no completion callback
associated with it.

5.1.2.2 Input Parameters
userContext – A context item used for uniquely identifying the context of the application
registering the completion callback function. The exact value will be provided back to the
registered completion callback function as its 1st parameter when it is called. Application can
assign any value to the atmUserContext and the value is completely opaque to the
implementation.
callbackFunc – The pointer to the completion callback function to be registered.

5.1.2.3 Output Parameters
callbackHandle – A unique identifier assigned for the registered userContext and
callbackFunc pair. This handle will be used by the application to specify which callback
function to be called when invoking asynchronous the asynchronous functions. It will also be
used when de-registering the userContext and callbackFunc pair.

5.1.2.4 Return Values
NPF_NO_ERROR - The registration completed successfully.
NPF_E_BAD_CALLBACK_FUNCTION - The callback function is NULL.
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative

 ATM Task Group 68

Network Processing Forum Software Working Group

NPF_E_CALLBACK_ALREADY_REGISTERED - No new registration was made since the
userContext and callbackFunc pair was already registered. Whether this should be treated
as an error or not is dependent on the application.

•

•

•

•

•

•

•

5.1.3 Completion Callback Deregistration Function
NPF_error_t NPF_F_ATM_ConfigMgr_Deregister(
 NPF_IN NPF_callbackHandle_t callbackHandle);

5.1.3.1 Description
This function is used by the application to de-register a pair of user context and callback function. If
there are any outstanding calls related to the de-registered callback function, the callback function
might be called for those outstanding calls even after de-registration.
NPF_F_ATM_ConfigMgr_Deregister() is a synchronous function and has no completion callback
associated with it.

5.1.3.2 Input Parameters
callbackHandle – The unique identifier representing the pair of user context and callback
function to be de-registered.

5.1.3.3 Output Parameters
None

5.1.3.4 Return Values
NPF_NO_ERROR - De-registration completed successfully.
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_BAD_CALLBACK_HANDLE - The function does not recognize the callback handle.
There is no effect to the registered callback functions.

5.1.4 Event Handler Function
typedef void (*NPF_F_ATM_ConfigMgr_EventCallFunc_t) (
 NPF_IN NPF_userContext_t atmUserContext,
 NPF_IN NPF_uint32_t nEvent,
 NPF_IN NPF_F_ATM_ConfigMgr_EventData_t *atmEventArray);

5.1.4.1 Description
This handler function is for the FAPI client to register an event handling routine to the ATM
configuration manager. One or more events can be notified to the application through a single
invocation of this event handler function. Information on each event is represented in an array in the
atmEventArray structure, where a client can traverse through the array and process each of the
events. The registered event handler function is intended to be implemented by the FAPI client, and
be registered to the ATM configuration manager implementation through
NPF_F_ATM_ConfigMgr_EventHandler_Register() function. This function is invoked when
the related event happens. The ATM configuration manager may invoke the registered event handler
function any time after the NPF_F_ATM_ConfigMgr_EventHandler_Register() is invoked by
the FAPI client.

5.1.4.2 Input Parameters
atmUserContext – A context item used for uniquely identifying the context of the
application registering the completion callback function. The exact value will be provided
back to the registered completion callback function as its 1st parameter when it is called. The
application can assign any value to the atmUserContext and the value is completely opaque to
the implementation.
nEvent – Number of events reported.

 ATM Task Group 69

Network Processing Forum Software Working Group

atmEventArray – A structure containing an array of event information structures. •

•

•

•

•

•

•

•

5.1.4.3 Output Parameters
None

5.1.4.4 Return Values
None

5.1.5 Event Registration Function
NPF_error_t NPF_F_ATM_ConfigMgr_EventHandler_Register(
 NPF_IN NPF_userContext_t atmUserContext,
 NPF_IN NPF_F_ATM_ConfigMgr_EventCallFunc_t atmEvtCallFn,
 NPF_IN NPF_eventMask_t atmEvtMask,
 NPF_OUT NPF_callbackHandle_t *atmEvtCallHdl);

5.1.5.1 Description
A FAPI client to register its event handling routine for receiving notifications of LFB Events uses this
function. The FAPI client may register multiple event handling routines using this function. The pair
of atmUserContext and atmEvtCallFn identifies the event handling routine. For each individual
pair, a unique atmEvtCallHdl will be assigned for future reference. Since the event handling
routine is identified by both atmUserContext and atmEventCallFunc, duplicate registration of
same event handling routine with different atmUserContext is allowed. Also, the same
atmUserContext can be shared among different event handling routines. Duplicate registration of
the same atmUserContext and atmEventCallFunc pair has no effect, and will output a handle
that is already assigned to the pair, and will return an error that indicates that the callback has already
been registered.

5.1.5.2 Input Parameters
atmUserContext – A context item used for uniquely identifying the context of the
application registering the completion callback function. The exact value will be provided
back to the registered completion callback function as its 1st parameter when it is called.
Application can assign any value to the atmUserContext and the value is completely
opaque to the implementation.
atmEvtCallFn – Contains the class of event for which handler is being registered and a
pointer to the event handling routine to be registered.
atmEvtMask – Indicates which events the FAPI client wishes to receive. An application can
register a handler to receive selected events by setting a bit in the NPF_eventMask_t
parameter for each event it wishes to receive, when it calls the event registration function. A
mask value set to NPF_EV_ALL_EVENTS_ENABLE selects all events. If the FAPI client
wishes to change the selection of events for a particular handler function, it may call the event
registration function again with the same handler function address and context, but with a
different event selection mask.

5.1.5.3 Output Parameters
atmEvtCallHdl – A unique identifier assigned for the registered atmUserContext and
atmEventCallFunc pair. The FAPI client to specify which event handling routine to be
called when invoking asynchronous functions will use this handle. It will also be used when
de-registering the atmUserContext and atmEventCallFunc pair.

5.1.5.4 Return Values
NPF_NO_ERROR - The registration completed successfully.
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_BAD_CALLBACK_FUNCTION - atmEventCallFunc is NULL.

 ATM Task Group 70

Network Processing Forum Software Working Group

NPF_E_CALLBACK_ALREADY_REGISTERED - No new registration was made since the
atmUserContext and atmEventCallFunc pair was already registered.

•

•

•

•

•

•

•

•

•

•

•

•

5.1.6 Event Handler Deregistration Function
NPF_error_t NPF_F_ATM_ConfigMgr_EventHandler_Deregister(
 NPF_IN NPF_callbackHandle_t atmEventCallHandle);

5.1.6.1 Description
This function is used by an application to de-register a pair of user context and event handler. If there
are any outstanding calls related to the de-registered callback function, the callback function might be
called for those outstanding calls even after de-registration. This is a synchronous function and has no
associated completion callback.

5.1.6.2 Input Parameters
atmEventCallHandle – The unique identifier representing the pair of user context and
event Handler to be de-registered.

5.1.6.3 Output Parameters
None

5.1.6.4 Return Values
NPF_NO_ERROR - De-registration was completed successfully.
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_BAD_CALLBACK_HANDLE - The function does not recognize the event callback
handle. There is no effect to the registered event Handler.

5.2 ATM Interface Configuration Functions
5.2.1 Add or Modify an ATM Interface

NPF_error_t NPF_F_ATM_ConfigMgr_IfSet(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,

 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

 NPF_IN NPF_F_ATM_ConfigMgr_IfCfg_t *cfgArray);

5.2.1.1 Description
This function adds/creates one or more ATM interfaces, or modifies the attributes of an existing ATM
interface.

5.2.1.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of interfaces to set
cfgArray - Pointer to an array of ATM interface attribute structures

 ATM Task Group 71

Network Processing Forum Software Working Group

5.2.1.3 Output Parameters
None

5.2.1.4 Return Values
NPF_NO_ERROR - The operation is in progress. •

•

•

•

•

•

•

•

•

•

•

•

•

•

NPF_E_UNKNOWN - The interface configurations did not complete successfully due to
problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - The interfaces were not configured because the callback
handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.2.1.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses are
passed to the callback function, in one or more invocations. Each response contains an interface ID in
the objId member of the response structure and a success code or a possible error code. If the
function invocation was successful an error code NPF_NO_ERROR.
The below error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_ATM_F_E_INVALID_ATTRIBUTE - Invalid parameters for interface configuration
NPF_E_RESOURCE_EXISTS - Specified interface already exist.

5.2.2 Delete an ATM Interface
NPF_error_t NPF_F_ATM_ConfigMgr_IfDelete(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_boolean_t delContainedObjs,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_IfID_t *delArray);

This function deletes one or more interfaces. All connections established on this interface should be
deleted before the interface is deleted.

5.2.2.1 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
delContainedObjs – When set to NPF_TRUE indicates that all objects contained within the
deleted interface should also be deleted. Examples of contained objects are VC links and VP
links. The effect of this parameter propagates hierarchically to all contained objects. For
example if an interface is deleted, all VP links on that interface are deleted along with any
VC links contained in those VP links and if any of those VC links contained any AAL2
channels the AAL2 channels will also be deleted. If this parameter is set to NPF_FALSE, the
function will return an error if there are objects contained within the interface being deleted.
numEntries - Number of interfaces to delete

 ATM Task Group 72

Network Processing Forum Software Working Group

delArray – Pointer to an array of interface handles of interfaces to delete •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2.2 Output Parameters
None

5.2.2.3 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN - Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.2.2.4 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses are
passed to the callback function, in one or more invocations. Each response contains an interface ID in
the objId member of the response structure and a success code or a possible error code for that
interface. If the function invocation was successful an error code NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_ATM_F_E_CONT_OBJS_EXIST - Specified interface could not be deleted as it has other
objects like VP/VC links configured in it and the delContainedObjs parameter was set to
NPF_FALSE.
NPF_E_RESOURCE_NONEXISTENT - Specified interface does not exist

5.2.3 Read ATM Interface Statistics
NPF_error_t NPF_F_ATM_ConfigMgr_IfStatsGet(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

 NPF_IN NPF_F_ATM_IfID_t *ifArray);

5.2.3.1 Description of function
This function returns, via a callback, the current counter values for each of one or more indicated
ATM interfaces. The statistics counters are collected from the set of LFB instances specified in each
ifArray entry for each interface.

5.2.3.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of interfaces statistics to query
ifArray – Pointer to an array of interfaces to query

5.2.3.3 Output Parameters
None

 ATM Task Group 73

Network Processing Forum Software Working Group

5.2.3.4 Return Values
NPF_NO_ERROR - The operation is in progress. •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.2.3.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses are
passed to the callback function, in one or more invocations. Each response contains an interface ID in
the objId field of the response structure and a success code or a possible error code. If the function
invocation was successful an error code NPF_NO_ERROR is returned and the statistics accumulated on
that interface are returned in the ifStats field of the union of the response structure.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_RESOURCE_NONEXISTENT - Specified interface does not exist

5.2.4 Enable statistics collection on an ATM Interface
NPF_error_t NPF_F_ATM_ConfigMgr_IfStatsEnable(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

 NPF_IN NPF_F_ATM_IfID_t *ifIDArr);

5.2.4.1 Description of function
This function enables statistics collection one more ATM interfaces identified by the ATM Interface
ID. When statistics counting changes state to ‘enabled’, counters for the specified interface are reset
(set to all 0s). Statistics counters are non negative integers which wrap around on reaching maximum
value using twos complement arithmetic.

5.2.4.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of interfaces on which statistics is enabled.
ifIDArr – Array of Interface ID of ATM interface on which statistics is enabled

5.2.4.3 Output Parameters
None

5.2.4.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

 ATM Task Group 74

Network Processing Forum Software Working Group

5.2.4.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses are
passed to the callback function, in one or more invocations. Each response contains an interface ID in
the objId field of the response structure and a success code or a possible error code. If the function
invocation was successful an error code NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful •

•

•

•

•

•

•

•

•

•

•

•

•

•

NPF_E_RESOURCE_NONEXISTENT - Specified interface does not exist

5.2.5 Disable statistics collection on an ATM Interface
NPF_error_t NPF_F_ATM_ConfigMgr_IfStatsDisable(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

 NPF_IN NPF_F_ATM_IfID_t *ifIDArr);

5.2.5.1 Description of function
This function disables statistics collection one more ATM interfaces identified by the ATM Interface
ID.

5.2.5.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of interfaces on which statistics is disabled.
ifIDArr – Array of Interface ID of ATM interface on which statistics is disabled

5.2.5.3 Output Parameters

None
5.2.5.4 Return Values

NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.2.5.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains an interface
ID in the objId field of the response structure and a success code or a possible error code. If the
function invocation was successful an error code NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful

 ATM Task Group 75

Network Processing Forum Software Working Group

NPF_E_RESOURCE_NONEXISTENT - Specified interface does not exist •

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.6 Query ATM Interface
NPF_error_t NPF_F_ATM_ConfigMgr_IfQuery(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

 NPF_IN NPF_F_ATM_IfID_t *ifArray);

5.2.6.1 Description of function
This function returns, via a callback, the current configuration for each of one or more indicated ATM
interfaces. If the numEntries parameter passed to the function is set to 0, the configurations for all
configured interfaces are returned.

5.2.6.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of interfaces to query. When set to 0 configurations for all
configured interfaces are returned.
ifArray – Pointer to an array of interfaces to query

5.2.6.3 Output Parameters
None

5.2.6.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.2.6.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains an interface
ID in the objId field of the response structure and a success code or a possible error code. The
configuration of the queried interface is returned in the union of the asynchronous response structure.
If the function invocation was successful an error code NPF_NO_ERROR is returned and the current
configuration of the interface is returned in the ifConfig field of the union in the response structure.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_RESOURCE_NONEXISTENT - Specified interface does not exist

5.2.7 Set AIS state for an ATM Interface
NPF_error_t NPF_F_ATM_ConfigMgr_IfAISStateSet(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,

 ATM Task Group 76

Network Processing Forum Software Working Group

 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,

 NPF_IN NPF_F_ATM_IfID_t ifID,
 NPF_IN NPF_uint8_t defectType,
 NPF_IN NPF_uint8_t defectLocation[16]);

5.2.7.1 Description of function
This function is used to declare AIS state for an ATM interface. Declaring AIS state for an interface
leads to AIS state being declared on all VP and VC links on that interface.

5.2.7.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
ifID – Interface ID of ATM interface for which AIS state is declared
defectType – Type of defect leading to AIS state being declared
defectLocation – Defect location for the defect

5.2.7.3 Output Parameters
None

5.2.7.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.2.7.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains an interface
ID in the objId field of the response structure and a success code or a possible error code. If the
function invocation was successful an error code NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_RESOURCE_NONEXISTENT - Specified interface does not exist

5.2.8 Clear AIS state for an ATM Interface
NPF_error_t NPF_F_ATM_ConfigMgr_IfAISStateClear(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_F_ATM_IfID_t ifID);

5.2.8.1 Description of function
This function is used to clear the AIS state declared for an interface. Clearing AIS state for an
interface leads to AIS state being cleared for all VP and VC links on that interface.

 ATM Task Group 77

Network Processing Forum Software Working Group

5.2.8.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
ifID – Interface ID of ATM interface for which AIS state is cleared

5.2.8.3 Output Parameters
None

5.2.8.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.2.8.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains an interface
ID in the objId field of the response structure and a success code or a possible error code. If the
function invocation was successful an error code NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_RESOURCE_NONEXISTENT - Specified interface does not exist

5.3 ATM Virtual Link Management Functions
5.3.1 Add or Modify an ATM Virtual Channel

NPF_error_t NPF_F_ATM_ConfigMgr_VcSet(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,

 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_Vc_t *cfgArray);

5.3.1.1 Description
This function adds/creates one or more VCs, or modifies the existing ATM attributes of VCs in an
FE.

5.3.1.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.

 ATM Task Group 78

Network Processing Forum Software Working Group

blockId – The unique identification of the ATM Configuration Manager. •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

numEntries - Number of VCs to set
cfgArray - Pointer to an array of ATM VC attribute structures

5.3.1.3 Output Parameters
None

5.3.1.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN - The VC link configurations did not complete successfully due to
problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - The VC links were not configured because the callback
handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.3.1.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains a VC link ID
in the objId field of the response structure and a success code or a possible error code for that
connection. If the function invocation was successful an error code NPF_NO_ERROR is returned.
The following errors could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_ATM_F_E_INVALID_VC_ADDRESS: ATM VC address is invalid
NPF_ATM_F_E_INVALID_ATM_AAL: ATM AAL type code is invalid
NPF_ATM_F_E_INVALID_ATM_QOS: Invalid ATM QoS specification for a VC
NPF_ATM_F_E_INVALID_ATTRIBUTE: Invalid attribute

AAL1 Error Codes:
NPF_ATM_F_E_INVALID_SUBTYPE: Invalid subtype
NPF_ATM_F_E_INVALID_CBR: Invalid CBR or beyond the QoS of the VC
NPF_ATM_F_E_INVALID_CLK_REC_TYPE: Invalid clock recovery type
NPF_ATM_F_E_INVALID_FEC: Invalid FEC
NPF_ATM_F_E_INVALID_SDT: Invalid SDT
NPF_ATM_F_E_INVALID_PAR_FILL_CELL: Invalid partially filled cells
NPF_ATM_F_E_INVALID_CELL_LOSS_PER: Invalid cell loss integration period

AAL2 Error Codes:
NPF_ATM_F_E_INVALID_CPS_ATTR: Invalid CPS attributes
NPF_ATM_F_E_INVALID_SSCS_I3661_ATTR: Invalid I.366.1 SSCS attribute
NPF_ATM_F_E_INVALID_SSCS_I3662_ATTR: Invalid I.366.2 SSCS attribute
NPF_ATM_F_E_INVALID_ATM_TRUNK_ATTR: Invalid ATM trunking attribute
NPF_ATM_F_E_AAL2_QOS_PRIO INVALID: Invalid priority for AAL2 QoS
NPF_ATM_F_E_AAL2_QOS_WEIGHT_INVALID: Invalid weight for AAL2 QoS

AAL5 Error Codes:
NPF_ATM_F_E_INVALID_MAX_SIZE_FWD: Invalid forward max CPCS SDU Size
NPF_ATM_F_E_INVALID_MAX_SIZE_BWD: Invalid backward max CPCS SDU Size

 ATM Task Group 79

Network Processing Forum Software Working Group

NPF_ATM_F_E_INVALID_AAL_MODE: Invalid AAL mode •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

NPF_ATM_F_E_INVALID_SSCS_TYPE: Invalid SSCS type

5.3.2 Add or Modify an ATM Virtual Path
NPF_error_t NPF_F_ATM_ConfigMgr_VpSet(

 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,

 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_Vp_t *cfgArray);

5.3.2.1 Description
This function adds/creates one or more VPs, or modifies the existing ATM attributes of VPs in an FE.

5.3.2.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of VPs to set
cfgArray - Pointer to an array of ATM VP attribute structures

5.3.2.3 Output Parameters
None

5.3.2.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN - The VP link configurations did not complete successfully due to
problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - The VP link were not configured because the callback
handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.3.2.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains a VP link ID
in the objId field of the response structure and a success code or a possible error code for that
connection. If the function invocation was successful an error code NPF_NO_ERROR is returned.
The following errors could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_ATM_F_E_INVALID_ATM_QOS: Invalid ATM QoS specification for a VP
NPF_ATM_F_E_INVALID_ATTRIBUTE: Invalid attribute

5.3.3 Bind a higher layer Interface to an ATM Virtual Connection
NPF_error_t NPF_F_ATM_ConfigMgr_VcBind(

 ATM Task Group 80

Network Processing Forum Software Working Group

 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,

 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_IfHandle_t ifChildHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLinkID_t *bindArray);

5.3.3.1 Description of function
This function associates a single higher-layer interface with the one or more Virtual Channel
Connections (VCC). The VCC is terminated in this FE and the VC link specified in the function
parameters is an endpoint of the connection. The VC links must be created before making the call.
This function binds other applications over ATM like IP over ATM and so on.

5.3.3.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
ifChildHandle - Handle of the higher layer interface to bind.
numEntries - Number of VCs to bind
bindArray – Pointer to an array of VC link IDs to bind to the specified interface.

5.3.3.3 Output Parameters
None

5.3.3.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.3.3.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses are
passed to the callback function, in one or more invocations. Each response contains a VC link ID in the
objId field of the response structure and a success code or a possible error code for that connection. If
the function invocation was successful an error code NPF_NO_ERROR is returned.
The following error codes could be returned:

• NPF_NO_ERROR - Operation successful
• NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no

error code defined that is more appropriate or informative
• NPF_ATM_F_E_INVALID_CHILD_HANDLE: Invalid child interface handle
• NPF_ATM_F_E_INVALID_ATTRIBUTE: Invalid attributes
• NPF_E_RESOURCE_NONEXIST: Specified connection doesn’t exist

5.3.4 Unbind a higher layer Interface from an ATM Virtual Connection
NPF_error_t NPF_F_ATM_ConfigMgr_VcUnbind(

 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,

 ATM Task Group 81

Network Processing Forum Software Working Group

 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,

 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLinkID_t *unbindArray);

5.3.4.1 Description of function
This function removes the association between the higher-layer interface and one or more Virtual
Channel Connections (VCC). The VCC is terminated in this FE and the VC link specified in the
function parameters is an endpoint of the connection.

5.3.4.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of VCs to unbind
unbindArray – Pointer to an array of VC link IDs.

5.3.4.3 Output Parameters
None

5.3.4.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.3.4.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses are
passed to the callback function, in one or more invocations. Each response contains a VC link ID in
the objId field of the response structure and a success code or a possible error code for that
connection. If the function invocation was successful an error code NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_ATM_F_E_VC_NOT_BOUND: The specified VC is not bound to any interface.
NPF_ATM_F_E_INVALID_ATTRIBUTE: Invalid attributes
NPF_E_RESOURCE_NONEXIST: Specified connection doesn’t exist

5.3.5 Delete an ATM Virtual Link
NPF_error_t NPF_F_ATM_ConfigMgr_VirtLinkDelete(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_boolean_t delXc,

 ATM Task Group 82

Network Processing Forum Software Working Group

 NPF_IN NPF_boolean_t delContainedObjs,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLink_t *delArray);

5.3.5.1 Description of function
This function deletes one or more ATM virtual links. The virtual links may be either VP or VC links
as specified in the input parameters.

5.3.5.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
delXc – When set to NPF_TRUE indicates that any cross connection(s) made to this link
should also be deleted on deletion of this link. The cross connected link(s) will not be deleted
unless explicitly listed in the delArray
delContainedObjs – When set to NPF_TRUE indicates that all objects contained within
the deleted virtual link should be deleted. Examples of contained objects are VC links when
the virtual link being deleted is a VP link, AAL2 channels present in a VC link etc. The effect
of this parameter propagates hierarchically to all contained objects. For example if a VP links
is deleted then all contained VC links will be deleted and if any of those VC links contained
any AAL2 channels the AAL2 channels will be deleted. If this parameter is set to
NPF_FALSE, the function will return an error if there are objects contained within the virtual
link being deleted.
numEntries - Number of virtual links to delete
delArray – Pointer to an array of virtual links to delete

5.3.5.3 Output Parameters
None

5.3.5.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.

5.3.5.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the ID and
type of the virtual link in the objId field of the response structure along with a success code or a
possible error code. If the function invocation was successful an error code NPF_NO_ERROR is
returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_ATM_F_E_CONT_OBJS_EXIST – The specified virtual link could not be deleted as there
are objects configured within this virtual link and the parameter delContainedObjs was set
to NPF_FALSE.

 ATM Task Group 83

Network Processing Forum Software Working Group

NPF_E_RESOURCE_NONEXIST: Specified virtual link doesn’t exist •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.6 Enable a Virtual Link
NPF_error_t NPF_F_ATM_ConfigMgr_VirtLinkEnable(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLink_t *enaArray);

5.3.6.1 Description of function
This function administratively enables one more virtual links (VP or VC) identified by the virtual link
ID. If the interface is ready for operation, then the ATM virtual links can receive and transmit cells. If
the virtual link being enabled is an AAL2 path, the AAL2 channels belonging to that AAL2 path are
also enabled unless they are administratively disabled.

5.3.6.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of virtual links to enable
enaArray – Pointer to an array of virtual links to enable

5.3.6.3 Output Parameters
None

5.3.6.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.3.6.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the ID and
type of the virtual link in the objId field of the response structure along with a success code or a
possible error code. If the function invocation was successful an error code NPF_NO_ERROR is
returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified connection doesn’t exist

5.3.7 Disable a Virtual Link
NPF_error_t NPF_F_ATM_ConfigMgr_VirtLinkDisable(

 ATM Task Group 84

Network Processing Forum Software Working Group

 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLink_t *disArray);

5.3.7.1 Description of function
This function administratively disables one more virtual links specified in the input parameters.
Disabling a virtual link stops the reception and transmission of ATM cells on that virtual link. If the
disabled virtual link is an AAL2 path, the AAL2 channels belonging to that AAL2 path are also
disabled.

5.3.7.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of virtual links to disable
disArray – Pointer to an array of virtual links to disable

5.3.7.3 Output Parameters
None

5.3.7.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.3.7.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the type and
ID of the virtual link ID in the objId field of the response structure along with a success code or a
possible error code for that connection. If the function invocation was successful an error code
NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified virtual link doesn’t exist

5.3.8 Get Operational Status of a Virtual Link
NPF_error_t NPF_F_ATM_ConfigMgr_VirtLinkOperStatusGet(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,

 ATM Task Group 85

Network Processing Forum Software Working Group

 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLink_t *linkArray);

5.3.8.1 Description of function
This function is used to query the operational status of one or more virtual links.

5.3.8.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of virtual links to query for operational status
linkArray – Pointer to an array of virtual links to query

5.3.8.3 Output Parameters
None

5.3.8.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.3.8.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the ID and
type of the virtual link in the objId field of the response structure along with a success code or a
possible error code for that connection. If the function invocation was successful an error code
NPF_NO_ERROR is returned and the current operation status of the virtual link is returned in the
operStatus field of the union in the response structure.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified virtual link doesn’t exist

5.3.9 Enable Statistics collection on a Virtual Link
NPF_error_t NPF_F_ATM_ConfigMgr_VirtLinkStatsEnable(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLink_t *enaArray);

5.3.9.1 Description of function
This function enables statistics collection one more virtual links (VP or VC) identified by the virtual
link ID. When statistics counting changes state to ‘enabled’, counters for the specified link are reset

 ATM Task Group 86

Network Processing Forum Software Working Group

(set to all 0s). Statistics counters are non negative integers which wrap around on reaching maximum
value using twos complement arithmetic.

5.3.9.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of virtual links on which to enable statistics collection
enaArray – Pointer to an array of virtual links on which to enable statistics collection

5.3.9.3 Output Parameters
None

5.3.9.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.3.9.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the ID and
type of the virtual link in the objId field of the response structure along with a success code or a
possible error code. If the function invocation was successful an error code NPF_NO_ERROR is
returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified connection doesn’t exist

5.3.10 Disable Statistics collection on a Virtual Link
NPF_error_t NPF_F_ATM_ConfigMgr_VirtLinkStatsDisable(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLink_t *disArray);

5.3.10.1 Description of function
This function disables statistics collection one more virtual links (VP or VC) identified by the virtual
link ID.

5.3.10.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()

 ATM Task Group 87

Network Processing Forum Software Working Group

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of virtual links on which to disable statistics collection
disArray – Pointer to an array of virtual links on which to disable statistics collection

5.3.10.3 Output Parameters
None

5.3.10.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.3.10.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the ID and
type of the virtual link in the objId field of the response structure along with a success code or a
possible error code. If the function invocation was successful an error code NPF_NO_ERROR is
returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified connection doesn’t exist

5.3.11 Read ATM Virtual Channel Statistics
NPF_error_t NPF_F_ATM_ConfigMgr_VcStatsGet(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

 NPF_IN NPF_F_ATM_VirtLinkID_t *linkArray);

5.3.11.1 Description of function
This function returns, via a callback, the current counter values for each of one or more indicated
ATM VCs.

5.3.11.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.

 ATM Task Group 88

Network Processing Forum Software Working Group

blockId – The unique identification of the ATM Configuration Manager. •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

numEntries - Number of VCs to query for statistics
linkArray – Pointer to an array of VCs to query

5.3.11.3 Output Parameters
None

5.3.11.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.3.11.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains an ID and
type of the VC in the objId field of the response structure along with a success code or a possible
error code. If the function invocation was successful an error code NPF_NO_ERROR is returned and
the statistics are returned in the vcStats field of the union in the response structure.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST - Specified VC doesn’t exist

5.3.12 Query ATM Virtual Channel Configuration
NPF_error_t NPF_F_ATM_ConfigMgr_VcQuery(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

 NPF_IN NPF_F_ATM_VirtLinkID_t *linkArray);

5.3.12.1 Description of function
This function queries the configurations of one or more specified VCs. If the numEntries parameter
passed to the function is set to 0, the configurations for all configured VCs are returned.

5.3.12.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of VCs to query. When set to 0 the configurations for all configured
VCs is returned
linkArray – Pointer to an array of VCs to query

 ATM Task Group 89

Network Processing Forum Software Working Group

5.3.12.3 Output Parameters
None

5.3.12.4 Return Values
NPF_NO_ERROR - The operation is in progress. •

•

•

•

•

•

•

•

•

•

•

•

•

•

NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.3.12.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains an ID and
type of the VC in the objId field of the response structure and a success code or a possible error
code for that connection. If the numEntries parameter passed to the function is set to 0, the
configurations for all configured VCs are returned. The union of the response structure contains the
current configurations for the VC. If the function invocation was successful an error code
NPF_NO_ERROR is returned and the current configuration of the VC is returned in the
vcConfigInfo field of union in the response structure.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST - Specified VC doesn’t exist

5.3.13 Add VC link Cross connect
NPF_error_t NPF_F_ATM_ConfigMgr_VcLinkXcSet (

 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

 NPF_IN NPF_F_ATM_ConfigMgr_VcLinkXc_t *vcLinkXc);

5.3.13.1 Description of function
This function allows a client to cross connect ATM VC links. Both the VCs must exist before
invoking the function.

5.3.13.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of VC link cross connects to configure
vcLinkXc – Pointer to an array of VC link cross connection configurations

5.3.13.3 Output Parameters
None

 ATM Task Group 90

Network Processing Forum Software Working Group

5.3.13.4 Return Values
NPF_NO_ERROR - The operation is in progress. •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.3.13.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains VC link cross
connect ID in the objId field of the response structure and a success code or a possible error code. If
the function invocation was successful an error code NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_RESOURCE_EXIST: Specified cross connect exists
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_F_E_INVALID_ATTRIBUTE - Invalid configuration parameters

5.3.14 Delete VC link Cross connect
NPF_error_t NPF_F_ATM_ConfigMgr_VcLinkXcDelete (
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

 NPF_IN NPF_F_VcXcId_t *vcLinkXc);
5.3.14.1 Description

This function allows a client to disassociate one or more cross connects of ATM VC link connections.
5.3.14.2 Input Parameters

cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of cross connections to delete
vcLinkXc – Pointer to an array of cross connections to delete

5.3.14.3 Output Parameters
None

5.3.14.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input
parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

 ATM Task Group 91

Network Processing Forum Software Working Group

5.3.14.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains VC cross
connect ID in the objId field of the response structure and a success code or a possible error code. If
the function invocation was successful an error code NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful •

•

•

•

•

•

•

•

•

•

•

•

•

•

NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified cross connect doesn’t exist

5.3.15 Query Virtual Channel Cross connect
NPF_error_t NPF_F_ATM_ConfigMgr_VcLinkXcQuery (
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

 NPF_IN NPF_F_VcXcId_t *linkXc);

5.3.15.1 Description
This function allows a client to query the configuration of one or more cross connects of ATM VC
links. If the numEntries parameter passed to the function is set to 0, the configuration for all
configured cross connects is returned.

5.3.15.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of cross connections to query. When set to 0 the configurations for
all configured cross connections is returned.
linkXc – Pointer to an array of cross connections to query

5.3.15.3 Output Parameters
None
5.3.15.4 Return Values

NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.3.15.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains VC cross
connect ID in the objId field of the response structure and a success code or a possible error code. If
the function invocation was successful an error code NPF_NO_ERROR is returned and the

 ATM Task Group 92

Network Processing Forum Software Working Group

vcXcConfig field in union of the response structure contains the current configurations of the VC
link cross connect.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST - Specified cross connect doesn’t exist

5.3.16 Read ATM Virtual Path Statistics
NPF_error_t NPF_F_ATM_ConfigMgr_VpStatsGet(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

 NPF_IN NPF_F_ATM_VirtLinkID_t *linkArray);

5.3.16.1 Description of function
This function returns, via a callback, the current counter values for each of one or more indicated
ATM VPs.

5.3.16.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of VPs to query for statistics
linkArray – Pointer to an array of VPs to query

5.3.16.3 Output Parameters
None

5.3.16.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.3.16.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the ID and
type of the VP link in the objId field of the response structure along with a success code or a
possible error code. If the function invocation was successful an error code NPF_NO_ERROR is
returned and the statistics are returned in the vpStats field of the union in the response structure.
 The following error codes could be returned:

NPF_NO_ERROR - Operation successful

 ATM Task Group 93

Network Processing Forum Software Working Group

NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative

•

•

•

•

•

•

•

•

•

•

•

•

•

•

NPF_E_RESOURCE_NONEXIST - Specified VP link doesn’t exist

5.3.17 Query ATM Virtual Path Link Configuration
NPF_error_t NPF_F_ATM_ConfigMgr_VpQuery(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

 NPF_IN NPF_F_ATM_VirtLinkID_t *linkArray);

5.3.17.1 Description of function
This function queries the configurations of one or more specified virtual paths. If the numEntries
parameter passed to the function is set to 0, the configurations for all configured virtual paths are
returned.

5.3.17.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of VPs to query. When set to 0 the configurations for all configured
VPs is returned
linkArray – Pointer to an array of VPs to query

5.3.17.3 Output Parameters
None

5.3.17.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.3.17.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains an ID and
type of the virtual path in the objId field of the response structure and a success code or a possible
error code for that connection. If the numEntries parameter passed to the function is set to 0, the
configurations for all configured virtual paths are returned. The union of the response structure
contains the current configurations for the virtual path. If the function invocation was successful an
error code NPF_NO_ERROR is returned and the current configuration of the VP link is returned in the
vpConfigInfo field of union in the response structure.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful

 ATM Task Group 94

Network Processing Forum Software Working Group

NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

NPF_E_RESOURCE_NONEXIST: Specified virtual path doesn’t exist

5.3.18 Add Virtual Path Link Cross connect
NPF_error_t NPF_F_ATM_ConfigMgr_VpLinkXcSet (

 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

 NPF_IN NPF_F_ATM_ConfigMgr_VpLinkXc_t *vpLinkXc);

5.3.18.1 Description of function
This function allows a client to cross connect ATM VP links. Both the virtual paths must exist before
invoking the function.

5.3.18.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of VP link cross connects to configure
vpLinkXc – Pointer to an array of VP link cross connection configurations

5.3.18.3 Output Parameters
None

5.3.18.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.3.18.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains VP link cross
connect ID in the objId field of the response structure and a success code or a possible error code. If
the function invocation was successful an error code NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_RESOURCE_EXIST: Specified cross connect exists
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_F_E_INVALID_ATTRIBUTE: Invalid configuration parameters

5.3.19 Delete Virtual Path Link Cross connect
NPF_error_t NPF_F_ATM_ConfigMgr_VpLinkXcDelete (

 ATM Task Group 95

Network Processing Forum Software Working Group

 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,

 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

 NPF_IN NPF_F_VpXcId_t *vpLinkXc);

5.3.19.1 Description
This function allows a client to disassociate one or more cross connects of ATM VP link connections.

5.3.19.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of cross connections to delete
vpLinkXc – Pointer to an array of cross connections to delete

5.3.19.3 Output Parameters
None

5.3.19.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.3.19.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains VP link cross
connect ID in the objId field of the response structure and a success code or a possible error code. If
the function invocation was successful an error code NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified cross connect doesn’t exist

5.3.20 Query Virtual Path Cross connect
NPF_error_t NPF_F_ATM_ConfigMgr_VpLinkXcQuery (
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

 NPF_IN NPF_F_VpXcId_t *linkXc);

 ATM Task Group 96

Network Processing Forum Software Working Group

5.3.20.1 Description
This function allows a client to query the configuration of one or more cross connects of ATM VP
links. If the numEntries parameter passed to the function is set to 0, the configuration for all
configured cross connects is returned.

5.3.20.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of cross connections to query. When set to 0 the configurations for
all configured cross connections is returned.
linkXc – Pointer to an array of cross connections to query

5.3.20.3 Output Parameters
None

5.3.20.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.3.20.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains VP link cross
connect ID in the objId field of the response structure and a success code or a possible error code. If
the function invocation was successful an error code NPF_NO_ERROR is returned and the
vpXcConfig field in union of the response structure contains the current configurations of the VP
link cross connect.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified cross connect doesn’t exist

5.4 AAL2 channel management functions
5.4.1 Add or Modify an AAL2 Channel
5.4.1.1 Syntax

NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelSet(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_AAL2_Channel_t *chnlArray);

 ATM Task Group 97

Network Processing Forum Software Working Group

5.4.1.2 Description of function
This function is used to add or modify an AAL2 channel on the specified AAL2 path. The profile of
the AAL2 channels is passed in the chnlArray field of the function parameters.

5.4.1.3 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of AAL2 channels to create
chnlArray – Pointer to an array of AAL2 channels to create

5.4.1.4 Output Parameters
None

5.4.1.5 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.4.1.6 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains an AAL2
channel ID in the objId field of the response structure and a success code or a possible error code for
that connection. If the function invocation was successful an error code NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_ATM_F_E_INVALID_ATTRIBUTE - Invalid attribute
NPF_ATM_F_E_INVALID_CPS_ATTR: Invalid CPS attribute
NPF_ATM_F_E_INVALID_SSCS_I3661_ATTR: Invalid I.366.1 SSCS attribute
NPF_ATM_F_E_INVALID_SSCS_I3662_ATTR: Invalid I.366.2 SSCS attribute
NPF_ATM_F_E_INVALID_ATM_TRUNK_ATTR: Invalid ATM trunking attribute
NPF_E_RESOURCE_EXIST: Specified AAL2 channel exists
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_ATM_F_E_AAL2_QOS_PRIO INVALID: Invalid priority for AAL2 QoS

5.4.2 Bind a higher layer Interface to an AAL2 Channel
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelBind(

 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,

 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_IfHandle_t ifChildHandle,
 NPF_IN NPF_uint32_t numEntries,

 ATM Task Group 98

Network Processing Forum Software Working Group

 NPF_IN NPF_F_AAL2ChanId_t *bindArray);

5.4.2.1 Description of function
This function associates a single higher-layer interface with the one or more AAL2 channels. The
AAL2 channel is terminated in this FE. The AAL2 channel must be created before making the call.

5.4.2.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
ifChildHandle - Handle of the higher layer interface to bind.
numEntries - Number of AAL2 channels to bind
bindArray – Pointer to an array of AAL2 channel IDs to bind to the specified interface.

5.4.2.3 Output Parameters
None

5.4.2.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.4.2.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains an AAL2
channel ID in the objId field of the response structure and a success code or a possible error code for
that connection. If the function invocation was successful an error code NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_ATM_F_E_INVALID_CHILD_HANDLE: Invalid child interface handle
NPF_ATM_F_E_INVALID_ATTRIBUTE: Invalid attributes
NPF_E_RESOURCE_NONEXIST: Specified AAL2 channel doesn’t exist

5.4.3 Unbind a higher layer Interface from an AAL2 channel
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelUnbind(

 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,

 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLinkID_t *unbindArray);

 ATM Task Group 99

Network Processing Forum Software Working Group

5.4.3.1 Description of function
This function removes the association between the higher-layer interface and one or more AAL2
channels.

5.4.3.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of AAL2 channels to unbind
unbindArray – Pointer to an array of AAL2 channel IDs.

5.4.3.3 Output Parameters
None

5.4.3.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.4.3.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains an AAL2
channel ID in the objId field of the response structure and a success code or a possible error code for
that connection. If the function invocation was successful an error code NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_ATM_F_E_CHNL_NOT_BOUND: The specified AAL2 channel is not bound to any
interface.
NPF_ATM_F_E_INVALID_ATTRIBUTE: Invalid attributes
NPF_E_RESOURCE_NONEXIST: Specified AAL2 channel doesn’t exist

5.4.4 Delete an AAL2 Channel
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelDelete(

 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_boolean_t delXc,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChanId_t *chnlArray);

 ATM Task Group 100

Network Processing Forum Software Working Group

5.4.4.1 Description of function
This function deletes the specified channel from the AAL2 path.

5.4.4.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList() call.
blockId – The unique identification of the ATM Configuration Manager.
delXc – When set to NPF_TRUE indicates that any cross connections made to this channel
should also be deleted on deletion of this channel. The cross connected channel(s) will not
deleted unless explicitly listed in the chnlArray
numEntries - Number of AAL2 channels to delete
chnlArray – Pointer to an array of AAL2 channels to delete

5.4.4.3 Output Parameters
None

5.4.4.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.4.4.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the AAL2
channel ID in the objId field of the response structure and a success code or a possible error code for
that connection. If the function invocation was successful an error code NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified AAL2 channel doesn’t exist

5.4.5 Query AAL2 Channel Statistics
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelStatsGet(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChanId_t *chnlArray);

5.4.5.1 Description of function
This function queries the statistics counters accumulated for a specified AAL2 channel

5.4.5.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()

 ATM Task Group 101

Network Processing Forum Software Working Group

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of AAL2 channels to query for statistics
chnlArray – Pointer to an array of AAL2 channels to query for statistics

5.4.5.3 Output Parameters
None

5.4.5.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.4.5.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains an AAL2
channel ID in the objId field of the response structure and a success code or a possible error code for
that connection. If the function invocation was successful an error code NPF_NO_ERROR is returned
and the statistics accumulated for the channel are returned in the aal2ChanStats of field of the
union in the response structure.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified AAL2 channel doesn’t exist

5.4.6 Query AAL2 Channel
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelQuery(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChanId_t *chnlArray);

5.4.6.1 Description of function
This function queries the configurations of one or more specified AAL2 channels. If the
numEntries parameter passed to the function is set to 0, the configurations for all configured AAL2
channels is returned.

5.4.6.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.

 ATM Task Group 102

Network Processing Forum Software Working Group

feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call. •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of AAL2 channels to query. When set to 0, the configurations for all
configured AAL2 channels is returned.
chnlArray – Pointer to an array of AAL2 channels to query

5.4.6.3 Output Parameters
None

5.4.6.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.4.6.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains an AAL2
channel ID in the objId field of the response structure and a success code or a possible error code for
that connection. If the function invocation was successful an error code NPF_NO_ERROR is returned
and the configuration of the AAL2 channel is returned in the chnlConfigInfo field of the union of
the response structure.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified AAL2 channel doesn’t exist

5.4.7 Enable an AAL2 channel
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelEnable(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChanId_t *enaArray);
5.4.7.1 Description of function

This function administratively enables one more AAL2 channels identified by the AAL2 channel ID.
If the AAL2 path is ready for operation, the AAL2 channels can receive and transmit packets.

5.4.7.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of AAL2 channels to enable

 ATM Task Group 103

Network Processing Forum Software Working Group

enaArray – Pointer to an array of AAL2 channels to enable •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.7.3 Output Parameters
None

5.4.7.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.4.7.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the ID of the
AAL2 channel in the objId field of the response structure along with a success code or a possible
error code. If the function invocation was successful an error code NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified AAL2 channel doesn’t exist

5.4.8 Disable an AAL2 channel
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelDisable(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChanId_t *disArray);

5.4.8.1 Description of function
This function administratively disables one more AAL2 channels specified in the input parameters.
Disabling an AAL2 channel stops reception and transmission of AAL2 packets on that AAL2
channel.

5.4.8.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of AAL2 channels to disable
disArray – Pointer to an array of AAL2 channels to disable

5.4.8.3 Output Parameters
None

5.4.8.4 Return Values
NPF_NO_ERROR - The operation is in progress.

 ATM Task Group 104

Network Processing Forum Software Working Group

NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters. •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.4.8.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the ID of the
AAL2 channel ID in the objId field of the response structure along with a success code or a possible
error code for that AAL2 channel. If the function invocation was successful an error code
NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified AAL2 channel doesn’t exist

5.4.9 Get Operational Status of a AAL2 channel
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelOperStatusGet(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChanId_t *chnlArray);

5.4.9.1 Description of function
This function is used to query the operational status of one or more AAL2 channels.

5.4.9.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of AAL2 channels to query for operational status
chnlArray – Pointer to an array of AAL2 channels to query

5.4.9.3 Output Parameters
None

5.4.9.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.4.9.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the ID of the

 ATM Task Group 105

Network Processing Forum Software Working Group

AAL2 channel in the objId field of the response structure along with a success code or a possible
error code for that channel. If the function invocation was successful an error code NPF_NO_ERROR is
returned and the current operation status of the AAL2 channel is returned in the operStatus field of
the union in the response structure.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful •

•

•

•

•

•

•

•

•

•

•

•

•

•

NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST - Specified AAl2 channel doesn’t exist

5.4.10 Enable Statistics collection on a AAL2 channel
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelStatsEnable(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChanId_t *chnlArray);

5.4.10.1 Description of function
This function enables statistics collection one more AAL2 channels identified by the AAL2 channel
ID. When statistics counting changes state to ‘enabled’, counters for the specified channel are reset
(set to all 0s). Statistics counters are non negative integers which wrap around on reaching maximum
value using twos complement arithmetic.

5.4.10.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of AAL2 channels to enable statistics
chnlArray – Pointer to an array of AAL2 channels on which statistics is enabled

5.4.10.3 Output Parameters
None

5.4.10.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.4.10.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the ID of the
AAL2 channel in the objId field of the response structure along with a success code or a possible
error code for that channel. If the function invocation was successful an error code NPF_NO_ERROR is
returned.

 ATM Task Group 106

Network Processing Forum Software Working Group

The following error codes could be returned:
NPF_NO_ERROR - Operation successful •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified AAL2 channel doesn’t exist

5.4.11 Disable Statistics collection on a AAL2 channel
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelStatsDisable(
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChanId_t *chnlArray);

5.4.11.1 Description of function
This function disables statistics collection one more AAL2 channels identified by the AAL2 channel
ID.

5.4.11.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register()
cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of AAL2 channels to disable statistics
chnlArray – Pointer to an array of AAL2 channels on which statistics is disabled

5.4.11.3 Output Parameters
None

5.4.11.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.4.11.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the ID of the
AAL2 channel in the objId field of the response structure along with a success code or a possible
error code for that channel. If the function invocation was successful an error code NPF_NO_ERROR
is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified AAL2 channel doesn’t exist

 ATM Task Group 107

Network Processing Forum Software Working Group

5.4.12 Add AAL2 Channel Cross connect
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChnlXcSet (

 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

 NPF_IN NPF_F_ATM_ConfigMgr_AAL2_ChnlXc_t *chnlXc);

5.4.12.1 Description of function
This function is used to cross connect two AAL2 channels.

5.4.12.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Connection Manager.
numEntries - Number of cross connects to set
chnlXc – Pointer to an array of AAL2 channel cross connections configurations

5.4.12.3 Output Parameters
None

5.4.12.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.4.12.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains an AAL2
channel cross connect ID in the objId field of the response structure and a success code or a
possible error code for that connection. If the function invocation was successful an error code
NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_EXISTS: Specified AAL2 channel cross connect exists

5.4.13 Delete AAL2 Channel Cross connect
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChnlXcDelete (
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,

 ATM Task Group 108

Network Processing Forum Software Working Group

 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChnlXcId_t *chnlXc);

5.4.13.1 Description
This function is used to delete AAL2 channel cross connections.

5.4.13.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of cross connections to delete
chnlXc – Pointer to an array of cross connections to delete

5.4.13.3 Output Parameters
None

5.4.13.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.4.13.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains an AAL2
channel cross connect ID in the objId field of the response structure and a success code or a possible
error code for that connection. If the function invocation was successful an error code
NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified AAL2 channel cross connect does not exist

5.4.14 Query AAL2 Channel Cross connect
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChnlXcQuery (
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChnlXcId_t *chnlXc);

5.4.14.1 Description
This function is used to query the current configuration of one or more specified AAL2 channel cross
connects. When numEntries in the input parameters is set to 0, the configurations of all configured
AAL2 channel cross connects is returned.

 ATM Task Group 109

Network Processing Forum Software Working Group

5.4.14.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of cross connections to query. When set to 0, the configuration of all
configured AAL2 channel cross connects is returned.
chnlXc – Pointer to an array of AAL2 channel cross connections to query

5.4.14.3 Output Parameters
None

5.4.14.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.4.14.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains an AAL2
channel cross connect ID in the objId field of the response structure and a success code or a possible
error code for that connection. If the function invocation was successful an error code
NPF_NO_ERROR is returned and the configurations of the queried AAL2 channel cross connect is
returned in the chnlXcConfig field of the union in the response structure.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified AAL2 channel cross connect does not exist

5.5 ATM OAM services functions
5.5.1 Configure/Modify OAM attributes of a Connection Point

NPF_error_t NPF_F_ATM_ConfigMgr_OAM_CP_Set(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_CP_t *oamCPArray);

5.5.1.1 Description
This function configures/modifies the connection points for the F4/F5 OAM services using the OAM
profile parameters, from the contents of an array passed by the caller, as defined in
NPF_F_ATM_ConfigMgr_OAM_CP_t. OAM flows are related to bi-directional Maintenance Entities
(MEs) corresponding either to the entire ATM VPC/VCC, referred to as the VPC/VCC ME, or to a

 ATM Task Group 110

Network Processing Forum Software Working Group

portion of this connection referred to as a VPC/VCC segment ME. Before the start of any OAM
operation, the boundary needs to be drawn for the paired endpoints. The MEs terminating the ATM
links are configured before as an endpoint of the VPC/VCC or endpoint of the VPC/VCC segment.
End-to-end F5 flows terminate at the endpoints of a VCC, while the segment F5 flows terminate at
the VCC segment endpoints. Similarly, the end-to-end F4 flows terminate at the endpoints of a VPC,
while the segment F4 flows terminate at the VPC segment endpoints. The connection points are
considered as intermediate points for ETE and segment flows by default. A connection point
configured as an end point for an OAM flow may be reconfigured to be an intermediate point and
vice versa by invoking the NPF_F_ATM_ConfigMgr_OAM_CP_Set function.

5.5.1.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of OAM connection points to configure
oamCPArray - Pointer to an array structures containing the OAM profile parameters for the
specified connection point

5.5.1.3 Output Parameters
None

5.5.1.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.5.1.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains a type and ID
of the ATM virtual link carrying the OAM flow in the objId field of the response structure along
with a success code or a possible error code for that connection. If the function invocation was
successful an error code NPF_NO_ERROR is returned.
 The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_ATM_F_E_INVALID_ATTRIBUTES: Invalid/erroneous configuration parameters
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified connection point does not exist

5.5.2 Activate, Deactivate, Start and Stop OAM Continuity Check
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_CC_Set(

 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,

 ATM Task Group 111

Network Processing Forum Software Working Group

 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_CC_t *oamCCArray);

5.5.2.1 Description of function
This function activates and de-activates the CC procedure on a certain number of active connections
in each direction (forward/backward). CC can be established during connection establishment or at
anytime after the connection has been established. The connection creation must precede this
operation.

5.5.2.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of connection to be operated on
oamCCArray - Pointer to an array structure containing continuity check parameters

5.5.2.3 Output Parameters
None

5.5.2.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.5.2.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the type and
ID of the ATM virtual link carrying the OAM flow in the objId field of the response structure along
with a success code or a possible error code. If the function invocation was successful an error code
NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_ATM_F_E_INVALID_ATTRIBUTES: Invalid/erroneous parameters
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified connection point does not exist

5.5.3 Response to OAM Continuity Check Indication
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_CC_Rsp(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_CC_Rsp_t *oamCCArray);

 ATM Task Group 112

Network Processing Forum Software Working Group

5.5.3.1 Description of function
This function sends the response of CC activate/de-active request Indication. On receiving an
activate/de-activate request from the remote end, the ATM configuration manager will generate an
indication to the registered event handlers. In response to the activate/de-activate request received, the
registered handlers should invoke the NPF_F_ATM_ConfigMgr_OAM_CC_Rsp function to accept or
reject the activation/de-activation request.

5.5.3.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of responses
oamCCArray - Pointer to an array structure containing response to activation/deactivation
request.

5.5.3.3 Output Parameters
None

5.5.3.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.5.3.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the type and
ID of the ATM virtual link carrying the OAM flow in the objId field of the response structure along
with a success code or a possible error code. If the function invocation was successful an error code
NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_ATM_F_E_INVALID_ATTRIBUTES: Invalid/erroneous parameters
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified connection point does not exist

5.5.4 Activate, Deactivate, Start and Stop OAM Performance Management
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_PM_Set(

 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_PM_t *oamPMArray);

 ATM Task Group 113

Network Processing Forum Software Working Group

5.5.4.1 Description
This function activates and de-activates the PM (FPM and associated BR, FPM only) on specified
connection in each direction (forward/backward). The forward direction is the direction followed by
monitored user cells flow. The PM can be established during connection establishment or at anytime
after the connection has been established.

5.5.4.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of virtual links to configure for PM procedure
oamPMArray - Pointer to an array structures containing the attributes for PM

5.5.4.3 Output Parameters
None

5.5.4.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.5.4.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the type and
ID of the ATM virtual link carrying the OAM flow in the objId field of the response structure along
with a success code or a possible error code. If the function invocation was successful an error code
NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_ATM_F_E_INVALID_ATTRIBUTES - Invalid/erroneous parameters
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST - Specified connection point does not exist

5.5.5 Response to OAM Performance Management Indication
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_PM_Rsp(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_PM_Rsp_t *oamPMArray);

 ATM Task Group 114

Network Processing Forum Software Working Group

5.5.5.1 Description
This function sends the response of PM activate/de-active request Indication. On receiving an
activate/de-activate request from the remote end, the ATM configuration manager will generate an
indication to the registered event handlers. In response to the activate/de-activate request received, the
registered handlers should invoke the NPF_F_ATM_ConfigMgr_OAM_PM_Rsp function to accept or
reject the activation/de-activation request.

5.5.5.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of responses
oamPMArray - Pointer to an array structure containing PM activate/de-activate response

5.5.5.3 Output Parameters
None

5.5.5.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.5.5.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the type and
ID of the ATM virtual link carrying the OAM flow in the objId field of the response structure along
with a success code or a possible error code for that connection. If the function invocation was
successful an error code NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_ATM_F_E_INVALID_ATTRIBUTES - Invalid/erroneous parameters
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST - Specified connection point does not exist

5.5.6 Query Performance Monitoring Statistics for an OAM flow
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_PM_StatsGet(

 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_PM_StatsReq_t *oamPMStatsReqArray);

 ATM Task Group 115

Network Processing Forum Software Working Group

5.5.6.1 Description
This function is used to query the accumulated performance monitoring statistics for an OAM flow.
As part of the request, the FAPI client may also request the accumulated statistics to be zeroed.

5.5.6.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of OAM flows to query for performance monitoring statistics
oamPMStatsReqArray - Pointer to an array structures containing the queried flows

5.5.6.3 Output Parameters
None

5.5.6.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.5.6.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the type and
ID of the ATM virtual link carrying the OAM flow in the objId field of the response structure along
with a success code or a possible error code. If the function invocation was successful an error code
NPF_NO_ERROR is returned and the requested statistics is returned in the pmStats field of the union
in the asynchronous response structure.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_ATM_F_E_INVALID_ATTRIBUTES - Invalid/erroneous parameters
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST - Specified connection point does not exist
NPF_ATM_F_E_PERF_MONITORING_OFF - Performance monitoring not enabled for
requested flow

5.5.7 Initiate an OAM Loopback Procedure
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_LB_Set(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_LB_t *oamLBArray);

 ATM Task Group 116

Network Processing Forum Software Working Group

5.5.7.1 Description of function
This function initiates the loopback procedure for specified flow

5.5.7.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList() call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of connections to send loopback requests
oamLBArray - Pointer to an array structures containing attributes for the loopback procedure

5.5.7.3 Output Parameters
None

5.5.7.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.5.7.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations to notify the result of the loopback
procedure. Each response contains the type and ID of the ATM virtual link carrying the OAM flow in
the objId field of the response structure along with a success code or a possible error code for that
procedure. The result of the loopback procedure is specified in the lbResult field of the union of the
response structure. If the function invocation was successful an error code NPF_NO_ERROR is
returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_ATM_F_E_INVALID_ATTRIBUTES: Invalid/erroneous parameters
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST: Specified connection point does not exist

 ATM Task Group 117

Network Processing Forum Software Working Group

5.5.8 Monitor OAM Cells
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_Mon_Set(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_Mon_t *oamMonArray);

5.5.8.1 Description of function
The function activates/de-activates the non-intrusive monitoring of any type of end-to-end or segment
fault and performance management OAM flows, without modifying the characteristics of the
aggregate OAM flow.

5.5.8.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of flows to monitor
oamMonArray - Pointer to an array structures containing the OAM cell types to be monitored

5.5.8.3 Output Parameters
None

5.5.8.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.5.8.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains a type and ID
of the ATM virtual link carrying the OAM flow in the objId field of the response structure along
with a success code or a possible error code for that connection. If the function invocation was
successful an error code NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_ATM_F_E_INVALID_ATTRIBUTES - Invalid/erroneous parameters
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST - Specified connection point does not exist

5.5.9 Set AIS Alarm State
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_Alarm_Set (
 NPF_IN NPF_callbackHandle_t cbHandle,

 ATM Task Group 118

Network Processing Forum Software Working Group

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_Alarm_t *oamAlarmArray);

5.5.9.1 Description
This function sets the AIS alarm state for the specified link(s) at the CP.

5.5.9.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of alarms to set
oamAlarmArray - Pointer to an array structures containing OAM alarms to raise at CP

5.5.9.3 Output Parameters
None

5.5.9.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.5.9.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the type and
ID of the virtual link carrying the OAM flow in the objId field of the response structure and a
success code or a possible error code for that connection. If the function invocation was successful an
error code NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_ATM_F_E_INVALID_ATTRIBUTES - Invalid/erroneous parameters
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST - Specified connection point does not exist

5.5.10 Clear AIS Alarm State
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_Alarm_Clear(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_Alarm_t *oamAlarmArray);

 ATM Task Group 119

Network Processing Forum Software Working Group

5.5.10.1 Description
This function clears the AIS alarm state for specified link(s) at the CP.

5.5.10.2 Input Parameters
cbHandle – The callback handle returned by NPF_F_ATM_ConfigMgr_Register() •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.
errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.
feHandle - The FE Handle returned by NPF_F_ATM_topologyGetFEInfoList () call.
blockId – The unique identification of the ATM Configuration Manager.
numEntries - Number of alarms to clear
oamAlarmArray - Pointer to an array structures containing OAM alarms to clear at CP

5.5.10.3 Output Parameters
None

5.5.10.4 Return Values
NPF_NO_ERROR - The operation is in progress.
NPF_E_UNKNOWN – Failure due to problems encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - Failed because the callback handle was invalid.
NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP – The requested feature is not supported.

5.5.10.5 Asynchronous response
A total of numEntries asynchronous (NPF_F_ATM_ConfigMgr_AsyncResponse_t) responses
are passed to the callback function, in one or more invocations. Each response contains the type and
ID of the ATM virtual link carrying the OAM flow in the objId field of the response structure along
with a success code or a possible error code. If the function invocation was successful an error code
NPF_NO_ERROR is returned.
The following error codes could be returned:

NPF_NO_ERROR - Operation successful
NPF_ATM_F_E_INVALID_ATTRIBUTES - Invalid/erroneous parameters
NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST - Specified connection point does not exist

 ATM Task Group 120

Network Processing Forum Software Working Group

6 References
The following documents contain provisions, which through reference in this text constitute provisions of
this specification. At the time of publication, the editions indicated were valid. All referenced documents
are subject to revision, and parties to agreements based on this specification are encouraged to investigate
the possibility of applying the most recent editions of the standards indicated below.

[FORCESREQ] “Requirement for separation of IP control and forwarding”, H.Khosravi,
T.Anderson et al, November, 2003 (RFC 3654)

[FAPITOPO] ”FAPI Topology Manager API”, work in progress, Network Processing Forum
SWAPI Functional API TG, 2004.

[SWAPICON] “Software API Conventions Revision 2”,
http://www.npforum.org/techinfo/APIConventions2_IA.pdf, Network Processing
Forum SWAPI Foundations TG, September 2003

[ITU-ATM] “B-ISDN ATM Layer Specifications – I.361)”
[ITU-AAL1] “B-ISDN ATM Adaptation Layer Specification: Type 1 AAL – I.363.1”
[ITU-AAL2] “B-ISDN ATM Adaptation Layer Specification: Type 2 AAL – I.363.2”
[ITU-AAL2SAR] “B-ISDN ATM Segmentation and Reassembly Service specific Convergence

sublayer for AAL Type 2 – I.366.1”
[ITU-NBAAL2] “AAL Type 2 service specific convergence sublayer for narrow-band services –

I.366.2”
[ITU-AAL5] “B-ISDN ATM Adaptation Layer Specification: Type 5 AAL – I.363.5”
[ITU-OAM] “B-ISDN Operation and Maintenance Principles and Functions – I.610”
[ATMF-TM41] “Traffic Management Specification version 4.1 – af-tm-0121.000”
[ATMF-TMABR] “Traffic Management ABR Addendum – af-tm-0077.000”
[ATMF-TMUBR] “Addendum to Traffic Management v4.1 optional minimum desired cell rate

indication for UBR – af-tm-0150.000”
[ATMF-TMDUBR] “Addendum to Traffic Management v4.1: Differentiated UBR – af-tm-0149.000”
[ATMF-CES] “Circuit Emulation Service 2.0 – af-vtoa-0078.000”
[ATMF-CES-SIS] "Circuit Emulation Service – Interoperability specification – af-saa-0032.000”

 ATM Task Group 121

http://www.npforum.org/techinfo/APIConventions2_IA.pdf

Network Processing Forum Software Working Group

APPENDIX A HEADER FILE INFORMATION
/*
 * This header file defines typedefs, constants and structures
 * for the NP Forum ATM Configuration Manager Functional API
 */
#ifndef __NPF_F_ATM_CONFIGURATION_MANAGER_H__
#define __NPF_F_ATM_CONFIGURATION_MANAGER_H__

#ifdef __cplusplus
extern "C" {
#endif

/* ATM Configuration Manager LFB Type ID */
#define NPF_F_ATMCONFIGMGR_LFB_TYPE 40 /* ATM Config. Mgr. LFB type code
*/

/*
* Asynchronous error codes (returned in function callbacks)
*/
#define NPF_F_ATMCMGR_BASE_ERR (NPF_F_ATMCONFIGMGR_LFB_TYPE * 100)
#define NPF_ATM_F_E_INVALID_VC_ADDRESS (NPF_F_ATMCMGR_BASE_ERR + 0)
#define NPF_ATM_F_E_INVALID_ATM_AAL (NPF_F_ATMCMGR_BASE_ERR + 1)
#define NPF_ATM_F_E_INVALID_CHILD_HANDLE (NPF_F_ATMCMGR_BASE_ERR + 2)
#define NPF_ATM_F_E_VC_NOT_BOUND (NPF_F_ATMCMGR_BASE_ERR + 3)
#define NPF_ATM_F_E_INVALID_ATM_QOS (NPF_F_ATMCMGR_BASE_ERR + 4)
#define NPF_ATM_F_E_INVALID_ATTRIBUTE (NPF_F_ATMCMGR_BASE_ERR + 5)
#define NPF_ATM_F_E_INVALID_SUBTYPE (NPF_F_ATMCMGR_BASE_ERR + 6)
#define NPF_ATM_F_E_INVALID_CBR (NPF_F_ATMCMGR_BASE_ERR + 7)
#define NPF_ATM_F_E_INVALID_CLK_REC_TYPE (NPF_F_ATMCMGR_BASE_ERR + 8)
#define NPF_ATM_F_E_INVALID_FEC (NPF_F_ATMCMGR_BASE_ERR + 9)
#define NPF_ATM_F_E_INVALID_SDT (NPF_F_ATMCMGR_BASE_ERR + 10)
#define NPF_ATM_F_E_INVALID_PAR_FILL_CELL (NPF_F_ATMCMGR_BASE_ERR + 11)
#define NPF_ATM_F_E_INVALID_CELL_LOSS_PER (NPF_F_ATMCMGR_BASE_ERR + 12)
#define NPF_ATM_F_E_INVALID_CPS_ATTR (NPF_F_ATMCMGR_BASE_ERR + 13)
#define NPF_ATM_F_E_INVALID_SSCS_I3661_ATTR (NPF_F_ATMCMGR_BASE_ERR + 14)
#define NPF_ATM_F_E_INVALID_SSCS_I3662_ATTR (NPF_F_ATMCMGR_BASE_ERR + 15)
#define NPF_ATM_F_E_INVALID_ATM_TRUNK_ATTR (NPF_F_ATMCMGR_BASE_ERR + 16)
#define NPF_ATM_F_E_INVALID_MAX_SIZE_FWD (NPF_F_ATMCMGR_BASE_ERR + 17)
#define NPF_ATM_F_E_INVALID_MAX_SIZE_BWD (NPF_F_ATMCMGR_BASE_ERR + 18)
#define NPF_ATM_F_E_INVALID_AAL_MODE (NPF_F_ATMCMGR_BASE_ERR + 19)
#define NPF_ATM_F_E_INVALID_SSCS_TYPE (NPF_F_ATMCMGR_BASE_ERR + 20)
#define NPF_ATM_F_E_AAL2_QOS_PRIO_INVALID (NPF_F_ATMCMGR_BASE_ERR + 21)
#define NPF_ATM_F_E_AAL2_QOS_WEIGHT_INVALID (NPF_F_ATMCMGR_BASE_ERR + 22)
#define NPF_ATM_F_E_PERF_MONITORING_OFF (NPF_F_ATMCMGR_BASE_ERR + 23)
#define NPF_ATM_F_E_CONT_OBJS_EXIST (NPF_F_ATMCMGR_BASE_ERR + 24)
#define NPF_ATM_F_E_CMGR_FEATURE_NOT_SUPP (NPF_F_ATMCMGR_BASE_ERR + 25)

/* Timer Units */
typedef enum {
 NPF_F_ATM_TIME_UNIT_NS = 0, /* Timers specified in nanoseconds */
 NPF_F_ATM_TIME_UNIT_US = 1, /* Timers specified in microseconds */
 NPF_F_ATM_TIME_UNIT_MS = 2, /* Timers specified in milliseconds */
 NPF_F_ATM_TIME_UNIT_1S = 3 /* Timers specified in seconds */
} NPF_F_ATM_TimerUnit_t;

/* Type of ATM link */
typedef enum {
 NPF_F_ATM_VP_LINK = 0, /* Virtual Path Link */

 ATM Task Group 122

Network Processing Forum Software Working Group

 NPF_F_ATM_VC_LINK = 1 /* Virtual channel link */
} NPF_F_ATM_VirtLinkType_t;

/* Scope of an ATM virtual link. Internal virtual links are not visible *
 * to the network and are used for transporting data within the system */
typedef enum {
 NPF_F_ATM_VIRT_LINK_INTERNAL = 0, /* Internal VP/VC link */
 NPF_F_ATM_VIRT_LINK_EXTERNAL = 1 /* External VP/VC link */
} NPF_F_ATM_VirtLinkScope_t;

/* Object Status */
typedef enum {
 /* The below status can be used to denote operational or admin status
 * of an object, depending on the context in which they are used
 */
 NPF_STATUS_UP = 1, /* Status marked UP */
 NPF_STATUS_DOWN = 2, /* Status marked DOWN */
 NPF_STATUS_TESTING = 3, /* Object in some test mode */

 /* The below status can be used to denote operational status of object */
 NPF_STATUS_UNKNOWN = 4, /* Cannot be determined due to some reason */
 NPF_STATUS_DORMANT = 5, /* Ready but waiting for external action */
 NPF_STATUS_NOT_PRESENT = 6,/* Object has missing components like h/w */
 NPF_STATUS_LOWER_LYR_DOWN = 7 /* Lower layer down */
} NPF_ObjStatus_t;
/*
* OAM Connection Point Type
*/
typedef enum{
 NPF_ATM_OAM_ETE_ENDPOINT = 0, /* ETE End point */
 NPF_ATM_OAM_SEG_ENDPOINT = 1, /* Segment end point */
 NPF_ATM_OAM_ETE_AND_SEG_ENDPOINT = 2, /* ETE & segment endpoint */
 NPF_ATM_OAM_ETE_INTERMEDIATE = 3, /* Intermediate point - ETE flow */
 NPF_ATM_OAM_ETE_AND_SEG_INTERMEDIATE = 4 /* Intermediate point - ETE
 And segment flow */
} NPF_F_ATM_OAM_CP_Type_t;
/*
* Link direction
*/
typedef enum{
 NPF_F_ATM_RECEIVE = 0, /* link is receive only */
 NPF_F_ATM_TRANSMIT = 1, /* link is transmit only */
 NPF_F_ATM_DUPLEX = 2 /* link is bidirectional */
} NPF_F_ATM_Direction_t;

/*
* ATM VPI types
*/
typedef NPF_uint16_t NPF_F_ATM_VPI_t; /* VPI is 8 or 12 bits */
/*
* ATM VCI types
*/
typedef NPF_uint16_t NPF_F_ATM_VCI_t; /* VCI is 16 bits */
typedef struct { /* ATM Vc Address (VPI/VCI) structure */
 NPF_F_ATM_VPI_t vpi; /* VPI number */
 NPF_F_ATM_VCI_t vci; /* VCI number */
} NPF_F_ATM_VcAddr_t;

/* ATM Virtual Link Identifier */

 ATM Task Group 123

Network Processing Forum Software Working Group

typedef NPF_uint32_t NPF_F_ATM_VirtLinkID_t; /* Virtual Link ID */

/* ATM virtual link generic identifer; for VP or VC link */
typedef struct {
 NPF_F_ATM_VirtLinkType_t atm_linkType; /* VP link or VC link */
 NPF_F_ATM_VirtLinkID_t atm_linkID; /* Virtual Link ID */
} NPF_F_ATM_VirtLink_t;

/* ATM Interface Identifier */
typedef NPF_uint32_t NPF_F_ATM_IfID_t; /* Interface ID */

/* AAL2 Channel Identifier */
typedef NPF_uint32_t NPF_F_AAL2ChanId_t; /* AAL2 channel ID */

/* Virtual Channel Cross Connect Identifier */
typedef NPF_uint32_t NPF_F_VcXcId_t; /* ATM VC Cross Connect ID */

/* Virtual Path Cross Connect Identifier */
typedef NPF_uint32_t NPF_F_VpXcId_t; /* ATM VP Cross Connect ID */

/* AAL2 Channel Cross Connect Identifier */
typedef NPF_uint32_t NPF_F_AAL2ChnlXcId_t; /* AAL2 channel Xconnect ID */

/* Timer Configuration data type */
typedef struct {
 NPF_F_ATM_TimerUnit_t timeUnit; /* Unit in which timer specified */
 NPF_uint32_t timeValue; /* Timer value in units specified */
} NPF_F_ATM_Timers_t;

/**
 * Enumerations and types for ITU I.610 OAM attributes/operations
 **/
/* Connection Point ID */
typedef struct {
 NPF_uchar8_t cpId[16]; /* Connection point ID */
} NPF_F_ATM_OAM_CPID_t;

/*
* OAM CC Response Type
*/
typedef enum {
 NPF_F_ATM_OAM_CC_RSP_ACCEPT = 0, /* Accept requested procedure */
 NPF_F_ATM_OAM_CC_RSP_REJECT = 1, /* Reject requested procedure */
} NPF_F_ATM_OAM_CC_RspType_t;
/*
* OAM PM Response
*/
typedef enum {
 NPF_IF_ATM_OAM_PM_RSP_ACCEPT = 0, /* Accept requested procedure */
 NPF_IF_ATM_OAM_PM_RSP_REJECT = 1, /* Reject requested procedure */
} NPF_F_ATM_OAM_PM_RspType_t;
/*
* OAM Flow Level
*/
typedef enum{
 NPF_F_ATM_OAM_FLOW_LEVEL_F4 = 0, /* F4 level flow */
 NPF_F_ATM_OAM_FLOW_LEVEL_F5 = 1, /* F5 Level flow */
} NPF_F_ATM_OAM_FlowLevel_t;

 ATM Task Group 124

Network Processing Forum Software Working Group

/*
* OAM Flow Type
*/
typedef enum{
 NPF_F_SEGMENT = 0, /* Flow type SEGMENT */
 NPF_F_END_TO_END = 1, /* Flow type ETE */
} NPF_F_ATM_OAM_FlowType_t;
/*
* OAM Oper Type
*/
typedef enum{
 NPF_F_ACTIVATE = 0, /* Activate procedure */
 NPF_F_DEACTIVATE = 1, /* Deactive procedure */
 NPF_F_START = 2, /* Start procedure */
 NPF_F_STOP = 3, /* Stop Procedure */
} NPF_F_ATM_OAM_OperType_t;
/*
* OAM Fault Management (AIS/RDI/CC/LB)
* OAM Performance Management (FPM/BR)
* OAM Activation/Deactivation (FPM_BR/CC/FPM)
*/
typedef enum{
 NPF_F_AIS_CELL = 0, /* Alarm Indication Signal Cell */
 NPF_F_RDI_CELL = 1, /* Remote Defect Indicator Cell */
 NPF_F_CC_CELL = 2, /* Continuity Check Cell */
 NPF_F_LB_CELL = 3, /* Loopback Cell */
 NPF_F_FPM_CELL = 4, /* Forward Performance Monitoring Cell */
 NPF_F_BR_CELL = 5, /* Backward Reporting Cell */
 NPF_F_ACT_DEACT_FPM_BR = 6, /* Activate/Deactive FPM and associated BR */
 NPF_F_ACT_DEACT_CC = 7, /* Activate/Deactive Continuity check */
 NPF_F_ACT_DEACT_FPM = 8, /* Activate/Deactive FPM */
} NPF_F_ATM_OAM_CellType_t;
/*
* OAM PM Block Size
*/
typedef enum{
 NPF_F_SIZE_32768 = 0, /* Block size 32768 cells */
 NPF_F_SIZE_16384 = 1, /* Block size 16384 cells */
 NPF_F_SIZE_8192 = 2, /* Block size 8192 cells */
 NPF_F_SIZE_4096 = 3, /* Block size 4096 cells */
 NPF_F_SIZE_2048 = 4, /* Block size 2048 cells */
 NPF_F_SIZE_1024 = 5, /* Block size 1024 cells */
 NPF_F_SIZE_512 = 6, /* Block size 512 cells */
 NPF_F_SIZE_256 = 7, /* Block size 256 cells */
 NPF_F_SIZE_128 = 8 /* Block size 128 cells */
} NPF_F_ATM_OAM_BlkSize_t;

/* OAM PM Function Type */
/* The data type defines PM function types can be set */
typedef enum {
 NPF_F_PM_FUNC_TYPE_FPM_BR = 0,
 NPF_F_PM_FUNC_TYPE_FPM
} NPF_F_ATM_OAM_PM_FuncType_t;

/*
* OAM Direction
*/
typedef enum{
 NPF_F_FORWARD = 0, /* A-B direction */

 ATM Task Group 125

Network Processing Forum Software Working Group

 NPF_F_BACKWARD = 1, /* B-A direction */
 NPF_F_TWO_WAY = 2, /* Both A-B and B-A direction */
 NPF_F_NOT_APPLICABLE = 3 /*Direction not applicable to this function */
} NPF_F_ATM_OAM_Direction_t;
/*
* OAM Continuity Check Method
*/
typedef enum {
 /* Send CC when no user cells only if no user cells have been sent in
 * CC Duration on link for that flow */
 NPF_F_ATM_OAM_CC_SEND_CC_WHEN_NO_USER_CELLS = 0,

 /* Send CC cells periodically Irrespective of user cells flowing on *
 * link for that flow */
 NPF_F_ATM_OAM_CC_SEND_CC_ALWAYS = 1
} NPF_F_ATM_OAM_CC_Method_t;
/**
 * Enumerations and types for Backplane addressing and mapping *
 **/
/* Identifies a backplane interface to a FE */
typedef NPF_uint32_t NPF_F_ATM_BpIfID_t; /* Backplane Interface ID */

/* Identifies a backplane switch link */
typedef NPF_uint32_t NPF_F_ATM_BpLinkID_t; /* Backplane Link ID */

/* Backplane Switch Address */
/* Structure is used to pass the headers to be used to tunnel data *
 * received over AAL2 channels or VP/VC links to backplane */
typedef struct { /* Switch Address structure */
 NPF_F_ATM_BpLinkID_t bpLinkID; /* Backplane switch Link ID */
 NPF_F_ATM_Direction_t direction; /* Direction of data flow */
 NPF_F_ATM_BpIfID_t rxBpIfId; /* Receive Backplane I/F ID */
 NPF_uint32_t rxaddressLength; /* Length of the Switch Address */
 NPF_uint8_t *rxAddress; /* Array of octets containing */
 /* the Switch Address. */
 NPF_F_ATM_BpIfID_t txBpIfId; /* Transmit Backplane I/F ID */
 NPF_uint32_t txaddressLength; /* Length of the Switch Address */
 NPF_uint8_t *txAddress; /* Array of octets containing */
 /* the Switch Address. */
} NPF_F_SwitchAddress_t;

/**
 * Enumerations and types for ATM Quality of Service *
 * Policing and Queuing characteristics for VPs and VCs *
 **/
/*
* Service Category
* The service category of this virtual connection.
*/
typedef enum {
 NPF_F_ATM_OTHER_SRV_CAT = 0, /* Unspecified service cat */
 NPF_F_ATM_CBR = 1, /* Constant bit rate */
 NPF_F_ATM_rtVBR = 2, /* Variable bit rate - real time */
 NPF_F_ATM_nrtVBR = 3, /* Variable bit rate - non real time*/
 NPF_F_ATM_ABR = 4, /* Available bit rate */
 NPF_F_ATM_UBR_WITHOUT_PCR = 5, /* Unspecified bit rate-no peak rate*/
 NPF_F_ATM_UBR_WITH_PCR = 6, /* Unspecified bit rate w/ peak rate*/
 NPF_F_ATM_UBR_WITH_MDCR = 7, /* Unspecified bit rate w/ minimum */
 /* Desired cell rate */

 ATM Task Group 126

Network Processing Forum Software Working Group

 NPF_F_ATM_UBR_WITH_MDCR_PCR = 8, /* Unspecified bit rate w/ minimum */
 /* Desired cell rate and peak rate */
 NPF_F_ATM_GFR = 9 /* Guaranteed frame rate */
} NPF_F_ATM_ServiceCategory_t;

typedef NPF_uint16_t NPF_F_ATM_DropPolicy_t;

#define NPF_F_ATM_CELL_CLP0_DROP 0x0001 /* Drop CLP=0 cells */
#define NPF_F_ATM_CELL_CLP0_CLP1_DROP 0x0002 /* Drop CLP=1 cells */
#define NPF_F_ATM_PACKET_EP_DROP 0x0004 /* Drop frames; *
 * Early pkt discard */
#define NPF_F_ATM_PACKET_PP_DROP 0x0008 /* Drop frames; *
 * Partial pkt discard */

/*
* ATM QOS profile,
* used in the ATM virtual link attribute structure
*/
typedef struct {
 NPF_F_ATM_ServiceCategory_t rxSrvCat; /* ATM Service Category */
 NPF_uint32_t pcr; /* Ingress Peak Cell Rate */
 NPF_uint32_t scr; /* Ingress Sustainable Cell Rate */
 NPF_uint32_t mbs; /* Ingress Maximum Burst Size */
 NPF_uint32_t mcr; /* Ingress Minimum Cell Rate */
 NPF_uint32_t maxFrmSize; /* Ingress Maximum Frame Size */
 NPF_uint32_t cdvt; /* Ingress Cell Delay Var. Tolerance */
 NPF_uint16_t ubrPrio; /* Ingress Priority for UBR with prio. */
 NPF_F_ATM_DropPolicy_t upcPolicy; /* Usage Parameter control policy */
 NPF_boolean_t tagging; /* Tag CLP=0 cells as per UPC */
} NPF_F_ATM_Policing_Char_t;

typedef struct {
 NPF_F_ATM_ServiceCategory_t srvCat; /* ATM Service Category */
 NPF_uint32_t pcr; /* Egress Peak Cell Rate */
 NPF_uint32_t scr; /* Egress Sustainable Cell Rate */
 NPF_uint32_t mbs; /* Egress Maximum Burst Size */
 NPF_uint32_t mcr; /* Egress Minimum Guaranteed Cell Rate */
 NPF_uint32_t maxFrmSize; /* Egress Maximum Frame Size */
 NPF_uint32_t cdvt; /* Egress Cell Delay Var. Tolerance */
 NPF_uint16_t ubrPrio; /* Egress Priority for UBR with prio. */
 NPF_uint32_t bfrThresh; /* Buffer congestion threshold for VC */
 NPF_uint32_t warnThresh; /* Overflow early warn threshold for VC */
 NPF_F_ATM_DropPolicy_t dropPolicy; /* Drop policy based on buffer use */
} NPF_F_ATM_Queuing_Char_t;
typedef struct {
 NPF_F_ATM_Policing_Char_t policeParams; /* Policing parameters */
 NPF_F_ATM_Queuing_Char_t queueParams; /* Shaping/queuing parameters */
} NPF_F_ATM_QoS_t;

/******************************/
/* ATM Adaptation Layer Types */
/******************************/
/**
 * Enumerations and types for ATM Adaptation layer type - 1 *
 **/
/* ATM Adaptation Layer Type 1 (AAL1) Profile */
/*

 ATM Task Group 127

Network Processing Forum Software Working Group

* AAL type 1 subtype used by the CBR service application (e.g. 64
* KBPS voice band signal transport, circuit transport)
*/
typedef enum {
 NPF_F_ATM_NULL = 0,
 NPF_F_ATM_VOICEBAND = 1,
 NPF_F_ATM_CIRCUIT_EMULATION_SYNCHRONOUS = 2,
 NPF_F_ATM_CIRCUIT_EMULATION_ASYNCHRONOUS =3,
 NPF_F_ATM_HIGH_QUALITY_AUDIO = 4,
 NPF_F_ATM_VIDEO = 5
} NPF_F_ATM_AAL1Subtype_t;

/*
* Rate of CBR service supported by the AAL
*/
typedef enum {
 NPF_F_ATM_64_KBPS = 0,
 NPF_F_ATM_1544_KBPS = 1,
 NPF_F_ATM_6312_KBPS = 2,
 NPF_F_ATM_32064_KBPS = 3,
 NPF_F_ATM_44736_KBPS = 4,
 NPF_F_ATM_97728_KBPS = 5,
 NPF_F_ATM_2048_KBPS = 6,
 NPF_F_ATM_8448_KBPS = 7,
 NPF_F_ATM_34368_KBPS = 8,
 NPF_F_ATM_139264_KBPS = 9,
 NPF_F_ATM_N64_KBPS = 10,
 NPF_F_ATM_N8_KBPS = 11
} NPF_F_ATM_CBR_t;

/* Clock recovery type :
* Synchronous,
* Asynchronous-SRTS(Synchronous Residual Time Stamp) or
* Asynchronous-Adaptive Clock Recovery.
*/
typedef enum {
 NPF_F_ATM_SYNCHRONOUS = 0, /* Synchronous clock recovery */
 NPF_F_ATM_ASYNCHRONOUS_SRTS = 1, /* Synchronous Residual Time Stamp*/
 NPF_F_ATM_SYNCHRONOUS_ADAPTIVE = 2 /* Adaptive clock recovery */
} NPF_F_ATM_AAL1ClkRecType_t;

/* FEC method:
* no FEC,
* FEC for Loss Sensitive Signal Transport or
* FEC for Delay Sensitive
*/
typedef enum {
 NPF_F_ATM_NO_FEC = 0,
 NPF_F_ATM_LOSS_SENSITIVE_SIGNAL_FEC = 1,
 NPF_F_ATM_DELAY_SENSITIVE_SIGNAL_FEC = 2
} NPF_F_ATM_AAL1FEC_t;

/* CAS Mode: Valid only for structured interfaces
* No CAS bits carried or
* Carry CAS Bits in E1 multiframe structure or
* Carry CAS bits in DS1 SF multiframe structure or
* Carry CAS bits in DS1 ESF multiframe structure
*/
typedef enum {

 ATM Task Group 128

Network Processing Forum Software Working Group

 NPF_F_ATM_BASIC_MODE = 0,
 NPF_F_ATM_CAS_MODE_E1 = 1,
 NPF_F_ATM_CAS_MODE_DS1SF = 2,
 NPF_F_ATM_CAS_MODE_DS1ESF = 3,
 NPF_F_ATM_CAS_MODE_J2 = 4
} NPF_F_ATM_AAL1CASMode_t;

/*
* AAL1 Profile
*/
typedef struct {
 NPF_F_ATM_AAL1Subtype_t subtype; /* AAL1 sub-type */
 NPF_F_ATM_CBR_t cbrRate; /* rate of CBR service */
 NPF_uint32_t rateMultiplier; /* Rate multiplier */
 NPF_F_ATM_AAL1ClkRecType_t clkRecoveryType;/* Clock Recovery Type */
 NPF_F_ATM_AAL1FEC_t fecType; /* Error Correction Method */
 NPF_F_ATM_AAL1CASMode_t casMode; /* CAS Transport mode */

 /* Structured data transfer configuration. When sdtSupport is set
 to TRUE, it indicates structured data transfer. fecType should
 NPF_F_ATM_NO_FEC to select SDT */
 NPF_boolean_t sdtSupport; /* Whether SDT configured */
 NPF_uint16_t sdtBlockSize; /* SDT Block Size */

 /* partFilledCells set to TRUE causes the cell to be partially filled *
 before transmission in order to avoid excessive latency */
 NPF_boolean_t partFilledCells; /*Enable partial cell method?*/

 /* Amount of user info in bytes that can be carried in partially filled*/
 /* cells. Valid only when partial filled cell method is selected */
 NPF_uint32_t partFilledCellsUserInfoSize;

 /* The maximum cell arrival jitter in 10 usec increments that the
 reassembly process will tolerate in the cell stream. Jitter beyond
 this value may lead to errors. */
 NPF_F_ATM_Timers_t cesCDVRxtolrnc;

 /* Define maximum size in 10 us increments for the reassembly buffer. */
 NPF_F_ATM_Timers_t maxReasmBufSize;

 /* Time in milliseconds for the cell loss integration period. If cells
 are lost for this period of time, the Interworking VCC Termination
 Point entity will generate a cell starvation alarm. */
 NPF_F_ATM_Timers_t cellLossIntegrPeriod;
} NPF_F_ATM_AAL1Profile_t;

/**
 * Enumerations and types for ATM Adaptation layer type - 2 *
 **/
/* ATM Adaptation Layer Type 2 (AAL2) Profile */
/* AAL2 SSCS service category */
typedef enum {

 ATM Task Group 129

Network Processing Forum Software Working Group

 NPF_F_ATM_AUDIO = 1, /* Audio SAP enabled */
 NPF_F_ATM_MULTIRATE = 2, /* Multirate SAP enabled */
 NPF_F_ATM_AUDIO_AND_MULTIRATE =3 /* Audio and Multirate SAP enabled */
} NPF_F_ATM_AAL2SscsServiceCategory_t;

/* PCM encoding */
typedef enum {
 NPF_F_ATM_ALAW = 1, /* Companding as per A-Law */
 NPF_F_ATM_ULAW = 2 /* Companding as per u-Law */
} NPF_F_ATM_AAL2SscsPcmEncoding_t;

typedef enum {
 NPF_F_ATM_ITUT = 1, /* Profile defined by ITU-T */
 NPF_F_ATM_OTHER = 2 /* Profile defined by other entities*/
} NPF_F_ATM_AAL2SscsProfileSource_t;

/*
 * The SSCS configued for this AAL2 connection.
 */
typedef enum {
 NPF_F_ATM_AAL2_SSCS_NONE = 0, /* No SSCS */
 NPF_F_ATM_AAL2_SSCS_SAR = 1, /* SSSAR SSCS (I.366.1) */
 NPF_F_ATM_AAL2_SSCS_TRUNK= 2 /* Trunking SSCS (I.366.2) */
} NPF_F_ATM_AAL2SscsType_t;

/*
 * Maximum possible AAL2- CPS SDU length for an AAL2 channel
 */
typedef enum {
 NPF_F_ATM_AAL2_CPS_SDU_LEN_45 = 0, /* Maximum SDU length is 45 */
 NPF_F_ATM_AAL2_CPS_SDU_LEN_64 = 1 /* Maximum SDU length is 64 */
} NPF_F_ATM_AAL2_CpsSduLen_t;

/*
 * AAL2 QoS Profile
 */
typedef struct {
 NPF_uint32_t maxPrio; /* Number of priority levels */
 NPF_uint32_t *weight; /* Array specifying Weight used to *
 * share path bandwidth among AAL2 *
 * groups on this AAL2 path */
 NPF_uint32_t *discThrsh;/* Threshold specified in number of *
 * packets pending in a priority queue *
 * waiting for transmit opportunity *
 * If queue length exceeds this figure *
 * then new packets are received on *
 * this queue are discarded */
} NPF_F_ATM_AAL2QosProfile_t;

/*
* AAL2 Trunking SSCS Profile
*/
typedef struct{
 /* Common SSCS Parameters(SSCS type = Trunking)as specified in I.366.2 */
 NPF_F_ATM_AAL2SscsServiceCategory_t srvCategory;/*Service category */
 NPF_boolean_t audioServiceTransport; /* Audio Transport enabled ?*/
 NPF_F_ATM_AAL2SscsProfileSource_t profileSource; /* profile source */
 NPF_uint32_t predefinedProfileIdentifier; /* predefined profile id */
 NPF_F_ATM_AAL2SscsPcmEncoding_t pcmEncoding; /* PCM encoding type */

 ATM Task Group 130

Network Processing Forum Software Working Group

 NPF_boolean_t faxDemodTransport; /* demod. fax data support ? */
 NPF_boolean_t casTransport; /* CAS support ? */
 NPF_boolean_t dtmfDigitPacketTransport; /* DTMF dialed digit support?*/
 NPF_boolean_t mfR1DigitPacketTransport; /* MF-R1 dial digit support ?*/
 NPF_boolean_t mfR2DigitPacketTransport; /* MF-R2 dial digit support ?*/
 NPF_boolean_t circuitModeDataTransport; /* Circuit mode data support?*/
 NPF_uint32_t circuitModeDataNumChannels; /* Multiplier N in N*64kbit/s
 circuit mode data? */
 NPF_boolean_t loopbackEnabled; /* I.366.2 loopback enabled */
} NPF_F_ATM_AAL2TrunkSscsProfile_t;

/*
* AAL2 CPS Profile
*/
typedef struct{

 /* This parameter indicates the maximum size CPS-SDU, in octets, that
 is transported on any AAL type 2 channel of an ATM connection. This
 parameter can take on the values "45" or "64" and is set by the
 signaling or management procedures.(See Max_CPS-SDU_Length;I.363.2) */
 NPF_F_ATM_AAL2_CpsSduLen_t cpsMaxSduLength;/*Maximum CPS-SDU size */

 /* If the singleCpsPacketPerCpsPduNoOverlap option is selected */
 /* then the TIMER CU is nor applicable and the AAL2 payload cannot be */
 /* greater than 44 bytes. */
 NPF_boolean_t singleCpsPerPduNoOverlap; /* CPS interleave control */

 /* The Combined use timer value configured for this connection. This is*
 * valid only when singleCpsPerPduNoOverlap is set as FALSE */
 NPF_F_ATM_Timers_t cpsTimer_CU; /* Combined Use Timer_CU */

} NPF_F_ATM_AAL2CpsProfile_t;

/*
* AAL2 Profile
*/
typedef struct{
 /* AAl2 QoS Profile */
 NPF_F_ATM_AAL2QosProfile_t aal2QosProfile;

 /* AAL2 CPS Profile */
 NPF_F_ATM_AAL2CpsProfile_t aal2CpsProfile;

 /* AAL2 service specific convergence sub layer configured for this VC */
 NPF_F_ATM_AAL2SscsType_t sscsType;

 /* I.366.2 Trunking SSCS Profile; Used if SSCS Type is set to
 NPF_F_ATM_AAL2_SSCS_TRUNK */
 NPF_F_ATM_AAL2TrunkSscsProfile_t aal2TrkSscsProf;
} NPF_F_ATM_AAL2Profile_t;

/**
 * Enumerations and types for ATM Adaptation layer type - 5 *
 **/
/*
* This attribute indicates whether the AAL for the supporting VCC
* operating in message mode or streaming mode, assured or non assured
*/

 ATM Task Group 131

Network Processing Forum Software Working Group

typedef enum {
 NPF_F_ATM_MESSAGE = 0,
 NPF_F_ATM_STREAMING = 1,
} NPF_F_ATM_AAL5_Mode_t;

/*
* SSCS type
*/
typedef enum{
 NPF_F_ATM_NULL_SSCS = 0,/* NULL SSCS */
 NPF_F_ATM_DATA_ASSURED = 1,/* Data SSCS on SSCOP(non assured) */
 NPF_F_ATM_DATA_NON_ASSURED = 2,/* Data SSCS on SSCOP(assured) */
 NPF_F_ATM_FRAME_RELAY = 3,/* Frame relay SSCS */
} NPF_F_ATM_AAL5_SscsType_t;

/*
* AAL5 Profile
*/
typedef struct{
 NPF_uint32_t maxCpcsSduSizeForward; /* Max o/g CPCS_SDU sz */
 NPF_uint32_t maxCpcsSduSizeBackward;/* Max i/c CPCS_SDU sz */
 NPF_F_ATM_AAL5_Mode_t aalMode; /* AAL Mode */
 NPF_F_ATM_AAL5_SscsType_t sscsType; /* SSCS Type */
 NPF_boolean_t deliverCorruptSdu; /*If delivery of corrupt
 * SDU is enabled */
 NPF_uint32_t maxCorruptSduDeliverLen; /* Maximum size of
 * delivered corrupt SDU */
 /* Timer configured to guard re-assembly process */
 NPF_F_ATM_Timers_t rasTimer; /* Reassembly Timer */

}NPF_F_ATM_AAL5Profile_t;

/**
 * Enumerations and types for ATM Adaptation layer profiles *
 **/
/*
 * ATM Vc AAL type code, used in the ATM Vc
 * attribute structure
 */
typedef enum {
 NPF_F_ATM_AAL0 = 0, /* RAW cell transfer. No AAL */
 NPF_F_ATM_AAL1 = 1, /* AAL 1 */
 NPF_F_ATM_AAL2 = 2, /* AAL 2 */
 NPF_F_ATM_AAL5 = 3, /* AAL 5 */
 NPF_F_ATM_AAL_UNKNOWN= 4, /* AAL cannot be determined */
} NPF_F_ATM_AAL_t;
/*
* AAL Profile
*/
typedef union {
 NPF_F_ATM_AAL1Profile_t aal1Profile; /* ATM Adaptation Layer Type 1 */
 NPF_F_ATM_AAL2Profile_t aal2Profile; /* ATM Adaptation Layer Type 2 */
 NPF_F_ATM_AAL5Profile_t aal5Profile; /* ATM Adaptation Layer Type 5 */
} NPF_F_ATM_AAL_Profile_t;

/**
 * Enumerations and types for cross connection of VC links, VP *
 * links and AAL2 channels to external links or backplane links *
 **/

 ATM Task Group 132

Network Processing Forum Software Working Group

/* Cross Connection Type */
typedef enum {
 NPF_F_ATM_EXT_TO_EXT = 0, /* Connect to an external VP/VC *
 * link or AAL2 channel */
 NPF_F_ATM_EXT_TO_BACK = 1, /* Connect to a backplane switch link */
 NPF_F_ATM_BACK_TO_INT = 2, /* Connect to an internal VP/VC *
 * link or AAL2 channel */
 NPF_F_ATM_EXT_TO_INT = 3 /* Connect to a external VP/VC link *
 * or AAL2 channel or a *
 * corresponding internal VP/VC link *
 * or AAL2 channel */
} NPF_F_ATM_XcType_t;

/*
* ATM VC Link Cross connect Information
 */
typedef struct {
 NPF_F_VcXcId_t vcXcId; /* ID of this cross connection */
 NPF_F_ATM_XcType_t xcType; /* Type of cross connection */
 union {
 NPF_F_ATM_VirtLinkID_t mapVcLink; /* Mapped to a VC Link */
 NPF_F_SwitchAddress_t mapSwLink; /* Mapped to backplane */
 }u;
} NPF_F_ATM_ConfigMgr_VcLinkXcInfo_t;

/*
* ATM VC link cross connect
*/
typedef struct {
 NPF_F_ATM_VirtLinkID_t link_A; /* VC Link 'A' */
 NPF_uint32_t numLink_B; /* Number of 'B' links *
 * connected to link 'A' */
 NPF_F_ATM_ConfigMgr_VcLinkXcInfo_t *link_B; /* Mapped link 'B' */
} NPF_F_ATM_ConfigMgr_VcLinkXc_t;

/*
 * ATM VP Link Cross connect Information
 */
typedef struct {
 NPF_F_VcXcId_t vpXcId; /* ID of this cross connection */
 NPF_F_ATM_XcType_t xcType; /* Type of cross connection */
 union {
 NPF_F_ATM_VirtLinkID_t mapVpLink; /* Mapped to a VP Link */
 NPF_F_SwitchAddress_t mapSwLink; /* Mapped to backplane */
 }u;
} NPF_F_ATM_ConfigMgr_VpLinkXcInfo_t;

/*
* ATM VC link cross connect - Connect link 'A' to link 'B'
*/
typedef struct {
 NPF_F_ATM_VirtLinkID_t link_A; /* VP Link 'A' */
 NPF_uint32_t numLink_B; /* Number of 'B' links *
 * connected to link 'A' */
 NPF_F_ATM_ConfigMgr_VpLinkXcInfo_t *link_B;/* Array of Mapped link 'B' */
} NPF_F_ATM_ConfigMgr_VpLinkXc_t;

/*
 * ATM AAL2 channel Link Cross connect Information

 ATM Task Group 133

Network Processing Forum Software Working Group

 */
typedef struct {
 NPF_F_AAL2ChnlXcId_t aal2ChnlXcId; /* ID of AAL2 chnl. Cross cnct */
 NPF_F_ATM_XcType_t xcType; /* Type of cross connection */
 union {
 NPF_F_AAL2ChanId_t mapAal2ChanId; /* Mapped AAL2 channel ID */
 NPF_F_SwitchAddress_t mapSwLink; /* Mapped to backplane */
 }u;
} NPF_F_ATM_AAL2_ChnlXcInfo_t;

/*
* ATM AAL2 channel cross connect - Connect channel 'A' to channel 'B'
*/
typedef struct {
 /* AAL2 channel 'A' to connect to second AAL2 channel or backplane */
 NPF_F_AAL2ChanId_t aal2ChanId_A;

 /* Number of 'B' links connected to channel 'A' */
 NPF_uint32_t numLink_B;

 /* Mapped link 'B' - Backplane link or another AAL2 channel on same FE */
 NPF_F_ATM_AAL2_ChnlXcInfo_t *link_B;
} NPF_F_ATM_ConfigMgr_AAL2_ChnlXc_t;

/**
 * Enumerations and types to define attributes of VC and VP links
 **/
/*
* ATM VC attributes
*/
typedef struct {
 /* The ATM virtual link identifier that is used to uniquely identify *
 * a virtual channel link. The FAPI client can assign any value to the *
 * ATM virtual link identifier and the value is completely opaque to *
 * the implementation. */
 NPF_F_ATM_VirtLinkID_t vcLinkId; /* Unique ID of this VC link */

 /* The below field is used to specify the VPI and VCI of this VC */
 NPF_F_ATM_VcAddr_t vc; /* VPI/VCI of virtual channel */

 /* The scope of VC i.e. whether it is an external VC or an internal VC *
 * Internal VCs are used to carry data within the system and have no *
 * external network terminations. */

 NPF_F_ATM_VirtLinkScope_t vcScope; /* External or internal VC */

 /* This field defines the ATM interface identifier that is used *
 * to uniquely identify an ATM interface in the system. The FAPI *
 * client SHOULD assign the interface index defined by the *
 * Interface Management APIs to this field. */
 NPF_F_ATM_IfID_t ifId; /* ATM Interface ID
*/

 /* The ATM adaptation layers to support multiple protocols to fit *
 * the needs of different service users enhance the services provided *
 * by the ATM layer. This data type is used to identify the various *
 * adaptation layers used in ATM networks. The value *
 NPF_F_ATM_AAL_UNKNOWN indicates that the AAL cannot be determined *
 * on this connection. */

 ATM Task Group 134

Network Processing Forum Software Working Group

 NPF_F_ATM_AAL_t aalType; /* AAL type */

 /* AAL specific configurations. The members of below union selected *
 * based on the configured aalType. */
 NPF_F_ATM_AAL_Profile_t aalProfile; /* AAL Profile */

 /* The below field is used to specify the direction of data flow on *
 * the configured VC link with respect to FE being configured */
 NPF_F_ATM_Direction_t direction; /* receive/transmit/duplex */

 /* NPF_F_ATM_QoS_t structure is used to configure the traffic *
 * management parameters for this virtual channel. If the direction of *
 * of the VC is configured as received then only policing parameters *
 * are valid for the VC. If the direction is configured as transmit *
 * the queuing parameters are valid. When the direction is configured *
 * as duplex, both policing and queuing params need to be configured */
 NPF_F_ATM_QoS_t qos; /* QoS profile */

 /* The below field provides the administratively configured status of *
 * the VC. The actual status i.e operational status assumed by the *
 * link may be different based on the actual physical status. The *
 * actual operational status queried may be using function provided *
 * to query the operational status */
 NPF_ObjStatus_t admStatus; /* Status of VC - UP/DOWN/TESTING */

 /* The below field provides the status of statistics collections on the*
 * NPF_TRUE, statistics collection is enabled on this *
 * VC. The statistics collection may also be enabled or disabled at a *
 * future point in time by issueing the statistics enable or disable *
 * function call. The current statistics collection state may be *
 * queried using the function provided to query the VC information */
 NPF_boolean_t statsEnabled; /* Statistic collecting state*/

 /* The below field is used to cross connect the VC link to another *
 * VC link on the same FE or to a backplane switch link. When the *
 * numLink_B field is set 0, it indicates there is no cross connection *
 * established for this link. For a unicast mapping, the VC link being *
 * provisioned may be connected to another VC link or backplane link *
 * and the numLink_B is set to 1. For multicast mapping, the numLink_B *
 * is set to the number of cross connections to be made. */
 NPF_uint32_t numLink_B; /* Number of links connected to the link *
 being provisioned */
 NPF_F_ATM_ConfigMgr_VcLinkXcInfo_t *link_B; /* Mapped link 'B' */
} NPF_F_ATM_ConfigMgr_Vc_t;
/*
* OAM Configuration and Status Information
*/
typedef struct {
 /* Continuity Check state and configurations */
 NPF_boolean_t ccActive; /* Whether CC procedure ON */
 /* Below two fields valid if ccActive set to TRUE */
 NPF_F_ATM_OAM_Direction_t ccDir; /* Away/towards/both */
 NPF_F_ATM_OAM_CC_Method_t ccMethod; /* Options to send CC Cell
 0-Send when no user cell
 1-Send periodically */

 /* Performance Monitoring state and configurations */
 NPF_boolean_t pmActive; /* Whether PM procedure ON */
 /* Below four fields valid if pmActive set to TRUE */

 ATM Task Group 135

Network Processing Forum Software Working Group

 NPF_F_ATM_OAM_PM_FuncType_t pmFuncType; /* FPM-BR/FPM */
 NPF_F_ATM_OAM_Direction_t pmDir; /* Direction of operation */
 NPF_F_ATM_OAM_BlkSize_t pmFwdSize; /* A-B block size */
 NPF_F_ATM_OAM_BlkSize_t pmBwdSize; /* B-A block size */

 /* Alarms states */
 NPF_boolean_t inAISState; /* Whether in AIS state */
 NPF_boolean_t inRDIState; /* Whether in RDI state */

 /* Loopback procedure configuration */
 NPF_boolean_t llidOption;/*Is LLID option enabled ?*/

 /* Non intrusive monitoring of OAM flows. When number of monitored *
 * cell types indicated using numMonCellTypes is set to non zero, *
 * the list of cell types monitored is provided by *cellType array */
 NPF_uint32_t numMonCellTypes;
 NPF_F_ATM_OAM_CellType_t *monCellType; /* OAM cell types monitored */
} NPF_F_ATM_ConfigMgr_OamInfo_t;
/*
* ATM VC query response
*/
typedef struct {
 NPF_F_ATM_ConfigMgr_Vc_t vcConfig; /* VC configuration info. */

 /* vcBound indicates if the VC is bound to a child interface. If set *
 * to TRUE, the interface handle of the child interface is returned *
 * in the ifChildHandle field */
 NPF_boolean_t vcBound; /* Whether bound to child I/F */
 NPF_IfHandle_t ifChildHandle; /* Bound interface */

 NPF_ObjStatus_t operStatus;/* Operational status of VC */

 /* OAM configuration and status information. Depending on the conn. *
 * point type either eteFlowInfo, segFlowInfo or both may be valid */
 NPF_F_ATM_OAM_CP_Type_t connPtType; /* Connection Pt. type */
 NPF_F_ATM_ConfigMgr_OamInfo_t eteFlowInfo; /* E-T-E Flow Information */
 NPF_F_ATM_ConfigMgr_OamInfo_t segFlowInfo; /* SEG Flow Information */
} NPF_F_ATM_ConfigMgr_VcInfo_t;
/*
* ATM VP link attributes
*/
typedef struct {
 /* The ATM virtual link identifier that is used to uniquely identify *
 * a virtual path link. The FAPI client can assign any value to the *
 * ATM virtual link identifier and the value is completely opaque to *
 * the implementation. */
 NPF_F_ATM_VirtLinkID_t vpLinkId; /* ID assigned to this VP link */

 /* The VPI of the VP link being configured */
 NPF_F_ATM_VPI_t vpi; /* VPI of virtual connection */

 /* The scope of VP i.e. whether it is an external VP or an internal VP *
 * Internal VPs are used to carry data within the system and have no *
 * external network terminations. */

 NPF_F_ATM_VirtLinkScope_t vpScope; /* External or internal VP */

 /* This section defines the ATM interface identifier that is used *
 * to uniquely identify an ATM interface in the system. The FAPI *

 ATM Task Group 136

Network Processing Forum Software Working Group

 * client SHOULD assign the interface index defined by the *
 * Interface Management APIs to this field. */
 NPF_F_ATM_IfID_t ifId; /* ATM Interface ID */

 /* The below field is used to specify the direction of data flow on *
 * the configured VP link with respect to FE being configured */
 NPF_F_ATM_Direction_t direction; /* receive/transmit/duplex */

 /* This field specifies if the specified VP is terminated in this FE. *
 * If the VP is terminated then the ATM header is analysed further to *
 * identify the VC link using the VCI in the ATM header */
 NPF_boolean_t terminated; /* Switched/Terminated VP */

 /* NPF_F_ATM_QoS_t structure is used to configure the traffic *
 * management parameters for this virtual path . */
 NPF_F_ATM_QoS_t qos; /* QoS profile */

 /* The below field provides the administratively configured status of *
 * the VP. The actual status assumed by the link may be different based*
 * on the actual physical status. The operation status may be queried*
 * using the function provided to query the operational status */
 NPF_ObjStatus_t admStatus; /* Status of VP - UP/DOWN/TESTING */

 /* The below field provides the status of statistics collections on the*
 NPF_TRUE, statistics collection is enabled on this *
 * VP. The statistics collection may also be enabled or disabled at a *
 * future point in time by issueing the statistics enable/disable *
 * function call. The current statistics collection state may be *
 * queried using the function provided to query the VP information */
 NPF_boolean_t statsEnabled; /* Statistic collecting state*/

 /* The below field is used to cross connect the VP link to another *
 * VP link on the same FE or to a backplane switch link. When the *
 * numLink_B field is set 0, it indicates there is no cross connection *
 * established for this link. For a unicast mapping, the VP link being *
 * provisioned may be connected to another VP link or backplane link *
 * and the numLink_B is set to 1. For multicast mapping, the numLink_B *
 * is set to the number of cross connections to be made. */
 NPF_uint32_t numLink_B; /* Number of links connected to the link *
 being provisioned */
 NPF_F_ATM_ConfigMgr_VpLinkXcInfo_t *link_B; /* Mapped link 'B' */
} NPF_F_ATM_ConfigMgr_Vp_t;
/*
* ATM VP query response
*/
typedef struct {
 NPF_F_ATM_ConfigMgr_Vp_t vpConfig; /* VP configuration info. */
 NPF_ObjStatus_t operStatus; /* Operational status of VP */

 /* OAM configuration and status information. Depending on the conn. *
 * point type either eteFlowInfo, segFlowInfo or both may be valid */
 NPF_F_ATM_OAM_CP_Type_t connPtType; /* Connection Pt. type */
 NPF_F_ATM_ConfigMgr_OamInfo_t eteFlowInfo; /* E-T-E Flow Information */
 NPF_F_ATM_ConfigMgr_OamInfo_t segFlowInfo; /* SEG Flow Information */
} NPF_F_ATM_ConfigMgr_VpInfo_t;

/**
 * Enumerations and types for ATM virtual link statistics
 **/

 ATM Task Group 137

Network Processing Forum Software Working Group

/*
 * ATM Traffic Management Statistics
 */
typedef struct {
 /* Count of received cells tagged/discarded due to policing actions */
 NPF_uint64_t cellsTaggedRx; /* Receive Cells changed CLP0 to CLP1 */
 NPF_uint64_t cellsClp01DiscRx; /* Receive Cells discarded (CLP0+1) */
 NPF_uint64_t cellsClp0DiscRx; /* Receive Cells discarded (CLP0) */

 /* Count of cells tagged/discarded due to congestion in o/g queue */
 NPF_uint64_t cellsTaggedTx; /* Transmit Cells changed CLP0 to CLP1*/
 NPF_uint64_t cellsClp01DiscTx; /* Transmit Cells discarded (CLP0+1) */
 NPF_uint64_t cellsClp0DiscTx; /* Transmit Cells discarded (CLP0) */

 /* Queuing statistics in the transmit direction */
 NPF_uint32_t curQueueLenTx; /* Transmit connection queue lengths */
 NPF_uint32_t maxQueueLenTx; /* Maximum queue length seen so far */
} NPF_F_ATM_TMStats_t;

/*
 * ATM Level Statistics
 */
typedef struct {
 /* Count of total number of cells received on this connection */
 NPF_uint64_t cellsClp01Rx; /* Receive Total Cells (CLP0 + CLP1) */
 NPF_uint64_t cellsClp0Rx; /* Receive High Priority Cells (CLP0) */

 /* Count of received cells dropped due to resource unavailability *
 * like buffers to hold/reassemble the cells etc. */
 NPF_uint32_t cellsDiscResErrRx;

 /* Count of total number of cells transmitted on this connection */
 NPF_uint64_t cellsClp01Tx; /* Transmit Total Cells (CLP0 + CLP1) */
 NPF_uint64_t cellsClp0Tx; /* Transmit High Priority Cells (CLP0)*/

 /* Statistics counters for policing and queuing (TM) functions */
 NPF_F_ATM_TMStats_t atmTrafficManagementStats;
} NPF_F_ATM_Stats_t;

/* ATM Adaptation Layer type 1 statistics */

typedef struct {
 /* Number of AAL1 header errors detected, including those corrected.
 Header errors include correctable and uncorrectable CRC plus bad
 parity. */
 NPF_uint32_t errSnp; /* No. of AAL1 cells with SNP errors */

 /* Sequence Count total violations: i.e., the count of incoming AAL Type1
 SAR-PDUs where the sequence count in the PDU header causes a
 transition from the SYNC state to the OUT OF SEQUENCE state as defined
 by ITU-T Recommendation I.363.1. (optional)
 - lost cell: i.e., the number of lost cells, as detected by the
 AAL1 sequence number processing, for example. This count records
 the number of cells detected as lost in the network prior to the
 destination interworking function AAL1 layer processing. (optional)
 - misinserted cells: i.e., the number of sequence violation events
 which the AAL CS interprets as misinserted of cells as defined by
 ITU-T Recommendation I.363.1. (optional)*/

 ATM Task Group 138

Network Processing Forum Software Working Group

 NPF_uint32_t errSeqNoRx; /* No. of AAL1 cells with SN errors */

 /* Number of times the reassembly buffer overflows. If the interworking
 function is implemented with multiple buffers, such as a cell level
 buffer and a bit level buffer, then either buffer overflow will cause
 this count to be incremented). */
 NPF_uint32_t errBfrOverflowRx; /* No. of times buffer overflow at CS*/

 /* Number of times the reassembly buffer underflows. In the case of a
 continuous underflow caused by a loss of ATM cell flow, a single
 buffer underflow should be counted. If the interworking function is
 implemented with multiple buffers, such as a cell level buffer and a
 bit level buffer, then either buffer underflow will cause this count
 to be incremented. */
 NPF_uint32_t errBfrUndrflowRx; /* No. of times buffer undrflow at CS*/

 /* Number of events in which the AAL1 reassembler found that a structured
 data pointer is not where it is expected, and the pointer must be re
 acquired. This count is only meaningful for structured data transfer
 modes as unstructured modes do not use pointers. (mandatory for
 structured data transfer) */
 NPF_uint32_t errSdtPtrReframesRx;

 /* Number of times the AAL reassembler detects a parity check failure at
 the point where a structured data pointer is expected. This count is
 only meaningful for structured data transfer modes as unstructured
 modes do not use pointers.)*/
 NPF_uint32_t errSdtPtrParityRx;
} NPF_F_ATM_AAL1Stats_t;

/* ATM Adaptation Layer type 2 statistics */
/* CPS Packet and Byte counters */
typedef struct {
 NPF_uint64_t cpsPktRx; /* No. of AAL2 CPS packets received */
 NPF_uint64_t cpsBytesRx; /* No. CPS packet bytes received */

 NPF_uint64_t cpsPktTx; /* No. of AAL2 CPS packets transmitted*/
 NPF_uint64_t cpsBytesTx; /* No. CPS packet bytes transmitted */

 /* The below counters specify the number CPS packets discarded in *
 * the transmit direction due to various errors and the *
 * corresponding byte counts for the discarded packets */
 NPF_uint32_t cpsPktDisc; /* No. of AAL2 CPS packets discarded */
 NPF_uint32_t cpsBytesDisc; /* No. CPS packet bytes discarded */

} NPF_F_ATM_AAL2CpsPktByteCtrs_t ;

/* statistics counters accumulated by the CPS sub-layer */
typedef struct {
 /* errno = 0; I.363.2 */
 /* The parity of the STF indicates transmission errors */
 NPF_uint32_t errCpsParityRx; /* CPS PDU with parity error */

 /* errno = 1; I.363.2 */
 /* The sequence number of the STF is wrong */
 NPF_uint32_t errCpsSeqNoRx; /* CPS PDU with sequence no. error */

 /* errno = 2; I.363.2 */
 /* The number of octets expected for a CPS-Packet overlapping into

 ATM Task Group 139

Network Processing Forum Software Working Group

 this CPS-PDU does not match the information contained in the STF */
 NPF_uint32_t errCpsOsfUnex; /* CPS PDU with unexpected offset */

 /* errno = 3; I.363.2 */
 /* The OSF of the STF contains a value 48 or greater */
 NPF_uint32_t errCpsOffsetRx; /* CPS PDU with offset field error */

 /* errno = 4; I.363.2 */
 /* The Header Error Control (HEC) Code of a CPS-Packet header
 indicates transmission errors in the CPS-Packet header */
 NPF_uint32_t errCpsHecRx; /* CPS packets with CRC error */

 /* errno = 5; I.363.2 */
 /* The length of the received CPS-Packet Payload (CPS-SDU) exceeds
 the maximum length indicated in "Max_SDU_Deliver_Length". */
 NPF_uint32_t errCpsLenRx;

 /* errno = 6; I.363.2 */
 /* Number of times reassembly cancelled due to errno = 0, 1 or 2 */
 NPF_uint32_t numReasmCancel;

 /* errno = 7; I.363.2 */
 /* The Header Error Control (HEC) Code of a CPS-Packet header that
 * was overlapping a CPS-PDU boundary indicates transmission errors in
 * the CPS-Packet header; if the value of the OSF is less than 47,
 * processing starts at the octet pointed to by the OSF. */
 NPF_uint32_t numPhBfrResetErrHec;

 /* errno = 8; I.363.2 */
 /* The UUI field in the received CPS-Packet header contains a value
 ("28" or "29") that is reserved for future standardization. */
 NPF_uint32_t errBadUUIRx; /* Reserved UUI; unexpected UUI Rx */

 /* errno = 9; I.363.2 */
 /* The CID value in the received CPS-Packet header is not associated
 with a SAP. */
 NPF_uint32_t errBadCIDRx; /* Reserved CID;Unknown CID value Rx */

 /* The packet and byte counters for the number of CPS packets received*
 * and transmitted are maintained per priority level and are returned *
 * as an array. The number of elements in the array is equal to number*
 * of priority levels configured in the QoS profile for the AAL2 path */
 NPF_F_ATM_AAL2CpsPktByteCtrs_t *cpsPktByteCtrArr;
} NPF_F_ATM_AAL2CpsStats_t;

/* statistics counters accumulated by the SAR SSCS sub-layer */
typedef struct {
 /* errno = 10; I.366.1 */
 /* The maximum permissible size for a reassembled SSSAR-SDU
 ("Max_SDU_Length") has been exceeded. */
 NPF_uint32_t errSscsOversizedSssarSduRx; /* Oversized SSSAR SDU */

 /* errno = 11; I.366.1 */
 /* The reassembly timer RAS_Timer has expired. */
 NPF_uint32_t errSscsSssarRasTimerExpiryRx; /* Reassembly timeout */

 /* errno = 20; I.366.1 */
 /* An SSTED-PDU of length 8 or less has been received. */
 NPF_uint32_t errSscsUndersizedSstedPduRx; /* PDU<8 bytes received*/

 ATM Task Group 140

Network Processing Forum Software Working Group

 /* errno = 21; I.366.1 */
 /* The value of the Length field in the SSTED-PDU does not match the
 length of the received SSTED-PDU. */
 NPF_uint32_t errSscsSstedPduLengthMismatchRx; /* Length mismatch */

 /* errno = 22; I.366.1 */
 /* The value of the CRC field is not equal to the CRC calculated over
 the received information. */
 NPF_uint32_t errSscsSstedCrcMismatchRx; /* SSTED CRC mismatch */

} NPF_F_ATM_AAL2SarSscsStats_t;

/* statistics counters accumulated for AAL2 paths.*/
typedef struct {
 /* CPS sub layer statistics */
 NPF_F_ATM_AAL2CpsStats_t cpsStats;

 /* SAR SSCS sub layer statistics. Accumulated if the SAR SSCS is
 * associated with the AAL2 channels */
 NPF_F_ATM_AAL2SarSscsStats_t sarSscsStats;
} NPF_F_ATM_AAL2Stats_t;

/* ATM Adaptation Layer type 5 statistics */
typedef struct {
 NPF_uint64_t framesRx; /* Receive AAL5 Frames */
 NPF_uint32_t errBadCrcRx; /* Receive AAL5 Frames with CRC error */
 NPF_uint32_t errBadLenRx; /* Receive AAL5 frames with length err */
 NPF_uint64_t bytesRx; /* Receive Bytes */

 NPF_uint64_t framesTx; /* Transmit AAL5 Frames */
 NPF_uint64_t bytesTx; /* Transmit Bytes */
} NPF_F_ATM_AAL5Stats_t;

/*
* ATM Per-Vp Statistics, returned in asynchronous response
*/
typedef struct {
 NPF_F_ATM_Stats_t atmStats; /* ATM Level statistics */
} NPF_F_ATM_ConfigMgr_VpStats_t;

/*
* ATM Per-Vc Statistics, returned in asynchronous
*/
typedef struct {
 NPF_F_ATM_Stats_t atmStats; /* ATM Level statistics */
 NPF_F_ATM_AAL_t aal; /* AAL type */
 union {
 NPF_F_ATM_AAL1Stats_t aal1_stats; /* AAL1 Statistics */
 NPF_F_ATM_AAL2Stats_t aal2_stats; /* AAL2 Statistics */
 NPF_F_ATM_AAL5Stats_t aal5_stats; /* AAL5 Statistics */
 }u;
} NPF_F_ATM_ConfigMgr_VcStats_t;

/**
 * Enumerations and types for ATM AAL2 channel attributes
 **/
/*
 * AAL2 channel CPS configuration

 ATM Task Group 141

Network Processing Forum Software Working Group

 */
typedef struct {
 NPF_F_AAL2ChanId_t aal2ChanId; /* ID assigned to this AAL2 chnl. */
 NPF_F_ATM_VirtLinkID_t aal2path; /* ID of VC constituting AAL2 path */
 NPF_uint8_t aal2Cid; /* The CID for this channel */

 NPF_uint32_t chnlPrio; /* Priority of this AAL2 channel */
 /* must be < maxPrio configured on *
 * the corresponding AAL2 path */

 /* This parameter indicates the maximum size CPS-SDU, in octets, that is
 transported on a particular AAL type 2 channel. It also indicates the
 maximum size CPS-SDU that may be delivered to the corresponding CPS
 user. This parameter can take on the values "45" or "64" and is set
 by signaling or management procedures. The following inequality must
 be maintained - maxSduDeliverLen <=cpsMaxSduLen */
 NPF_F_ATM_AAL2_CpsSduLen_t maxSduDeliverLength;
} NPF_F_ATM_AAL2_Chnl_CpsCfg_t;

/*
 * AAL2 channel SAR SSCS configuration - filled when SSCS configured for the
 * the AAL2 path is SAR SSCS
 */
typedef struct {
 /* Common SSCS Parameters (SSCS type = SAR)as specified in I.366.1 */
 /* Selection of the transmission error detection mechanisms (SSTED) */
 NPF_boolean_t sstedStatus; /* SSTED selected? */

 /* Selection of the assured data transfer mechanism (SSADT) */
 /* When ssadtStatus is set to TRUE, the sstedStatus MUST be set to TRUE*/
 NPF_boolean_t ssadtStatus; /* SSADT selected? */

 /* Maximum SSSAR SDU length in bytes */
 /* This parameter indicates the maximum size SSSAR-SDU, in octets, that
 * is allowed to be reassembled. Valid values are between 1 and 65568 */
 NPF_uint32_t maxSssarSduLength; /* Max SSSAR-SDU size? */

 /* Maximum size of segments used to create SSSAR PDU */
 /* This must bet set between 1 and maxSduDeliverLength specified in the*/
 /* CPS configuration portion of the AAL2 channel configuration struct */
 /* This parameter can assume a value between 1 to 45 or 1 to 64 based *
 * on the configuration of the maxSduDeliverLength field */
 NPF_uint8_t maxSssarSegLength;

 /* Timer configured to guard re-assembly process for SSSAR segments */
 NPF_F_ATM_Timers_t rasTimer; /* RAS Timer */

} NPF_F_ATM_AAL2_Chnl_SarSscsCfg_t;

/*
* AAL2 Channel Config Info.
*/
typedef struct {
 /* AAL2 channel CPS sub layer configuration parameters */
 NPF_F_ATM_AAL2_Chnl_CpsCfg_t cpsConfig;

 /* AAL2 channel SAR SSCS sub layer configuration parameters */
 NPF_F_ATM_AAL2_Chnl_SarSscsCfg_t sarSscsConfig;

 ATM Task Group 142

Network Processing Forum Software Working Group

 /* The below field provides the administratively configured status of *
 * the channel. The actual status assumed by the channel may be *
 * different based on the actual physical status. The operation *
 * status may be queried using the function provided to query *
 * the operational status. */
 NPF_ObjStatus_t admStatus; /*Status of channel-UP/DOWN/TESTING */

 /* The below field provides the status of statistics collections on the*
 NPF_TRUE, statistics collection is enabled. *
 * The statistics collection may also be enabled or disabled at a *
 * future point in time by issueing the statistics enable/disable *
 * function call. The current statistics collection state may be *
 * queried using the function provided to query the channel information*/
 NPF_boolean_t statsEnabled; /* Statistic collecting state*/

 /* The below field is used to cross connect AAL2 channel to another *
 * AAL2 channel on the same FE or to a backplane switch link. When *
 * the numLink_B field is set to 0, it indicates there is no cross *
 * connection established for this AAL2 channel. For a unicast mapping,*
 * the AAL2 channel being provisioned may be connected to another *
 * AAL2 channel or backplane link and the numLink_B is set to 1. *
 * For multicast mapping, the numLink_B is set to the number of *
 * cross connections to be made. */
 NPF_uint32_t numLink_B; /* Number of links connected to the AAL2 *
 Channel being provisioned */
 NPF_F_ATM_AAL2_ChnlXcInfo_t *link_B; /* Mapped link 'B' */

} NPF_F_ATM_ConfigMgr_AAL2_Channel_t;

/*
* AAL2 Channel query response
*/
typedef struct {
 /* AAL2 channel configuration information */
 NPF_F_ATM_ConfigMgr_AAL2_Channel_t chnlCfg;

 /* chnlBound indicates if the channel is bound to a child interface. *
 * If TRUE, the interface handle of the child interface is returned *
 * in the ifChildHandle field */
 NPF_boolean_t chnlBound; /* Whether bound to child I/F*/
 NPF_IfHandle_t ifChildHandle; /* Bound interface */

 NPF_ObjStatus_t operStatus; /* Operational status of chnl*
 * i.e UP/DOWN/TESTING */
} NPF_F_ATM_ConfigMgr_AAL2_ChannelInfo_t;

/**
 * Enumerations and types for ATM AAL2 channel Statistics
 **/
/* statistics counters accumulated by the CPS sub-layer. */
typedef struct {
 /* errno = 5; I.363.2 */
 /* The length of the received CPS-Packet Payload (CPS-SDU) exceeds
 the maximum length indicated in "Max_SDU_Deliver_Length". */
 NPF_uint32_t errCpsLenRx;

 /* errno = 6; I.363.2 */
 /* Number of times reassembly cancelled due to errno = 0, 1 or 2 */

 ATM Task Group 143

Network Processing Forum Software Working Group

 NPF_uint32_t numReasmCancel;

 /* errno = 7; I.363.2 */
 /* The Header Error Control (HEC) Code of a CPS-Packet header that
 * was overlapping a CPS-PDU boundary indicates transmission errors in
 * The CPS-Packet header; if the value of the OSF is less than 47,
 * Processing starts at the octet pointed to by the OSF. */
 NPF_uint32_t numPhBfrResetErrHec;

 /* errno = 8; I.363.2 */
 /* The UUI field in the received CPS-Packet header contains a value
 ("28" or "29") that is reserved for future standardization. */
 NPF_uint32_t errBadUUIRx; /* Reserved UUI; unexpected UUI Rx */

 NPF_uint64_t cpsPktRx; /* No. of AAL2 CPS packets received */
 NPF_uint64_t cpsBytesRx; /* No. CPS packet bytes received */
 NPF_uint64_t cpsPktTx; /* No. of AAL2 CPS packets transmitted*/
 NPF_uint64_t cpsBytesTx; /* No. CPS packet bytes transmitted */
} NPF_F_ATM_AAL2ChnlCpsStats_t;

/* statistics counters accumulated by the SAR SSCS sub-layer */
typedef struct {
 /* errno = 10; I.366.1 */
 /* The maximum permissible size for a reassembled SSSAR-SDU
 ("Max_SDU_Length") has been exceeded. */
 NPF_uint32_t errSscsOversizedSssarSduRx; /* Oversized SSSAR SDU */

 /* errno = 11; I.366.1 */
 /* The reassembly timer RAS_Timer has expired. */
 NPF_uint32_t errSscsSssarRasTimerExpiryRx; /* Reassembly timeout */

 /* errno = 20; I.366.1 */
 /* An SSTED-PDU of length 8 or less has been received. */
 NPF_uint32_t errSscsUndersizedSstedPduRx; /* PDU<8 bytes received*/

 /* errno = 21; I.366.1 */
 /* The value of the Length field in the SSTED-PDU does not match the
 length of the received SSTED-PDU. */
 NPF_uint32_t errSscsSstedPduLengthMismatchRx; /* Length mismatch */

 /* errno = 22; I.366.1 */
 /* The value of the CRC field is not equal to the CRC calculated over
 the received information. */
 NPF_uint32_t errSscsSstedCrcMismatchRx; /* SSTED CRC mismatch */
} NPF_F_ATM_AAL2ChnlSarSscsStats_t;

/* statistics counters for the AAl2 channels. */
typedef struct {
 /* CPS sub layer statistics */
 NPF_F_ATM_AAL2ChnlCpsStats_t cpsStats;

 /* SAR SSCS sub layer statistics. Accumulated if the SAR SSCS is
 * associated with the AAL2 channels */
 NPF_F_ATM_AAL2ChnlSarSscsStats_t sarSscsStats;
} NPF_F_ATM_ConfigMgr_AAL2ChannelStats_t;

/**
 * Enumerations and types for ATM Interface attributes and stats
 **/

 ATM Task Group 144

Network Processing Forum Software Working Group

/* ATM Interface Type */
typedef enum {
 NPF_F_ATM_IF_UNI = 0, /* UNI Interface */
 NPF_F_ATM_IF_NNI /* NNI Interface */
} NPF_F_ATM_IfType_t;
/* ATM Interface Characteristics */
typedef struct {
 NPF_F_ATM_IfID_t ifID; /* Interface handle */
 NPF_F_ATM_IfType_t ifType; /* Interface UNI/NNI */
 NPF_F_ATM_OAM_CPID_t cpId; /* Connect point ID */
} NPF_F_ATM_ConfigMgr_IfCfg_t;
/* ATM Interface Statistics */
typedef struct {
 NPF_uint64_t cellsClp01Rx; /* Receive Total Cells (CLP0 + CLP1) */
 NPF_uint64_t cellsClp0Rx; /* Receive High Priority Cells (CLP0)*/
 NPF_uint64_t cellsClp01Tx; /* Transmit Total Cells (CLP0 + CLP1)*/
 NPF_uint64_t cellsClp0Tx; /* Transmit High Priority Cells(CLP0)*/
 NPF_uint32_t unexCellsRx; /* Receive cells w/unexpected VPI/VCI*/
 NPF_uint32_t unexSecsRx; /* Rx Seconds of Unexpected VPI/VCI */
 NPF_F_ATM_VcAddr_t lastUnexATMHdr;/* ATM header of last unexpected cell*/
} NPF_F_ATM_ConfigMgr_IfStats_t;

/*
* OAM CP Configuration information
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_ATM_OAM_CP_Type_t cpType; /* Connection point type */
 NPF_boolean_t llidOption; /* Is LLID option enabled ? */
} NPF_F_ATM_ConfigMgr_OAM_CP_t;
/*
* OAM CC Activation/Deactivation
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_ATM_OAM_FlowType_t flowType; /* segment/end-to-end */
 NPF_F_ATM_OAM_OperType_t operType; /*Activate/Deactivate/Start/Stop*/
 NPF_F_ATM_OAM_Direction_t direction;/* Away/towards/both */
 NPF_F_ATM_OAM_CC_Method_t ccMethod; /* Options to send CC Cell
 0-Send when no user cell
 1-Send periodically */
} NPF_F_ATM_ConfigMgr_OAM_CC_t;

/*
* OAM CC Response
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_ATM_OAM_FlowType_t flowType;/* segment/end-to-end */
 NPF_F_ATM_OAM_CC_RspType_t ccRsp;
 NPF_F_ATM_OAM_CC_Method_t ccMethod; /* For CC source and ACCEPT
only.
 Option to send cc cell
 0 - to send when no user cell
 1 - to force send */
} NPF_F_ATM_ConfigMgr_OAM_CC_Rsp_t;
/*

 ATM Task Group 145

Network Processing Forum Software Working Group

* OAM PM Activation/Deactivation - FPM-BR/FPM
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link*/
 NPF_F_ATM_OAM_FlowType_t flowType; /* segment/end-to-end */
 NPF_F_ATM_OAM_PM_FuncType_t funcType; /* FPM-BR/FPM */
 NPF_F_ATM_OAM_Direction_t dir; /* Direction of operation */
 NPF_F_ATM_OAM_BlkSize_t fwdSize; /* A-B block size */
 NPF_F_ATM_OAM_BlkSize_t bwdSize; /* B-A block size */
 NPF_F_ATM_OAM_OperType_t operType; /* Act/Deactivate/Start/Stop */
} NPF_F_ATM_ConfigMgr_OAM_PM_t;

/* Performance monitoring statistics request data type */
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_ATM_OAM_FlowType_t flowType; /* segment/end-to-end */
 NPF_boolean_t zeroStats; /* clear stats if TRUE */
} NPF_F_ATM_ConfigMgr_OAM_PM_StatsReq_t;
/* Performance Monitoring Statistics Data Type */
/* Errored cell block statistics; Does not include counts for severely *
 * errored cell blocks which are provided as part of SECB stats */
typedef struct {
 /*Number of misinserted CLP0+1 cells in errored cell blocks */
 NPF_uint32_t numMisinsertedCLP01cells;
 /*Number of misinserted CLP0 cells in errored cell blocks */
 NPF_uint32_t numMisinsertedCLP0cells;
 /* Number of lost CLP0+1 users cells in errored cell blocks */
 NPF_uint32_t numLostCLP01cells;
 /* Number of lost CLP0 users cells in errored cell blocks */
 NPF_uint32_t numLostCLP0cells;
 /* Number of errored cell bits in errored cell blocks */
 NPF_uint32_t numErroredCLP01Bits;
 /* Number of cell blocks with CLP0+1 losses */
 NPF_uint32_t numBlocksClp01Loss;
 /* Number of cell blocks with CLP0 losses */
 NPF_uint32_t numBlocksClp0Loss;
 /* Number of cell blocks with CLP0+1 Misinsertions */
 NPF_uint32_t numBlocksClp01Misinsertion;
 /* Number of cell blocks with CLP0 Misinsertions */
 NPF_uint32_t numBlocksClp0Misinsertion;
 /* Number of cell blocks with errors i.e cell loss, misinsertion or *
 * bit errors */
 NPF_uint32_t totalErroredCellBlocks;
} NPF_F_ATM_OAM_ErrCB_Stats_t;
/* Severely errored cell block (SECB) statistics. Please see I.610 and I.356
 * For definition of severely errored cell blocks.
 * The counts here do not include the non severely errored cell blocks
 */
typedef struct {
 /*Number of misinserted CLP0+1 cells in severely errored cell blocks*/
 NPF_uint32_t numMisinsertedCLP01cells;
 /*Number of misinserted CLP0 cells in severely errored cell blocks */
 NPF_uint32_t numMisinsertedCLP0cells;
 /* Number of lost CLP0+1 users cells in severely errored cell blocks*/
 NPF_uint32_t numLostCLP01cells;
 /* Number of lost CLP0 users cells in severely errored cell blocks */
 NPF_uint32_t numLostCLP0cells;
 /* Number of errored cell bits in severely errored cell blocks */
 NPF_uint32_t numErroredCLP01Bits;

 ATM Task Group 146

Network Processing Forum Software Working Group

 /* Number of severely errored cell blocks with CLP0+1 losses */
 NPF_uint32_t numSECBClp01Loss;
 /* Number of severely errored cell blocks with CLP0 losses */
 NPF_uint32_t numSECBClp0Loss;
 /* Number of severely errored cell blocks with CLP0+1 Misinsertions */
 NPF_uint32_t numSECBClp01Misinsertion;
 /* Number of severely errored cell blocks with CLP0 Misinsertions */
 NPF_uint32_t numSECBClp0Misinsertion;
 /* Total Number of severely errored cell blocks with errors i.e *
 * cell loss, misinsetion or bit errors */
 NPF_uint32_t totalSECB;
} NPF_F_ATM_OAM_SevErrCB_Stats_t;

/* This structure contains the PM stats counters for one direction */
typedef struct {
 NPF_uint32_t averageBlockSize; /* Avg. block size */
 NPF_uint32_t minBlockSize; /* Min block size */
 NPF_uint32_t maxBlockSize; /* Max block size */

 /* Lost PM cells is the count of FPM cell lost in the B->A direction *
 * and the lost of BR cells in the A->B direction */
 NPF_uint32_t lostPMcells; /* PM cells lost */

 /* Errored cell block statistics */
 NPF_F_ATM_OAM_ErrCB_Stats_t erroredCBStats; /* Errored CB stats*/
 /* Severely errored cell block statistics */
 NPF_F_ATM_OAM_SevErrCB_Stats_t secbStats; /* SECB stats */
} NPF_F_ATM_OAM_PM_Stats_Info_t;

/* Performance monitoring statistics returned in response to FAPI client *
 * query. The counts are accumulated since the last time the counters *
 * were zeroed by the FAPI client. When performance monitoring is enabled*
 * the counters start from 0. */

typedef struct {
 /* Direction in which performance management procedure is activated *
 * is either Forward (A->B), Backward (B->A) or both A->B and B->A */
 NPF_F_ATM_OAM_Direction_t dir;

 /* Performance monitoring statistics for A->B direction. The counter*
 * in this structure are valid if PM is enabled in forward direction*
 * i.e. A->B direction or in both directions. These counters are *
 * updated on reception of a BR from the B connection point *
 * The direction field indicates direction in which PM is enabled */
 NPF_F_ATM_OAM_PM_Stats_Info_t oamPMStatsAtoB;

 /* Performance monitoring statistics for B->A direction. The counter*
 * in this structure are valid if PM is enabled in forward direction*
 * i.e. B->A direction or in both directions. These counters are *
 * updated on reception of a FPM from the B connection point *
 * The direction field indicates direction in which PM is enabled */
 NPF_F_ATM_OAM_PM_Stats_Info_t oamPMStatsBtoA;
} NPF_F_ATM_ConfigMgr_OAM_PM_Stats_t;
/*
* OAM Loopback
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_ATM_OAM_FlowType_t flowType; /* segment/end-to-end */

 ATM Task Group 147

Network Processing Forum Software Working Group

 NPF_F_ATM_OAM_CPID_t llId; /* Loopback location Id */
 NPF_boolean_t remCell; /* Remove returned cells ? */
 NPF_boolean_t includeSrcId; /* If source CP ID be included */
 /* in LB cell */
} NPF_F_ATM_ConfigMgr_OAM_LB_t;

/*
* Loopback Procedure Result
*/
typedef struct {
 NPF_uint8_t numLbResp; /* Number of Loopback responses */
 NPF_F_ATM_OAM_CPID_t *llId; /* Loopback Location Id */
} NPF_F_ATM_ConfigMgr_OAM_LB_Result_t;
/*
* OAM Non-Intrusive Monitoring
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_ATM_OAM_OperType_t operType; /* Start/Stop Monitoring */
 NPF_F_ATM_OAM_FlowType_t flowType; /* segment/end-to-end */
 NPF_F_ATM_OAM_CellType_t cellType; /* Type of OAM cell to monitor */
} NPF_F_ATM_ConfigMgr_OAM_Mon_t;
/*
* OAM Alarms - Declare and Release AIS alarms
*/
typedef struct {
 NPF_F_ATM_OAM_FlowType_t flowType; /* segment/end-to-end */
 NPF_uint8_t defectType; /* Defect type */
 NPF_uint8_t defectLocation[16]; /* Defect Location */
} NPF_F_ATM_OAM_Alarm_Info_t;

typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_ATM_OAM_Alarm_Info_t alarmInfo; /* Alarm information */
} NPF_F_ATM_ConfigMgr_OAM_Alarm_t;
/*
* OAM PM Response
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_ATM_OAM_FlowType_t flowType; /* segment/end-to-end */
 NPF_F_ATM_OAM_PM_RspType_t pmRsp; /* Accept/Reject response */
} NPF_F_ATM_ConfigMgr_OAM_PM_Rsp_t;
/*
* AIS Alarm event info.
*/
typedef struct {
 NPF_F_ATM_OAM_FlowType_t flowType; /* Segment/ETE */
 NPF_uint16_t defectType; /* Defect type */
 NPF_char8_t defectLocation[16]; /* Defect Location */
} NPF_F_ATM_OAM_AIS_Event_t;
/*
* RDI Alarm event info.
*/
typedef struct {
 NPF_F_ATM_OAM_FlowType_t flowType; /* Segment/ETE */
 NPF_uint16_t defectType; /* Defect type */
 NPF_char8_t defectLocation[16]; /* Defect Location */
} NPF_F_ATM_OAM_RDI_Event_t;

 ATM Task Group 148

Network Processing Forum Software Working Group

/*
* FPM Cell Info
*/
typedef struct {
 NPF_F_ATM_OAM_FlowType_t flowType; /* Segment/ETE */
 NPF_uchar8_t mscn; /* FPM MCSN */
 NPF_uint16_t totUsrCell01; /* Total User Cell(CLP-0+1) */
 NPF_uint16_t totUsrCell0; /* Total User Cell(CLP-0) */
 NPF_uint16_t blkErrDetCode; /* Block Error Detection Code*/
 NPF_uint32_t timeStamp; /* Time Stamp */
} NPF_F_ATM_OAM_FPM_Event_t;
/*
* BR Cell Info
*/
typedef struct {
 NPF_F_ATM_OAM_FlowType_t flowType; /* Segment/ETE */
 NPF_uchar8_t mscn; /* BR Monitoring Cell Seq. No. */
 NPF_uint16_t totUsrCell01; /* Total User Cell(CLP-0+1) */
 NPF_uint16_t totUsrCell0; /* Total User Cell(CLP-0) */
 NPF_uint32_t timeStamp; /* Time Stamp */
 NPF_uchar8_t repMscn; /* Reported MCSN */
 NPF_uchar8_t secbc; /* Severely Err. Cell block */
 NPF_uint16_t totRcvdUsrCell0;/* Total Rx User Cell(CLP-0) */
 NPF_uint8_t blkErr; /* Block Error Result(CLP-0+1) */
 NPF_uint16_t totRcvdUsrCell1;/* Total Rx User Cell(CLP0+1)*/
} NPF_F_ATM_OAM_BR_Event_t;
/*
* Loopback Cell Info
*/
typedef struct {
 NPF_F_ATM_OAM_FlowType_t flowType; /* Segment/ETE */
 NPF_boolean_t sourceIdValid; /* If sourceID in Ind */
 NPF_uint8_t sourceId[16]; /* source ID */
 NPF_uint8_t llid[16]; /* loopback location ID */
} NPF_F_ATM_OAM_LB_Event_t;
/* CC Cell Information Data Type */
typedef struct
{
 NPF_F_ATM_OAM_FlowType_t flowType; /* Segment/ETE */
} NPF_F_ATM_OAM_CC_Event_t;
/* Performance Monitoring Statistics Event Data Type */
typedef enum
{
 NPF_F_ATM_OAM_PM_STATS_TRIGGER_FPM_RECEIVED=0, /* Indication due to FPM
*/
 NPF_F_ATM_OAM_OAM_PM_STATS_TRIGGER_BR_RECEIVED /* Indication due to BR
*/
} NPF_F_ATM_OAM_PmStatsTrigger_t;

typedef struct
{
 NPF_F_ATM_OAM_FlowType_t flowType; /* Segment/ETE */
 NPF_F_ATM_OAM_PmStatsTrigger_t pmStatsTrigger; /* FPM or BR received */
 NPF_uint8_t mcsn; /* BR Monitoring cell seq no */
 NPF_uint16_t tuc01; /* Total user cell (CLP 0+1) */
 NPF_uint16_t tuc0; /* Total user cell (CLP 0) */
 NPF_uint32_t tstp; /* Time stamp */
 NPF_uint8_t rMcsn; /* Reported Monitoring Cell seq No. */
 NPF_uint8_t secbc; /* Severely Errored Cell Block Count */

 ATM Task Group 149

Network Processing Forum Software Working Group

 NPF_uint16_t trcc01; /* Total received user cell(CLP 0+1) */
 NPF_uint16_t trcc0; /* Total received user cell(CLP 0) */
 NPF_uint8_t bler01; /* Block error result (CLP 0+1) */
} NPF_F_ATM_OAM_PM_Stats_Event_t;
/* PM procedure activation and deactivation event */
typedef struct {
 NPF_F_ATM_OAM_FlowType_t flowType; /* Segment/ETE */
 NPF_F_ATM_OAM_PM_FuncType_t functionType; /* FPM-BR/FPM */
 NPF_F_ATM_OAM_Direction_t oamDirection; /* A->B/B->A/Bothway */
 NPF_F_ATM_OAM_BlkSize_t fwdBlkSize; /* Forward block size */
 NPF_F_ATM_OAM_BlkSize_t backBlkSize; /* Backward block size */
} NPF_F_ATM_OAM_PM_ActDeact_Event_t;
/* CC procedure activation and deactivation event */
typedef struct {
 NPF_F_ATM_OAM_FlowType_t flowType; /* Segment/ETE */
 NPF_F_ATM_OAM_Direction_t oamDirection; /* A->B/B->A/Bothway */
} NPF_F_ATM_OAM_CC_ActDeact_Event_t;

/**
*
 * Completion callbacks and event registration types and
 * function prototypes for the config. manager LFB

/

/*
* Completion Callback Types, to be found in the callback
* data structure, NPF_F_ATM_ConfigMgr_CallbackData_t.
*/
typedef enum NPF_F_ATM_ConfigMgr_CallbackType {
 NPF_F_ATM_CONFIGMGR_IF_SET = 1,
 NPF_F_ATM_CONFIGMGR_IF_DELETE = 2,
 NPF_F_ATM_CONFIGMGR_IF_STATS_GET = 3,
 NPF_F_ATM_CONFIGMGR_IF_STATS_ENABLE = 4,
 NPF_F_ATM_CONFIGMGR_IF_STATS_DISABLE = 5,
 NPF_F_ATM_CONFIGMGR_IF_QUERY = 6,
 NPF_F_ATM_CONFIGMGR_IF_AIS_STATE_SET = 7,
 NPF_F_ATM_CONFIGMGR_IF_AIS_STATE_CLEAR = 8,

 NPF_F_ATM_CONFIGMGR_VC_SET = 9,
 NPF_F_ATM_CONFIGMGR_VP_SET = 10,
 NPF_F_ATM_CONFIGMGR_VC_BIND = 11,
 NPF_F_ATM_CONFIGMGR_VC_UNBIND = 12,
 NPF_F_ATM_CONFIGMGR_VL_DELETE = 13,
 NPF_F_ATM_CONFIGMGR_VL_ENABLE = 14,
 NPF_F_ATM_CONFIGMGR_VL_DISABLE = 15,
 NPF_F_ATM_CONFIGMGR_VL_OPER_STATUS_GET = 16,
 NPF_F_ATM_CONFIGMGR_VL_STATS_ENABLE = 17,
 NPF_F_ATM_CONFIGMGR_VL_STATS_DISABLE = 18,
 NPF_F_ATM_CONFIGMGR_VC_STATS_GET = 19,
 NPF_F_ATM_CONFIGMGR_VC_QUERY = 20,
 NPF_F_ATM_CONFIGMGR_VC_CROSSCONNECT_SET = 21,
 NPF_F_ATM_CONFIGMGR_VC_CROSSCONNECT_DELETE = 22,
 NPF_F_ATM_CONFIGMGR_VC_CROSSCONNECT_QUERY = 23,
 NPF_F_ATM_CONFIGMGR_VP_STATS_GET = 24,
 NPF_F_ATM_CONFIGMGR_VP_QUERY = 25,
 NPF_F_ATM_CONFIGMGR_VP_CROSSCONNECT_SET = 26,

 ATM Task Group 150

Network Processing Forum Software Working Group

 NPF_F_ATM_CONFIGMGR_VP_CROSSCONNECT_DELETE = 27,
 NPF_F_ATM_CONFIGMGR_VP_CROSSCONNECT_QUERY = 28,

 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_SET = 29,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_BIND = 30,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_UNBIND = 31,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_DELETE = 32,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_STATS_GET = 33,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_QUERY = 34,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_ENABLE = 35,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_DISABLE = 36,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_OPER_STATUS_GET = 37,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_STATS_ENABLE = 38,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_STATS_DISABLE = 39,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_CROSSCONNECT_SET = 40,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_CROSSCONNECT_DELETE = 41,
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_CROSSCONNECT_QUERY = 42,

 NPF_F_ATM_CONFIGMGR_OAM_CP_SET = 43,
 NPF_F_ATM_CONFIGMGR_OAM_CC_SET = 44,
 NPF_F_ATM_CONFIGMGR_OAM_CC_RSP = 45,
 NPF_F_ATM_CONFIGMGR_OAM_PM_SET = 46,
 NPF_F_ATM_CONFIGMGR_OAM_PM_RSP = 47,
 NPF_F_ATM_CONFIGMGR_OAM_PM_STATS_GET = 48,
 NPF_F_ATM_CONFIGMGR_OAM_LB_SET = 49,
 NPF_F_ATM_CONFIGMGR_OAM_MONITOR = 50,
 NPF_F_ATM_CONFIGMGR_OAM_ALARM_SET = 51,
 NPF_F_ATM_CONFIGMGR_OAM_ALARM_CLEAR = 52,
} NPF_F_ATM_ConfigMgr_CallbackType_t;

/* Asynchronous Response Callback Data Type */

/*
* This union is a handy way of representing the various object identifiers
* used by the APIs.
*/
typedef union {
 NPF_F_ATM_IfID_t ifID; /* Interface ID */
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_AAL2ChanId_t aal2ChanId; /* AAL2 channel ID */
 NPF_F_VcXcId_t vcXcId; /* VC cross connect ID */
 NPF_F_VpXcId_t vpXcId; /* VP cross connect ID */
 NPF_F_AAL2ChnlXcId_t chnlXcId; /* AAL2 Chnl cross connect ID */
} NPF_F_ATM_ConfigMgr_Id_t;
/*
* An asynchronous response contains an configuration object ID,
* a error or success code, and in some cases a function-
* specific structure embedded in a union. One or more of
* these is passed to the callback function as an array
* within the NPF_F_ATM_ConfigManager_CallbackData_t structure (below)
*/

typedef struct {
 NPF_error_t error; /* Error code for this resp */
 NPF_F_ATM_ConfigMgr_Id_t objId; /* Object Identifier */
 union {
 /* Function-specific structures: */
 NPF_uint32_t unused;

 ATM Task Group 151

Network Processing Forum Software Working Group

 /* Queried VC statistics.
 NPF_F_ATM_CONFIGMGR_VC_STATS_GET */
 NPF_F_ATM_ConfigMgr_VcStats_t vcStats;

 /* Queried virtual path statistics
 NPF_F_ATM_CONFIGMGR_VP_STATS_GET */
 NPF_F_ATM_ConfigMgr_VpStats_t vpStats;

 /* Queried AAL2 channel statistics
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_STATS_GET */
 NPF_F_ATM_ConfigMgr_AAL2ChannelStats_t aal2ChanStats;

 /* Result of get operational status; status of link
 NPF_F_ATM_CONFIGMGR_VL_OPER_STATUS_GET */
 NPF_ObjStatus_t operStatus;

 /* Result of initiated loopback procedure
 NPF_F_ATM_CONFIGMGR_OAM_CC_RSP */
 NPF_F_ATM_ConfigMgr_OAM_LB_Result_t lbResult;

 /* ATM virtual channel configuration and status
 NPF_F_ATM_CONFIGMGR_VC_QUERY */
 NPF_F_ATM_ConfigMgr_VcInfo_t vcConfigInfo;

 /* ATM virtual path configuration and status
 NPF_F_ATM_CONFIGMGR_VP_QUERY */
 NPF_F_ATM_ConfigMgr_VpInfo_t vpConfigInfo;

 /* AAL2 channel configuration and status
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_QUERY */
 NPF_F_ATM_ConfigMgr_AAL2_ChannelInfo_t chnlConfigInfo;

 /* VC cross connect attributes
 NPF_F_ATM_CONFIGMGR_VC_CROSSCONNECT_QUERY */
 NPF_F_ATM_ConfigMgr_VcLinkXc_t vcXcConfig;

 /* VP link cross connect attributes
 NPF_F_ATM_CONFIGMGR_VP_CROSSCONNECT_QUERY */
 NPF_F_ATM_ConfigMgr_VpLinkXc_t vpXcConfig;

 /* AAL2 channel cross connect attributes
 * Completion callback -
 NPF_F_ATM_CONFIGMGR_AAL2_CHANNEL_CROSSCONNECT_QUERY */
 NPF_F_ATM_ConfigMgr_AAL2_ChnlXc_t chnlXcConfig;

 /* Queried Interface statistics
 NPF_F_ATM_CONFIGMGR_IF_STATS_GET */
 NPF_F_ATM_ConfigMgr_IfStats_t ifStats;

 /* ATM interface attributes
 NPF_F_ATM_CONFIGMGR_IF_QUERY */
 NPF_F_ATM_ConfigMgr_IfCfg_t ifConfig;

 /* OAM performance monitoring stats for requested flow
 NPF_F_ATM_CONFIGMGR_OAM_PM_STATS_GET */
 NPF_F_ATM_ConfigMgr_OAM_PM_Stats_t pmStats;

 } u;
} NPF_F_ATM_ConfigMgr_AsyncResponse_t;

 ATM Task Group 152

Network Processing Forum Software Working Group

/*
* The callback function receives the following structure containing
* one or more asynchronous responses from a single function call.
* There are several possibilities:
* 1. The called function does a single request
* - n_resp = 1, and the resp array has just one element.
* - allOK = TRUE if the request completed without error
* and the only return value is the response code.
* - if allOK = FALSE, the "resp" structure has the error code.
* 2. the called function supports an array of requests
* a. All completed successfully, at the same time, and the
* only returned value is the response code:
* - allOK = TRUE, n_resp = 0.
* b. Some completed, but not all, or there are values besides
* the response code to return:
* - allOK = FALSE, n_resp = the number completed
* - the "resp" array will contain one element for
* each completed request, with the error code
* in the NPF_F_ATM_ConfigManager_AsyncResponse_t structure, along
* with any other information needed to identify
* which request element the response belongs to.
* - Callback function invocations are repeated in
* this fashion until all requests are complete.
* Responses are not repeated for request elements
* already indicated as complete in earlier callback function invocations.
*/
typedef struct {
 NPF_F_ATM_ConfigMgr_CallbackType_t type; /* Function called */
 NPF_boolean_t allOK; /* TRUE if all completed OK */
 NPF_uint32_t n_resp; /* Number of responses in array */
 NPF_F_ATM_ConfigMgr_AsyncResponse_t *resp; /* response structures*/
} NPF_F_ATM_ConfigMgr_CallbackData_t;

/*
 * ATM OAM Fault Management Event Notification
 */
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 /* Detailed information for the Alarm being raised/clear */
 NPF_F_ATM_OAM_Alarm_Info_t oamAlarmInfo;
} NPF_F_ATM_ConfigMgr_OAM_FM_EventData_t;

/*
* ATM OAM Performance Management Event Notification
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 NPF_F_ATM_OAM_PM_Stats_Event_t oamPmStats; /* Perf. Mon. stats */
} NPF_F_ATM_ConfigMgr_OAM_PM_EventData_t;

/*
* ATM OAM activation/deactivation Event Notification
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 union {
 /* PM activate/deactivation Request indication*/
 NPF_F_ATM_OAM_PM_ActDeact_Event_t oamPmActDeact;

 ATM Task Group 153

Network Processing Forum Software Working Group

 /* CC activate/deact Request indication */
 NPF_F_ATM_OAM_CC_ActDeact_Event_t oamCcActDeact;
 }u;
} NPF_F_ATM_ConfigMgr_OAM_ActDeact_EventData_t;

/*
* ATM OAM Passive Monitoring Event Notification
*/
typedef struct {
 NPF_F_ATM_VirtLink_t linkId; /* VP or VC Link */
 union {
 NPF_F_ATM_OAM_AIS_Event_t oamAisInfo; /* AIS cell info */
 NPF_F_ATM_OAM_RDI_Event_t oamRdiInfo; /* RDI cell info */
 NPF_F_ATM_OAM_FPM_Event_t oamFpmInfo; /* FPM cell info */
 NPF_F_ATM_OAM_BR_Event_t oamBrInfo; /* BR cell info */
 NPF_F_ATM_OAM_LB_Event_t oamLBInfo; /* LB cell info */
 NPF_F_ATM_OAM_CC_Event_t oamCCInfo; /* CC cell info */
 NPF_F_ATM_OAM_PM_ActDeact_Event_t pmADInfo; /*PM Act/Deact cell*/
 NPF_F_ATM_OAM_CC_ActDeact_Event_t ccADInfo; /*CC Act/Deact cell*/
 }u;
} NPF_F_ATM_ConfigMgr_OAM_Mon_EventData_t;

/*
 * Traffic management threshold crossing notifications
 */
typedef struct {
 NPF_F_ATM_VirtLink_t virtLinkId; /* VP or VC Link */
 union {
 NPF_uint32_t chnlPrio; /* Priority of AAL2 path queue *
 * that hit the discard threshold */
 } u;
} NPF_F_ATM_ConfigMgr_TrafMgmt_EventData_t;

/*
* ATM configuration manager Event Types
*/
typedef enum {
 /* ATM OAM Fault Management Event Types */
 NPF_F_ATM_AIS_RAISED = 1, /* AIS defect detected. AIS received */
 NPF_F_ATM_RDI_RAISED = 2, /* RDI defect detected. RDI received */
 NPF_F_ATM_AIS_CLEARED = 3, /* AIS defect cleared. */
 NPF_F_ATM_RDI_CLEARED = 4, /* RDI defect cleared */
 NPF_F_ATM_LOC_RAISED = 5, /* LOC defect detected */
 NPF_F_ATM_LOC_CLEARED = 6, /* LOC defect cleared */

 /* ATM OAM Performance Management Event Types */
 NPF_F_ATM_PM_STATISTICS = 7, /* Perf. Monitoring Stats */

 /* CC/PM activate/deactivate indication */
 NPF_F_ATM_CC_ACT_DEACT_REQ_INDICATION = 8, /*CC activate/deactivare ind*/
 NPF_F_ATM_PM_ACT_DEACT_REQ_INDICATION = 9, /*PM activate/deactivate ind*/

 /* Passive Monitoring events */
 NPF_F_ATM_CC_RECEIVED = 10, /* CC cell received;Passive monitoring */
 NPF_F_ATM_FPM_RECEIVED = 11, /* FPM cell received;Passive monitoring*/
 NPF_F_ATM_BR_RECEIVED = 12, /* BR cell received;passive monitoring */
 NPF_F_ATM_LB_RECEIVED = 13, /* LB cell received;passive monitoring */
 NPF_F_ATM_AIS_RECEIVED = 14, /* AIS cell received;passive monitoring*/
 NPF_F_ATM_RDI_RECEIVED = 15, /* RDI cell received;passive monitoring*/

 ATM Task Group 154

Network Processing Forum Software Working Group

 NPF_F_ATM_PM_ACT_DEACT_RX = 16, /* PM Act/Deact cell;passive monitoring*/
 NPF_F_ATM_CC_ACT_DEACT_RX = 17, /* CC Act/Deact cell;passive monitoring*/

 /* Traffic Management threshold crossing event */
 NPF_F_ATM_TM_HIT_WARN_THRESH = 18,/*Link Queue len hit warn threshold */
 NPF_F_ATM_TM_HIT_DROP_THRESH = 19,/*Link Queue len hit drop threshold */
 NPF_F_AAL2_TM_HIT_DROP_THRESH = 20,/*AAL2 Queue len hit drop threshold*/
} NPF_F_ATM_ConfigMgr_Event_t;

/*
 * Definitions for selectively enabling ATM Configuration Manager Events
 */
#define NPF_F_ATM_AIS_RAISED_ENABLE (1 << 0)
#define NPF_F_ATM_RDI_RAISED_ENABLE (1 << 1)
#define NPF_F_ATM_AIS_CLEARED_ENABLE (1 << 2)
#define NPF_F_ATM_RDI_CLEARED_ENABLE (1 << 3)
#define NPF_F_ATM_LOC_RAISED_ENABLE (1 << 4)
#define NPF_F_ATM_LOC_CLEARED_ENABLE (1 << 5)
#define NPF_F_ATM_PM_STATISTICS_ENABLE (1 << 6)
#define NPF_F_ATM_CC_ACT_DEACT_REQ_INDICATION_ENABLE (1 << 7)
#define NPF_F_ATM_PM_ACT_DEACT_REQ_INDICATION_ENABLE (1 << 8)
#define NPF_F_ATM_CC_RECEIVED_ENABLE (1 << 9)
#define NPF_F_ATM_FPM_RECEIVED_ENABLE (1 << 10)
#define NPF_F_ATM_BR_RECEIVED_ENABLE (1 << 11)
#define NPF_F_ATM_LB_RECEIVED_ENABLE (1 << 12)
#define NPF_F_ATM_AIS_RECEIVED_ENABLE (1 << 13)
#define NPF_F_ATM_RDI_RECEIVED_ENABLE (1 << 14)
#define NPF_F_ATM_PM_ACT_DEACT_RX_ENABLE (1 << 15)
#define NPF_F_ATM_CC_ACT_DEACT_RX_ENABLE (1 << 16)
#define NPF_F_ATM_TM_HIT_WARN_THRESH_ENABLE (1 << 17)
#define NPF_F_ATM_TM_HIT_DROP_THRESH_ENABLE (1 << 18)
#define NPF_F_AAL2_TM_HIT_DROP_THRESH_ENABLE (1 << 19)
#define NPF_F_ATM_CMGR_EV_LAST (1 << 20)
/*
 * ATM Configuration Manager Event reporting data type
 * This structure represents a single event in an event array. The type
 * field indicates the specific event in the union.
 */
typedef struct {
 NPF_F_ATM_ConfigMgr_Event_t eventType; /* Type of event reported */
 union {
 /* Fault mgmt events */
 NPF_F_ATM_ConfigMgr_OAM_FM_EventData_t fm;
 /* Perf. Mgmt events */
 NPF_F_ATM_ConfigMgr_OAM_PM_EventData_t pm;
 /* Act/deact events */
 NPF_F_ATM_ConfigMgr_OAM_ActDeact_EventData_t actDeact;
 /* Passive Monitoring events */
 NPF_F_ATM_ConfigMgr_OAM_Mon_EventData_t mon;
 /* Traffic Management events */
 NPF_F_ATM_ConfigMgr_TrafMgmt_EventData_t traf;
 } u;
} NPF_F_ATM_ConfigMgr_EventData_t;

/* Functional API (FAPI) */
/**
 * Registration/De-Registration Functions *
 **/

 ATM Task Group 155

Network Processing Forum Software Working Group

/* Completion Callback Function */
typedef void (*NPF_F_ATM_ConfigMgr_CallBackFunc_t)(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_F_ATM_ConfigMgr_CallbackData_t data);

/* Completion Callback Registration Function */
NPF_error_t NPF_F_ATM_ConfigMgr_Register(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_F_ATM_ConfigMgr_CallBackFunc_t callbackFunc,
 NPF_OUT NPF_callbackHandle_t *callbackHandle);

/* Completion Callback Deregistration Function */
NPF_error_t NPF_F_ATM_ConfigMgr_Deregister(
 NPF_IN NPF_callbackHandle_t callbackHandle);

/* Event Handler Function */
typedef void (*NPF_F_ATM_ConfigMgr_EventCallFunc_t) (
 NPF_IN NPF_userContext_t atmUserContext,
 NPF_IN NPF_uint32_t nEvent,
 NPF_IN NPF_F_ATM_ConfigMgr_EventData_t *atmEventArray);

/* Event Registration Function */
NPF_error_t NPF_F_ATM_ConfigMgr_EventHandler_Register(
 NPF_IN NPF_userContext_t atmUserContext,
 NPF_IN NPF_F_ATM_ConfigMgr_EventCallFunc_t atmEvtCallFn,
 NPF_IN NPF_eventMask_t atmEvtMask,
 NPF_OUT NPF_callbackHandle_t *atmEvtCallHdl);

/* Event Handler Deregistration Function */
NPF_error_t NPF_F_ATM_ConfigMgr_EventHandler_Deregister(
 NPF_IN NPF_callbackHandle_t atmEventCallHandle);

/**
 * ATM Interface configuration functions
 **/

/* Add or Modify an ATM Interface */
NPF_error_t NPF_F_ATM_ConfigMgr_IfSet(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_IfCfg_t *cfgArray);

/* Delete an ATM Interface */
NPF_error_t NPF_F_ATM_ConfigMgr_IfDelete(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_boolean_t delContainedObjs,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_IfID_t *delArray);

/* Read ATM Interface Statistics */

 ATM Task Group 156

Network Processing Forum Software Working Group

NPF_error_t NPF_F_ATM_ConfigMgr_IfStatsGet(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_IfID_t *ifArray);

/* Enable statistics collection on an ATM Interface */
NPF_error_t NPF_F_ATM_ConfigMgr_IfStatsEnable(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_IfID_t *ifIDArr);

/* Disable statistics collection on an ATM Interface */
NPF_error_t NPF_F_ATM_ConfigMgr_IfStatsDisable(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_IfID_t *ifIDArr);

/* Query ATM Interface */
NPF_error_t NPF_F_ATM_ConfigMgr_IfQuery(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_IfID_t *ifArray);

/* Set AIS state for an ATM Interface */
NPF_error_t NPF_F_ATM_ConfigMgr_IfAISStateSet(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_F_ATM_IfID_t ifID,
 NPF_IN NPF_uint8_t defectType,
 NPF_IN NPF_uint8_t defectLocation[16]);

/* Clear AIS state for an ATM Interface */
NPF_error_t NPF_F_ATM_ConfigMgr_IfAISStateClear(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_F_ATM_IfID_t ifID);

 ATM Task Group 157

Network Processing Forum Software Working Group

/**
 * Functions to operate on ATM VP/VC link
 **/

/* add or Modify an ATM Virtual Channel */
NPF_error_t NPF_F_ATM_ConfigMgr_VcSet(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_Vc_t *cfgArray);

/* Add or Modify an ATM Virtual Path */
NPF_error_t NPF_F_ATM_ConfigMgr_VpSet(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_Vp_t *cfgArray);

/* Bind a higher layer Interface to an ATM Virtual Connection */
NPF_error_t NPF_F_ATM_ConfigMgr_VcBind(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_IfHandle_t ifChildHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLinkID_t *bindArray);

/* Unbind a higher layer Interface from an ATM Virtual Connection */
NPF_error_t NPF_F_ATM_ConfigMgr_VcUnbind(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLinkID_t *unbindArray);

/* Delete an ATM Virtual Link */
NPF_error_t NPF_F_ATM_ConfigMgr_VirtLinkDelete(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_boolean_t delXc,
 NPF_IN NPF_boolean_t delContainedObjs,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLink_t *delArray);

/* Enable a Virtual Link */
NPF_error_t NPF_F_ATM_ConfigMgr_VirtLinkEnable(

 ATM Task Group 158

Network Processing Forum Software Working Group

 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLink_t *enaArray);

/* Disable a Virtual Link */
NPF_error_t NPF_F_ATM_ConfigMgr_VirtLinkDisable(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLink_t *disArray);

/* Get Operational Status of a Virtual Link */
NPF_error_t NPF_F_ATM_ConfigMgr_VirtLinkOperStatusGet(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLink_t *linkArray);

/* Enable Statistics collection on a Virtual Link */
NPF_error_t NPF_F_ATM_ConfigMgr_VirtLinkStatsEnable(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLink_t *enaArray);

/* Disable Statistics collection on a Virtual Link */
NPF_error_t NPF_F_ATM_ConfigMgr_VirtLinkStatsDisable(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLink_t *disArray);

/* Read ATM Virtual Channel Statistics */
NPF_error_t NPF_F_ATM_ConfigMgr_VcStatsGet(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLinkID_t *linkArray);

/* Query ATM Virtual Channel Configuration */

 ATM Task Group 159

Network Processing Forum Software Working Group

NPF_error_t NPF_F_ATM_ConfigMgr_VcQuery(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLinkID_t *linkArray);

/* Add VC link Cross connect */
NPF_error_t NPF_F_ATM_ConfigMgr_VcLinkXcSet (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_VcLinkXc_t *vcLinkXc);

/* Delete VC link Cross connect */
NPF_error_t NPF_F_ATM_ConfigMgr_VcLinkXcDelete (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_VcXcId_t *vcLinkXc);

/* Query Virtual Channel Cross connect */
NPF_error_t NPF_F_ATM_ConfigMgr_VcLinkXcQuery (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_VcXcId_t *linkXc);

/* Read ATM Virtual Path Statistics */
NPF_error_t NPF_F_ATM_ConfigMgr_VpStatsGet(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLinkID_t *linkArray);

/* Query ATM Virtual Path Link Configuration */
NPF_error_t NPF_F_ATM_ConfigMgr_VpQuery(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLinkID_t *linkArray);

 ATM Task Group 160

Network Processing Forum Software Working Group

/* Add Virtual Path Link Cross connect */
NPF_error_t NPF_F_ATM_ConfigMgr_VpLinkXcSet (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_VpLinkXc_t *vpLinkXc);

/* Delete Virtual Path Link Cross connect */
NPF_error_t NPF_F_ATM_ConfigMgr_VpLinkXcDelete (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_VpXcId_t *vpLinkXc);

/* Query Virtual Path Cross connect */
NPF_error_t NPF_F_ATM_ConfigMgr_VpLinkXcQuery (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_VpXcId_t *linkXc);

/**
 * Functions to operate on ATM AAL2 channels
 **/
/* Add or Modify an AAL2 Channel */
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelSet(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_AAL2_Channel_t *chnlArray);

/* Bind a higher layer Interface to an AAL2 Channel Syntax */
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelBind(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_IfHandle_t ifChildHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChanId_t *bindArray);

/* Unbind a higher layer Interface from an AAL2 channel */
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelUnbind(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,

 ATM Task Group 161

Network Processing Forum Software Working Group

 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_VirtLinkID_t *unbindArray);

/* Delete an AAL2 Channel */
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelDelete(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_boolean_t delXc,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChanId_t *chnlArray);

/* Query AAL2 Channel Statistics */
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelStatsGet(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChanId_t *chnlArray);

/* Query AAL2 Channel */
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelQuery(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChanId_t *chnlArray);

/* Enable an AAL2 channel */
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelEnable(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChanId_t *enaArray);

/* Disable an AAL2 channel */
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelDisable(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChanId_t *disArray);

/* Get Operational Status of a AAL2 channel */
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelOperStatusGet(

 ATM Task Group 162

Network Processing Forum Software Working Group

 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChanId_t *chnlArray);

/* Enable Statistics collection on a AAL2 channel */
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelStatsEnable(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChanId_t *chnlArray);

/* Disable Statistics collection on a AAL2 channel */
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChannelStatsDisable(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChanId_t *chnlArray);

/* Add AAL2 Channel Cross connect */
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChnlXcSet (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_AAL2_ChnlXc_t *chnlXc);

/* Delete AAL2 Channel Cross connect */
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChnlXcDelete (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChnlXcId_t *chnlXc);

/* Query AAL2 Channel Cross connect */
NPF_error_t NPF_F_ATM_ConfigMgr_AAL2_ChnlXcQuery (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_AAL2ChnlXcId_t *chnlXc);

/**

 ATM Task Group 163

Network Processing Forum Software Working Group

 * Functions for OAM operations on VP/VC links
 **/
/* Configure/Modify OAM attributes of a Connection Point */
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_CP_Set(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_CP_t *oamCPArray);

/* Activate, Deactivate, Start and Stop OAM Continuity Check */
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_CC_Set(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_CC_t *oamCCArray);

/* Response to OAM Continuity Check Indication */
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_CC_Rsp(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_CC_Rsp_t *oamCCArray);

/* Activate, Deactivate, Start and Stop OAM Performance Management */
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_PM_Set(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_PM_t *oamPMArray);

/* Response to OAM Performance Management Indication */
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_PM_Rsp(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_PM_Rsp_t *oamPMArray);

/* Query Performance Monitoring Statistics for an OAM flow */
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_PM_StatsGet(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,

 ATM Task Group 164

Network Processing Forum Software Working Group

 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_PM_StatsReq_t *oamPMStatsReqArray);

/* Initiate an OAM Loopback Procedure */
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_LB_Set(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_LB_t *oamLBArray);

/* Monitor OAM Cells */
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_Mon_Set(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_Mon_t *oamMonArray);

/* Set AIS Alarm State */
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_Alarm_Set (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_Alarm_t *oamAlarmArray);

/* Clear AIS Alarm State */
NPF_error_t NPF_F_ATM_ConfigMgr_OAM_Alarm_Clear(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_ATM_ConfigMgr_OAM_Alarm_t *oamAlarmArray);

#ifdef __cplusplus
}
#endif

#endif /* __NPF_F_ATM_CONFIGURATION_MANAGER_H__ */

 ATM Task Group 165

Network Processing Forum Software Working Group

APPENDIX B ACKNOWLEDGEMENTS

Working Group Chair: Alex Conta

Task Group Chair: Per Wollbrand

The following individuals are acknowledged for their participation to ATM Task Group teleconferences,
plenary meetings, mailing list, and/or for their NPF contributions used for the development of this
Implementation Agreement. This list may not be all-inclusive since only names supplied by member
companies for inclusion here will be listed. The NPF wishes to thank all active participants to this
Implementation Agreement, whether listed here or not.

The list is in alphabetical order of last names:

Pål Dammvik, Ericsson
Patrik Herneld, Ericsson
Jaroslaw Kogut, Intel
Arthur Mackay, Freescale
Stephen Nadas, Ericsson
Michael Persson, Ericsson
John Renwick, Agere Systems
Vedvyas Shanbhogue (ed.), Intel
Michael Speer, Sun Microsystems
Keith Williamson, Motorola
Weislaw Wisniewski, Intel
Per Wollbrand, Ericsson

 ATM Task Group 166

Network Processing Forum Software Working Group

 ATM Task Group 167

APPENDIX C LIST OF COMPANIES BELONGING TO NPF DURING APPROVAL
PROCESS

Agere Systems Hifn NTT Electronics

Altera IBM PMC Sierra

AMCC IDT Seaway Networks

Analog Devices Infineon Technologies AG Sensory Networks

Avici Systems Intel Sun Microsystems

Cypress Semiconductor IP Fabrics Teja Technologies

Enigma Semiconductor IP Infusion TranSwitch

Ericsson Kawasaki LSI U4EA Group

Erlang Technologies Motorola Wintegra

EZChip NetLogic Xelerated

Flextronics Nokia Xilinx

HCL Technologies Nortel Networks ZNYX Networks

	Revision History
	Introduction
	Modeling the system
	Data Directions

	Configuration Objects and Operations
	Acronyms / Definitions
	Assumptions
	Scope
	External Requirements and Dependencies

	ATM Configuration Manager Description
	ATM Configuration Manager Inputs
	ATM Configuration Manager Outputs
	Accepted Cell Types
	Cell Modifications
	Relationship with Other LFBs

	Data Types
	Common LFB Data Types
	Relationship with the Topology Discovery API
	ATM Virtual Path Identifier
	ATM Virtual Channel Identifier
	ATM Virtual Channel Address Types
	ATM Virtual Link Type
	Virtual link Scope
	ATM Virtual Link Identifier
	Backplane Switch Link Identifier
	ATM Interface Identifier
	Backplane Interface Identifier
	AAL2 Channel Identifier
	Virtual Channel Cross Connect Identifier
	Virtual Path Cross Connect Identifier
	AAL2 Channel Cross Connect Identifier
	Timer Value
	Timer Configuration
	Object Status
	Direction
	Backplane Switch Address

	ATM Traffic Management and Quality of Service Types
	ATM Adaptation Layer Types
	ATM Adaptation Layer Profile Types
	ATM Adaptation Layer Type 1 (AAL1) Profile
	ATM Adaptation Layer Type 2 (AAL2) Profile
	ATM Adaptation Layer Type 5 (AAL 5) Profile

	ATM Virtual Link Data Types
	ATM Virtual Channel Characteristics
	ATM Virtual Channel Information
	ATM Virtual Path Characteristics
	ATM Virtual Path Information
	Cross Connection Type
	Cross Connection of ATM virtual channel links
	Cross Connection of ATM virtual path links
	Virtual Channel statistics
	ATM Layer Statistics
	ATM Adaptation Layer type 1 statistics
	ATM Adaptation Layer type 2 statistics
	ATM Adaptation Layer type 5 statistics
	Virtual Path statistics

	ATM AAL2 Channel Data Types
	AAL2 Channel Configuration
	AAL2 Channel Information
	Cross Connection of AAL2 channels
	ATM Adaptation Layer type 2 Channel statistics

	ATM Interface Data Types
	ATM Interface Type
	ATM Interface Characteristics
	ATM Interface Statistics

	ATM OAM Data Types
	Connection Point type
	Connection Point ID
	Response to CC activation request
	Response to PM activation request
	OAM Flow Level
	OAM Flow type
	Operation Type for OAM procedures
	OAM Cell Type
	OAM Performance Monitoring Block Size
	OAM Performance Monitoring Function Type
	Direction of operation of OAM functions
	Continuity Check cell insertion method
	Connection Point Configuration Data Type
	Continuity Check Configuration Data Type
	Continuity Check Response Data Type
	Performance Monitoring Data Type
	Performance Monitoring Statistics Request Data Type
	Performance Monitoring Statistics Data Type
	Loopback Operation Data Type
	Loopback Procedure Result Data Type
	Non Intrusive Monitoring Data Type
	Declare/Release AIS Alarm State Data Type
	Response to PM activation/De-activation request
	AIS Cell Information Data Types
	RDI Cell Information Data Types
	FPM Cell Information Data Type
	BR Cell Information Data Type
	LB Cell Information Data Type
	CC Cell Information Data Type
	Performance Monitoring Statistics Event Data Type
	PM procedure activation and deactivation event
	CC procedure activation and deactivation event
	OAM Information

	ATM Configuration Manager Specific Data Types
	LFB Specific Error Codes
	Completion Callback Data Type
	Asynchronous Response Callback Data Type
	Event Notification Data Types
	Event Notification Types
	Event Mask bit definitions
	Event Notification Structures

	Functional API (FAPI)
	Registration/De-Registration Functions
	Completion Callback Function
	Description
	Input Parameters
	Output Parameters
	Return Value

	Completion Callback Registration Function
	Description
	Input Parameters
	Output Parameters
	Return Values

	Completion Callback Deregistration Function
	Description
	Input Parameters
	Output Parameters
	Return Values

	Event Handler Function
	Description
	Input Parameters
	Output Parameters
	Return Values

	Event Registration Function
	Description
	Input Parameters
	Output Parameters
	Return Values

	Event Handler Deregistration Function
	Description
	Input Parameters
	Output Parameters
	Return Values

	ATM Interface Configuration Functions
	Add or Modify an ATM Interface
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Delete an ATM Interface
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Read ATM Interface Statistics
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Enable statistics collection on an ATM Interface
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Disable statistics collection on an ATM Interface
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Query ATM Interface
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Set AIS state for an ATM Interface
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Clear AIS state for an ATM Interface
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	ATM Virtual Link Management Functions
	Add or Modify an ATM Virtual Channel
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Add or Modify an ATM Virtual Path
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Bind a higher layer Interface to an ATM Virtual Connection
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Unbind a higher layer Interface from an ATM Virtual Connection
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Delete an ATM Virtual Link
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Enable a Virtual Link
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Disable a Virtual Link
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Get Operational Status of a Virtual Link
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Enable Statistics collection on a Virtual Link
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Disable Statistics collection on a Virtual Link
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Read ATM Virtual Channel Statistics
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Query ATM Virtual Channel Configuration
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Add VC link Cross connect
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Delete VC link Cross connect
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Query Virtual Channel Cross connect
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Read ATM Virtual Path Statistics
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Query ATM Virtual Path Link Configuration
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Add Virtual Path Link Cross connect
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Delete Virtual Path Link Cross connect
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Query Virtual Path Cross connect
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	AAL2 channel management functions
	Add or Modify an AAL2 Channel
	Syntax
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Bind a higher layer Interface to an AAL2 Channel
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Unbind a higher layer Interface from an AAL2 channel
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Delete an AAL2 Channel
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Query AAL2 Channel Statistics
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Query AAL2 Channel
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Enable an AAL2 channel
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Disable an AAL2 channel
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Get Operational Status of a AAL2 channel
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Enable Statistics collection on a AAL2 channel
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Disable Statistics collection on a AAL2 channel
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Add AAL2 Channel Cross connect
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Delete AAL2 Channel Cross connect
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Query AAL2 Channel Cross connect
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	ATM OAM services functions
	Configure/Modify OAM attributes of a Connection Point
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Activate, Deactivate, Start and Stop OAM Continuity Check
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Response to OAM Continuity Check Indication
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Activate, Deactivate, Start and Stop OAM Performance Management
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Response to OAM Performance Management Indication
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Query Performance Monitoring Statistics for an OAM flow
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Initiate an OAM Loopback Procedure
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Monitor OAM Cells
	Description of function
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Set AIS Alarm State
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	Clear AIS Alarm State
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous response

	References

