
Network Processing Forum Software Working Group

Inverse Multiplexing for ATM (IMA) LFB and
Functional API

September 7, 2005
Revision 1.0

Editor:
Vedvyas Shanbhogue, Intel, vedvyas.shanbhogue@intel.com

Copyright © 2005 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THIS DOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", “MAY", and "OPTIONAL" in the remainder of this document are to be interpreted as
described in the NPF Software API Conventions Implementation Agreement revision 1.0.

For additional information contact:
The Network Processing Forum, 39355 California Street,

Suite 307, Fremont, CA 94538
+1 510 608-5990 phone info@npforum.org

 VCBIS Task Group 1

mailto:vedvyas.shanbhogue@intel.com
mailto:info@npforum.org

Network Processing Forum Software Working Group

Table of Contents
1 Revision History ... 3
2 Introduction... 4

2.1 Acronyms.. 4
2.2 Assumptions.. 4
2.3 Scope ... 4
2.4 External Requirements and Dependencies.. 5

3 IMA LFB Description... 6
3.1 IMA LFB Inputs ... 7
3.2 IMA LFB Outputs... 8
3.3 Accepted Cell Types ... 8
3.4 Cell Modifications .. 8
3.5 Relationship with Other LFBs .. 9

4 Data Types .. 10
4.1 Common LFB Data Types .. 10
4.2 Data Structures for Completion Callbacks ... 18
4.3 Data Structures for Event Notifications.. 21
4.4 Error Codes ... 25

5 Functional API (FAPI).. 26
5.1 Required Functions ... 26

6 References ... 46
Appendix A Header File Information.. 47
Appendix B Acknowledgements... 64
Appendix C List of companies belonging to NPF during approval process 65

Table of Figures
Figure 3.1: ATM IMA LFB...6
Figure 3.2: IMA Links and Groups...7
Figure 3.3: IMA LFB Interfaces ...9

List of Tables
Table 3-1 IMA LFB Inputs ..7
Table 3-2 Input Metadata for CELL_RX_IN input of IMA LFB ..7
Table 3-3 Input Metadata for CELL_TX_IN input of IMA LFB ..8
Table 3-4 IMA LFB Outputs..8
Table 3-5 Output Metadata IMA LFB on CELL_RX_OUT output...8
Table 3-6 Output Metadata IMA LFB on CELL_TX_OUT output...8
Table 4-1 Callback type to Callback data mapping table
Table 4-2 Callback type to function mapping

..21
..21

 VCBIS Task Group 2

Network Processing Forum Software Working Group

1 Revision History
Revision Date Reason for Changes

1.0 09/06/2005 Rev 1.0 of the Inverse Multiplexing for ATM (IMA) LFB and
Functional API Implementation Agreement. Source :
npf2004.325.13

 VCBIS Task Group 3

Network Processing Forum Software Working Group

2 Introduction
This IA defines the IMA LFB and its functional API. The IA also defines the inputs and outputs for the
IMA LFB and the metadata generated and consumed by the IMA LFB.

2.1 Acronyms
• ATM: Asynchronous Transfer Mode
• API: Application Program Interface
• CTC: Common Transmit Clock configuration
• FE: Far End
• ICP cell: IMA Control Protocol Cell
• ID: Identifier
• IMA: Inverse Multiplexing for ATM
• ITC: Independent Transmit Clock configuration
• LCD: Loss of cell delineation defect
• LDS: Link Delay Synchronization
• LFB: Logical Functional Block
• LID: Link Identifier
• LIF: Loss of IMA frame defect

onization defect

hine

ode Interface
ly

archy

e

2.2 A
de suitable configurations to cater to the requirements (R-3) and (R-4) on

cope
he functional API provided by the IMA LFB for configuring IMA interfaces in the

• LODS: Link out of delay synchr
• LOF: Loss of frame
• LOS: Loss of Signal
• LSM: Link State Mac
• NE: Near End
• NNI: Network N
• OIF: Out of IMA frame anoma
• PDH: Plesiochronous Digital Hier
• PMD: Physical Media Dependent
• RDI: Remote Defect Indication
• RFI: Remote Failure Indicator
• SES: Severely errored seconds
• TC: Transmission Convergence
• UAS: Unavailable seconds
• UNI: User Network Interfac

 ssumptions
The ATM TC LFB shall provi
the Transmission Convergence sublayer specified in af-phy-0086.001 for the links to be used in an IMA
group

2.3 S
This IA describes t
forwarding element. The IA also specifies the metadata generated and consumed by this LFB.

 VCBIS Task Group 4

Network Processing Forum Software Working Group

2.4 External Requirements and Dependencies
This document depends on the following documents:

• This document depends on the NPF Software API Conventions Implementation Agreement
document [SWAPICON] for basic type definitions. (Refer section 5.1 of Software API
Conventions IA Revision 2.0).

• This document depends on Software API Conventions Implementation agreement Revision 2.0
for the below type definitions:

o NPF_error_t – Refer section 5.2 of Software API Conventions IA Rev 2.0
o NPF_callbackHandle_t - Refer section 5.2 of Software API Conventions IA Rev 2.0
o NPF_callbackType_t - Refer section 5.2 of Software API Conventions IA Rev 2.0
o NPF_userContext_t - Refer section 5.2 of Software API Conventions IA Rev 2.0
o NPF_errorReporting_t - Refer section 5.2 of Software API Conventions IA Rev 2.0

• This document depends on Topology Manager Functional API Implementation Agreement
Revision 1.0 for the below type definitions:

o NPF_BlockId_t – Refer section 3.1.1 of Topology Manager Functional API IA Rev 1.0
o NPF_FE_Handle_t – Refer section 3.1.1 of Topology Manager Functional API IA Rev

1.0
• This document depends on the Interface Management API Implementation Agreement (ATM

Interfaces) for the below data types:
o NPF_IfATM_IMA_Symmetry_t
o NPF_IfATM_IMA_Tclock_t
o NPF_IfATM_IMA_FrameLength_t
o NPF_IfATM_IMA_Ver_t

• ATM Software API Architecture Framework Implementation Agreement Revision 1.0 defines the
architectural framework for the ATM FAPIs.

• This document depends on the ATM Configuration Manager Functional API Implementation
Agreement Revision 1.0 for the below type definitions:

o NPF_F_ATM_Timers_t
o NPF_ObjStatus_t

 VCBIS Task Group 5

Network Processing Forum Software Working Group

3 IMA LFB Description
The IMA LFB performs multiplexing and de-multiplexing of ATM cells in a cyclical fashion among links
of an IMA group to form a higher bandwidth logical link whose rate is approximately the sum of the link
rates. In the transmit direction, the ATM cell stream received from the ATM layer is distributed on a cell
by cell basis, across the multiple links within the IMA group. In the receive direction, the IMA LFB
recombines the cells from each link, on a cell by cell basis, recreating the original ATM cell stream. The
aggregate cell stream is then passed to the ATM layer.
The IMA LFB periodically transmits ICP cells that contain information that permit reconstruction of the
ATM cell stream at the receiving end of the IMA virtual link. At the receive end, the IMA LFB
reconstructs the ATM cell stream after accounting for the link differential delays, smoothing CDV
introduced by the control cells, etc. The IMA LFB also transmits filler cells to maintain a continuous
stream of cells at the physical layer when there are no ATM layer cells to be sent. The filler cells received
by the IMA LFB are discarded. The IMA LFB is modeled as shown in Figure 3.1:

Figure 3.1: ATM IMA LFB
The IMA LFB receives ATM cells received over the physical interface from the ATM TC LFB through
the CELL_RX_IN input. The IMA LFB reconstructs the ATM cell stream and sends the ATM cells over
the CELL_RX_OUT output to the ATM Header Classifier LFB.
The IMA LFB receives ATM cells for transmission over the IMA group from the ATM Header Generator
LFB over the CELL_TX_IN input. The IMA LFB distributes the ATM cells over the links constituting the
IMA group and sends the cells over the CELL_TX_OUT output to the ATM TC LFB. The IMA LFB also
sends ICP and filler cells for transmission on the IMA links through the CELL_TX_OUT output.
The LFB may contain multiple instances of IMA links identified by unique interface Ids the
corresponding PDH links. The LFB may contain multiple instances of IMA groups identified by unique
interface Ids of the IMA interface or group. The term IMA interface and IMA group are used
interchangeably in this IA. One or more (upto 32) PDH interfaces form the parent interfaces for the IMA
interface. The transmission convergence function for the IMA links are performed by the interface
specific ATM TC LFB and the associated PMD sublayer functions.

 VCBIS Task Group 6

Network Processing Forum Software Working Group

ATM Link 2

ATM Link 3

ATM Link 4

ATM Link N

ATM Link 1

. . .

IMA Group 2

IMA Group 3

IMA Group 4

IMA Group N

IMA Group 1

. . .

Upto 32 links/group

Parent Interfaces Child Interfaces

Figure 3.2: IMA Links and Groups

The IMA links associated with an IMA group may be used by the IMA LFB for receive, transmit, or both
based on the group symmetry mode configured for the IMA group.

3.1 IMA LFB Inputs
Table 3-1 IMA LFB Inputs
Symbolic Name Input ID Description
CELL_RX_IN 0 This input is used to receive the ATM cells from

the physical layer. Cells received over the IMA
links from the physical layer are used to construct
the ATM cell stream to be sent to the ATM Header
Classifier LFB.

CELL_TX_IN 1 This input is used to receive ATM cells for
transmission over an IMA group from the ATM
Header Generator LFB. The ATM cell stream
received for transmission over the IMA group is
distributed in a cyclic manner among the
constituent IMA links of the group.

3.1.1 Metadata Required
The IMA LFB expects the below metadata on the CELL_RX_IN input.

Table 3-2 Input Metadata for CELL_RX_IN input of IMA LFB
Metadata tag Access method Description
META_IF_ID Read-And-

Consume
Metadata identifying the interface ID of the parent
PDH interface on which the ATM cell was
received.

The IMA LFB expects the below metadata on the CELL_TX_IN input.

 VCBIS Task Group 7

Network Processing Forum Software Working Group

Table 3-3 Input Metadata for CELL_TX_IN input of IMA LFB
Metadata tag Access method Description
META_IF_ID Read-And-

Consume
Metadata identifying the interface ID of the IMA
interface on which the ATM cell is to be
transmitted.

3.2 IMA LFB Outputs
Table 3-4 IMA LFB Outputs
Symbolic Name Output ID Description
CELL_RX_OUT 1 This is the output on which the ATM cell stream

extracted over from links forming the IMA group is
sent to the ATM Header Classifier LFB

CELL_TX_OUT 2 This output is used to send the ATM cells to the
ATM TC LFBs for transmission over the IMA
links.

EXC 3 This output is used to send ATM cells which need
to be discarded due to errors.

3.2.1 Metadata Produced on CELL_RX_OUT output
The metadata produced on this output is as below

Table 3-5 Output Metadata IMA LFB on CELL_RX_OUT output
Metadata tag Access method Description
META_IF_ID Write Metadata identifying the interface ID of the IMA

group on which the cell was received.

3.2.2 Metadata Produced on CELL_TX_OUT output
Table 3-6 Output Metadata IMA LFB on CELL_TX_OUT output
Metadata tag Access method Description
META_IF_ID Write Metadata identifying the interface ID of the ATM

link on which the cell is to be transmitted

3.3 Accepted Cell Types
The IMA LFB can be used on send and receive ATM cells over either UNI or NNI interfaces.

3.4 Cell Modifications
• The ICP and filler cells received over the IMA links are extracted by the IMA LFB in the receive

direction.
• The IMA LFB will generate ICP and filler cells as required on the IMA links in the transmit

direction.
• The ATM layer cells received from ATM TC Receive LFB are passed without any modification

or re-ordering to the ATM Header Classifier LFB.
• The ATM layer cells received from the ATM Header generator LFB are passed without any

modification or re-ordering to the ATM TC Transmit LFB for transmission on the IMA links.

 VCBIS Task Group 8

Network Processing Forum Software Working Group

3.5 Relationship with Other LFBs
The IMA LFB interacts with the ATM TC Receive LFB, ATM TC Transmit LFB, ATM Header
Classifier LFB and the ATM Header Generator LFB as shown in Figure 3.3.

Figure 3.3: IMA LFB Interfaces

The EXC output of the IMA LFB could be connected an LFB that receives cells for which could not be
processed due to errors. Depending on system design this may be either the dropper LFB or any other
LFB that makes a decision on how to utilize such cells.

 VCBIS Task Group 9

Network Processing Forum Software Working Group

4 Data Types
4.1 Common LFB Data Types
4.1.1 LFB Type Code

It is possible to use the FAPI Topology Discovery APIs to discover an IMA LFB in a forwarding
element using a block type value for the IMA LFB.

/* LFB type for IMA LFB */
#define NPF_F_IMA_LFB_TYPE 46

4.1.2 IMA Configurations
4.1.2.1 IMA Group ID

This section defines the IMA group identifier that is used to uniquely identify an IMA group. Any
restrictions placed on the range or values that can be assigned to the IMA group ID are outside the
scope of NPF.

typedef NPF_uint32_t NPF_F_IMA_Group_ID_t; /* IMA group ID */

4.1.2.2 IMA Link ID
This section defines the IMA link identifier that is used to uniquely identify an IMA link. Any
restrictions placed on the range or values that can be assigned to the IMA link ID are outside the
scope of NPF.

typedef NPF_uint32_t NPF_F_IMA_Link_ID_t; /* IMA link ID */

4.1.2.3 IMA Link Status
This structure defines the near end or far end states for receive and transmit Link State Machine.

typedef enum {
 /* Link not configured */
 NPF_F_IMA_LSM_STATE_NOT_IN_GROUP = 1,

 /* Link configured but cannot be used */
 NPF_F_IMA_LSM_STATE_UNUSABLE_UNKNOWN = 2,
 NPF_F_IMA_LSM_STATE_UNUSABLE_FAULT_LINK_DEFECT = 3,
 NPF_F_IMA_LSM_STATE_UNUSABLE_FAULT_LIF = 3,
 NPF_F_IMA_LSM_STATE_UNUSABLE_FAULT_LODS = 3,

 NPF_F_IMA_LSM_STATE_UNUSABLE_MISCONNECTED = 4,
 NPF_F_IMA_LSM_STATE_UNUSABLE_INHIBITED = 5,
 NPF_F_IMA_LSM_STATE_UNUSABLE_FAILED = 6,

 /* Link is ready to use */
 NPF_F_IMA_LSM_STATE_USABLE = 7,

 /* Link is active and capable of passing cells to/from ATM Layer */
 NPF_F_IMA_LSM_STATE_ACTIVE = 8
} NPF_F_IMA_LSM_State_t;

4.1.2.4 IMA Group State Machine states
This enumeration defines Group State Machine State.

typedef enum {
 NPF_F_IMA_GSM_NOT_CONFIGURED = 1,
 NPF_F_IMA_GSM_START_UP = 2,
 NPF_F_IMA_GSM_START_UP_ACK = 3,
 NPF_F_IMA_GSM_CONFIG_ABORTED_UNSUPPORTED_FRAME_LEN = 4,

 VCBIS Task Group 10

Network Processing Forum Software Working Group

 NPF_F_IMA_GSM_CONFIG_ABORTED_INCOMPATIBLE_SYMMETRY = 5,
 NPF_F_IMA_GSM_CONFIG_ABORTED_UNSUPPORTED_IMA_VERSION = 6,
 NPF_F_IMA_GSM_CONFIG_ABORTED_OTHER = 7,
 NPF_F_IMA_GSM_INSUFFICIENT_LINKS = 8,
 NPF_F_IMA_GSM_BLOCKED = 9,
 NPF_F_IMA_GSM_OPERATIONAL = 10
} NPF_F_IMA_GSM_State_t;

4.1.2.5 IMA Group Traffic Machine State
This enumerator defines Group Traffic State Machine State.

typedef enum {
 NPF_F_IMA_GTSM_DOWN = 0,
 NPF_F_IMA_GTSM_UP
} NPF_F_IMA_GTSM_State_t;

4.1.2.6 IMA Group Testing Mode
This structure is used to configure the testing link in the group. When the test link ID is configured as
-1 or the test pattern is set to -1, the LFB is free to choose a link for testing and the test pattern to be
used. On configuration of the group, the test procedure is disabled by default and should be enabled
by the FAPI client if required by specifying the test link ID to be used for the procedure. The
algorithm used to select such a link and the test pattern to be used is outside the scope of NPF.

typedef enum {
 NPF_F_TEST_PROC_DISABLED = 1,
 NPF_F_TEST_PROC_OPERATIONAL = 2,
} NPF_F_IMA_Test_Proc_Status_t;

typedef struct {
 /* Testing link ID */
 NPF_int8_t testLID;

 /* Test pattern */
 NPF_int32_t testPattern;

 /* Test Procedure Status */
 NPF_F_IMA_Test_Proc_Status_t testStatus;

 /* Test verification Duration. The far end is expected to loop back the
 * test pattern on all links in the group within this duration. Failing
 * which the end initiating the test procedure will declare a test
 * procedure failure on the links on which the test pattern was not
 * loopback.
 */
 NPF_F_ATM_Timers_t expRespDuration;
} NPF_F_IMA_Group_Test_Mode_t;

typedef struct {
 /* A unique ID to identify the group */
 NPF_F_IMA_Group_ID_t groupID;

 /* Start/Stop/Change pattern */
 NPF_F_IMA_Group_Test_Mode_t groupTestMode;
} NPF_F_IMA_Group_Test_Proc_Config_t;

4.1.2.7 IMA Group Configuration
The below structure contains the configuration parameters for an IMA group.

typedef struct {

 VCBIS Task Group 11

Network Processing Forum Software Working Group

 /* The Interface handle of the IMA group */
 NPF_IfHandle_t imaIfID;

 /* A unique ID to identify the group. The interface handle for the group
 * is an arbitrary value assigned by the IM APIs. The groupID may be used
 * to provide a fast way to lookup the group information. The FAPI
 * implementations may restrict the range of values assigned to this field
 * or may impose restrictions on the way this number is constructed and
 * any such restrictions are outside the scope of NPF. This field is not
 * the IMA ID sent in the ICP cells.
 */
 NPF_F_IMA_Group_ID_t groupID;

 /* IMA protocol version – 1_0 or 1_1. Refer section 2.1.2.2 of Interface
 * Management API Implementation Agreement (ATM Interfaces) Revision 3.0
 * for type definition
 */
 NPF_IfATM_IMA_Ver_t imaVer;

 /* Minimum number of active receive links to make group operational */
 NPF_uint8_t minNumRxLinks;

 /* Minimum number of active transmit links to make group operational */
 NPF_uint8_t minNumTxLinks;

 /* Expected bandwidth in bits per second of the links which may be
 * added to this group. If configured as 0, it indicates that the FAPI
 * implementation may derive this from the first link that is added to the
 * group
 */
 NPF_uint32_t expLinkRate;

 /* IMA Group Symmetry Mode. Refer section 2.1.2.2 of Interface Management
 * API Implementation Agreement (ATM Interfaces) Revision 3.0
 * for type definition */
 NPF_IfATM_IMA_Symmetry_t symmetry;

 /* Transmit clocking mode – CTC/ITC. Refer section 2.1.2.4 of Interface
 * Management API Implementation Agreement (ATM Interfaces) Revision 3.0
 * for type definition
 */
 NPF_IfATM_IMA_Tclock_t neTxClockMode;

 /* Link ID of the default transmit timing reference link
 * The Tx reference link ID specified below is used as a hint by the
 * FAPI implementation to choose the TX timing reference link. If the link
 * link corresponding to the LID hinted below is available, it is selected
 * as the timing reference link. A value of -1 specifies that no hint is
 * being provided by the FAPI client to the FAPI implementation and the
 * LFB/FAPI are free to choose a suitable link as the timing reference
 * link */
 NPF_int8_t defTxTimingRefLinkLID;

 /* IMA ID configured for the near end */
 NPF_uint8_t txImaID;

 /* Frame length to use in transmit direction. Refer section 2.1.2.3 of
 * Interface Management API Implementation Agreement (ATM Interfaces)

 VCBIS Task Group 12

Network Processing Forum Software Working Group

 * Revision 3.0 for type definition */
 NPF_IfATM_IMA_FrameLength_t txFrameLength;

 /* Maximum tolerated differential delay in milliseconds. Refer section
 * 4.1.16 of ATM Configuration Manager Functional API (Work in progress)
 * for type definition
 */
 NPF_F_ATM_Timers_t diffDelayMax;

 /* Alpha value to be used by IFSM */
 NPF_F_IMA_AlphaValue_t alphaValue;

 /* Beta value to be used by the IFSM */
 NPF_F_IMA_BetaValue_t betaValue;

 /* Gamma value to be used by the IFSM */
 NPF_F_IMA_GammaValue_t gammaValue;

 /* Administrative status of the group – UP/DOWN. Refer section
 * 4.1.17 of ATM Configuration Manager Functional API (Work in progress)
 * for type definition
 */
 NPF_ObjStatus_t adminStatus;

 /* Configuration for test procedure */
 NPF_F_IMA_Group_Test_Mode_t testMode;

} NPF_F_IMA_Group_Config_t;

4.1.2.8 IMA Group States
The structure returns the state of the group and group traffic state machines for this group.

typedef struct {
 /* Status of the group state machines for this group */
 NPF_F_IMA_GSM_State_t neGroupState;
 NPF_F_IMA_GSM_State_t feGroupState;

 /* Status of the group traffic state machine for this group */
 NPF_F_IMA_GTSM_State_t gtsmState;

 /* Whether test procedure disabled or operational */
 NPF_F_IMA_Test_Proc_Status_t testProcStatus;

 /* Status of the test (if operational) – failed/passed */
 NPF_boolean_t testProcFailed; /* TRUE/FALSE */

} NPF_F_IMA_Group_State_t;

4.1.2.9 IMA Group Query Information
This structure defines the information returned when an IMA group is queried. The structure returns
the group configuration information as well as the status of the various state machines for this group.

typedef struct {
 /* IMA group configuration */
 NPF_F_IMA_Group_Config_t neGroupConfig;

 /* Status of the state machines for this group */
 NPF_F_IMA_Group_State_t gsmGtsmState;

 /* FE Transmit clocking mode – CTC/ITC. Refer section 2.1.2.4 of Interface

 VCBIS Task Group 13

Network Processing Forum Software Working Group

 * Management API Implementation Agreement (ATM Interfaces) Revision 3.0
 * for type definition
 */
 NPF_IfATM_IMA_Tclock_t feTxClockMode;

 /* IMA ID configured for the far end */
 NPF_uint8_t rxImaID;

 /* Frame length used in receive direction. Refer section 2.1.2.2 of
 * Interface Management API Implementation Agreement (ATM Interfaces)
 * Revision 3.0 for type definition
 */
 NPF_IfATM_IMA_FrameLength_t rxFrameLength;

 /* ID of the link in group with least delay */
 NPF_F_IMA_Link_ID_t leastDelayLinkID;

 /* Link ID of the current transmit timing reference link */
 NPF_F_IMA_Link_ID_t curTxTimingRefLinkLID;

 /* Link ID of the current receive timing reference link */
 NPF_F_IMA_Link_ID_t curRxTimingRefLinkLID;

 /* OAM label being Tx – identifies version negotiated/configured */
 NPF_uint8_t txOamLabel;

 /* OAM label being Rx – identifies version negotiated/configured */
 NPF_uint8_t rxOamLabel;

 /* Available cell rate (cells per second) in transmit direction */
 NPF_uint32_t txAvailCellRate;

 /* Available cell rate (cells per second)in receive direction */
 NPF_uint32_t rxAvailCellRate;

 /* Test procedure status. This field if valid only if the test procedure
 * is operation on link in this group. When set to NPF_TRUE it indicates
 * that the test procedure failed and the bit map of links on which the
 * test pattern failed to loop back is specified in the testResultBitMap
 * field.
 */
 NPF_boolean_t testProcFailed;

 /* Bit map indicating the links on which the test pattern failed to loop
 * back. Valid only if the test procedure is operation on this group
 */
 NPF_uint32_t testResultBitMap;

 /* Number of configured RX links */
 NPF_uint8_t numRxCfgLinks;

 /* Array of link Ids of Rx links configured for this group */
 NPF_F_IMA_Link_ID_t *rxCfgLinkArr;

 /* Number of configured TX links */
 NPF_uint8_t numTxCfgLinks;

 /* Array of link Ids of Tx links configured for this group */
 NPF_F_IMA_Link_ID_t *txCfgLinkArr;

 VCBIS Task Group 14

Network Processing Forum Software Working Group

 /* Number of active RX links */
 NPF_uint8_t numRxActLinks;

 /* Array of link Ids of active Rx links for this group */
 NPF_F_IMA_Link_ID_t *rxActLinkArr;

 /* Number of active TX links */
 NPF_uint8_t numTxActLinks;

 /* Array of link Ids of active Tx links for this group */
 NPF_F_IMA_Link_ID_t *txActLinkArr;
} NPF_F_IMA_Group_Info_t;

4.1.2.10 IMA Link Configuration
The below structure contains the configuration parameters for a link in an IMA group.

typedef struct {
 /* The Interface handle of the PDH Link */
 NPF_IfHandle_t imaIfID;

 /* A unique ID to identify the link. The interface handle for the link
 * is an arbitrary value assigned by the IM APIs. The linkID may be used
 * to provide a fast way to lookup the link information. The FAPI
 * implementations say restrict the range of values assigned to this field
 * or restrictions on the manner in which this number is constructed and
 * any such restrictions are outside the scope of NPF.
 * This number is not the logical link ID of the link.
 */
 NPF_F_IMA_Link_ID_t linkID;

 /* Group to which the link is assigned. Value 0 indicate not in a group */
 NPF_F_IMA_Group_ID_t groupID;

 /* Administrative status of the link – UP/DOWN. Refer section
 * 4.1.17 of ATM Configuration Manager Functional API (Work in progress)
 * for type definition
 */
 NPF_ObjStatus_t adminStatus;

 /* Logical Link ID (LID) used in Transmit direction. A value of -1
 * assigned to the txLinkId indicates that the FAPI implementation is
 * to choose the LID to be assigned to this link */
 NPF_int8_t txLinkId;

 /* ICP cell offset for frames sent on this link. The FAPI client may
 * assign a value of -1 to the icpCellOffset indicating that the
 * FAPI implementation is free to choose the ICP cell offset
 * When configured as -1, the FAPI implementation may choose to distribute
 * ICP cells from link to link withing an IMA group in an uniform fashion
 * across the IMA frame. The mechanism used to select the ICP cell offset
 * by FAPI implementation when the icpCellOffset is set to -1 is outside
 * the scope of NPF
 */
 NPF_uint16_t icpCellOffset;
} NPF_F_IMA_Link_Config_t;

 VCBIS Task Group 15

Network Processing Forum Software Working Group

4.1.2.11 IMA Link States
The structure returns receive and transmit link state machines states for this link.

typedef struct {
 /* near end IMA Rx LSM State */
 NPF_F_IMA_LSM_State_t neRxLinkState;

 /* near end IMA Tx LSM State */
 NPF_F_IMA_LSM_State_t neTxLinkState;

 /* far end IMA Rx LSM State */
 NPF_F_IMA_LSM_State_t feRxLinkState;

 /* far end IMA Tx LSM State */
 NPF_F_IMA_LSM_State_t feTxLinkState;
} NPF_F_IMA_Link_State_t;

4.1.2.12 IMA Link Query Information
This structure defines the information returned when an IMA link is queried. The structure returns the
link configuration information as well as the status of the various state machines for this link.

typedef struct {
 /* near end IMA link configuration */
 NPF_F_IMA_Link_Config_t neLinkConfig;

 /* NE/FE Rx and Tx LSM states */
 NPF_F_IMA_Link_State_t linkStates;

 /* Logical Link ID (LID) in Receive direction. A value of -1 indicates
 * that the LID is not known */
 NPF_int8_t rxLinkId;

 /* Differential delay measured between this link and the link within the
 * IMA group with the least delay. Refer section 4.1.16 of ATM
 * Configuration Manager Functional API (Work in progress) for type
 * definition
 */
 NPF_F_ATM_Timers_t relativeDelay;

} NPF_F_IMA_Link_Info_t;

4.1.2.13 IMA Group Statistics
This structure defines the IMA group related statistics information.

typedef struct {

 /* Time in seconds for which this group has been in operation state */
 NPF_uint32_t groupRunningSecs;

 /* Count of one second intervals where the GTSM was unavailable (R136)*/
 NPF_uint32_t groupUnavailSecs;

 /* Count of near end group failures (R137)*/
 NPF_uint32_t neNumFailures;

 /* Count of far end group failures (O25)*/
 NPF_uint32_t feNumFailures;
} NPF_F_IMA_Group_Stats_t;

 VCBIS Task Group 16

Network Processing Forum Software Working Group

4.1.2.14 IMA Link Statistics
This structure defines the IMA link related statistics information.

typedef struct {
 /* Count of errored, missing, invalid ICP except during
 SES-IMA/UAS-IMA (R125) */
 NPF_uint32_t imaViolations;

 /* Number of OIF anomalies at near end except during
 SES-IMA/UAS-IMA (O20) */
 NPF_uint32_t oifAnomalies;

 /* Count of 1 sec intervals containing > 30% invalid
 IMA, link defects, LIF, or LODS except during UAS-IMA (R126) */
 NPF_uint32_t neSevErroredSecs;

 /* Count of 1 sec intervals containing RDI-IMA defects
 Except during UAS-IMA-FE condition (R127) */
 NPF_uint32_t feSevErroredSecs;

 /* Count of unavailable seconds at near end (R128) */
 NPF_uint32_t neUnavailSecs;

 /* Count of unavailable seconds at far end (R129) */
 NPF_uint32_t feUnavailSecs;

 /* Count of unusable seconds at near end LSM (R130) */
 NPF_uint32_t neTxUnusableSecs;

 /* Count of unusable seconds at near end LSM (R131) */
 NPF_uint32_t neRxUnusableSecs;

 /* Count of seconds with Tx unusable indications from
 far end Tx LSM (R132) */
 NPF_uint32_t feTxUnusableSecs;

 /* Count of seconds with Rx unusable indications from
 far end Rx LSM (R133) */
 NPF_uint32_t feRxUnusableSecs;

 /* Number of times near end transmit failure alarm
 condition entered (R134)*/
 NPF_uint32_t neTxNumFailures;

 /* Number of times near end receive failure alarm
 condition entered (R135)*/
 NPF_uint32_t neRxNumFailures;

 /* Number of times far end transmit failure alarm
 condition entered (O21)*/
 NPF_uint32_t feTxNumFailures;

 /* Number of times far end receive failure alarm
 condition entered (O22)*/
 NPF_uint32_t feRxNumFailures;

 /* Number of stuff events inserted in tx direction (O-23) */
 NPF_uint32_t txStuffs;

 VCBIS Task Group 17

Network Processing Forum Software Working Group

 /* Number of stuff events detected in rx direction (O-24) */
 NPF_uint32_t rxStuffs;

 /* Flag helping the FAPI user to simplify and make the reporting of
 Unavailable Seconds more efficient at 15 minutes PM intervals. The
 Flag indicates the following.

 1) Link is in Available state and did count SES in the last second
 before the statistic query.

 2) Link is in Unavailability state and did not count SES in the last
 Second before the statistic query.

 3) None of 1 or 2.

 The flag set to 1 indicates that Unavailability state is about to be
 Entered and the flag set to 2 indicates that Unavailability state is
 about to be left.

 In both these cases, the FAPI user must do a new query 10 seconds later
 To secure reporting the correct SES and UAS values. When the flag is
 set to 3, the FAPI user can use the SES and UAS counter values directly
 and does not need to make another query 10 seconds later. */

 NPF_uint32_t uasInfoFlag;
} NPF_F_IMA_Link_Stats_t;

4.1.2.15 ICP Query Response Structure
The FAPI client may request the FAPI implementation to provide the last ICP cell seen on any link in
an IMA group. The below structure is used to return the ATM SDU of the ATM cell containing the
last seen ICP cell on the queried IMA link. If no valid ICP cells have been received on the queried
link, the icpValid field shall be set to FALSE.

typedef struct {
 NPF_boolean_t icpValid; /* Whether ICP cell information valid */
 NPF_uint8_t icp_bytes[48]; /* ICP Cell payload */
} NPF_F_IMA_Icp_Cell_t;

4.1.2.16 IMA LFB Attributes query response
The attributes of an IMA are the following:

typedef struct {
 NPF_uint32_t maxNumGroups; /* Maximum possible IMA groups */
 NPF_uint32_t curNumGroups; /* Current number of IMA groups */
 NPF_uint32_t maxNumLinks; /* Maximum possible IMA links */
 NPF_uint32_t curNumLinks; /* Current number of IMA links */
} NPF_F_IMA_LFB_AttrQueryResponse_t;

The maxNumGroups field contains the maximum number of IMA groups supported in this IMA LFB.
The curNumGroups field contains the number of IMA groups currently configured in the LFB. The
maxNumLinks field contains the maximum number of IMA links supported in this IMA LFB. The
curNumLinks field contains the number of IMA links currently configured in the LFB.

4.2 Data Structures for Completion Callbacks
4.2.1 Asynchronous Response

The Asynchronous Response data structure is used during callbacks in response to API invocations.

 VCBIS Task Group 18

Network Processing Forum Software Working Group

/*
* This union is a handy way of representing the various object identifiers
* used by the APIs.
*/
typedef union {
 /* IMA Group ID */
 NPF_F_IMA_Group_ID_t groupID;

 /* IMA Link ID */
 NPF_F_IMA_Link_ID_t linkID;
} NPF_F_IMA_Id_t;

/*
* An asynchronous response contains a configuration object ID,
* an error or success code, and in some cases a function-
* specific structure embedded in a union. One or more of
* these is passed to the callback function as an array
* within the callback data structure (below)
*/
typedef struct {/* Asynchronous Response Structure */
 NPF_error_t error; /* Error code for this resp */
 NPF_F_IMA_Id_t objId; /* Object Indetifier */
 union {
 /* NPF_F_IMA_LFB_AttributesQuery() */
 NPF_F_IMA_LFB_AttrQueryResponse_t lfbAttrQueryResponse;

 /* NPF_F_IMA_Link_StatsGet() */
 NPF_F_IMA_Link_Stats_t linkStats;

 /* NPF_F_IMA_Link_StateGet() */
 NPF_F_IMA_Link_State_t linkState;

 /* NPF_F_IMA_Link_Query() */
 NPF_F_IMA_Link_Info_t linkInfo;

 /* NPF_F_IMA_Link_LastICPInfoGet() */
 NPF_F_IMA_Icp_Cell_t icpCell;

 /* NPF_F_IMA_Group_StatsGet() */
 NPF_F_IMA_Group_Stats_t groupStats;

 /* NPF_F_IMA_Group_StateGet() */
 NPF_F_IMA_Group_State_t groupState;

 /* NPF_F_IMA_Group_Query() */
 NPF_F_IMA_Group_Info_t groupInfo;

 /* NPF_F_IMA_Group_TestSet() */
 NPF_uint32_t testResultBitMap;
 } u;
} NPF_F_IMA_AsyncResponse_t;

4.2.2 Callback Type
This enumeration is used to indicate reason for invoking the callback function.

/*
* Completion Callback Types, to be found in the callback
* data structure, NPF_F_IMA_CallbackData_t.
*/
typedef enum NPF_F_IMA_CallbackType {

 VCBIS Task Group 19

Network Processing Forum Software Working Group

 /* Function to query IMA LFB attributes */
 NPF_F_IMA_ATTR_QUERY = 1,

 /* Functions for IMA group configuration and management */
 NPF_F_IMA_GROUP_SET = 2, /* Add or Modify an IMA group */
 NPF_F_IMA_GROUP_DELETE = 3, /* Delete an IMA group */
 NPF_F_IMA_GROUP_ENABLE = 4, /* Put an IMA group in service */
 NPF_F_IMA_GROUP_DISABLE = 5, /* Take an IMA group out of service */
 NPF_F_IMA_GROUP_QUERY = 6, /* Query config. And states of group*/
 NPF_F_IMA_GROUP_STATS_GET = 7, /* Query statistics of an IMA group */
 NPF_F_IMA_GROUP_STATE_GET = 8, /* Query state m/c states of a group*/
 NPF_F_IMA_GROUP_TEST_SET = 9, /* Start/Stop Test pattern procedure*/

 /* Functions for IMA link configuration and management */
 NPF_F_IMA_LINK_SET = 10, /* Add or Modify an IMA link */
 NPF_F_IMA_LINK_DELETE = 11, /* Delete an IMA link */
 NPF_F_IMA_LINK_ENABLE = 12, /* Put an IMA link in service */
 NPF_F_IMA_LINK_DISABLE = 13, /* Put an IMA link out of service */
 NPF_F_IMA_LINK_QUERY = 14, /* Query config and states of a link*/
 NPF_F_IMA_LINK_STATS_GET = 15, /* Query statistics of an IMA link */
 NPF_F_IMA_LINK_STATE_GET = 16, /* Query state m/c states of a link */
 NPF_F_IMA_LINK_LAST_ICP_GET = 17,/* Get the payload of last ICP
 * cell received on queried link */
} NPF_F_IMA_CallbackType_t;

4.2.3 Callback Data
An asynchronous response contains an error/success code and a function-specific structure embedded
in a union in the NPF_F_IMA_CallbackData_t structure.

/*
* The callback function receives the following structure containing
* one or more asynchronous responses from a single function call.
* There are several possibilities:
* 1. The called function does a single request
* - n_resp = 1, and the resp array has just one element.
* - allOK = TRUE if the request completed without error
* and the only return value is the response code.
* - if allOK = FALSE, the "resp" structure has the error code.
* 2. the called function supports an array of requests
* a. All completed successfully, at the same time, and the
* only returned value is the response code:
* - allOK = TRUE, n_resp = 0.
* b. Some completed, but not all, or there are values besides
* the response code to return:
* - allOK = FALSE, n_resp = the number completed
* - the "resp" array will contain one element for
* each completed request, with the error code
* in the NPF_F_IMA_AsyncResponse_t structure, along
* with any other information needed to identify
* which request element the response belongs to.
* - Callback function invocations are repeated in
* this fashion until all requests are complete.
* Responses are not repeated for request elements
* already indicated as complete in earlier callback function invocations.
*/
typedef struct {
 NPF_F_IMA_CallbackType_t type; /* Function called */
 NPF_boolean_t allOK; /* TRUE if all completed OK */
 NPF_uint32_t n_resp; /* Number of responses in array */

 VCBIS Task Group 20

Network Processing Forum Software Working Group

 NPF_F_IMA_AsyncResponse_t resp; /* Response struct */
} NPF_F_IMA_CallbackData_t;

The callback data that returned for different callback types is summarized in Table 4-1 Callback type
to Callback data mapping table.

Table 4-1 Callback type to Callback data mapping table
Callback Type Callback Data
NPF_F_IMA_ATTR_QUERY lfbAttrQueryResponse
NPF_F_IMA_GROUP_SET None
NPF_F_IMA_GROUP_DELETE None
NPF_F_IMA_GROUP_ENABLE None
NPF_F_IMA_GROUP_DISABLE None
NPF_F_IMA_GROUP_QUERY groupInfo
NPF_F_IMA_GROUP_STATS_GET groupStats
NPF_F_IMA_GROUP_STATE_GET groupState
NPF_F_IMA_GROUP_TEST_SET None
NPF_F_IMA_LINK_SET None
NPF_F_IMA_LINK_DELETE None
NPF_F_IMA_LINK_ENABLE None
NPF_F_IMA_LINK_DISABLE None
NPF_F_IMA_LINK_QUERY linkInfo
NPF_F_IMA_LINK_STATS_GET linkStats
NPF_F_IMA_LINK_STATE_GET linkState
NPF_F_IMA_LINK_LAST_ICP_GET icpCell

The IMA LFB API functions and their type codes are summarized in Table 4-2.

Table 4-2 Callback type to function mapping
Callback Type Function
NPF_F_IMA_ATTR_QUERY NPF_F_IMA_LFB_AttributesQuery()
NPF_F_IMA_GROUP_SET NPF_F_IMA_GroupSet()
NPF_F_IMA_GROUP_DELETE NPF_F_IMA_GroupDelete()
NPF_F_IMA_GROUP_ENABLE NPF_F_IMA_GroupEnable()
NPF_F_IMA_GROUP_DISABLE NPF_F_IMA_GroupDisable()
NPF_F_IMA_GROUP_QUERY NPF_F_IMA_GroupQuery()
NPF_F_IMA_GROUP_STATS_GET NPF_F_IMA_GroupStatsGet()
NPF_F_IMA_GROUP_STATE_GET NPF_F_IMA_GroupStateGet()
NPF_F_IMA_GROUP_TEST_SET NPF_F_IMA_GroupTestSet()
NPF_F_IMA_LINK_SET NPF_F_IMA_LinkSet()
NPF_F_IMA_LINK_DELETE NPF_F_IMA_LinkDelete()
NPF_F_IMA_LINK_ENABLE NPF_F_IMA_LinkEnable()
NPF_F_IMA_LINK_DISABLE NPF_F_IMA_LinkDisable()
NPF_F_IMA_LINK_QUERY NPF_F_IMA_LinkQuery()
NPF_F_IMA_LINK_STATS_GET NPF_F_IMA_LinkStatsGet()
NPF_F_IMA_LINK_STATE_GET NPF_F_IMA_LinkStateGet()
NPF_F_IMA_LINK_LAST_ICP_GET NPF_F_IMA_Link_LastICPInfoGet()

4.3 Data Structures for Event Notifications
4.3.1 Event Notification Types

The event type indicates the type of event data in the union of event structures returned in
NPF_F_IMA_Event_t.

 VCBIS Task Group 21

Network Processing Forum Software Working Group

/*
* IMA LFB Event Types
*/
typedef enum {
 /* LIF defect detected at NE for the link */
 NPF_F_IMA_EVENT_LINK_LIF_RAISED = 1,

 /* LIF defect cleared at NE for the link */
 NPF_F_IMA_EVENT_LINK_LIF_CLEARED = 2,

 /* LODS defect detected at NE for the link */
 NPF_F_IMA_EVENT_LINK_LODS_RAISED = 3,

 /* LODS defect cleared at NE for the link */
 NPF_F_IMA_EVENT_LINK_LODS_CLEARED = 4,

 /* RDI-IMA defect detected at NE for the link */
 NPF_F_IMA_EVENT_LINK_RFI_RAISED = 5,

 /* RDI-IMA defect detected at NE for the link */
 NPF_F_IMA_EVENT_LINK_RFI_CLEARED = 6,

 /* Tx link found to be not connected to matching IMA unit at FE */
 NPF_F_IMA_EVENT_LINK_TX_MISCONNECT_RAISED = 7,

 /* Tx link misconnection cleared */
 NPF_F_IMA_EVENT_LINK_TX_MISCONNECT_CLEARED = 8,

 /* Rx link found to be not connected to matching IMA unit at FE */
 NPF_F_IMA_EVENT_LINK_RX_MISCONNECT_RAISED = 9,

 /* Rx link misconnection cleared */
 NPF_F_IMA_EVENT_LINK_RX_MISCONNECT_CLEARED = 10,

 /* Implementation specific Tx fault raised */
 NPF_F_IMA_EVENT_LINK_TX_FAULT_RAISED = 11,

 /* Implementation specific Tx fault cleared */
 NPF_F_IMA_EVENT_LINK_TX_FAULT_CLEARED = 12,

 /* Implementation specific Rx fault raised */
 NPF_F_IMA_EVENT_LINK_RX_FAULT_RAISED = 13,

 /* Implementation specific Rx fault cleared */
 NPF_F_IMA_EVENT_LINK_RX_FAULT_CLEARED = 14,

 /* FE reports Tx link unusable */
 NPF_F_IMA_EVENT_LINK_TX_UNUSABLE_FE_RAISED = 15,

 /* FE reports Tx link usable/active */
 NPF_F_IMA_EVENT_LINK_TX_UNUSABLE_FE_CLEARED = 16,

 /* FE reports Rx link unusable */
 NPF_F_IMA_EVENT_LINK_RX_UNUSABLE_FE_RAISED = 17,

 /* FE reports Rx link usable/active */
 NPF_F_IMA_EVENT_LINK_RX_UNUSABLE_FE_CLEARED = 18,

 /* Test pattern failed to loop on specified link */

 VCBIS Task Group 22

Network Processing Forum Software Working Group

 NPF_F_IMA_EVENT_LINK_TEST_LINK_FAIL_RAISED = 19,

 /* Test link failure condition on specified link cleared */
 NPF_F_IMA_EVENT_LINK_TEST_LINK_FAIL_CLEARED = 20,

 /* Event to notify change in near end link state machine transition */
 NPF_F_IMA_EVENT_LINK_STATE_MACHINE_TRANSITION = 21,

 /* Far end group in startup state */
 NPF_F_IMA_EVENT_GROUP_STARTUP_FE_RAISED_RAISED = 22,

 /* Far end tried to use unacceptable configuration params */
 NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_RAISED = 23,

 /* Far end uses new acceptable configuration params */
 NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_CLEARED = 24,

 /* Far end reports unacceptable configuration params */
 NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_FE_RAISED = 25,

 /* Far end accepts new configuration params */
 NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_FE_CLEARED = 26,

 /* Less than P(tx) or P(rx) links are active */
 NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_RAISED = 27,

 /* Condition where less than P(tx) or P(rx) links are active cleared */
 NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_CLEARED = 28,

 /* Far end reports less than P(rx) or P(tx) links are active */
 NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_FE_RAISED = 29,

 /* Condition where Far end reports less than P(rx) or P(tx)
 links are active cleared */
 NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_FE_CLEARED = 30,

 /* Far end reports that it is blocked */
 NPF_F_IMA_EVENT_GROUP_BLOCKED_FE_RAISED = 31,

 /* Far end reports that blocking no longer exists */
 NPF_F_IMA_EVENT_GROUP_BLOCKED_FE_CLEARED = 32,

 /* Far end transmit clock mode is different than NE transmit clock mode */
 NPF_F_IMA_EVENT_GROUP_TIMING_MISMATCH_RAISED = 33,

 /* Mismatch of far end transmit clock mode and NE transmit clock mode
 * cleared */
 NPF_F_IMA_EVENT_GROUP_TIMING_MISMATCH_CLEARED = 34,

 /* Test pattern failed to loop on some links */
 NPF_F_IMA_EVENT_GROUP_TEST_LINK_FAIL_RAISED = 35,

 /* Test link failure condition cleared on all link */
 NPF_F_IMA_EVENT_GROUP_TEST_LINK_FAIL_CLEARED = 36,

 /* Event to notify change in near end group state machine transition */
 NPF_F_IMA_EVENT_GROUP_STATE_MACHINE_TRANSITION = 37,

 /* Event to notify change in near end group traffic state machine

 VCBIS Task Group 23

Network Processing Forum Software Working Group

 transition */
 NPF_F_IMA_EVENT_GROUP_TRAFFIC_STATE_MACHINE_TRANSITION = 38,

} NPF_F_IMA_Event_t;

4.3.1.1 Event Mask bit definitions
/*
 * Definitions for selectively enabling IMA LFB Events
 */
/* Link specific alarms */
#define NPF_F_IMA_EVENT_LINK_LIF (1 << 0)
#define NPF_F_IMA_EVENT_LINK_LODS (1 << 1)
#define NPF_F_IMA_EVENT_LINK_RFI (1 << 2)
#define NPF_F_IMA_EVENT_LINK_TX_MISCONNECT (1 << 3)
#define NPF_F_IMA_EVENT_LINK_RX_MISCONNECT (1 << 4)
#define NPF_F_IMA_EVENT_LINK_TX_FAULT (1 << 5)
#define NPF_F_IMA_EVENT_LINK_RX_FAULT (1 << 6)
#define NPF_F_IMA_EVENT_LINK_TX_UNUSABLE_FE (1 << 7)
#define NPF_F_IMA_EVENT_LINK_RX_UNUSABLE_FE (1 << 8)
#define NPF_F_IMA_EVENT_LINK_TEST_LINK_STATUS (1 << 9)
#define NPF_F_IMA_EVENT_LINK_STATE_MACHINE_TRANSITION (1 << 10)

/* Group specific alarms */
#define NPF_F_IMA_EVENT_GROUP_STARTUP_FE (1 << 16)
#define NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED (1 << 17)
#define NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_FE (1 << 18)
#define NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS (1 << 19)
#define NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_FE (1 << 20)
#define NPF_F_IMA_EVENT_GROUP_BLOCKED_FE (1 << 21)
#define NPF_F_IMA_EVENT_GROUP_TIMING_MISMATCH (1 << 22)
#define NPF_F_IMA_EVENT_GROUP_TEST_LINK_STATUS (1 << 23)
#define NPF_F_IMA_EVENT_GROUP_STATE_MACHINE_TRANSITION (1 << 24)
#define NPF_F_IMA_EVENT_GROUP_TRAFFIC_STATE_MACHINE_TRANSITION (1 << 25)
#define NPF_F_IMA_EVENT_LAST (1 << 25)

The FAPI client may register for all events using NPF_EV_ALL_EVENTS_ENABLE.

4.3.2 Event Notification Structures
This section describes the various events which MAY be implemented. It is important to note that
even if an implementation does not support any of these events, the implementation still needs to
provide the register and deregister event function to enable interoperability.
This structure defines all the possible event definitions for the IMA LFB FAPI. An event type field
indicates which member of the union is relevant in the specific structure.

/*
 * IMA LFB Event reporting data type
 * This structure represents a single event in an event array. The type
 * field indicates the specific event in the union.
 */
typedef struct {
 NPF_F_IMA_Event_t eventType; /* Type of event reported */
 NPF_F_IMA_Id_t objId; /* Object for which event raised */

 union {
 /* Link states – filled for link specific events */
 NPF_F_IMA_Link_State_t linkState;

 /* Group states – filled for group specific events */
 NPF_F_IMA_Group_State_t groupState;

 VCBIS Task Group 24

Network Processing Forum Software Working Group

 } u;
} NPF_F_IMA_EventData_t;

4.4 Error Codes
4.4.1 Common NPF Error Codes

The common error codes that are returned by IMA LFB are listed below:
• NPF_NO_ERROR - This value MUST be returned when a function was successfully invoked.

This value is also used in completion callbacks where it MUST be the only value used to
signify success.

• NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative.

• NPF_E_BAD_CALLBACK_HANDLE - A function was invoked with a callback handle that did
not correspond to a valid NPF callback handle as returned by a registration function, or a
callback handle was registered with a registration function belonging to a different API than
the function call where the handle was passed in.

• NPF_E_BAD_CALLBACK_FUNCTION - A callback registration was invoked with a function
pointer parameter that was invalid.

• NPF_E_CALLBACK_ALREADY_REGISTERED - A callback or event registration was invoked
with a pair composed of a function pointer and a user context that was previously used for an
identical registration.

• NPF_E_FUNCTION_NOT_SUPPORTED - This error value MUST be returned when an optional
function call is not implemented by an implementation. This error value MUST NOT be
returned by any required function call. This error value MUST be returned as the function
return value (i.e., synchronously).

4.4.2 LFB Specific Error Codes
This section defines IMA LFB APIs error codes. These codes are used in callbacks to deliver results
of the requested operations. The base for the error codes used in ATM LFBs is derived as
LFB_TYPE_CODE * 100.

/* Asynchronous error codes (returned in function callbacks) */
typedef NPF_uint32_t NPF_F_Ima_ErrorType_t;

#define NPF_IMA_BASE_ERR (NPF_F_IMA_LFB_TYPE * 100)
#define IMA_ERR(n) ((NPF_F_IMA_ErrorType_t) (NPF_IMA_BASE_ERR+ (n))

/* LFB ID is not an ID of LFB that has IMA functionality*/
#define NPF_IMA_F_E_INVALID_IMA_BLOCK_ID IMA_ERR (0)

/* Invalid configuration attributes */
#define NPF_IMA_F_E_INVALID_ATTRIBUTE IMA_ERR (1)

/* Test procedure failed on one or more receive links */
#define NPF_IMA_F_E_TEST_PROC_FAILED IMA_ERR (2)

/* Group specified in link configuration not recognized */
#define NPF_IMA_F_E_UNKNOWN_GROUP IMA_ERR (3)

/* Group cannot be deleted as it has associated links and FAPI client has not
 * requested deletion of contained links */
#define NPF_IMA_F_E_CONT_LINKS_EXIST IMA_ERR (4)

 VCBIS Task Group 25

Network Processing Forum Software Working Group

5 Functional API (FAPI)

5.1 Required Functions
5.1.1 Completion Callback Function

This callback function is for the application to register an asynchronous response handling routine to
the IMA API implementation. This callback function is intended to be implemented by the
application. The application should register this function with the IMA API implementation using the
NPF_F_IMA_Register function.

typedef void (*NPF_F_IMA_CallbackFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_F_IMA_CallbackData_t data);

5.1.1.1 Description
This function is a routine to handle to IMA asynchronous responses.

5.1.1.2 Input Parameters
• userContext - The context item supplied by the application when the completion

callback routine was registered.
• correlator - The correlator item that was supplied by the application when the IMA

API function call was invoked.
• data - The response information related to the particular callback type

5.1.1.3 Output Parameters
None

5.1.1.4 Return Values
None

5.1.2 Completion Callback Registration Function
NPF_error_t NPF_F_IMA_Register (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_F_IMA_CallbackFunc_t callbackFunc,
 NPF_OUT NPF_callbackHandle_t *callbackHandle);

5.1.2.1 Description
This function is used by an application to register its completion callback function for receiving
asynchronous responses related to IMA API function calls. Applications MAY register multiple
callback functions using this function. The pair of userContext and callbackFunc identifies the
callback function. For each individual pair, a unique callbackHandle will be assigned for future
reference. Since the callback function is identified by both userContext and callbackFunc,
duplicate registration of the same callback function with a different userContext is allowed. Also,
the same userContext can be shared among different callback functions. Duplicate registration of
the same userContext and callbackFunc pair has no effect. On attempting to register a duplicate
callback function the handle of the callback previously registered will be returned in
callBackHandle and the return code will indicate NPF_E_ALREADY_REGISTERED.

5.1.2.2 Input Parameters
• userContext – A parameter for uniquely identifying the context of the application

registering the completion callback function. The exact value will be provided back to the
registered completion callback function as its first parameter when it is called.
Applications can assign any value to the userContext and the value is completely
opaque to the API implementation.

 VCBIS Task Group 26

Network Processing Forum Software Working Group

•

5.1.2.3 Outpu

 pair. This handle will be used by the application to specify which
 It

5.1.2.4 Return
•

AD_CALLBACK_FUNCTION – The callbackFunc is NULL or invalid.
made since the userContext

5.1.2.5 Notes
• ication interested in receiving

asynchronous responses for IMA API function calls.
sted above.

5.1.3 Comp
NPF r

ndle);

Thi k function pair.
eters

llback routine was registered.
5.1.3.3 Ou

None

• NPF_NO_ERROR - De-registration was completed successfully.
AD_CALLBACK_HANDLE – De-registration did not complete successfully due to

5.1.3.5 Notes

This function operates in a synchronous manner, providing a return value as listed above.

been invoked. It is the

5.1.4 Event
typedef void (*NPF_F_IMA_EventCallFunc_t) (

t_t userContext,
 nEvent,

rray);

callbackFunc – The pointer to the completion callback function to be registered.
t Parameters

• callbackHandle - A unique identifier assigned for the registered userContext and
callbackFunc
callback function to be called when invoking asynchronous NPF IMA API functions.
will also be used when deregistering the userContext and callbackFunc pair.
 Values
NPF_NO_ERROR - The registration completed successfully.

• NPF_E_B

• NPF_E_ALREADY_REGISTERED – No new registration was
and callbackFunc pair was already registered.

This API function may be invoked by any appl

• This function operates in a synchronous manner, providing a return value as li

letion Callback Deregistration Function
_e ror_t NPF_F_IMA_Deregister (

 NPF_IN NPF_callbackHandle_t callbackHa

5.1.3.1 Description
unctio r s f n is used by an application to deregiste a user context and callbac

5.1.3.2 Input Param
• callbackHandle - The unique identifier returned to the application when the

completion ca
tput Parameters

5.1.3.4 Return Values

• NPF_E_B
problems with the callback handle provided.

• This API function MAY be invoked by any application no longer interested in receiving
asynchronous responses for IMA API function calls.

•
• There may be a timing window where outstanding callbacks continue to be delivered to

the callback routine after de-registration function has
implementation’s responsibility to guarantee that the callback function is not called after
the deregister function has returned.

Handler Function

 NPF_IN NPF_userContex
 NPF_IN NPF_uint32_t
 NPF_IN NPF_F_IMA_EventData_t *imaEventA

 VCBIS Task Group 27

Network Processing Forum Software Working Group

5.1.4. Description
on is for the FAPI client to register an event handling routine to the IMA LFB.

ler

PI client, and be

on is invoked when the related event happens. The IMA LFB may invoke the registered

5.1 meters
 – A context item used for uniquely identifying the context of the

rovided

• orted.
ing an array of event information structures.

5.1.4.3 Ou

5.1 turn Values

5.1 nt Registration Function
dler_Register(

userContext,

;

5.1.5.
gister its event handling routine for receiving notifications of LFB Events uses this

d

air,

5.1
 – A context item used for uniquely identifying the context of the

rovided

• ains the class of event for which handler is being registered and a
pointer to the event handling routine to be registered.

1
This handler functi
One or more events can be notified to the application through a single invocation of this event hand
function. Information on each event is represented in an array in the imaEventArray structure,
where a client can traverse through the array and process each of the events.
The registered event handler function is intended to be implemented by the FA
registered to the IMA LFB implementation through NPF_F_IMA_EventHandler_Register()
function.
This functi
event handler function any time after the NPF_F_IMA_EventHandler_Register () is invoked by
the FAPI client.

.4.2 Input Para
• userContext

application registering the completion callback function. The exact value will be p
back to the registered completion callback function as its first parameter when it is called.
The application can assign any value to the userContext and the value is completely
opaque to the implementation.
nEvent – Number of events rep

• imaEventArray – A structure contain
tput Parameters

None
.4.4 Re
None

.5 Eve
NPF_error_t NPF_F_IMA_EventHan
 NPF_IN NPF_userContext_t
 NPF_IN NPF_F_IMA_EventCallFunc_t imaEvtCallFn,
 NPF_IN NPF_eventMask_t imaEvtMask,

dl) NPF_OUT NPF_callbackHandle_t *imaEvtCallH

1 Description
A FAPI client to re
function. The FAPI client may register multiple event handling routines using this function. The pair
of userContext and imaEvtCallFn identifies the event handling routine. For each individual pair, a
unique imaEvtCallHdl will be assigned for future reference. Since the event handling routine is
identified by both userContext and imaEventCallFunc, duplicate registration of same event
handling routine with different userContext is allowed. Also, the same userContext can be share
among different event handling routines. Duplicate registration of the same userContext and
imaEventCallFunc pair has no effect, and will output a handle that is already assigned to the p
and will return an error that indicates that the callback has already been registered.
.5.2 Input Parameters

• userContext
application registering the completion callback function. The exact value will be p
back to the registered completion callback function as its 1st parameter when it is called.
Application can assign any value to the userContext and the value is completely opaque
to the implementation.
imaEvtCallFn – Cont

 VCBIS Task Group 28

Network Processing Forum Software Working Group

• imaEvtMask – Indicates which events the FAPI client wishes to receive. An application
can register a handler to receive selected events by setting a bit in the

BLE

5.1.5.3 Outpu
• d userContext and

Func pair. The FAPI client to specify which event handling routine to be

5.1.5.4 Return
•

NKNOWN - An unknown error occurred in the implementation such that there is

• tion was made since the

5.1.6 Eve
NPF_err

imaEventCallHandle);

Th er. If there
n might be

5.1
le – The unique identifier representing the pair of user context and

 to be de-registered.
5.1.6.3 Ou

None

• NPF_NO_ERROR - De-registration was completed successfully.
NKNOWN - An unknown error occurred in the implementation such that there is

5.1.7 LFB
NPF_er

 callbackHandle,
correlator,

ting,

NPF_eventMask_t parameter for each event it wishes to receive, when it calls the event
registration function. A mask value set to NPF_EV_ALL_EVENTS_ENA selects all
events. If the FAPI client wishes to change the selection of events for a particular handler
function, it may call the event registration function again with the same handler function
address and context, but with a different event selection mask.
t Parameters
imaEvtCallHdl – A unique identifier assigned for the registere
imaEventCall
called when invoking asynchronous functions will use this handle. It will also be used
when de-registering the userContext and imaEventCallFunc pair.
 Values
NPF_NO_ERROR - The registration completed successfully.

• NPF_E_U
no error code defined that is more appropriate or informative

• NPF_E_BAD_CALLBACK_FUNCTION: imaEventCallFunc is NULL.
NPF_E_CALLBACK_ALREADY_REGISTERED: No new registra
userContext and imaEventCallFunc pair was already registered.

nt Handler Deregistration Function
or_t NPF_F_IMA_EventHandler_Deregister(

 NPF_IN NPF_callbackHandle_t

5.1.6.1 Description
is function is used by an application to de-register a pair of user context and event handl

g calls related to the de-registered callback function, the callback functioare any outstandin
called for those outstanding calls even after de-registration. This is a synchronous function and has no
associated completion callback.
.6.2 Input Parameters

• imaEventCallHand
event Handler

tput Parameters

5.1.6.4 Return Values

• NPF_E_U
no error code defined that is more appropriate or informative

• NPF_E_BAD_CALLBACK_HANDLE - The function does not recognize the event callback
handle. There is no effect to the registered event handler.

 Attributes Query Function
ror_t NPF_F_IMA_LFB_AttributesQuery (

 NPF_IN NPF_callbackHandle_t
 NPF_IN NPF_correlator_t
 NPF_IN NPF_errorReporting_t errorRepor
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t blockId);

 VCBIS Task Group 29

Network Processing Forum Software Working Group

5.1.7.1
me. If the IMA LFB exists,

s LFB are returned in the completion callback.
5.1

 the application when the
llback routine was registered.

he

PI invocation.

5.1.7.3 Outpu
None

• - The operation is in progress.
NKNOWN - The LFB attributes were not queried due to invalid IMA block ID

5.1.7.5 Asynch
There m b

eration completed successfully.
has IMA

The lfb t e
returned c

5.1

 cbHandle,
 cbCorrelator,

 NPF_IN NPF_errorReporting_t errorReporting,

ributes of an existing group. If
the group will not transition

5.1
 NPF_F_IMA_Register()

• cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.

 Description
Thi
the attributes of thi

s function call is used to query ONLY one IMA LFB’s attributes at a ti

.7.2 Input Parameters
• dle - The unique identifier provided tocallbackHan

completion ca
• correlator - A unique application invocation context that will be supplied to t

asynchronous completion callback routine.
• errorReporting - An indication of whether the application desires to receive an

asynchronous completion callback for this A
• feHandle - The forwarding element Handle returned by

NPF_F_topologyGetFEInfoList() call.
• blockId – The unique identification of the IMA LFB.

t Parameters

5.1.7.4 Return Values
NPF_NO_ERROR

• NPF_E_U
passed in input parameters.

• NPF_E_BAD_CALLBACK_HANDLE - The LFB attributes were not queried because the
callback handle was invalid.

• NPF_E_FUNCTION_NOT_SUPPORTED - The function call is not supported.
ronous Response

ay e multiple asynchronous callbacks to this request. Possible error codes are:
• NPF_NO_ERROR – Op
• NPF_E_IMA_INVALID_IMA_BLOCK_ID – LFB ID is not an ID of LFB that

functionality.
At rQueryResponse field of the union in the NPF_F_IMA_AsyncResponse_t structur
 in allback contains response data. The error code is returned in the error field.

.8 Add or Modify an IMA group
NPF_error_t NPF_F_IMA_GroupSet (
 NPF_IN NPF_callbackHandle_t

 NPF_IN NPF_correlator_t

 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,

 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_IMA_Group_Config_t *cfgArray);

5.1.8.1 Description
This function adds/creates one or more IMA groups, or modifies the att

status of the group is set as NPF_STATUS_DOWN, the administrative
further from down state.
.8.2 Input Parameters

• cbHandle – The callback handle returned by

 VCBIS Task Group 30

Network Processing Forum Software Working Group

• errorReporting - An indication of whether the application desires to receive an

•
uctures

5.1.8.3 Outpu
None

5.1.8.4 Ret n

N - The configurations did not complete successfully due to problems
encountered when handling the input parameters.

AD_CALLBACK_HANDLE - The configuration did not complete successfully as
ck handle was invalid.

5.1.8.5 Asy h
A total nu the
callback fun ontains a group ID in the field
of the re o
function inv ode NPF_NO_ERROR is returned.

rned:

TTRIBUT

5.1.9 Del
NPF_ r
 F

 NPF
 NPF_IN NPF_errorReporting_t errorReporting,

 feHandle,
t blockId,

 NPF_IN NPF_boolean_t delContainedLnks,

Register()

at will be supplied to the
ronous completion callback routine.

pplication desires to receive an
 completion callback for this function call.

• IMA LFB.

asynchronous completion callback for this function call.
• feHandle - The forwarding element Handle returned by

NPF_F_ATM_topologyGetFEInfoList() call.
• blockId – The unique identification of the IMA LFB.

numEntries - Number of IMA groups to set
• cfgArray - Pointer to an array of IMA group attribute str

t Parameters

ur Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOW

• NPF_E_B
the callba

nc ronous Response
of mEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to

ction, in one or more invocations. Each response c objId
sp nse structure and a success code or a possible error code for that connection. If the

ocation was successful, an error c
The following errors could be retu

• NPF_NO_ERROR - Operation successful
• NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is

no error code defined that is more appropriate or informative
• E - Invalid attribute NPF_IMA_F_E_INVALID_A

ete an IMA group
er or_t NPF_F_IMA_GroupDelete (
NP _IN NPF_callbackHandle_t cbHandle,

_IN NPF_correlator_t cbCorrelator,

 NPF_IN NPF_FEHandle
 NPF_IN NPF_BlockId_

_t

 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_IMA_Group_ID_t *delArray);

5.1.9.1 Description
This un f ction is used to delete a previously configured group.

5.1.9.2 Input Parameters
• cbHandle – The callback handle returned by NPF_F_IMA_

relator - A unique application invocation value th• cbCor
asynch

• ing - An indication of whether the aerrorReport
asynchronous

• feHandle - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.
blockId – The unique identification of the

 VCBIS Task Group 31

Network Processing Forum Software Working Group

• delContainedLnks – When set to NPF_TRUE indicates that all associated links sh
be deleted. If this parameter is set to NPF_FALSE, the fun

ould
ction will return an error if there

•
 groups to delete

5.1.9.3 Ou
None

5.1.9.4 Return

blems
en handling the input parameters.

• NPF_E_BAD_CALLBACK_HANDLE - The configuration did not complete successfully as
ck handle was invalid.

5.1.9.5 Asy h
A total u the
callback n
of the respo code for that connection. If the
function v

eration successful

delContainedLnks was set to

ed IMA group doesn’t exist

5.1.10 Pu a
NPF_ r
 N F

 NPF
 NPF_IN NPF_errorReporting_t errorReporting,
 F

 blockId,
 numEntries,

 NPF_IN NPF_F_IMA_Group_ID_t *enaArray);

5.1.10
nabled. Enabling the

 group state machine to
 sta

Register()

 - A unique application invocation value that will be supplied to the

are links contained within the group being deleted.
numEntries - Number of IMA groups to delete

• delArray - Pointer to an array of IMA group IDs of IMA
tput Parameters

 Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The configurations did not complete successfully due to pro

encountered wh

the callba
nc ronous Response

of n mEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to
 fu ction, in one or more invocations. Each response contains a group ID in the objId field

nse structure and a success code or a possible error
 in ocation was successful, an error code NPF_NO_ERROR is returned.

ng errors could be returned: The followi
• NPF_NO_ERROR - Op
• NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is

no error code defined that is more appropriate or informative
• NPF_IMA_F_E_CONT_LINKS_EXIST – The specified group could not be deleted as there

 group and the parameter are links associated with this
. NPF_FALSE

• NPF_E_RESOURCE_NONEXIST - Specifi

t n IMA group in service
er or_t NPF_F_IMA_GroupEnable (
P _IN NPF_callbackHandle_t cbHandle,
_IN NPF_correlator_t cbCorrelator,

NP _IN NPF_FEHandle_t feHandle,
_IN NPF_BlockId_t NPF

 NPF_IN NPF_uint32_t

.1 Description
This function is used to mark the administrative status of an IMA group as e

up to ng theIMA group cause the inhibition of the gro state be removed allowi
tran tio EDsi n if allowed from the BLOCK te to OPERATIONAL state.

5.1.10.2 Input Parameters
• cbHandle – The callback handle returned by NPF_F_IMA_
• cbCorrelator

asynchronous completion callback routine.
• errorReporting - An indication of whether the application desires to receive an

asynchronous completion callback for this function call.

 VCBIS Task Group 32

Network Processing Forum Software Working Group

• feHandle - The forwarding element Handle returned by

• able

5.1.10.3 Outp
None

5.1.10.4 Retur

plete successfully due to problems

LBACK_HANDLE - The configuration did not complete successfully as
the callback handle was invalid.

esponse
A total u esponse_t) responses are passed to the
callback n
of the re o
function inv OR is returned.
The foll i

• essful
 unknown error occurred in the implementation such that there is

5.1
isable (

 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 F
 NPF

 F

 *enaArray);

Th ed. Disabling the
chine to transition to the

Register()

at will be supplied to the
nous completion callback routine.

andle returned by
pologyGetFEInfoList() call.

• numEntries - Number of IMA groups to disable

NPF_F_ATM_topologyGetFEInfoList() call.
• blockId – The unique identification of the IMA LFB.

numEntries - Number of IMA groups to en
• enaArray - Pointer to an array of IMA group IDs of IMA groups to enable

ut Parameters

n Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The configurations did not com

encountered when handling the input parameters.
• NPF_E_BAD_CAL

5.1.10.5 Asynchronous R
of n mEntries asynchronous (NPF_F_IMA_AsyncR

ction, in one or mo fu re invocations. Each response contains a group ID in the objId field
sp nse structure and a success code or a possible error code for that connection. If the

ocation was successful, an error code NPF_NO_ERR
ow ng errors could be returned:

 - Operation succ NPF_NO_ERROR

• NPF_E_UNKNOWN - An
no error code defined that is more appropriate or informative

• NPF_E_RESOURCE_NONEXIST - Specified IMA group doesn’t exist

.11 Put an IMA group out of service
NPF_error_t NPF_F_IMA_GroupD

NP _IN NPF_errorReporting_t errorReporting,
_IN NPF_FEHandle_t feHandle,

NPF_IN NPF_BlockId_t blockId,
NP _IN NPF_uint32_t numEntries,

 NPF_IN NPF_F_IMA_Group_ID_t

5.1.11.1 Description
is function is used to mark the administrative status of an IMA group as disabl

IMA group cause the inhibition of the group and causes the group state ma
BLOCKED state.

5.1.11.2 In put Parameters
• cbHandle – The callback handle returned by NPF_F_IMA_
• elator - A unique application invocation value thcbCorr

asynchro
• errorReporting - An indication of whether the application desires to receive an

asynchronous completion callback for this function call.
• feHandle - The forwarding element H

NPF_F_ATM_to

• blockId – The unique identification of the IMA LFB.

 VCBIS Task Group 33

Network Processing Forum Software Working Group

• enaArray - Pointer to an array of IMA group IDs of IMA groups to disable
ut Parameters 5.1.11.3 Outp

None
5.1.11.4 Retur

 problems

ion did not complete successfully as

nse
 of numEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to the

e or more invocations. Each response contains a group ID in the objId field

function v ROR is returned.
The fol i

•

 appropriate or informative
 Specified IMA group doesn’t exist

5.1

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 F feHandle,

 F
 NPF

5.1.12.1 D r
nfiguration and current state of one or more IMA groups. If the

nu roups configured in the LFB is returned in the
re

ster()
be supplied to the

on desires to receive an
nous completion callback for this function call.

e unique identification of the IMA LFB.
Number of IMA groups to query

5.1.12.3 O

None

n Values
• NPF_NO_ERROR - The operation is in progress.

 - The configurations did no• NPF_E_UNKNOWN t complete successfully due to
encountered when handling the input parameters.

• NPF_E_BAD_CALLBACK_HANDLE - The configurat
the callback handle was invalid.

5.1.11.5 Asynchronous Respo
A total
callback function, in on
of the response structure and a success code or a possible error code for that connection. If the

 in ocation was successful, an error code NPF_NO_ER
low ng errors could be returned:

 - Operation successful NPF_NO_ERROR

• NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
no error code defined that is more

• NPF_E_RESOURCE_NONEXIST -

.12 Query an IMA Group
NPF_error_t NPF_F_IMA_GroupQuery (
 NPF_IN NPF_callbackHandle_t cbHandle,

NP _IN NPF_FEHandle_t
NPF_IN NPF_BlockId_t blockId,
NP _IN NPF_uint32_t numEntries,

_IN NPF_F_IMA_Group_ID_t *grpIdArr);

esc iption
This function is used to query the co
mEntries is set to 0, information for all IMA g

sponse.
5.1.12.2 Input Parameters

• cbHandle – The callback handle returned by NPF_F_IMA_Regi
• cbCorrelator - A unique application invocation value that will

asynchronous completion callback routine.
• eporting - An indication of whether the applicatierrorR

asynchro
• feHandle - The forwarding element Handle returned by

NPF_F_ATM_topologyGetFEInfoList() call.
• blockId – Th
• - numEntries

• grpIdArr - Pointer to an array of IMA group IDs of IMA groups to query
utput Parameters

 VCBIS Task Group 34

Network Processing Forum Software Working Group

5.1.12.4 R r
•

ccessfully due to problems

id not complete successfully as

5.1.12.5 A
hronous (NPF_F_IMA_AsyncResponse_t) responses are passed to the
ore invocations. Each response contains a group ID in the objId field

e and a success code or a possible error code for that connection. If the
 successful, an error code NPF_NO_ERROR is returned and the group

informa n n the response structure. The following
errors c d

•

appropriate or informative
NEXIST - Specified IMA group doesn’t exist

5.1

 Han feHandle,

 blockId,
 F resetStats,

 F
 NPF

5.1.13.1 D r
 for one or more IMA groups.

A_Register()

will be supplied to the

on desires to receive an
callba

d – The unique identification of the IMA LFB.

Number of IMA groups to query

5.1.13.3 O
None

5.1.13.4 R r
• NPF_NO_ERROR - The operation is in progress.

etu n Values
NPF_NO_ERROR - The operation is in progress.

• NPF_E_UNKNOWN - The configurations did not complete su
encountered when handling the input parameters.

• NPF_E_BAD_CALLBACK_HANDLE - The configuration d
the callback handle was invalid.

synchronous Response
A total of numEntries async

k function, in one or mcallbac
of the response structur
function invocation was

tio is returned in the groupInfo field of the union i
oul be returned:

NPF_NO_ERROR - Operation successful
• NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is

no error code defined that is more
• NPF_E_RESOURCE_NO

.13 Get statistics accumulated for an IMA Group
NPF_error_t NPF_F_IMA_GroupStatsGet (
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE dle_t

NPF_IN NPF_BlockId_t
NP _IN NPF_boolean_t
NP _IN NPF_uint32_t numEntries,

_IN NPF_F_IMA_Group_ID_t *grpIdArr);

esc iption
This function is used to get via a callback the current counter values

5.1.13.2 Input Parameters
• cbHandle – The callback handle returned by NPF_F_IM
• cbCorrelator - A unique application invocation value that

asynchronous completion callback routine.
• errorReporting - An indication of whether the appl

 for th
icati

asynchronous completion ck is function call.
• - The forwarding element Handle returned by feHandle

NPF_F_ATM_topologyGetFEInfoList() call.
• blockI

• resetStats – If set to TRUE, the statistics counters being read are reset to 0
• numEntries -
• grpIdArr - Pointer to an array of IMA group IDs of IMA groups to query
utput Parameters

etu n Values

 VCBIS Task Group 35

Network Processing Forum Software Working Group

• NPF_E_UNKNOWN - The configurations did not complete su
encountered when handling the input parameters.

ccessfully due to problems

id not complete successfully as

5.1.13.5 A
A total of u ssed to the
callback n objId field

a success code or a possible error code for that connection. If the
n invocation was successful, an error code NPF_NO_ERROR is returned and the counters are

tats field of the union in the response structure.
The foll i

•

•

or an IMA Group

 numEntries,
 NPF_IN NPF_F_IMA_Group_ID_t *grpIdArr);

5.1.14.1 D r
This func io
machine stat

5.1.14.2 In t
F_F_IMA_Register()

 that will be supplied to the

sires to receive an

d – The unique identification of the IMA LFB.

group IDs of IMA groups to query

None
5.1.14.4 R r

• ss.
s

 not complete successfully as

• NPF_E_BAD_CALLBACK_HANDLE - The configuration d
the callback handle was invalid.
chronous Resyn sponse

 asn mEntries ynchronous (NPF_F_IMA_AsyncResponse_t) responses are pa
 fu ction, in one or more invocations. Each response contains a group ID in the

of the response structure and
functio
returned in the groupS

ow ng errors could be returned:
• NPF_NO_ERROR - Operation successful

NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
no error code defined that is more appropriate or informative

 NPF_E_RESOURCE_NONEXIST - Specified IMA group doesn’t exist

5.1.14 Get state information f
NPF_error_t NPF_F_IMA_GroupStateGet (
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,

 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t

esc
t n is used to get via a callback the current group state machine and group traffic state

iption

es for the queried IMA group.
pu Parameters
• cbHandle – The callback handle returned by NP
• cbCorrelator - A unique application invocation value

asynchronous completion callback routine.
• errorReporting - An indication of whether the application de

lba r thasynchronous completion cal ck fo is function call.
• feHandle - The forwarding element Handle returned by

NPF_F_ATM_topologyGetFEInfoList() call.
• blockI

• numEntries - Number of IMA groups to query
• grpIdArr - Pointer to an array of IMA

5.1.14.3 Output Parameters

etu n Values
NPF_NO_ERROR - The operation is in progre

• NPF_E_UNKNOWN - The configurations did not complete successfully due to problem
encountered when handling the input parameters.

• NPF_E_BAD_CALLBACK_HANDLE - The configuration did
the callback handle was invalid.

 VCBIS Task Group 36

Network Processing Forum Software Working Group

5.1.14.5 A

A total u passed to the
ore invocations. Each response contains a group ID in the objId field

code or a possible error code for that connection. If the
n invocation was successful, an error code NPF_NO_ERROR is returned and the counters are

tate field of the union in the response structure.
The foll i

• the implementation such that there is

• Specified IMA group doesn’t exist

5.1.15 Configure Test Pattern procedure for an IMA group
oupTestSet (

 NPF_IN NPF_F_IMA_Group_Test_Proc_Config_t *grpIdArr);

5.1.15.1 D r
This fun o
either choos or let the FAPI
implem at
indicate a rocedure is not

 Any subsequent change
he FAPI client via

co

ster()
be supplied to the

 receive an
nous completion callback for this function call.

5.1 ters

5.1.15.4 R r

s

synchronous Response
of n mEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are

callback function, in one or m
response structure and a success of the

functio
returned in the groupS

ow ng errors could be returned:
• NPF_NO_ERROR - Operation successful

NPF_E_UNKNOWN - An unknown error occurred in
no error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST -

NPF_error_t NPF_F_IMA_Gr
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,

 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

esc iption
cti n is used to configure test pattern procedure for an IMA group. The FAPI client may

e the test link ID and test pattern for generating the test pattern
ent ion select the test link ID and the test pattern. The status of the test pattern procedure is
d b ck to the FAPI client in the asynchronous response. If the test pattern p

disabled, the LFB continues to send the test pattern on the specified test link.
in d the group is indicated to t the test procedure status for the recognized links an

rresponding events.
5.1.15.2 Input Parameters

• cbHandle – The callback handle returned by NPF_F_IMA_Regi
• cbCorrelator - A unique application invocation value that will

asynchronous completion callback routine.
• eporting - An indication of whether the application desires toerrorR

asynchro
• feHandle - The forwarding element Handle returned by

NPF_F_ATM_topologyGetFEInfoList() call.
• blockId – The unique identification of the IMA LFB.
• numEntries - Number of IMA groups to test
• grpIdArr - Pointer to an array of IMA group IDs of IMA groups to test

.15.3 Output Parame
None

etu n Values
• NPF_NO_ERROR - The operation is in progress.

 - The configurations did n• NPF_E_UNKNOWN ot complete successfully due to problem
encountered when handling the input parameters.

 VCBIS Task Group 37

Network Processing Forum Software Working Group

• NPF_E_BAD_CALLBACK_HANDLE - The configuration did
the callback handle was invalid.

 not complete successfully as

5.1.15.5 A
A total u Response_t) responses are passed to the
callback n e objId field

n. If the
ssful, an error code NPF_NO_ERROR is returned. If the test link

ure failed, a bitmap testResultBitMap indicating the receive links on which the test pattern
dicated to the FAPI client. Each bit in the bit map corresponds to the logical

 back on that link.
The leas ig link in the group.
The foll i

•

 appropriate or informative
 - Specified IMA group doesn’t exist

5.1

 feHandle,

 blockId,
 F numEntries,
 F

5.1.16.1 Descr
This fun o existing link. If the
administ ti
unusabl ta e
status.

returned by
will be supplied to the

ati on desires to receive an

5.1 utput Parameters

synchronous Response
of n mEntries asynchronous (NPF_F_IMA_Async
 fu ction, in one or more invocations. Each response contains a group ID in th
p nse structure and a success code or a possible error code for that connectioof the res o

function invocation was succe
proced
failed to loop back is in
link ID of a link in the group and if set indicates that the test pattern failed to loop

t s nificant bit corresponds to the lowest numbered
ow ng errors could be returned:

 - Operation successful NPF_NO_ERROR

• NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
no error code defined that is more

• NPF_E_RESOURCE_NONEXIST

• NPF_IMA_F_E_TEST_PROC_FAILED - Test pattern failed to loop back on one or more
links in the group.

.16 Add or Modify an IMA link
NPF_error_t NPF_F_IMA_LinkSet (
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t

 NPF_IN NPF_BlockId_t
NP _IN NPF_uint32_t
NP _IN NPF_F_IMA_Link_Config_t *cfgArray);

iption
cti n adds/creates one or more IMA link, or modifies the attributes of an

ve status of the link is set as ra NPF_STATUS_DOWN, the link will not transition further from
e s te. If the administrative status is set as NPF_STATUS_UP, the link will transition to usabl

5.1.16.2 Input Parameters
• cbHandle – The callback handle NPF_F_IMA_Register()

• cbCorrelator - A unique application invocation value that
asynchronous completion callback routine.

• - An indic on of ether the applicatierrorReporting wh
asynchronous completion callback for this function call.

 • feHandle - The forwarding element Handle returned by
ATM_topologyGetFEInfoList() call. NPF_F_

• blockId – The unique identification of the IMA LFB.
• numEntries - Number of IMA links to set
• cfgArray - Pointer to an array of IMA link attribute structures

.16.3 O
None

 VCBIS Task Group 38

Network Processing Forum Software Working Group

5.1.16.4 R r
• ess.

s

 not complete successfully as

5.1.16.5 A
A total u ncResponse_t) responses are passed to the
callback n D in the objId field of

ction. If the function
 error code NPF_NO_ERROR is returned.

uld be returned:
ROR - Operation successful

n the implementation such that there is

• ttribute

 NPF_IN NPF_errorReporting_t errorReporting,
 feHandle,

 blockId,
 F numEntries,
 F

5.1.17.1 Descr
This fun o

5.1.17.2 In t
• The callback handle returned by NPF_F_IMA_Register()

nique application invocation value that will be supplied to the
tine.

ation desires to receive an

 - Pointer to an array of IMA link IDs of IMA links to delete

5.1.17.4 R r

etu n Values
NPF_NO_ERROR - The operation is in progr

• NPF_E_UNKNOWN - The configurations did not complete successfully due to problem
encountered when handling the input parameters.

• NPF_E_BAD_CALLBACK_HANDLE - The configuration did
the callback handle was invalid.

synchronous Response
of n mEntries asynchronous (NPF_F_IMA_Asy
 fu ction, in one or more invocations. Each response contains a link I

uccess code or a possible error code for that connethe response structure and a s
invocation was successful, an
The following errors co

• NPF_NO_ER

• NPF_E_UNKNOWN - An unknown error occurred i
no error code defined that is more appropriate or informative
NPF_IMA_F_E_INVALID_ATTRIBUTE - Invalid a

• NPF_IMA_F_E_UNKNOWN_GROUP – Group specified in link configuration is not
recognized

5.1.17 Delete an IMA Link
NPF_error_t NPF_F_IMA_LinkDelete (
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,

 NPF_IN NPF_FEHandle_t
 NPF_IN NPF_BlockId_t

NP _IN NPF_uint32_t
NP _IN NPF_F_IMA_Link_ID_t *delArray);

iption
cti n is used to delete a previously configured link.
pu Parameters

cbHandle –
• cbCorrelator - A u

asynchronous completion callback rou
• errorReporting - An indication of whether the applic

asynchronous completion callback for this function call.
• feHandle - The forwarding ent ndle returned by elem Ha

NPF_F_ATM_topologyGetFEInfoList() call.
• blockId – The unique identification of the IMA LFB.
• ries - Number of IMA links to delete numEnt

• delArray

.17.3 Output Parameters 5.1
None

etu n Values
• NPF_NO_ERROR - The operation is in progress.

 VCBIS Task Group 39

Network Processing Forum Software Working Group

• NPF_E_UNKNOWN - The configurations did not complete successfully due to problem
encountered when handling the input parameters.

s

 not complete successfully as

5.1.17.5 A
A total u Response_t) responses are passed to the
callback n e objId field of

. If the function
 error code NPF_NO_ERROR is returned.

llowing errors could be returned:
ROR - Operation successful

in the implementation such that there is

• k doesn’t exist

5.1.18 Pu
 (

andle_t cbHandle,

 NPF_IN NPF_F_IMA_Link_ID_t *enaArray);

5.1.18.1 D r
This fun o
link cause t
allowed from the UNUSA

5.1.18.2 Inp t
dle returned by NPF_F_IMA_Register()

 that will be supplied to the

sires to receive an

d

5.1

5.1.18.4 R r

• ot complete successfully due to problems

• not complete successfully as
the callback handle was invalid.

• NPF_E_BAD_CALLBACK_HANDLE - The configuration did
the callback handle was invalid.

synchronous Response
of n mEntries asynchronous (NPF_F_IMA_Async
 fu ction, in one or more invocations. Each response contains a link ID in th
ons structure and a success code or a possible error code for that connectionthe resp e

invocation was successful, an
The fo

• NPF_NO_ER

• NPF_E_UNKNOWN - An unknown error occurred
no error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST -Specified IMA lin

t an IMA link in service
nkEnableNPF_error_t NPF_F_IMA_Li

 NPF_IN NPF_callbackH
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,

 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

esc iption
cti n is used to mark the administrative status of an IMA link as enabled. Enabling the IMA

he inhibition of the link state to be removed allowing the link state machine to transition if
BLE state to USABLE state.

u Parameters
• cbHandle – The callback han
• cbCorrelator - A unique application invocation value

asynchronous completion callback routine.
• errorReporting - An indication of whether the application de

lba r thasynchronous completion cal ck fo is function call.
• feHandle - The forwarding element Handle returned by

NPF_F_ATM_topologyGetFEInfoList() call.
 – The unique identification of the IMA LFB. • blockI

• numEntries - Number of IMA links to enable
• enaArray - Pointer to an array of IMA link IDs of IMA links to enable

.18.3 Output Parameters
None

etu n Values
• NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The configurations did n
encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - The configuration did

 VCBIS Task Group 40

Network Processing Forum Software Working Group

5.1.18.5 A
A total of nu ponse_t) responses are passed to the
callback n s a link ID in the objId field of
the resp e code for that connection. If the function
invocati w

NOWN - An unknown error occurred in the implementation such that there is
e defined that is more appropriate or informative

 group doesn’t exist

5.1.19 Pu
NPF_ ro
 F

 NPF_IN NPF_correlator_t cbCorrelator,
rting_t errorReporting,

5.1
strative status of an IMA link as disabled. Disabling the IMA

link cau th link being marked BLOCKED.
5.1.19.2 In t

• gister()
supplied to the

routine.
hether the application desires to receive an

 IMA
inks to disable

meters

s

• figuration did not complete successfully as

5.1.19.5 Asyn
A total nu _t) responses are passed to the
callback fun ntains a group ID in the objId field
of the re o for that connection. If the
function v ROR is returned.

synchronous Response
mEntries asynchronous (NPF_F_IMA_AsyncRes

 fu ction, in one or more invocations. Each response contain
ons structure and a success code or a possible error

as successful,on an error code NPF_NO_ERROR is returned.
w ng errors could be returned: The follo i
• NPF_NO_ERROR - Operation successful
• NPF_E_UNK

no error cod
• NPF_E_RESOURCE_NONEXIST - Specified IMA

t an IMA link out of service
er r_t NPF_F_IMA_LinkDisable (
NP _IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_errorRepo
 NPF_IN NPF_FEHandle_t feHandle,

 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_IMA_Link_ID_t *enaArray);

.19.1 Description
This function is used to mark the admini

se e inhibition of the link and leading to the
pu Parameters

cbHandle – The callback handle returned by NPF_F_IMA_Re
• cbCorrelator - A unique application invocation value that will be

asynchronous completion callback
• - An indicationerrorReporting of w

asynchronous completion callback for this function call.
• feHandle - The forwarding element Handle returned by

NPF_F_ATM_topologyGetFEInfoList() call.
• blockId – The unique identification of the IMA LFB.
• numEntries - Number of links to disable
• enaArray - Pointer to an array of IMA link IDs of IMA l

5.1.19.3 Output Para
None

5.1.19.4 Return Values
• NPF_NO_ERROR - The operation is in progress.
 NPF_E_UNK t complete successfully due • NOWN - The configurations did no to problem

encountered when handling the input parameters.
 - The conNPF_E_BAD_CALLBACK_HANDLE

the callback handle was invalid.
chronous Response

of mEntries asynchronous (NPF_F_IMA_AsyncResponse
ction, in one or more invocations. Each response co

sp nse structure and a success code or a possible error code
 in ocation was successful, an error code NPF_NO_ER

 VCBIS Task Group 41

Network Processing Forum Software Working Group

The fol i
- Operation successful

• NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
de defined that is more appropriate or informative

 link doesn’t exist

5.1.20 Qu r
NPF_err
 F

 NPF_IN NPF_correlator_t cbCorrelator,

t feHandle,

5.1
uration a f one or more IMA links. If the

s configured in the LFB is returned in the
respons

5.1.20.2 In t
•

e supplied to the
tion callback routine.

 whether the application desires to receive an

inks to query

5.1 rn Values
 - The operation is in progress.

 problems

• figuration did not complete successfully as

5.1.20.5 Asyn
A total u _t) responses are passed to the
callback fun ntains a link ID in the objId field of
the resp e that connection. If the function
invocati w oup information is
returned t structure.
The foll i

low ng errors could be returned:
• NPF_NO_ERROR

no error co
• NPF_E_RESOURCE_NONEXIST - Specified IMA

e y an IMA Link
or_t NPF_F_IMA_LinkQuery (

NP _IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_

 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_IMA_Link_ID_t *lnkIdArr);

.20.1 Description
nd current state oThis function is used to query the config

numEntries is set to 0, information for all IMA link
e.
pu Parameters

 – The callback handle returned by cbHandle NPF_F_IMA_Register()

• cbCorrelator - A unique application invocation value that will b
asynchronous comple

• errorReporting - An indication of
asynchronous completion callback for this function call.

• feHandle - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.

• blockId – The unique identification of the IMA LFB.
• numEntries - Number of IMA links to query

rr - Pointer to an array of IMA link IDs of IMA l• lnkIdA

5.1.20.3 Output Parameters
None
.20.4 Retu

• NPF_NO_ERROR

• NPF_E_UNKNOWN - The configurations did not complete successfully due to
encountered when handling the input parameters.
NPF_E_BAD_CALLBACK_HANDLE - The con
the callback handle was invalid.
chronous Response

of n mEntries asynchronous (NPF_F_IMA_AsyncResponse
ction, in one or more invocations. Each response co

ons structure and a success code or a possible error code for
as successfulon , an error code NPF_NO_ERROR is returned and the gr

 in he linkInfo field of the union in the response
ow ng errors could be returned:
• NPF_NO_ERROR - Operation successful

 VCBIS Task Group 42

Network Processing Forum Software Working Group

• NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
informative

5.1.21 Get s
NPF_ r
 NPF_IN NPF_callbackHandle_t cbHandle,

r_t cbCorrelator,

5.1
This function counter values for one or more IMA links.

5.1.21.2 In t
• gister()

e supplied to the

plication desires to receive an

 are reset to 0

 IMA
inks to query

meters

s
eters.

 as

5.1.21.5 A
A total of nu ponse_t) responses are passed to the
callback n d field of
the resp e that connection. If the function
invocat w turned and the counters are returned in
the link t

The foll i

• - An unknown error occurred in the implementation such that there is
de defined that is more appropriate or informative

 link doesn’t exist

no error code defined that is more appropriate or
• NPF_E_RESOURCE_NONEXIST - Specified IMA link doesn’t exist

tatistics accumulated for an IMA Link
er or_t NPF_F_IMA_LinkStatsGet (

 NPF_IN NPF_correlato
 NPF_IN NPF_errorReporting_t errorReporting,

 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_boolean_t resetStats,

 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_IMA_Link_ID_t *lnkIdArr);

.21.1 Description
 is used to get via a callback the current

 Parameters pu
 cbHandle – The callback handle returned by NPF_F_IMA_Re
• cbCorrelator - A unique application invocation value that will b

asynchronous completion callback routine.
• errorReporting - An indication of whether the ap

asynchronous completion callback for this function call.
• feHandle - The forwarding element Handle returned by

NPF_F_ATM_topologyGetFEInfoList() call.
E, ati read• resetStats – If set to TRU the st stics counters being

• blockId – The unique identification of the IMA LFB.
• numEntries - Number of groups to query
• lnkIdArr - Pointer to an array of IMA link IDs of IMA l

5.1.21.3 Output Para
None

5.1.21.4 Return Values
• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The configurations did not complete successfully due to problem

encountered when handling the input param
• NPF_E_BAD_CALLBACK_HANDLE - The configuration did not complete successfully

the callback handle was invalid.
synchronous Response

mEntries asynchronous (NPF_F_IMA_AsyncRes
 fu ction, in one or more invocations. Each response contains a link ID in the objI
ons structure and a success code or a possible error code for

as succesion sful, an error code NPF_NO_ERROR is re
ats field of the union in the response structure. S

ow ng errors could be returned:
• NPF_NO_ERROR - Operation successful

NPF_E_UNKNOWN
no error co

• NPF_E_RESOURCE_NONEXIST - Specified IMA

 VCBIS Task Group 43

Network Processing Forum Software Working Group

5.1.22 G s
NPF_err
 F

 NPF_IN NPF_correlator_t cbCorrelator,
rting_t errorReporting,
t feHandle,

5.1
te machine states for the queried IMA

5.1.22.2 In t

• ill be supplied to the

the application desires to receive an
tion call.

A
array y

5.1
 - The operation is in progress.

 - The configurations did not complete successfully due to problems

as

5.1.22.5 A
A total of n e_t) responses are passed to the
callback n a link ID in the objId field of
the response e for that connection. If the function
invocati w and the counters are returned in
the lin t

The following errors could be returned:

 - An unknown error occurred in the implementation such that there is
no error code defined that is more appropriate or informative

OURCE_NONEXIST - Specified IMA link doesn’t exist

5.1.23 Ge la k
NPF_e r
 NPF_IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_correlator_t cbCorrelator,

et tate information for an IMA Link
or_t NPF_F_IMA_LinkStateGet (

NP _IN NPF_callbackHandle_t cbHandle,

 NPF_IN NPF_errorRepo
 NPF_IN NPF_FEHandle_

 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_IMA_Link_ID_t *lnkIdArr);

.22.1 Description
This function is used to get via a callback the current link sta
links.

pu Parameters
• cbHandle – The callback handle returned by NPF_F_IMA_Register()

cbCorrelator - A unique application invocation value that w
asynchronous completion callback routine.

• errorReporting - An indication of whether
asynchronous completion callback for this func

• feHandle - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.

• blockId – The unique identification of the IMA LFB.
• - Number of IM links query numEntries to

nks to quer• lnkIdArr - Pointer to an of IMA link IDs of IMA li
5.1.22.3 Output Parameters

None
.22.4 Return Values

• NPF_NO_ERROR

• NPF_E_UNKNOWN
encountered when handling the input parameters.

• NPF_E_BAD_CALLBACK_HANDLE - The configuration did not complete successfully
the callback handle was invalid.

synchronous Response
umEntries asynchronous (NPF_F_IMA_AsyncRespons

 fu ction, in one or more invocations. Each response contains
 structure and a success code or a possible error cod

on as successful, an error code NPF_NO_ERROR is returned
 field okS ate f the union in the response structure.

• NPF_NO_ERROR

• NPF_E_UNKNOWN

 - Operation successful

• NPF_E_RES

t st received ICP cell for an IMA Lin
r or_t NPF_F_IMA_LinkLastICPInfoGet (

 VCBIS Task Group 44

Network Processing Forum Software Working Group

 F
 NPF feHandle,

 blockId,
 numEntries,

5.1

5.1
ndle returned by NPF_F_IMA_Register()

nvocation value that will be supplied to the

• desires to receive an

ed by

 query

igurations did not complete successfully due to problems
en handling the input parameters.

cessfully as

5.1.23.5 As
A total u to the
callback n
the respo se hat connection. If the function
invocati w nd the counters are returned in
the icpCel
The foll i

ch that there is
ined that is more appropriate or informative

• NPF_E_RESOURCE_NONEXIST - Specified IMA link doesn’t exist

NP _IN NPF_errorReporting_t errorReporting,
_IN NPF_FEHandle_t

 NPF_IN NPF_BlockId_t
 NPF_IN NPF_uint32_t

 NPF_IN NPF_F_IMA_Link_ID_t *lnkIdArr);

.23.1 Description
This function is used to get via a callback the contents of the last ICP cell received on the queried
IMA links. This is an optional function.
.23.2 Input Parameters

• – The callback hacbHandle

• cbCorrelator - A unique application i
asynchronous completion callback routine.
errorReporting - An indication of whether the application
asynchronous completion callback for this function call.

• feHandle - The forwarding element Handle return
. NPF_F_ATM_topologyGetFEInfoList() call

• blockId – The unique identification of the IMA LFB.
• - Number of IMA links to query numEntries

ay of IMA link IDs of I nks to• lnkIdArr - Pointer to an arr MA li
5.1.23. O3 utput Parameters

None
s 5.1.23.4 Return Value

• NPF_NO_ERROR - The operation is in progress.
• NPF_E_UNKNOWN - The conf

encountered wh
• NPF_E_BAD_CALLBACK_HANDLE - The configuration did not complete suc

the callback handle was invalid.
ynchronous Response

of n mEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed
 fu ction, in one or more invocations. Each response contains a link ID in the objId field of

 structure and a success code or a possible error code for n t
on as successful, an error code NPF_NO_ERROR is returned a

l field of the union in the response structure.
ow ng errors could be returned:
• NPF_NO_ERROR - Operation successful
• NPF_E_UNKNOWN - An unknown error occurred in the implementation su

no error code def

 VCBIS Task Group 45

Network Processing Forum Software Working Group

6
The
this
are
the ards indicated below.

paration of IP control and forwarding”, H.Khosravi,
03 (RFC 3654)

[FA O

[SW I
http://www.npforum.org/techinfo/APIConventions2_IA.pdf

References
 following documents contain provisions, which through reference in this text constitute provisions of
 specification. At the time of publication, the editions indicated were valid. All referenced documents
subject to revision, and parties to agreements based on this specification are encouraged to investigate
possibility of applying the most recent editions of the stand

[FORCESREQ] “Requirement for se
T.Anderson et al, November, 20

PIT PO] ”Topology Manager Functional API”,
http://www.npforum.org/techinfo/topology_fapi_npf2002%20438%2023.pdf,
Network Processing Forum.

AP CON] “Software API Conventions Revision 2”,
, Network Processing

Forum
[ATMLFBARC] “ATM Software API Architecture Framework”,

http://www.npforum.org/techinfo/npf2004.088.12.pdf, Network Processing Forum.
[ATMMGR] “ATM Configuration Manager Functional API”,

http://www.npforum.org/techinfo/npf2004.165.31.pdf, Network Processing Forum
[ATMIMAPI] “Interface Management API Implementation Agreement (ATM Interfaces) revision

3.0”, http://www.npforum.org/techinfo/IM_API_IA_npf2004.218.12.pdf, Network
Processing Forum.

 VCBIS Task Group 46

Network Processing Forum Software Working Group

Appendix A Header File Information

#ifnde
#defin

#ifdef s
extern "C" {
#endif

/* It is possible
 APIs [npf2002.438] to discover an ATM IMA LFB
 in

/* LFB
#defin

/* Asy

#define NPF_IMA_BASE_ERR (NPF_F_IMA_LFB_TYPE * 100)
#define IMA_ERR(n) ((NPF_F_IMA_ErrorType_t) (NPF_IMA_BASE_ERR+ (n))

/* LFB ID is not an ID of LFB that has IMA functionality*/
#define NPF_IMA_F_E_INVALID_IMA_BLOCK_ID IMA_ERR (0)

/* Invalid configuration attributes */
#define NPF_IMA_F_E_INVALID_ATTRIBUTE IMA_ERR (1)

/* Test procedure failed on one or more receive links */
#define NPF_IMA_F_E_TEST_PROC_FAILED IMA_ERR (2)

/* Group specified in link configuration not recognized */
#define NPF_IMA_F_E_UNKNOWN_GROUP IMA_ERR (3)

/* Group cannot be deleted as it has associated links and FAPI client has not
 * requested deletion of contained links */
#define NPF_IMA_F_E_CONT_LINKS_EXIST IMA_ERR (4)

/*
 * Definitions for selectively enabling IMA LFB Events
 */
/* Link specific alarms */
#define NPF_F_IMA_EVENT_LINK_LIF (1 << 0)
#define NPF_F_IMA_EVENT_LINK_LODS (1 << 1)
#define NPF_F_IMA_EVENT_LINK_RFI (1 << 2)
#define NPF_F_IMA_EVENT_LINK_TX_MISCONNECT (1 << 3)
#define NPF_F_IMA_EVENT_LINK_RX_MISCONNECT (1 << 4)
#define NPF_F_IMA_EVENT_LINK_TX_FAULT (1 << 5)
#define NPF_F_IMA_EVENT_LINK_RX_FAULT (1 << 6)
#define NPF_F_IMA_EVENT_LINK_TX_UNUSABLE_FE (1 << 7)
#define NPF_F_IMA_EVENT_LINK_RX_UNUSABLE_FE (1 << 8)
#define NPF_F_IMA_EVENT_LINK_TEST_LINK_STATUS (1 << 9)
#define NPF_F_IMA_EVENT_LINK_STATE_MACHINE_TRANSITION (1 << 10)

/* Group specific alarms */

/*
 * This header file defines typedef, constants and structures
 * for the NP Forum ATM Policer Functional API
 */

f __NPF_F_ATM_IMA_H__
e __NPF_F_ATM_IMA_H__

 __cplusplu

to use the FAPI Topology Discovery

a forwarding element. */

 type for IMA LFB */
e NPF_F_IMA_LFB_TYPE 46

nchronous error codes (returned in function callbacks) */

 VCBIS Task Group 47

Network Processing Forum Software Working Group

#define NPF_F_IMA_EVENT_GROUP_STARTUP_FE (1 << 16)
#define NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED (1 << 17)

ne NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_FE (1 << 18)
<< 19)
<< 20)

 (1 << 21)
ne NPF_F_IMA_EVENT_GROUP_TIMING_MISMATCH (1 << 22)

TEST_LINK_STATUS (1 << 23)
STATE_MACHINE_TRANSITION (1 << 24)
_TRAFFIC_STATE_MACHINE_TRANSITION (1 << 25)

ENT_LAST (1 << 25)

s and types for ATM IMA attributes and *
etion callback data types *

**********/
 type */

MA group ID */
nk_ID_t; /* IMA link ID */

rom ATM Layer */

def enum {

K = 3,

#defi
#define NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS (1

_FE (1 #define NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS
ine NPF_F_IMA_EVENT_GROUP_BLOCKED_FE #def

efi#d
#define NPF_F_IMA_EVENT_GROUP_

P_#define NPF_F_IMA_EVENT_GROU
efine NPF_F_IMA_EVENT_GROUP#d

#define NPF_F_IMA_EV
*******/************

eration * Enum
 compl *

 **
Errortypedef NPF_uint32_t NPF_F_Ima_ErrorType_t; /*

roup_ID_t; /* Itypedef NPF_uint32_t NPF_F_IMA_G
pedef NPF_uint32_t NPF_F_IMA_Lity

/* Link state machine states */
pedef enum { ty

 /* Link not configured */
 NPF_F_IMA_LSM_STATE_NOT_IN_GROUP = 1,

 /* Link configured but cannot be used */
 NPF_F_IMA_LSM_STATE_UNUSABLE_UNKNOWN = 2,

 NPF_F_IMA_LSM_STATE_UNUSABLE_FAULT_LINK_DEFECT = 3,
 NPF_F_IMA_LSM_STATE_UNUSABLE_FAULT_LIF = 3,
 NPF_F_IMA_LSM_STATE_UNUSABLE_FAULT_LODS = 3,

 NPF_F_IMA_LSM_STATE_UNUSABLE_MISCONNECTED = 4,
 NPF_F_IMA_LSM_STATE_UNUSABLE_INHIBITED = 5,

 NPF_F_IMA_LSM_STATE_UNUSABLE_FAILED = 6,

 /* Link is ready to use */

 NPF_F_IMA_LSM_STATE_USABLE = 7,

 /* Link is active and capable of passing cells to/f

 NPF_F_IMA_LSM_STATE_ACTIVE = 8
} NPF_F_IMA_LSM_State_t;

 Group State Machine State. */ /*

type
 NPF_F_IMA_GSM_NOT_CONFIGURED = 1,

PF_F_IMA_GSM_START_UP = 2, N
 NPF_F_IMA_GSM_START_UP_AC
 NPF_F_IMA_GSM_CONFIG_ABORTED_UNSUPPORTED_FRAME_LEN = 4,
 NPF_F_IMA_GSM_CONFIG_ABORTED_INCOMPATIBLE_SYMMETRY = 5,
 NPF_F_IMA_GSM_CONFIG_ABORTED_UNSUPPORTED_IMA_VERSION = 6,
 NPF_F_IMA_GSM_CONFIG_ABORTED_OTHER = 7,
 NPF_F_IMA_GSM_INSUFFICIENT_LINKS = 8,
 NPF_F_IMA_GSM_BLOCKED = 9,
 NPF_F_IMA_GSM_OPERATIONAL = 10
} NPF_F_IMA_GSM_State_t;

/* IMA Group Traffic Machine State */
typedef enum {
 NPF_F_IMA_GTSM_DOWN = 0,

 NPF_F_IMA_GTSM_UP

 VCBIS Task Group 48

Network Processing Forum Software Working Group

} NPF_F_IMA_GTSM_State_t;

/* IMA Group Testing Mode */
typedef enum {
 NPF_F_TEST_PROC_DISABLED = 1,
 NPF_F_TEST_PROC_OPERATIONAL = 2,
} NPF_F_IMA_Test_Proc_Status_t;
/* Group Test Mode */
typedef struct {
 /* Testing link ID */
 NPF_int8_t testLID;

 /* Test pattern */
 NPF_int32_t testPattern;

 /* Test Procedure Status */
 NPF_F_IMA_Test_Proc_Status_t testStatus;

 /* Test verification Duration. The far end is expected to loop back the

n the group within this duration. Failing
he test procedure will declare a test

 links on which the test pattern was not

 NPF_F_IMA_Group_Test_Mode_t groupTestMode;
fig_t;

pedef struct {

 /* A unique ID to identify the group. The interface handle for the group
ed by the IM APIs. The groupID may be used

 the group information. The FAPI
 range of values assigned to this field

 on the way this number is constructed and
his field is not

efer section 2.1.2.2 of Interface
n Agreement (ATM Interfaces) Revision 3.0

mber of active receive links to make group operational */
 minNumRxLinks;

 * test pattern on all links i
end initiating t * which the

 * procedure failure on the
 * loopback.

/ *
 NPF_F_ATM_Timers_t expRespDuration;
} NPF_F_IMA_Group_Test_Mode_t;

/* Group test configuration */
typedef struct {
 /* A unique ID to identify the group */

 NPF_F_IMA_Group_ID_t groupID;

 /* Start/Stop/Change pattern */

} NPF_F_IMA_Group_Test_Proc_Con

ty
 /* The Interface handle of the IMA group */

fID; NPF_IfHandle_t imaI

 * is an arbitrary value assign
 * to provide a fast way to lookup
 * implementations may restrict the
 * or may impose restrictions
 * any such restrictions are outside the scope of NPF. T
 * the IMA ID sent in the ICP cells.
 */
 NPF_F_IMA_Group_ID_t groupID;

 /* IMA protocol version – 1_0 or 1_1. R
 * Management API Implementatio
 * for type definition
 */
 NPF_IfATM_IMA_Ver_t imaVer;

 /* Minimum nu
 NPF_uint8_t

 VCBIS Task Group 49

Network Processing Forum Software Working Group

 /* Minimum number of active transmit links to make group operational */
 NPF_uint8_t minNumTxLinks;

andwidth in bits per second of the links which may be
gured as 0, it indicates that the FAPI

rom the first link that is added to the

 expLinkRate;

Mode. Refer section 2.1.2.2 of Interface Management
on Agreement (ATM Interfaces) Revision 3.0
on */

 symmetry;

TC/ITC. Refer section 2.1.2.4 of Interface
 (ATM Interfaces) Revision 3.0

ence link ID specified below is used as a hint by the
entation to choose the TX timing reference link. If the link

ed below is available, it is selected
nk. A value of -1 specifies that no hint is
I client to the FAPI implementation and the
e a suitable link as the timing reference

fLinkLID;

 end */

direction. Refer section 2.1.2.3 of
nagement API Implementation Agreement (ATM Interfaces)

;

 /* Beta value to be used by the IFSM */

 by the IFSM */
_IMA_GammaValue_t gammaValue;

 /* Administrative status of the group – UP/DOWN. Refer section

 */

 /* Expected b
 * added to this group. If confi
 * implementation may derive this f
 * group
 */
 NPF_uint32_t

 /* IMA Group Symmetry
 * API Implementati
 * for type definiti
 NPF_IfATM_IMA_Symmetry_t

 /* Transmit clocking mode – C
 * Management API Implementation Agreement
 * for type definition
 */
 NPF_IfATM_IMA_Tclock_t neTxClockMode;

 /* Link ID of the default transmit timing reference link
 * The Tx refer

PI implem * FA
 * link corresponding to the LID hint
 * as the timing reference li
 * being provided by the FAP

 * LFB/FAPI are free to choos
 * link */
 NPF_int8_t defTxTimingRe

 /* IMA ID configured for the near
 NPF_uint8_t txImaID;

 /* Frame length to use in transmit

 * Interface Ma
 * Revision 3.0 for type definition */

ength; NPF_IfATM_IMA_FrameLength_t txFrameL

 /* Maximum tolerated differential delay in milliseconds. Refer section
 * 4.1.16 of ATM Configuration Manager Functional API (Work in progress)
 * for type definition
 */
 NPF_F_ATM_Timers_t diffDelayMax;

 /* Alpha value to be used by IFSM */

_IMA_AlphaValue_t alphaValue NPF_F

 NPF_F_IMA_BetaValue_t betaValue;

 /* Gamma value to be used
 NPF_F

 * 4.1.17 of ATM Configuration Manager Functional API (Work in progress)
 * for type definition

 VCBIS Task Group 50

Network Processing Forum Software Working Group

 NPF_ObjStatus_t adminStatus;

 /* Configuration for test procedure */
 NPF_F_IMA_Group_Test_Mode_t testMode;

} NPF_F_IMA_Group_Config_t;

/* IMA Group States */

 /* Status of the group state machines for this group */

chine for this group */

s_t testProcStatus;

led/passed */
 /* TRUE/FALSE */

oup_Config_t neGroupConfig;

 /* Status of the state machines for this group */
F_F_IMA_Group_State_t gsmGtsmState;

. Refer section 2.1.2.4 of Interface
 * Management API Implementation Agreement (ATM Interfaces) Revision 3.0

e;

receive direction. Refer section 2.1.2.2 of
terface Management API Implementation Agreement (ATM Interfaces)

ength;

lay */
kID;

 reference link */
LinkLID;

identifies version negotiated/configured */
uint8_t txOamLabel;

typedef struct {

 NPF_F_IMA_GSM_State_t neGroupState;
 NPF_F_IMA_GSM_State_t feGroupState;

 /* Status of the group traffic state ma
 NPF_F_IMA_GTSM_State_t gtsmState;

 /* Whether test procedure disabled or operational */
 NPF_F_IMA_Test_Proc_Statu

 /* Status of the test (if operational) – fai
 NPF_boolean_t testProcFailed;

} NPF_F_IMA_Group_State_t;

/* IMA Group Query Information */
typedef struct {
 /* IMA group configuration */
 NPF_F_IMA_Gr

 NP

 /* FE Transmit clocking mode – CTC/ITC

 * for type definition
 */
 NPF_IfATM_IMA_Tclock_t feTxClockMod

 /* IMA ID configured for the far end */
 NPF_uint8_t rxImaID;

 /* Frame length used in
 * In
 * Revision 3.0 for type definition
 */
 NPF_IfATM_IMA_FrameLength_t rxFrameL

 /* ID of the link in group with least de
 NPF_F_IMA_Link_ID_t leastDelayLin

 /* Link ID of the current transmit timing
 NPF_F_IMA_Link_ID_t curTxTimingRef

 /* Link ID of the current receive timing reference link */
 NPF_F_IMA_Link_ID_t curRxTimingRefLinkLID;

 /* OAM label being Tx –
 NPF_

 VCBIS Task Group 51

Network Processing Forum Software Working Group

 /* OAM label being Rx – identifies version negotiated/configured */

 /* Available cell rate (cells per second) in transmit direction */
 txAvailCellRate;

e (cells per second)in receive direction */

id only if the test procedure
 set to NPF_TRUE it indicates

 * that the test procedure failed and the bit map of links on which the
ltBitMap

 */

 /* Bit map indicating the links on which the test pattern failed to loop
his group

 NPF_uint32_t testResultBitMap;

RX links */
 NPF_uint8_t numRxCfgLinks;

s configured for this group */
fgLinkArr;

d for this group */

int8_t numRxActLinks;

 this group */

ks for this group */

 /* The Interface handle of the PDH Link */

 /* A unique ID to identify the link. The interface handle for the link
 may be used

ion. The FAPI
 implementations say restrict the range of values assigned to this field

and
 scope of NPF.

 NPF_uint8_t rxOamLabel;

 NPF_uint32_t

 /* Available cell rat
 NPF_uint32_t rxAvailCellRate;

 /* Test procedure status. This field if val
 * is operation on link in this group. When

 * test pattern failed to loop back is specified in the testResu
 * field.

 NPF_boolean_t testProcFailed;

 * back. Valid only if the test procedure is operation on t
 */

 /* Number of configured

k Ids of Rx link /* Array of lin
 NPF_F_IMA_Link_ID_t *rxC

 /* Number of configured TX links */

 NPF_uint8_t numTxCfgLinks;

 /* Array of link Ids of Tx links configure

 NPF_F_IMA_Link_ID_t *txCfgLinkArr;

nks */ /* Number of active RX li
 NPF_u

 /* Array of link Ids of active Rx links for

 NPF_F_IMA_Link_ID_t *rxActLinkArr;

 /* Number of active TX links */

 NPF_uint8_t numTxActLinks;

 /* Array of link Ids of active Tx lin
 NPF_F_IMA_Link_ID_t *txActLinkArr;
} NPF_F_IMA_Group_Info_t;

/* IMA Link Configuration */
typedef struct {

 NPF_IfHandle_t imaIfID;

 * is an arbitrary value assigned by the IM APIs. The linkID
 * to provide a fast way to lookup the link informat
 *
 * or restrictions on the manner in which this number is constructed
 * any such restrictions are outside the

 VCBIS Task Group 52

Network Processing Forum Software Working Group

 * This number is not the logical link ID of the link.

oup */

onal API (Work in progress)
 * for type definition

 choose the LID to be assigned to this link */

ion may choose to distribute

 * ICP cells from link to link withing an IMA group in an uniform fashion
m used to select the ICP cell offset

fset is set to -1 is outside
 * the scope of NPF

NPF_F_IMA_Link_Config_t;

pedef struct {

NPF_F_IMA_Link_State_t;

nfiguration */
 neLinkConfig;

;

of ATM

 */
 NPF_F_IMA_Link_ID_t linkID;

 /* Group to which the link is assigned. Value 0 indicate not in a gr
 NPF_F_IMA_Group_ID_t groupID;

 /* Administrative status of the link – UP/DOWN. Refer section
 * 4.1.17 of ATM Configuration Manager Functi

 */
 NPF_ObjStatus_t adminStatus;

 /* Logical Link ID (LID) used in Transmit direction. A value of -1

 to the txLinkId indicates that the FAPI implementation is * assigned
 * to
 NPF_int8_t txLinkId;

 /* ICP cell offset for frames sent on this link. The FAPI client may
 * assign a value of -1 to the icpCellOffset indicating that the

PI implementation is free to choose the ICP cell offset * FA
 * When configured as -1, the FAPI implementat

 * across the IMA frame. The mechanis
 * by FAPI implementation when the icpCellOf

 */
 NPF_uint16_t icpCellOffset;
}

/* IMA Link States */
ty
 /* near end IMA Rx LSM State */
 NPF_F_IMA_LSM_State_t neRxLinkState;

 /* near end IMA Tx LSM State */
 NPF_F_IMA_LSM_State_t neTxLinkState;

 /* far end IMA Rx LSM State */
 NPF_F_IMA_LSM_State_t feRxLinkState;

 /* far end IMA Tx LSM State */
 NPF_F_IMA_LSM_State_t feTxLinkState;
}

/* IMA Link Query Information */
typedef struct {
 /* near end IMA link co

 NPF_F_IMA_Link_Config_t

 /* NE/FE Rx and Tx LSM states */
 NPF_F_IMA_Link_State_t linkStates

 /* Logical Link ID (LID) in Receive direction. A value of -1 indicates
 * that the LID is not known */
 NPF_int8_t rxLinkId;

 /* Differential delay measured between this link and the link within the
 * IMA group with the least delay. Refer section 4.1.16

 VCBIS Task Group 53

Network Processing Forum Software Working Group

 * Configuration Manager Functional API (Work in progress) for type
finition

 NPF_F_ATM_Timers_t relativeDelay;

me in seconds for which this group has been in operation state */
s;

6)*/

137)*/

 missing, invalid ICP except during
 */

s;

malies at near end except during
IMA (O20) */

 /* Count of 1 sec intervals containing > 30% invalid
S except during UAS-IMA (R126) */

aining RDI-IMA defects
 */

 NPF_uint32_t feSevErroredSecs;

(R128) */
cs;

 at far end (R129) */
UnavailSecs;

M (R130) */
 NPF_uint32_t neTxUnusableSecs;

LSM (R131) */
 NPF_uint32_t neRxUnusableSecs;

ndications from

 NPF_uint32_t feTxUnusableSecs;

 * de
 */

} NPF_F_IMA_Link_Info_t;

/* IMA Group Statistics */
typedef struct {

 /* Ti
 NPF_uint32_t groupRunningSec

 /* Count of one second intervals where the GTSM was unavailable (R13
 NPF_uint32_t groupUnavailSecs;

 /* Count of near end group failures (R
 NPF_uint32_t neNumFailures;

 /* Count of far end group failures (O25)*/
 NPF_uint32_t feNumFailures;
} NPF_F_IMA_Group_Stats_t;

/* IMA Link Statistics */
typedef struct {

unt of errored, /* Co
 SES-IMA/UAS-IMA (R125)
 NPF_uint32_t imaViolation

 /* Number of OIF ano
 SES-IMA/UAS-
 NPF_uint32_t oifAnomalies;

 IMA, link defects, LIF, or LOD
 NPF_uint32_t neSevErroredSecs;

 /* Count of 1 sec intervals cont
 Except during UAS-IMA-FE condition (R127)

 /* Count of unavailable seconds at near end
 NPF_uint32_t neUnavailSe

 /* Count of unavailable seconds
 NPF_uint32_t fe

 /* Count of unusable seconds at near end LS

 /* Count of unusable seconds at near end

 /* Count of seconds with Tx unusable i
 far end Tx LSM (R132) */

 /* Count of seconds with Rx unusable indications from

 VCBIS Task Group 54

Network Processing Forum Software Working Group

 far end Rx LSM (R133) */
 NPF_uint32_t feRxUnusableSecs;

ure alarm
 condition entered (R134)*/

lures;

nd receive failure alarm
tered (R135)*/

 NPF_uint32_t neRxNumFailures;

arm
 condition entered (O21)*/

 /* Number of times far end receive failure alarm

ection (O-23) */

 /* Number of stuff events detected in rx direction (O-24) */
 NPF_uint32_t rxStuffs;

 the FAPI user to simplify and make the reporting of
ervals. The

tate and did count SES in the last second

 in the last
 Second before the statistic query.

 The flag set to 1 indicates that Unavailability state is about to be
ility state is

I user must do a new query 10 seconds later
When the flag is

n use the SES and UAS counter values directly
 and does not need to make another query 10 seconds later. */

pedef struct {
ion valid */

CP Cell payload */
NPF_F_IMA_Icp_Cell_t;

ponse */

ble IMA groups */
 of IMA groups */

 /* Number of times near end transmit fail

 NPF_uint32_t neTxNumFai

 /* Number of times near e
 condition en

 /* Number of times far end transmit failure al

 NPF_uint32_t feTxNumFailures;

 condition entered (O22)*/
 NPF_uint32_t feRxNumFailures;

 /* Number of stuff events inserted in tx dir
 NPF_uint32_t txStuffs;

 /* Flag helping
 Unavailable Seconds more efficient at 15 minutes PM int
 Flag indicates the following.

 1) Link is in Available s

 before the statistic query.

ity state and did not count SES 2) Link is in Unavailabil

 3) None of 1 or 2.

 Entered and the flag set to 2 indicates that Unavailab
 about to be left.

 In both these cases, the FAP

 To secure reporting the correct SES and UAS values.
 set to 3, the FAPI user ca

 NPF_uint32_t uasInfoFlag;
NPF_F_IMA_Link_Stats_t; }

/* ICP Query Response Structure */
ty
 NPF_boolean_t icpValid; /* Whether ICP cell informat
 NPF_uint8_t icp_bytes[48]; /* I
}

/* IMA LFB Attributes query res
typedef struct {
 NPF_uint32_t maxNumGroups; /* Maximum possi
 NPF_uint32_t curNumGroups; /* Current number

 VCBIS Task Group 55

Network Processing Forum Software Working Group

 NPF_uint32_t maxNumLinks; /* Maximum possible IMA links */
 /* Current number of IMA links */

acks */

This union is a handy way of representing the various object identifiers

 /* IMA Group ID */

kID;

An asynchronous response contains a configuration object ID,

these is passed to the callback function as an array

ef struct {/* Asynchronous Response Structure */
 */
 */

 /* NPF_F_IMA_LFB_AttributesQuery() */

 /* NPF_F_IMA_Link_StatsGet() */

 /* NPF_F_IMA_Link_StateGet() */
te_t linkState;

 /* NPF_F_IMA_Link_LastICPInfoGet() */

teGet() */
_t groupState;

 */
Group_Info_t groupInfo;

 testResultBitMap;

 NPF_uint32_t curNumLinks;
} NPF_F_IMA_LFB_AttrQueryResponse_t;

/* Structures for Completion Callb
/*
*
* used by the APIs.
*/
typedef union {

 NPF_F_IMA_Group_ID_t groupID;

 /* IMA Link ID */
 NPF_F_IMA_Link_ID_t lin

} NPF_F_IMA_Id_t;

/*
*
* an error or success code, and in some cases a function-

ed in a union. One or more of * specific structure embedd
*
* within the callback data structure (below)
*/
typed
 NPF_error_t error; /* Error code for this resp
 NPF_F_IMA_Id_t objId; /* Object Indetifier
 union {

 NPF_F_IMA_LFB_AttrQueryResponse_t lfbAttrQueryResponse;

 NPF_F_IMA_Link_Stats_t linkStats;

 NPF_F_IMA_Link_Sta

 /* NPF_F_IMA_Link_Query() */
 NPF_F_IMA_Link_Info_t linkInfo;

 NPF_F_IMA_Icp_Cell_t icpCell;

 /* NPF_F_IMA_Group_StatsGet() */
 NPF_F_IMA_Group_Stats_t groupStats;

 /* NPF_F_IMA_Group_Sta

te NPF_F_IMA_Group_Sta

 /* NPF_F_IMA_Group_Query()
 NPF_F_IMA_

 /* NPF_F_IMA_Group_TestSet() */
 NPF_uint32_t
 } u;
} NPF_F_IMA_AsyncResponse_t;

/*
* Completion Callback Types, to be found in the callback

 VCBIS Task Group 56

Network Processing Forum Software Working Group

* data structure, NPF_F_IMA_CallbackData_t.
*/
typedef enum NPF_F_IMA_CallbackType {
 /* Function to query IMA LFB attributes */

ET = 2, /* Add or Modify an IMA group */
OUP_DELETE = 3, /* Delete an IMA group */
UP_ENABLE = 4, /* Put an IMA group in service */

ABLE = 5, /* Take an IMA group out of service */
uery config. And states of group*/

 NPF_F_IMA_GROUP_STATS_GET = 7, /* Query statistics of an IMA group */
ATE_GET = 8, /* Query state m/c states of a group*/

 Start/Stop Test pattern procedure*/

 /* Functions for IMA link configuration and management */
ink */
 */

service */
t of service */

 states of a link*/
statistics of an IMA link */
 state m/c states of a link */

 of last ICP

ng
one or more asynchronous responses from a single function call.

- n_resp = 1, and the resp array has just one element.
ut error

- if allOK = FALSE, the "resp" structure has the error code.
equests

nd the

es besides

d

long

o.
in

nts
back function invocations.

type; /* Function called */
 NPF_boolean_t allOK; /* TRUE if all completed OK */

sponses in array */
ct */

 NPF_F_IMA_ATTR_QUERY = 1,

 /* Functions for IMA group configuration and management */
 NPF_F_IMA_GROUP_S
 NPF_F_IMA_GR
 NPF_F_IMA_GRO
 NPF_F_IMA_GROUP_DIS
 NPF_F_IMA_GROUP_QUERY = 6, /* Q

 NPF_F_IMA_GROUP_ST
 NPF_F_IMA_GROUP_TEST_SET = 9, /*

 NPF_F_IMA_LINK_SET = 10, /* Add or Modify an IMA l
 NPF_F_IMA_LINK_DELETE = 11, /* Delete an IMA link
 NPF_F_IMA_LINK_ENABLE = 12, /* Put an IMA link in
 NPF_F_IMA_LINK_DISABLE = 13, /* Put an IMA link ou
 NPF_F_IMA_LINK_QUERY = 14, /* Query config and
 NPF_F_IMA_LINK_STATS_GET = 15, /* Query

NPF_F_IMA_LINK_STATE_GET = 16, /* Query
 NPF_F_IMA_LINK_LAST_ICP_GET = 17,/* Get the payload
 * cell received on queried link */
} NPF_F_IMA_CallbackType_t;

/*
* The callback function receives the following structure containi
*
* There are several possibilities:
* 1. The called function does a single request
*
* - allOK = TRUE if the request completed witho
* and the only return value is the response code.
*
* 2. the called function supports an array of r
* a. All completed successfully, at the same time, a
* only returned value is the response code:
* - allOK = TRUE, n_resp = 0.
* b. Some completed, but not all, or there are valu
* the response code to return:
* - allOK = FALSE, n_resp = the number complete
* - the "resp" array will contain one element for
* each completed request, with the error code
* in the NPF_F_IMA_AsyncResponse_t structure, a
* with any other information needed to identify
* which request element the response belongs t
* - Callback function invocations are repeated
* this fashion until all requests are complete.
* Responses are not repeated for request eleme
* already indicated as complete in earlier call
*/
typedef struct {
 NPF_F_IMA_CallbackType_t

 NPF_uint32_t n_resp; /* Number of re
 NPF_F_IMA_AsyncResponse_t resp; /* Response stru

 VCBIS Task Group 57

Network Processing Forum Software Working Group

} NPF_F_IMA_CallbackData_t;

/*
* IMA LFB Event Types
*/
typedef enum {
 /* LIF defect detected at NE for the link */
 NPF_F_IMA_EVENT_LINK_LIF_RAISED = 1,

 /* LIF defect cleared at NE for the link */
 NPF_F_IMA_EVENT_LINK_LIF_CLEARED = 2,

 /* LODS defect detected at NE for the link */
 NPF_F_IMA_EVENT_LINK_LODS_RAISED = 3,

 /* LODS defect cleared at NE for the link */

 /* Tx link misconnection cleared */
PF_F_IMA_EVENT_LINK_TX_MISCONNECT_CLEARED = 8,

*/
T_RAISED = 9,

d */
T_CLEARED = 12,

 NPF_F_IMA_EVENT_LINK_LODS_CLEARED = 4,

 /* RDI-IMA defect detected at NE for the link */
 NPF_F_IMA_EVENT_LINK_RFI_RAISED = 5,

 /* RDI-IMA defect detected at NE for the link */
 NPF_F_IMA_EVENT_LINK_RFI_CLEARED = 6,

 /* Tx link found to be not connected to matching IMA unit at FE */
 NPF_F_IMA_EVENT_LINK_TX_MISCONNECT_RAISED = 7,

 N

 /* Rx link found to be not connected to matching IMA unit at FE
 NPF_F_IMA_EVENT_LINK_RX_MISCONNEC

 /* Rx link misconnection cleared */
 NPF_F_IMA_EVENT_LINK_RX_MISCONNECT_CLEARED = 10,

 /* Implementation specific Tx fault raised */
 NPF_F_IMA_EVENT_LINK_TX_FAULT_RAISED = 11,

 /* Implementation specific Tx fault cleare
 NPF_F_IMA_EVENT_LINK_TX_FAUL

 /* Implementation specific Rx fault raised */
 NPF_F_IMA_EVENT_LINK_RX_FAULT_RAISED = 13,

 /* Implementation specific Rx fault cleared */
 NPF_F_IMA_EVENT_LINK_RX_FAULT_CLEARED = 14,

 /* FE reports Tx link unusable */
 NPF_F_IMA_EVENT_LINK_TX_UNUSABLE_FE_RAISED = 15,

 /* FE reports Tx link usable/active */
 NPF_F_IMA_EVENT_LINK_TX_UNUSABLE_FE_CLEARED = 16,

 /* FE reports Rx link unusable */
 NPF_F_IMA_EVENT_LINK_RX_UNUSABLE_FE_RAISED = 17,

 /* FE reports Rx link usable/active */
 NPF_F_IMA_EVENT_LINK_RX_UNUSABLE_FE_CLEARED = 18,

 VCBIS Task Group 58

Network Processing Forum Software Working Group

 /* Test pattern failed to loop on specified link */

TEST_LINK_FAIL_RAISED = 19,

* Test link failure condition on specified link cleared */
 20,

link state machine transition */
N = 21,

 = 22,

nfiguration params */
AISED = 23,

tion params */

uration params */
FE_RAISED = 25,

rams */
E_CLEARED = 26,

 = 27,

 are active cleared */
 = 28,

s are active */
SED = 29,

 or P(tx)

ARED = 30,

xists */

 /* Far end transmit clock mode is different than NE transmit clock mode */
3,

nd NE transmit clock mode
 */
,

k */

machine transition */
,

 NPF_F_IMA_EVENT_LINK_

 /
 NPF_F_IMA_EVENT_LINK_TEST_LINK_FAIL_CLEARED =

 /* Event to notify change in near end
 NPF_F_IMA_EVENT_LINK_STATE_MACHINE_TRANSITIO

 /* Far end group in startup state */
 NPF_F_IMA_EVENT_GROUP_STARTUP_FE_RAISED_RAISED

 /* Far end tried to use unacceptable co
 NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_R

 /* Far end uses new acceptable configura
 NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_CLEARED = 24,

 /* Far end reports unacceptable config
 NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_

 /* Far end accepts new configuration pa
 NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_F

 /* Less than P(tx) or P(rx) links are active */
 NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_RAISED

 /* Condition where less than P(tx) or P(rx) links
 NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_CLEARED

 /* Far end reports less than P(rx) or P(tx) link
 NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_FE_RAI

 /* Condition where Far end reports less than P(rx)
 links are active cleared */

 NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_FE_CLE

 /* Far end reports that it is blocked */

 NPF_F_IMA_EVENT_GROUP_BLOCKED_FE_RAISED = 31,

 /* Far end reports that blocking no longer e

 NPF_F_IMA_EVENT_GROUP_BLOCKED_FE_CLEARED = 32,

 NPF_F_IMA_EVENT_GROUP_TIMING_MISMATCH_RAISED = 3

 /* Mismatch of far end transmit clock mode a

 * cleared
 NPF_F_IMA_EVENT_GROUP_TIMING_MISMATCH_CLEARED = 34

 /* Test pattern failed to loop on some links */
 NPF_F_IMA_EVENT_GROUP_TEST_LINK_FAIL_RAISED = 35,

 /* Test link failure condition cleared on all lin
 NPF_F_IMA_EVENT_GROUP_TEST_LINK_FAIL_CLEARED = 36,

 /* Event to notify change in near end group state
 NPF_F_IMA_EVENT_GROUP_STATE_MACHINE_TRANSITION = 37

 VCBIS Task Group 59

Network Processing Forum Software Working Group

 /* Event to notify change in near end group traffic state machine

 NPF_F_IMA_EVENT_GROUP_TRAFFIC_STATE_MACHINE_TRANSITION = 38,

t array. The type
 * field indicates the specific event in the union.

 NPF_F_IMA_Event_t eventType; /* Type of event reported */
raised */

 union {
 */

 */

 } u;

 Completion Callback Function */

NPF_IN NPF_correlator_t correlator,

 Completion Callback Registration Function */

NPF_IN NPF_F_IMA_CallbackFunc_t callbackFunc,

F_error_t NPF_F_IMA_Deregister (
andle);

 Event Handler Function */

 NPF_IN NPF_uint32_t nEvent,

 Event Registration Function */

,
 NPF_IN NPF_eventMask_t imaEvtMask,

llHdl);

F_error_t NPF_F_IMA_EventHandler_Deregister(
le);

 LFB Attributes Query Function */

 transition */

} NPF_F_IMA_Event_t;
/*
 * IMA LFB Event reporting data type
 * This structure represents a single event in an even

 */
typedef struct {

 NPF_F_IMA_Id_t objId; /* Object for which event

 /* Link states – filled for link specific events
 NPF_F_IMA_Link_State_t linkState;

 /* Group states – filled for group specific events
 NPF_F_IMA_Group_State_t groupState;

} NPF_F_IMA_EventData_t;

/*
typedef void (*NPF_F_IMA_CallbackFunc_t) (
 NPF_IN NPF_userContext_t userContext,

 NPF_IN NPF_F_IMA_CallbackData_t data);

/*
NPF_error_t NPF_F_IMA_Register (

 NPF_IN NPF_userContext_t userContext,

 NPF_OUT NPF_callbackHandle_t *callbackHandle);

/* Completion Callback Deregistration Function */
NP
 NPF_IN NPF_callbackHandle_t callbackH

/*
typedef void (*NPF_F_IMA_EventCallFunc_t) (
 NPF_IN NPF_userContext_t userContext,

 NPF_IN NPF_F_IMA_EventData_t *imaEventArray);

/*
NPF_error_t NPF_F_IMA_EventHandler_Register(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_F_IMA_EventCallFunc_t imaEvtCallFn

 NPF_OUT NPF_callbackHandle_t *imaEvtCa
/* Event Handler Deregistration Function */
NP
 NPF_IN NPF_callbackHandle_t imaEventCallHand

/*
NPF_error_t NPF_F_IMA_LFB_AttributesQuery (
 NPF_IN NPF_callbackHandle_t callbackHandle,

 VCBIS Task Group 60

Network Processing Forum Software Working Group

 NPF_IN NPF_correlator_t correlator,

A group */
error_t NPF_F_IMA_GroupSet (

 cbHandle,

g,
NPF_IN NPF_FEHandle_t feHandle,

PF_F_IMA_GroupDelete (

r,
 NPF_IN NPF_errorReporting_t errorReporting,

F_IN NPF_boolean_t delContainedLnks,
t numEntries,
Group_ID_t *delArray);

ng,

 blockId,

 cbCorrelator,
 g,

 feHandle,
 blockId,

ies,
ay);

t cbHandle,
 cbCorrelator,

rReporting,

/

 NPF_IN NPF_callbackHandle_t cbHandle,
 cbCorrelator,

 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t blockId);

/* Add or Modify an IM
NPF_
 NPF_IN NPF_callbackHandle_t
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReportin

 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_IMA_Group_Config_t *cfgArray);
 Delete an IMA group */ /*

NPF_error_t N
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelato

 NPF_IN NPF_FEHandle_t feHandle,

 NPF_IN NPF_BlockId_t blockId,
 NP
 NPF_IN NPF_uint32_
 NPF_IN NPF_F_IMA_

/* Put an IMA group in service */
NPF_error_t NPF_F_IMA_GroupEnable (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporti

 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_IMA_Group_ID_t *enaArray);
/* Put an IMA group out of service */
F_error_t NPF_F_IMA_GroupDisable (NP

 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t
 NPF_IN NPF_errorReporting_t errorReportin

 NPF_IN NPF_FEHandle_t
 NPF_IN NPF_BlockId_t
 NPF_IN NPF_uint32_t numEntr
 NPF_IN NPF_F_IMA_Group_ID_t *enaArr
/* Query an IMA Group */
NPF_error_t NPF_F_IMA_GroupQuery (
 NPF_IN NPF_callbackHandle_
 NPF_IN NPF_correlator_t
 NPF_IN NPF_errorReporting_t erro
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_IMA_Group_ID_t *grpIdArr);

/* Get statistics accumulated for an IMA Group *
NPF_error_t NPF_F_IMA_GroupStatsGet (

 NPF_IN NPF_correlator_t
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,

 VCBIS Task Group 61

Network Processing Forum Software Working Group

 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_boolean_t resetStats,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_IMA_Group_ID_t *grpIdArr);

A Group */

 t g_t porting,

*/

r,
,

 NPF_IN NPF_F_IMA_Group_Test_Proc_Config_t *grpIdArr);

ing,

 *cfgArray);

g,

ink_ID_t *delArray);

g,

 NPF_IN NPF_F_IMA_Link_ID_t *enaArray);

/* Get state information for an IM

NPF_error_t NPF_F_IMA_GroupStateGet (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorRepor in errorRe
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

oup_ID_t *grpIdArr); NPF_IN NPF_F_IMA_Gr

/* Configure Test Pattern procedure for an IMA group
NPF_error_t NPF_F_IMA_GroupTestSet (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelato
 rt g_t NPF_IN NPF_errorRepo in errorReporting

 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

/* Add or Modify an IMA link */
NPF_error_t NPF_F_IMA_LinkSet (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReport
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_IMA_Link_Config_t
/* Delete an IMA Link */
NPF_error_t NPF_F_IMA_LinkDelete (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReportin
 NPF_IN NPF_FEHandle_t feHandle,

 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_IMA_L
/* Put an IMA link in service */
NPF_error_t NPF_F_IMA_LinkEnable (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReportin
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

/* Put an IMA link out of service */
NPF_error_t NPF_F_IMA_LinkDisable (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,

 VCBIS Task Group 62

Network Processing Forum Software Working Group

 NPF_IN NPF_BlockId_t blockId,

F_error_t NPF_F_IMA_LinkQuery (
ndle,

 NPF_IN NPF_correlator_t cbCorrelator,
 errorReporting,

 NPF_IN NPF_callbackHandle_t cbHandle,

ting,

F_error_t NPF_F_IMA_LinkStateGet (
_t cbHandle,
 cbCorrelator,

ing,

 cbHandle,
r,

 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_IMA_Link_ID *enaArray)_t ;
/* Query an IMA Link */
NP
 NPF_IN NPF_callbackHandle_t cbHa

 NPF_IN NPF_errorReporting_t
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_IMA_Link_ID_t *lnkIdArr);

/* Get statistics accumulated for an IMA Link */
NPF_error_t NPF_F_IMA_LinkStatsGet (

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorRepor
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_boolean_t resetStats,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_IMA_Link_ID_t *lnkIdArr);

/* Get state information for an IMA Link */
NP
 NPF_IN NPF_callbackHandle
 NPF_IN NPF_correlator_t
 NPF_IN NPF_errorReporting_t errorReport
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,
 k_ _t rr); NPF_IN NPF_F_IMA_Lin ID *lnkIdA

/* Get last received ICP cell for an IMA Link */

LastICPInfoGet (NPF_error_t NPF_F_IMA_Link
 NPF_IN NPF_callbackHandle_t
 NPF_IN NPF_correlator_t cbCorrelato
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_uint32_t numEntries,

 NPF_IN NPF_F_IMA_Link_ID *lnkIdArr)_t ;

#ifdef __cplusplus
}
#endif

#endif /* __NPF_F_ATM_IMA_H__ */

 VCBIS Task Group 63

Network Processing Forum Software Working Group

Appendix B Acknowledgements

Working Group Chair: Alex Conta

Ta roup Chair: Per Wollbrand sk G

The following individuals are acknowledged for their participation to ATM Task Group teleconferences,

ed for the development of this
 names supplied by member

ll active participants to this

plenary meetings, mailing list, and/or for their NPF contributions us
Implementation Agreement. This list may not be all-inclusive since only
companies for inclusion here will be listed. The NPF wishes to thank a
Implementation Agreement, whether listed here or not.

The list is in alphabetical order of last names:

Pat Carr, Wintegra
Pål Dammvik, Ericsson
Stephen Doyle, Intel
Conor Ferguson, Intel
Patrik Herneld, Ericsson
A malvanshi, Nokia jay Ka
Jaroslaw Kogut, Intel
Arthur Mackay, Freescale

ichael Persson, Ericsson M
Tiberu Petrica, Freescale
John Renwick, Agere Systems
Vedvyas Shanbhogue (ed.), Intel
Roger Smith, Wintegra
Keith Williamson, Motorola
Paul Wilson, Freescale
Weislaw Wisniewski, Intel
Per Wollbrand, Ericsson

 VCBIS Task Group 64

Network Processing Forum Software Working Group

Appendix C List of companies belonging to NPF during approval process

gere Systems IDT Sensory Networks
AMCC Infineon Technologies AG Sun Microsystems

l Teja Technologies
abrics TranSwitch
nfusion U4EA Group
orola Wintegra

Flextronics Mercury Computer Systems Xelerated
eescale Semiconductor Nokia Xilinx

A

Analog Devices Inte
Cypress Semiconductor IP F
Enigma Semiconductor IP I
Ericsson Mot

Fr
HCL Technologies NTT Electronics
Hifn PMC-Sierra

 VCBIS Task Group 65

	Revision History
	Introduction
	Acronyms
	Assumptions
	Scope
	External Requirements and Dependencies

	IMA LFB Description
	IMA LFB Inputs
	Metadata Required

	IMA LFB Outputs
	Metadata Produced on CELL_RX_OUT output
	Metadata Produced on CELL_TX_OUT output

	Accepted Cell Types
	Cell Modifications
	Relationship with Other LFBs

	Data Types
	Common LFB Data Types
	LFB Type Code
	IMA Configurations
	IMA Group ID
	IMA Link ID
	IMA Link Status
	IMA Group State Machine states
	IMA Group Traffic Machine State
	IMA Group Testing Mode
	IMA Group Configuration
	IMA Group States
	IMA Group Query Information
	IMA Link Configuration
	IMA Link States
	IMA Link Query Information
	IMA Group Statistics
	IMA Link Statistics
	ICP Query Response Structure
	IMA LFB Attributes query response

	Data Structures for Completion Callbacks
	Asynchronous Response
	Callback Type
	Callback Data

	Data Structures for Event Notifications
	Event Notification Types
	Event Mask bit definitions

	Event Notification Structures

	Error Codes
	Common NPF Error Codes
	LFB Specific Error Codes

	Functional API (FAPI)
	Required Functions
	Completion Callback Function
	Description
	Input Parameters
	Output Parameters
	Return Values

	Completion Callback Registration Function
	Description
	Input Parameters
	Output Parameters
	Return Values
	Notes

	Completion Callback Deregistration Function
	Description
	Input Parameters
	Output Parameters
	Return Values
	Notes

	Event Handler Function
	Description
	Input Parameters
	Output Parameters
	Return Values

	Event Registration Function
	Description
	Input Parameters
	Output Parameters
	Return Values

	Event Handler Deregistration Function
	Description
	Input Parameters
	Output Parameters
	Return Values

	LFB Attributes Query Function
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Add or Modify an IMA group
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Delete an IMA group
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Put an IMA group in service
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Put an IMA group out of service
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Query an IMA Group
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Get statistics accumulated for an IMA Group
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Get state information for an IMA Group
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Configure Test Pattern procedure for an IMA group
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Add or Modify an IMA link
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Delete an IMA Link
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Put an IMA link in service
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Put an IMA link out of service
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Query an IMA Link
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Get statistics accumulated for an IMA Link
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Get state information for an IMA Link
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Get last received ICP cell for an IMA Link
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	References

