Network Processing Forum Software Working Group

Network Processing Forum
Inverse Multiplexing for ATM (IMA) LFB and

Functional API

September 7, 2005
Revision 1.0

Editor:

Vedvyas Shanbhogue, Intel, vedvyas.shanbhogue@intel.com

Copyright © 2005 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THIS DOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", “MAY", and "OPTIONAL" in the remainder of this document are to be interpreted as
described in the NPF Software APl Conventions Implementation Agreement revision 1.0.

For additional information contact:
The Network Processing Forum, 39355 California Street,
Suite 307, Fremont, CA 94538
+1 510 608-5990 phone 4 info@npforum.org

VCBIS Task Group 1

mailto:vedvyas.shanbhogue@intel.com
mailto:info@npforum.org

Network Processing Forum Software Working Group

Table of Contents
1 REVISION HISTOMY ..ottt bbbttt bbbt nn e 3
P |10 To [0 Tod 1 o] TS OSSR PR PRORURRR 4
2.1 AACTONYIMIS ¢ttt bbbtk R et h bR R E R b n e b n s 4
A N 1] 111 0] (0] ST PS 4
2.3 SCOPE eeteeuteeit et ettt ettt h Rt R R R R R Rt R Rt E R b n e b n s 4
2.4 External Requirements and DePENUENCIES........cveviieeieeieiiesieesie et sre et 5
3 IMA LFB DESCIIPLION.......ccuiiiiiitiiteste sttt bbbt n e 6
.1 IMA LFB INPULS ..ottt sttt e e e s a e e e nn e e annns 7
3.2 IMA LFB OULPULS......eetveiieieiesese sttt ettt sttt saesaesneeneenaenaansenneeas 8
3.3 ACCEPLEA Cll TYPES ..ottt ettt et e sreeeeenes 8
KR =] | 1Y/ To o= U o] 4SS 8
3.5 Relationship With Other LFBSc.cooiiiiiiiicceeecc et 9
4 DALA TYPES ..ttt 10
4.1 CommON LFB Data TYPES .veiiiiiiiiiiiieiiiiie sttt sn e e e saeessne e 10
4.2 Data Structures for Completion CallDacksccooiriiiiiiiiiiiie e 18
4.3 Data Structures for Event NOtifiCationSccoovriiiniiienisseee e 21
O g o] g o [SRS SRPSRSRTR 25
5 FUNCLIONAL AP (FAP) ..ottt ettt ba et e s e te e e e sne e teennenreas 26
5.1 REQUITEA FUNCTIONSviiiieiieieiee sttt bbb 26
B RETEIBINCES. ...ttt bbbttt nae s 46
Appendix A Header File INfOrMAation............cocoiiiiiiiieiiis e 47
Appendix B ACKNOWIEAGEMENTS.......ccviiiiiieiec ettt re e ene e 64
Appendix C List of companies belonging to NPF during approval process...........cccceeveevennne. 65

Table of Figures

FIgure 3.1: ATIM IMALLFBottt bttt 6
Figure 3.2: IMA LINKS QN0 GIOUPSiiiiiiieiieiiesiieie ettt sttt sneenneeneesree e 7
Figure 3.3: IMA LFB INTEITACESveeveiieiiee et 9

List of Tables

Table 3-1 IMA LFB INPULS «..ocuviiie ittt sttt eneenns 7
Table 3-2 Input Metadata for CELL_RX_IN input of IMALFBccccoooveiiiiiieeeceeee e 7
Table 3-3 Input Metadata for CELL_TX_IN input of IMALFBccocoiiiiiiiiiieeee e 8
Table 3-4 IMA LFB OUIPULS.....ccviiieiecie ettt e e nae e snnenseenaenns 8
Table 3-5 Output Metadata IMA LFB on CELL_RX_OUT OQUEPUL.......cccocveiiiirriieienienieeee e 8
Table 3-6 Output Metadata IMA LFB on CELL_TX_OUT OUtPUL.......cccccvevierirreeie e 8
Table 4-1 Callback type to Callback data mapping table ... 21
Table 4-2 Callback type to function MapPing........cccceeivereiieiieere e 21

VCBIS Task Group 2

Network Processing Forum Software Working Group

1 Revision History

Revision Date Reason for Changes

1.0 09/06/2005 | Rev 1.0 of the Inverse Multiplexing for ATM (IMA) LFB and
Functional API Implementation Agreement. Source :
npf2004.325.13

VCBIS Task Group

Network Processing Forum Software Working Group

2 Introduction

This IA defines the IMA LFB and its functional API. The 1A also defines the inputs and outputs for the
IMA LFB and the metadata generated and consumed by the IMA LFB.

2.1 Acronyms
e ATM: Asynchronous Transfer Mode
e API: Application Program Interface
e CTC: Common Transmit Clock configuration
e FE: FarEnd
e ICP cell: IMA Control Protocol Cell
e ID: Identifier
e IMA: Inverse Multiplexing for ATM
e ITC: Independent Transmit Clock configuration
e LCD: Loss of cell delineation defect
e LDS: Link Delay Synchronization
e LFB: Logical Functional Block
e LID: Link Identifier
e LIF: Loss of IMA frame defect
e LODS: Link out of delay synchronization defect
e LOF: Loss of frame
e LOS: Loss of Signal
e LSM: Link State Machine
e NE: Near End
e NNI: Network Node Interface
e OIF: Out of IMA frame anomaly
e PDH: Plesiochronous Digital Hierarchy
e PMD: Physical Media Dependent
e RDI: Remote Defect Indication
e RFI: Remote Failure Indicator
e SES: Severely errored seconds
e TC: Transmission Convergence
e UAS: Unavailable seconds
e UNI: User Network Interface

2.2 Assumptions

The ATM TC LFB shall provide suitable configurations to cater to the requirements (R-3) and (R-4) on
the Transmission Convergence sublayer specified in af-phy-0086.001 for the links to be used in an IMA

group

2.3 Scope

This 1A describes the functional API provided by the IMA LFB for configuring IMA interfaces in the
forwarding element. The 1A also specifies the metadata generated and consumed by this LFB.

VCBIS Task Group

Network Processing Forum Software Working Group

2.4 External Requirements and Dependencies
This document depends on the following documents:

This document depends on the NPF Software API Conventions Implementation Agreement
document [SWAPICON] for basic type definitions. (Refer section 5.1 of Software API
Conventions IA Revision 2.0).

This document depends on Software APl Conventions Implementation agreement Revision 2.0
for the below type definitions:

0 NPF_error_t — Refer section 5.2 of Software APl Conventions IA Rev 2.0
NPF_cal lbackHandle_t - Refer section 5.2 of Software API Conventions 1A Rev 2.0
NPF_cal lbackType_t - Refer section 5.2 of Software APl Conventions IA Rev 2.0
NPF_userContext_t - Refer section 5.2 of Software API Conventions IA Rev 2.0
NPF_errorReporting_t - Refer section 5.2 of Software APl Conventions 1A Rev 2.0
This document depends on Topology Manager Functional API Implementation Agreement
Revision 1.0 for the below type definitions:

0 NPF_Blockld_t - Refer section 3.1.1 of Topology Manager Functional APl IA Rev 1.0

0 NPF_FE_Handle_t — Refer section 3.1.1 of Topology Manager Functional API IA Rev

1.0

This document depends on the Interface Management API Implementation Agreement (ATM
Interfaces) for the below data types:

o NPF_IFATM_IMA Symmetry t

o NPF_IFATM_IMA Tclock t

o NPF_ITATM_IMA_FramelLength_t

o NPF_IFATM_IMA Ver_ t
ATM Software API Architecture Framework Implementation Agreement Revision 1.0 defines the
architectural framework for the ATM FAPIs.

This document depends on the ATM Configuration Manager Functional API Implementation
Agreement Revision 1.0 for the below type definitions:

o NPF_F_ATM Timers_t

0 NPF_ObjStatus_ t

O O0OO0oOo

VCBIS Task Group 5

Network Processing Forum Software Working Group

3 IMA LFB Description

The IMA LFB performs multiplexing and de-multiplexing of ATM cells in a cyclical fashion among links
of an IMA group to form a higher bandwidth logical link whose rate is approximately the sum of the link
rates. In the transmit direction, the ATM cell stream received from the ATM layer is distributed on a cell
by cell basis, across the multiple links within the IMA group. In the receive direction, the IMA LFB
recombines the cells from each link, on a cell by cell basis, recreating the original ATM cell stream. The
aggregate cell stream is then passed to the ATM layer.

The IMA LFB periodically transmits ICP cells that contain information that permit reconstruction of the
ATM cell stream at the receiving end of the IMA virtual link. At the receive end, the IMA LFB
reconstructs the ATM cell stream after accounting for the link differential delays, smoothing CDV
introduced by the control cells, etc. The IMA LFB also transmits filler cells to maintain a continuous
stream of cells at the physical layer when there are no ATM layer cells to be sent. The filler cells received
by the IMA LFB are discarded. The IMA LFB is modeled as shown in Figure 3.1:

IMA

EXC (2) Pp———ip

CELL_RX_IN(0) CELL_RX_OUT (3) }—»

CELL TX IN(1) CELL_TX_OUT(4) }—»

IMA Instance Name

n4

Figure 3.1: ATM IMA LFB

The IMA LFB receives ATM cells received over the physical interface from the ATM TC LFB through
the CELL_RX_IN input. The IMA LFB reconstructs the ATM cell stream and sends the ATM cells over
the CELL_RX_OUT output to the ATM Header Classifier LFB.

The IMA LFB receives ATM cells for transmission over the IMA group from the ATM Header Generator
LFB over the CELL_TX_IN input. The IMA LFB distributes the ATM cells over the links constituting the
IMA group and sends the cells over the CELL_TX_OUT output to the ATM TC LFB. The IMA LFB also
sends ICP and filler cells for transmission on the IMA links through the CELL_TX_OUT output.

The LFB may contain multiple instances of IMA links identified by unique interface Ids the
corresponding PDH links. The LFB may contain multiple instances of IMA groups identified by unique
interface Ids of the IMA interface or group. The term IMA interface and IMA group are used
interchangeably in this IA. One or more (upto 32) PDH interfaces form the parent interfaces for the IMA
interface. The transmission convergence function for the IMA links are performed by the interface
specific ATM TC LFB and the associated PMD sublayer functions.

VCBIS Task Group 6

Network Processing Forum Software Working Group

Upto 32 links/group

ATM Link 1 { \ - IMA Group 1
ATM Link 2 | } IMA Group 2
ATM Link 3 U IMA Group 3
ATM Link 4 IMA Group 4
ATM Link N IMA Group N
Parent Interfaces Child Interfaces

Figure 3.2: IMA Links and Groups

The IMA links associated with an IMA group may be used by the IMA LFB for receive, transmit, or both
based on the group symmetry mode configured for the IMA group.

3.1 IMA LFB Inputs
Table 3-1 IMA LFB Inputs

Symbolic Name Input ID Description

CELL_RX_IN 0 This input is used to receive the ATM cells from
the physical layer. Cells received over the IMA
links from the physical layer are used to construct
the ATM cell stream to be sent to the ATM Header
Classifier LFB.

CELL_TX_IN 1 This input is used to receive ATM cells for
transmission over an IMA group from the ATM
Header Generator LFB. The ATM cell stream
received for transmission over the IMA group is
distributed in a cyclic manner among the
constituent IMA links of the group.

3.1.1 Metadata Required
The IMA LFB expects the below metadata on the CELL_RX_IN input.

Table 3-2 Input Metadata for CELL_RX IN input of IMA LFB

Metadata tag Access method | Description
META_IF_ID Read-And- Metadata identifying the interface 1D of the parent
Consume PDH interface on which the ATM cell was
received.

The IMA LFB expects the below metadata on the CELL_TX_IN input.

VCBIS Task Group 7

Network Processing Forum Software Working Group

Table 3-3 Input Metadata for CELL_TX_ IN input of IMA LFB

Metadata tag Access method | Description
META_IF_ID Read-And- Metadata identifying the interface ID of the IMA
Consume interface on which the ATM cell is to be

transmitted.

3.2 IMA LFB OQOutputs
Table 3-4 IMA LFB Outputs

Symbolic Name Output ID Description

CELL_RX_OUT 1 This is the output on which the ATM cell stream
extracted over from links forming the IMA group is
sent to the ATM Header Classifier LFB

CELL_TX_OUT 2 This output is used to send the ATM cells to the
ATM TC LFBs for transmission over the IMA
links.

EXC 3 This output is used to send ATM cells which need

to be discarded due to errors.

3.2.1 Metadata Produced on CELL_RX OUT output

The metadata produced on this output is as below
Table 3-5 Output Metadata IMA LFB on CELL_RX OUT output

Metadata tag

Access method

Description

META_IF_ID

Write

Metadata identifying the interface ID of the IMA
group on which the cell was received.

3.2.2 Metadata Produced on CELL_TX_OUT output
Table 3-6 Output Metadata IMA LFB on CELL_TX OUT output

Metadata tag

Access method

Description

META_IF_ID

Write

Metadata identifying the interface ID of the ATM
link on which the cell is to be transmitted

3.3 Accepted Cell Types

The IMA LFB can be used on send and receive ATM cells over either UNI or NNI interfaces.

3.4 Cell Modifications
e The ICP and filler cells received over the IMA links are extracted by the IMA LFB in the receive

direction.

¢ The IMA LFB will generate ICP and filler cells as required on the IMA links in the transmit

direction.

e The ATM layer cells received from ATM TC Receive LFB are passed without any modification
or re-ordering to the ATM Header Classifier LFB.

e The ATM layer cells received from the ATM Header generator LFB are passed without any
modification or re-ordering to the ATM TC Transmit LFB for transmission on the IMA links.

VCBIS Task Group 8

Network Processing Forum Software Working Group

3.5 Relationship with Other LFBs

The IMA LFB interacts with the ATM TC Receive LFB, ATM TC Transmit LFB, ATM Header

Classifier LFB and the ATM Header Generator LFB as shown in Figure 3.3.

ATM TC Receive

Incoming

Cell
MEDIA_IN CELL_OUT

. Metadata:
ATM TC Receive iy

Incoming W

Cell CELL_RX_IN CELL_RX_OUT }

Metadata:

ATM Header
Classifier

-} CELL_IN ATM_SDU_OUT

ATM Hdr Clasifier LFB

ifID=Y
EXC ’
Metadata:
ifID=Y
CELL_TX_IN CELL_TX_OUT
IMA— T~
ATM Header
Generator
ATM_SDU_IN CELL_OQUT Vetadata
ifID=X
ATM Header -
Generator

Figure 3.3: IMA LFB Interfaces

The EXC output of the IMA LFB could be connected an LFB that receives cells for which could not be
processed due to errors. Depending on system design this may be either the dropper LFB or any other

LFB that makes a decision on how to utilize such cells.

VCBIS Task Group

ATM TC Transmit
EXC

-} CELL_IN MEDIA_OUT

ATM TC Transmit

To next
LFB

Network Processing Forum Software Working Group

4 Data Types

4.1 Common LFB Data Types

4.1.1 LFB Type Code

It is possible to use the FAPI Topology Discovery APIs to discover an IMA LFB in a forwarding
element using a block type value for the IMA LFB.

/* LFB type for IMA LFB */
#define NPF_F_IMA_LFB_TYPE 46

4.1.2 IMA Configurations

4.1.2.1 IMA Group ID

This section defines the IMA group identifier that is used to uniquely identify an IMA group. Any
restrictions placed on the range or values that can be assigned to the IMA group ID are outside the
scope of NPF.

typedef NPF_uint32_t NPF_F IMA Group ID_t; /* IMA group ID */

4.1.2.2 IMA Link ID

This section defines the IMA link identifier that is used to uniquely identify an IMA link. Any
restrictions placed on the range or values that can be assigned to the IMA link ID are outside the
scope of NPF.

typedef NPF_uint32_t NPF_F IMA Link_ID_t; /* IMA link ID */

4.1.2.3 IMA Link Status

This structure defines the near end or far end states for receive and transmit Link State Machine.

typedef enum {
/* Link not configured */
NPF_F_IMA_LSM_STATE_NOT_IN_GROUP = 1,

/* Link configured but cannot be used */
NPF_F_IMA_LSM STATE_UNUSABLE_UNKNOWN = 2,

NPF_F IMA LSM_STATE_ UNUSABLE_FAULT LINK DEFECT = 3,
NPF_F_IMA_LSM_STATE_UNUSABLE_FAULT_LIF = 3,
NPF_F_IMA_LSM_STATE_UNUSABLE_FAULT_LODS = 3,

NPF_F_IMA_LSM_STATE_UNUSABLE_MISCONNECTED = 4,
NPF_F_IMA_LSM_STATE_UNUSABLE_INHIBITED = 5,
NPF_F_IMA_LSM_STATE_UNUSABLE_FAILED = 6,

/* Link is ready to use */
NPF_F_IMA_LSM STATE USABLE = 7,

/* Link is active and capable of passing cells to/from ATM Layer */
NPF_F_IMA_LSM_STATE_ACTIVE = 8
} NPF_F _IMA_LSM_State_t;

4.1.2.4 IMA Group State Machine states

This enumeration defines Group State Machine State.

typedef enum {
NPF_F_IMA_GSM_NOT_CONFIGURED = 1,
NPF_F_IMA_GSM_START_UP = 2,
NPF_F_IMA_GSM_START UP_ACK = 3,
NPF_F IMA GSM_CONFIG_ABORTED UNSUPPORTED FRAME LEN = 4,

VCBIS Task Group

10

Network Processing Forum Software Working Group

NPF_F_IMA_GSM_CONFIG_ABORTED_INCOMPAT IBLE_SYMMETRY
NPF_F_IMA_GSM_CONFIG_ABORTED_UNSUPPORTED_IMA_VERSION
NPF_F_IMA_GSM_CONFIG_ABORTED_OTHER = 7,
NPF_F_IMA_GSM_INSUFFICIENT_LINKS = 8,
NPF_F_IMA_GSM_BLOCKED = 9,
NPF_F_IMA_GSM_OPERATIONAL = 10

} NPF_F_IMA_GSM_State_t;

5,
= 6’

4.1.2.5 IMA Group Traffic Machine State

This enumerator defines Group Traffic State Machine State.

typedef enum {
NPF_F_IMA_GTSM_DOWN = O,
NPF_F_IMA_GTSM_UP

} NPF_F_IMA_GTSM_State_t;

4.1.2.6 IMA Group Testing Mode

This structure is used to configure the testing link in the group. When the test link ID is configured as
-1 or the test pattern is set to -1, the LFB is free to choose a link for testing and the test pattern to be
used. On configuration of the group, the test procedure is disabled by default and should be enabled
by the FAPI client if required by specifying the test link ID to be used for the procedure. The
algorithm used to select such a link and the test pattern to be used is outside the scope of NPF.

typedef enum {
NPF_F_TEST_PROC_DISABLED = 1,
NPF_F_TEST_PROC_OPERATIONAL = 2,
} NPF_F_IMA_Test Proc_Status_t;

typedef struct {
/* Testing link ID */
NPF_Int8 t testLID;

/* Test pattern */
NPF_Int32_t testPattern;

/* Test Procedure Status */
NPF_F IMA Test Proc_Status_t testStatus;

/* Test verification Duration. The far end is expected to loop back the
* test pattern on all links in the group within this duration. Failing
* which the end initiating the test procedure will declare a test

* procedure failure on the links on which the test pattern was not

* loopback.

*/

NPF_F_ATM_Timers_t expRespDuration;

} NPF_F_IMA _Group_Test Mode_t;

typedef struct {
/* A unique ID to identify the group */
NPF_F_IMA Group_ID_t grouplD;

/* Start/Stop/Change pattern */
NPF_F_IMA Group_Test Mode_ t groupTestMode;
} NPF_F_IMA Group_Test_Proc_Config_t;

4.1.2.7 IMA Group Configuration

The below structure contains the configuration parameters for an IMA group.
typedef struct {

VCBIS Task Group 11

Network Processing Forum Software Working Group

/* The Interface handle of the IMA group */
NPF_IfHandle_t imalfID;

/* A unique ID to identify the group. The interface handle for the group

* is an arbitrary value assigned by the IM APIs. The grouplD may be used
* to provide a fast way to lookup the group information. The FAPI

* implementations may restrict the range of values assigned to this field
* or may impose restrictions on the way this number is constructed and

* any such restrictions are outside the scope of NPF. This field is not
* the IMA ID sent in the ICP cells.

*/

NPF_F _IMA _Group_ID_t groupliD;

/* IMA protocol version — 1 0 or 1_1. Refer section 2.1.2.2 of Interface
* Management APl Implementation Agreement (ATM Interfaces) Revision 3.0
* for type definition
*/

NPF_IFATM_IMA Ver_t imaVer;

/* Minimum number of active receive links to make group operational */
NPF_uint8_ t minNumRxLinks;

/* Minimum number of active transmit links to make group operational */
NPF uint8 t minNumTxLinks;

/* Expected bandwidth in bits per second of the links which may be
* added to this group. If configured as 0, it indicates that the FAPI
* implementation may derive this from the first link that is added to the
* group
*/
NPF_uint32_t expLinkRate;

/* IMA Group Symmetry Mode. Refer section 2.1.2.2 of Interface Management
* APl Implementation Agreement (ATM Interfaces) Revision 3.0

* for type definition */

NPF_ITATM_IMA_ Symmetry t symmetry;

/* Transmit clocking mode — CTC/ITC. Refer section 2.1.2_.4 of Interface
* Management APl Implementation Agreement (ATM Interfaces) Revision 3.0
* for type definition
*/

NPF_ITATM_IMA Tclock t neTxClockMode;

/* Link ID of the default transmit timing reference link

The Tx reference link ID specified below is used as a hint by the

FAP1 implementation to choose the TX timing reference link. 1f the link
link corresponding to the LID hinted below is available, it is selected
as the timing reference link. A value of -1 specifies that no hint is
being provided by the FAPI client to the FAPI implementation and the
LFB/FAPI are free to choose a suitable link as the timing reference

* link */

NPF_iInt8_t defTxTimingRefLinkLID;

X ok X o ¥

/* IMA ID configured for the near end */
NPF_uint8_t txImalD;

/* Frame length to use iIn transmit direction. Refer section 2.1.2.3 of
* Interface Management APl Implementation Agreement (ATM Interfaces)

VCBIS Task Group 12

Network Processing Forum Software Working Group

* Revision 3.0 for type definition */
NPF_ITATM_IMA FramelLength_t txFramelLength;

/* Maximum tolerated differential delay in milliseconds. Refer section
* 4.1.16 of ATM Configuration Manager Functional APl1 (Work in progress)
* for type definition
*/

NPF_F ATM Timers_t diffDelayMax;

/* Alpha value to be used by IFSM */
NPF_F_IMA AlphavValue_t alphavalue;

/* Beta value to be used by the IFSM */
NPF_F IMA BetaValue_t betavalue;

/* Gamma value to be used by the IFSM */
NPF_F_IMA GammaValue_t gammaValue;

/* Administrative status of the group — UP/DOWN. Refer section

* 4.1.17 of ATM Configuration Manager Functional APl1 (Work in progress)
* for type definition

*/

NPF_ObjStatus_t adminStatus;

/* Configuration for test procedure */
NPF_F_IMA Group_Test Mode t testMode;

3} NPF_F_IMA_Group_Config_t;

4.1.2.8 IMA Group States

The structure returns the state of the group and group traffic state machines for this group.

typedef struct {
/* Status of the group state machines for this group */
NPF_F _IMA_GSM_State t neGroupState;
NPF_F _IMA_GSM_State_t feGroupState;

/* Status of the group traffic state machine for this group */
NPF_F_IMA_GTSM_State_t gtsmState;

/* Whether test procedure disabled or operational */
NPF_F _IMA Test Proc_Status_t testProcStatus;

/* Status of the test (if operational) — failed/passed */
NPF_boolean_t testProcFailed; /* TRUE/FALSE */

} NPF_F_IMA _Group_State t;

4.1.2.9 IMA Group Query Information

This structure defines the information returned when an IMA group is queried. The structure returns
the group configuration information as well as the status of the various state machines for this group.

typedef struct {
/* IMA group configuration */
NPF_F_IMA Group_Config_t neGroupConfig;

/* Status of the state machines for this group */
NPF_F_IMA Group_State_t gsmGtsmState;

/* FE Transmit clocking mode — CTC/ITC. Refer section 2.1.2.4 of Interface

VCBIS Task Group 13

Network Processing Forum Software Working Group

* Management APl Implementation Agreement (ATM Interfaces) Revision 3.0
* for type definition

*/

NPF_IFATM_IMA Tclock t feTxClockMode;

/* IMA ID configured for the far end */
NPF_uint8_ t rxImalD;

/* Frame length used in receive direction. Refer section 2.1.2.2 of

* Interface Management APl Implementation Agreement (ATM Interfaces)
* Revision 3.0 for type definition

*/

NPF_ITATM_IMA_FramelLength_t rxFramelLength;

/* 1D of the link in group with least delay */
NPF_F_IMA Link ID_ t leastDelayLinklD;

/* Link 1D of the current transmit timing reference link */
NPF_F_IMA Link ID_t curTxTimingRefLinkLID;

/* Link 1D of the current receive timing reference link */
NPF_F_IMA Link ID t CcurRxTimingRefLinkLID;

/* OAM label being Tx — identifies version negotiated/configured */
NPF_uint8_t txOamLabel ;

/* OAM label being Rx — identifies version negotiated/configured */
NPF uint8 t rxOamLabel ;

/* Available cell rate (cells per second) in transmit direction */
NPF_uint32_t txAvailCel lIRate;

/* Available cell rate (cells per second)in receive direction */
NPF _uint32_t rxAvailCel lRate;

/* Test procedure status. This Ffield if valid only if the test procedure
* is operation on link in this group. When set to NPF_TRUE it indicates
* that the test procedure failed and the bit map of links on which the
* test pattern failed to loop back is specified in the testResultBitMap
* field.

*/
NPF_boolean_t testProcFailed;

/* Bit map indicating the links on which the test pattern failed to loop
* back. Valid only if the test procedure is operation on this group
*/
NPF_uint32_t testResultBitMap;

/* Number of configured RX links */
NPF_uint8_t numRxCfgLinks;

/* Array of link Ids of Rx links configured for this group */
NPF_F IMA Link ID_t *rxCfgLinkArr;

/* Number of configured TX links */
NPF_uint8_t numTxCfgLinks;

/* Array of link Ids of Tx links configured for this group */
NPF_F_IMA_Link_ID_t *txCFgLinkArr;

VCBIS Task Group

14

Network Processing Forum Software Working Group

/* Number of active RX links */
NPF uint8 t numRxActLinks;

/* Array of link Ids of active Rx links for this group */
NPF_F_IMA Link ID t *rxActLinkArr;

/* Number of active TX links */
NPF uint8 t numTxActLinks;

/* Array of link Ids of active Tx links for this group */
NPF_F _IMA_Link_ID_t *txActLinkArr;
3} NPF_F_IMA_Group_Info_t;

4.1.2.10 IMA Link Configuration
The below structure contains the configuration parameters for a link in an IMA group.

typedef struct {
/* The Interface handle of the PDH Link */
NPF_IfHandle_t imalfID;

/* A unique ID to identify the link. The interface handle for the link

* is an arbitrary value assigned by the IM APIs. The linkID may be used

* to provide a fast way to lookup the link information. The FAPI

* implementations say restrict the range of values assigned to this field
* or restrictions on the manner in which this number is constructed and

* any such restrictions are outside the scope of NPF.

* This number is not the logical link ID of the link.

*/

NPF_F _IMA Link ID_t 1inklID;

/* Group to which the link is assigned. Value O indicate not in a group */
NPF_F _IMA _Group_ID_t groupliD;

/* Administrative status of the link — UP/DOWN. Refer section

* 4.1.17 of ATM Configuration Manager Functional APl1 (Work in progress)
* for type definition

*/

NPF_ObjStatus_t adminStatus;

/* Logical Link ID (LID) used in Transmit direction. A value of -1

* assigned to the txLinkld indicates that the FAPI implementation is
* to choose the LID to be assigned to this link */

NPF_int8_t txLinkld;

/* ICP cell offset for frames sent on this link. The FAPI client may

* assign a value of -1 to the icpCellOffset indicating that the

* FAPI implementation is free to choose the ICP cell offset

* When configured as -1, the FAPI implementation may choose to distribute
* ICP cells from link to link withing an IMA group in an uniform fashion

* across the IMA frame. The mechanism used to select the ICP cell offset
* by FAPI implementation when the icpCellOffset is set to -1 is outside

* the scope of NPF

*/

NPF_uintl6_t icpCellOffset;

} NPF_F_IMA_Link_Config_t;

VCBIS Task Group 15

Network Processing Forum Software Working Group

4.1.2.11 IMA Link States

The structure returns receive and transmit link state machines states for this link.

typedef struct {

/* near end IMA Rx LSM State */
NPF_F IMA LSM State t neRxLinkState;

/* near end IMA Tx LSM State */
NPF_F_IMA LSM State t neTxLinkState;

/* far end IMA Rx LSM State */
NPF_F_IMA_LSM_State_t feRxLinkState;

/* far end IMA Tx LSM State */
NPF_F IMA LSM State t feTxLinkState;

} NPF_F_IMA_Link_State_t;
4.1.2.12 IMA Link Query Information

This structure defines the information returned when an IMA link is queried. The structure returns the
link configuration information as well as the status of the various state machines for this link.

typedef struct {

/* near end IMA link configuration */
NPF_F_IMA Link Config t neLinkConfig;

/* NE/FE Rx and Tx LSM states */
NPF_F_IMA_Link_State_t linkStates;

/* Logical Link ID (LID) in Receive direction. A value of -1 indicates

* that the LID is not known */
NPF_int8 t rxLinkld;

/* Differential delay measured between this link and the link within the
* IMA group with the least delay. Refer section 4.1.16 of ATM
* Configuration Manager Functional API (Work in progress) for type

* definition
*/
NPF_F_ATM_Timers_t relativeDelay;

} NPF_F_IMA_Link_Info_t;

4.1.2.13 IMA Group Statistics

This structure defines the IMA group related statistics information.

typedef struct {

/* Time in seconds for which this group has been in
NPF_uint32_t groupRunningSecs;

/* Count of one second intervals where the GTSM was
NPF_uint32_t groupUnavailSecs;

/* Count of near end group failures (R137)*/
NPF_uint32_t neNumFailures;

/* Count of far end group failures (025)*/
NPF_uint32_t feNumFailures;

} NPF_F_IMA_Group_Stats_t;

VCBIS Task Group

operation state */

unavailable (R136)*/

16

Network Processing Forum Software Working Group

4.1.2.14 IMA Link Statistics
This structure defines the IMA link related statistics information.

typedef struct {
/* Count of errored, missing, invalid ICP except during
SES-IMAZUAS-IMA (R125) */
NPF_uint32_t imaViolations;

/* Number of OIF anomalies at near end except during
SES-IMAZ/UAS-IMA (020) */
NPF_uint32_t oifAnomalies;

/* Count of 1 sec intervals containing > 30% invalid
IMA, link defects, LIF, or LODS except during UAS-IMA (R126) */
NPF_uint32_t neSevErroredSecs;

/* Count of 1 sec intervals containing RDI-IMA defects
Except during UAS-IMA-FE condition (R127) */
NPF_uint32_t feSevErroredSecs;

/* Count of unavailable seconds at near end (R128) */
NPF_uint32_t neUnavailSecs;

/* Count of unavailable seconds at far end (R129) */
NPF_uint32_t feUnavailSecs;

/* Count of unusable seconds at near end LSM (R130) */
NPF_uint32_t neTxUnusableSecs;

/* Count of unusable seconds at near end LSM (R131) */
NPF_uint32_t neRxUnusableSecs;

/* Count of seconds with Tx unusable indications from
far end Tx LSM (R132) */
NPF_uint32_t feTxUnusableSecs;

/* Count of seconds with Rx unusable indications from
far end Rx LSM (R133) */
NPF_uint32_t feRxUnusableSecs;

/* Number of times near end transmit failure alarm
condition entered (R134)*/
NPF_uint32_t neTxNumFailures;

/* Number of times near end receive failure alarm
condition entered (R135)*/
NPF_uint32_t neRxNumFailures;

/* Number of times far end transmit failure alarm
condition entered (021)*/
NPF_uint32_t feTxNumFailures;

/* Number of times far end receive failure alarm
condition entered (022)*/
NPF_uint32_t feRxNumFailures;

/* Number of stuff events inserted in tx direction (0-23) */
NPF_uint32_t txStuffs;

VCBIS Task Group

17

Network Processing Forum Software Working Group

/* Number of stuff events detected in rx direction (0-24) */
NPF _uint32_t rxStuffs;

/* Flag helping the FAPI user to simplify and make the reporting of
Unavailable Seconds more efficient at 15 minutes PM intervals. The
Flag indicates the following.

1) Link is in Available state and did count SES in the last second
before the statistic query.

2) Link is in Unavailability state and did not count SES in the last
Second before the statistic query.

3) None of 1 or 2.

The flag set to 1 indicates that Unavailability state is about to be
Entered and the flag set to 2 indicates that Unavailability state is
about to be left.

In both these cases, the FAPI user must do a new query 10 seconds later
To secure reporting the correct SES and UAS values. When the flag is
set to 3, the FAPI user can use the SES and UAS counter values directly
and does not need to make another query 10 seconds later. */

NPF_uint32_t uaslinfoFlag;
} NPF_F_IMA_Link_Stats_t;
4.1.2.15 ICP Query Response Structure

The FAPI client may request the FAPI implementation to provide the last ICP cell seen on any link in
an IMA group. The below structure is used to return the ATM SDU of the ATM cell containing the
last seen ICP cell on the queried IMA link. If no valid ICP cells have been received on the queried
link, the icpvalid field shall be set to FALSE.

typedef struct {
NPF_boolean_t icpValid; /* Whether ICP cell information valid */

NPF_uint8 t icp_bytes[48]; /* 1CP Cell payload */
3} NPF_F _IMA_Icp _Cell _t;

4.1.2.16 IMA LFB Attributes query response

The attributes of an IMA are the following:
typedef struct {

NPF_uint32_t maxNumGroups; /* Maximum possible IMA groups */
NPF_uint32_t curNumGroups; /* Current number of IMA groups */
NPF _uint32_t maxNumLinks; /* Maximum possible IMA links */
NPF _uint32_t curNumLinks; /* Current number of IMA links */

} NPF_F _IMA_LFB_AttrQueryResponse_t;

The maxNumGroups field contains the maximum number of IMA groups supported in this IMA LFB.
The curNumGroups field contains the number of IMA groups currently configured in the LFB. The
maxNumL inks field contains the maximum number of IMA links supported in this IMA LFB. The
curNumL inks field contains the number of IMA links currently configured in the LFB.

4.2 Data Structures for Completion Callbacks

4.2.1 Asynchronous Response
The Asynchronous Response data structure is used during callbacks in response to API invocations.

VCBIS Task Group 18

Network Processing Forum Software Working Group

/*

* This union is a handy way of representing the various object identifiers

* used by the APIs.
*/
typedef union {
/* IMA Group ID */
NPF_F _IMA _Group_ID_t groupliD;

/* IMA Link ID */
NPF_F_IMA_Link_ID_t 1inkID;
} NPF_F_IMA_1d_t;

/*

* An asynchronous response contains a configuration object 1D,
* an error or success code, and in some cases a function-

* gspecific structure embedded in a union. One or more of

* these i1s passed to the callback function as an array

* within the callback data structure (below)

*/
typedef struct {/* Asynchronous Response Structure */
NPF_error_t error; /* Error code for this resp
NPF_F_IMA Id t objld; /* Object Indetifier
union {
/* NPF_F_IMA_LFB_AttributesQuery() */
NPF_F_IMA _LFB_AttrQueryResponse_t IfbAttrQueryResponse;
/* NPF_F_IMA_Link_StatsGet() */
NPF_F IMA Link Stats t linkStats;
/* NPF_F_IMA Link_StateGet() */
NPF_F_IMA Link State t linkState;
/* NPF_F_IMA_Link_Query(Q */
NPF_F IMA Link Info_t linkInfo;
/* NPF_F_IMA Link LastICPInfoGet() */
NPF_F_IMA Icp_Cell_t icpCell;
/* NPF_F_IMA Group_StatsGet() */
NPF_F_IMA Group_Stats_t groupStats;
/* NPF_F_IMA Group_StateGet() */
NPF_F IMA Group_State_t groupState;
/* NPF_F_IMA Group_Query(Q) */
NPF_F_IMA Group_Info_t grouplnfo;
/* NPF_F_IMA Group_TestSet() */
NPF_uint32_t testResultBitMap;
¥ ou;

} NPF_F_IMA_AsyncResponse_t;
4.2.2 Callback Type

This enumeration is used to indicate reason for invoking the callback function.
/*
* Completion Callback Types, to be found in the callback
* data structure, NPF_F _IMA CallbackData t.
*/
typedef enum NPF_F _IMA_CallbackType {

VCBIS Task Group

*/
*/

19

Network Processing Forum Software Working Group

/* Function to query IMA LFB attributes */

NPF_F_IMA_ATTR_QUERY = 1,

/* Functions for IMA group configuration and management */

NPF_F_IMA_GROUP_SET = 2,

NPF_F_IMA_GROUP_DELETE = 3
NPF_F_IMA_GROUP_ENABLE = 4
NPF_F_IMA_GROUP_DISABLE =

NPF_F_IMA_GROUP_QUERY = 6,
NPF_F_IMA_GROUP_STATS_GET
NPF_F_IMA_GROUP_STATE_GET
NPF_F_IMA_GROUP_TEST SET =

5,

71
81
95

/* Add or Modify an IMA group */
/* Delete an IMA group */
/* Put an IMA group in service */

/* Take an IMA group out of service */
/* Query config. And states of group*/
/* Query statistics of an IMA group */
/* Query state m/c states of a group*/
/* Start/Stop Test pattern procedure*/

/* Functions for IMA link configuration and management */

NPF_F_IMA_LINK_SET = 10,
NPF_F_IMA_LINK_DELETE = 11
NPF_F_IMA_LINK_ENABLE = 12
NPF_F_IMA_LINK_DISABLE = 1
NPF_F_IMA_LINK_QUERY = 14,
NPF_F_IMA_LINK_STATS GET
NPF_F_IMA_LINK_STATE_GET =

3,

15,
16,

/* Add or Modify an IMA link */
/* Delete an IMA link */
/* Put an IMA link iIn service */

/* Put an IMA link out of service */
/* Query config and states of a link*/
/* Query statistics of an IMA link */
/* Query state m/c states of a link */

NPF_F_IMA_LINK_LAST ICP_GET = 17,/* Get the payload of last ICP

} NPF_F_IMA_CallbackType t;
4.2.3 Callback Data

* cell received on queried link */

An asynchronous response contains an error/success code and a function-specific structure embedded
in a union in the NPF_F_IMA_Cal lbackData_t structure.

*

There are several possibilit

- allOK = TRUE, n_resp = 0.

the response code to return:

X Rk R 3k b 3 b % o kX o X 3k X ok X ok X b X F N\

*/

typedef struct {
NPF_F_IMA CallbackType t
NPF_boolean_t
NPF_uint32_t

ies:

type;
allOK;
n_resp;

The callback function receives the following structure containing
one or more asynchronous responses from a single function call.

1. The called function does a single request

- n_resp = 1, and the resp array has just one element.

- allOK = TRUE if the request completed without error

and the only return value is the response code.

- if allOK = FALSE, the "resp" structure has the error code.
2. the called function supports an array of requests

a. All completed successfully, at the same time, and the
only returned value is the response code:

b. Some completed, but not all, or there are values besides

- allOK = FALSE, n_resp = the number completed

- the "resp" array will contain one element for

each completed request, with the error code

in the NPF_F_IMA_AsyncResponse_t structure, along

with any other information needed to identify

which request element the response belongs to.

- Callback function invocations are repeated in

this fashion until all requests are complete.

Responses are not repeated for request elements

already indicated as complete in earlier callback function invocations.

/* Function called */
/* TRUE if all completed OK */
/* Number of responses in array */

VCBIS Task Group

20

Network Processing Forum Software Working Group

NPF_F_IMA_AsyncResponse_t resp;
} NPF_F_IMA CallbackData t;

/* Response struct */

The callback data that returned for different callback types is summarized in Table 4-1 Callback type

to Callback data mapping table.

Table 4-1 Callback type to Callback data mapping table

Callback Type

Callback Data

NPF_F_IMA_ATTR_QUERY ITbAttrQueryResponse
NPF_F_IMA_GROUP_SET None
NPF_F_IMA_GROUP_DELETE None
NPF_F_IMA_GROUP_ENABLE None
NPF_F_IMA_GROUP_DISABLE None
NPF_F_IMA_GROUP_QUERY grouplinfo
NPF_F_IMA_GROUP_STATS_GET groupStats
NPF_F_IMA_GROUP_STATE_GET groupState
NPF_F_IMA_GROUP_TEST_SET None
NPF_F_IMA_LINK_SET None
NPF_F_IMA_LINK DELETE None
NPF_F_IMA_LINK_ENABLE None
NPF_F_IMA_LINK_DISABLE None
NPF_F_IMA_LINK_QUERY linkInfo
NPF_F_IMA_LINK_STATS_GET linkStats
NPF_F_IMA_LINK_STATE_GET linkState
NPF_F_IMA_LINK_LAST_ICP_GET icpCell

The IMA LFB API functions and their type codes are summarized in Table 4-2.

Table 4-2 Callback type to function mapping

Callback Type

Function

NPF_F_IMA_ATTR_QUERY

NPF_F_IMA_LFB_AttributesQuery()

NPF_F_IMA_GROUP_SET

NPF_F _IMA_GroupSet()

NPF_F_IMA_GROUP_DELETE

NPF_F IMA GroupDelete()

NPF_F_IMA_GROUP_ENABLE

NPF_F _IMA_GroupEnable()

NPF_F_IMA_GROUP_DISABLE

NPF_F_IMA GroupDisable()

NPF_F_IMA_GROUP_QUERY

NPF_F_IMA_GroupQuery()

NPF_F_IMA GROUP_STATS GET

NPF_F IMA GroupStatsGet()

NPF_F_IMA GROUP_STATE GET

NPF_F _IMA GroupStateGet()

NPF_F_IMA_GROUP_TEST SET

NPF_F_IMA _GroupTestSet()

NPF_F_IMA_LINK_SET

NPF_F_IMA_LinkSet()

NPF_F_IMA_LINK _DELETE

NPF_F _IMA LinkDelete()

NPF_F_IMA_LINK_ENABLE

NPF_F _IMA_LinkEnable()

NPF_F_IMA_LINK DISABLE

NPF_F_IMA_LinkDisable()

NPF_F_IMA_LINK_QUERY

NPF_F_IMA_LinkQuery(Q)

NPF_F_IMA_LINK_STATS GET

NPF_F_IMA_LinkStatsGet()

NPF_F_IMA_LINK_STATE GET

NPF_F_IMA_LinkStateGet()

NPF_F_IMA_LINK_LAST_ICP_GET

NPF_F _IMA Link LastICPInfoGet()

4.3 Data Structures for Event Notifications

4.3.1Event Notification Types

The event type indicates the type of event data in the union of event structures returned in

NPF_F_IMA_Event_t.

VCBIS Task Group 21

Network Processing Forum Software Working Group

/*

* IMA LFB Event Types

*/

typedef enum {
/* LIF defect detected at NE for the link */
NPF_F_IMA EVENT_LINK LIF RAISED = 1,

/* LIF defect cleared at NE for the link */
NPF_F_IMA EVENT LINK LIF CLEARED = 2,

/* LODS defect detected at NE for the link */
NPF_F IMA EVENT_LINK_LODS RAISED = 3,

/* LODS defect cleared at NE for the link */
NPF_F_IMA EVENT_LINK LODS CLEARED = 4,

/* RDI-IMA defect detected at NE for the link */
NPF_F IMA EVENT_LINK_RFI_RAISED = 5,

/> RDI-IMA defect detected at NE for the link */
NPF_F IMA EVENT_LINK_RFI_CLEARED = 6,

/* Tx link found to be not connected to matching IMA unit at FE */
NPF_F_IMA_EVENT_LINK_TX_MISCONNECT_RAISED = 7,

/* Tx link misconnection cleared */
NPF_F IMA EVENT_LINK_TX MISCONNECT CLEARED = 8,

/* Rx link found to be not connected to matching IMA unit at FE */
NPF_F_IMA_EVENT_LINK_RX_MISCONNECT_RAISED = 9,

/* Rx link misconnection cleared */
NPF_F IMA EVENT_LINK_RX MISCONNECT CLEARED = 10,

/* Implementation specific Tx fault raised */
NPF_F_IMA_EVENT_LINK_TX_FAULT_RAISED = 11,

/* Implementation specific Tx fault cleared */
NPF_F_IMA_EVENT_LINK_TX_FAULT_CLEARED = 12,

/* Implementation specific Rx fault raised */
NPF_F_IMA_EVENT_LINK_RX_FAULT_RAISED = 13,

/* Implementation specific Rx fault cleared */
NPF_F_IMA_EVENT_LINK_RX_FAULT_CLEARED = 14,

/* FE reports Tx link unusable */
NPF_F_IMA_EVENT_LINK TX_ UNUSABLE_FE_RAISED = 15,

/* FE reports Tx link usable/active */
NPF_F_IMA_EVENT_LINK_TX_ UNUSABLE_FE_CLEARED = 16,

/* FE reports Rx link unusable */
NPF_F_IMA_EVENT_LINK_RX_UNUSABLE_FE_RAISED = 17,

/* FE reports Rx link usable/active */
NPF_F_IMA_EVENT_LINK_RX_UNUSABLE_FE_CLEARED = 18,

/* Test pattern failed to loop on specified link */

VCBIS Task Group

22

Network Processing Forum Software Working Group
NPF_F_IMA_EVENT_LINK TEST_LINK_ FAIL_RAISED = 19,

/* Test link failure condition on specified link cleared */
NPF_F_IMA_EVENT_LINK_TEST_LINK_FAIL_CLEARED = 20,

/* Event to notify change in near end link state machine transition */
NPF_F_IMA_EVENT_LINK_STATE_MACHINE_TRANSITION = 21,

/* Far end group in startup state */
NPF_F_IMA_EVENT_GROUP_STARTUP_FE_RAISED_RAISED = 22,

/* Far end tried to use unacceptable configuration params */
NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_RAISED = 23,

/* Far end uses new acceptable configuration params */
NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_CLEARED = 24,

/* Far end reports unacceptable configuration params */
NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_FE_RAISED = 25,

/* Far end accepts new configuration params */

NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_FE_CLEARED = 26,
/* Less than P(tx) or P(rx) links are active */
NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_RAISED = 27,

/* Condition where less than P(tx) or P(rx) links are active cleared */
NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_CLEARED = 28,

/* Far end reports less than P(rx) or P(tx) links are active */
NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_FE_RAISED = 29,

/* Condition where Far end reports less than P(rx) or P(tx)
links are active cleared */
NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_FE_CLEARED = 30,

/* Far end reports that it is blocked */
NPF_F_IMA_EVENT_GROUP_BLOCKED_FE_RAISED = 31,

/* Far end reports that blocking no longer exists */
NPF_F_IMA_EVENT_GROUP_BLOCKED_FE_CLEARED = 32,

/* Far end transmit clock mode is different than NE transmit clock mode */
NPF_F_IMA EVENT_GROUP_TIMING _MISMATCH RAISED = 33,

/* Mismatch of far end transmit clock mode and NE transmit clock mode
* cleared */
NPF_F IMA EVENT_GROUP_TIMING_MISMATCH CLEARED = 34,

/* Test pattern failed to loop on some links */
NPF_F_IMA_EVENT_GROUP_TEST_LINK_FAIL_RAISED = 35,

/* Test link failure condition cleared on all link */
NPF_F_IMA EVENT_GROUP_TEST_ LINK_FAIL_CLEARED = 36,

/* Event to notify change in near end group state machine transition */
NPF_F_IMA_EVENT_GROUP_STATE_MACHINE_TRANSITION = 37,

/* Event to notify change in near end group traffic state machine

VCBIS Task Group 23

Network Processing Forum Software Working Group

transition */
NPF_F IMA EVENT_GROUP_TRAFFIC_STATE_MACHINE_TRANSITION = 38,

} NPF_F_IMA Event_t;
4.3.1.1 Event Mask bit definitions

/*

* Definitions for selectively enabling IMA LFB Events

*/
/* Link specific alarms */
#define NPF_F_IMA_EVENT _LINK_LIF A << 0)
#define NPF_F_IMA EVENT LINK LODS 1 << 1)
#define NPF_F_IMA_EVENT_LINK_RFI (1 << 2)
#define NPF_F_IMA_EVENT_LINK_TX_MISCONNECT (1 << 3)
#define NPF_F_IMA_EVENT_LINK_RX_MISCONNECT A << 4)
#define NPF_F_IMA_EVENT_LINK_TX FAULT (1 << 5)
#define NPF_F_IMA EVENT_ LINK_RX FAULT (1 << 6)
#define NPF_F_IMA_EVENT_LINK_TX_ UNUSABLE_FE A << 7
#define NPF_F_IMA_EVENT_LINK_RX_ UNUSABLE_FE (1 << 8)
#define NPF_F_IMA_EVENT_LINK_TEST_LINK_STATUS A << 9)
#define NPF_F_IMA_EVENT_LINK_STATE_MACHINE_TRANSITION (1 << 10)
/* Group specific alarms */
#define NPF_F_IMA_EVENT_GROUP_STARTUP_FE (1 << 16)
#define NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED 1 << 17)
#define NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_FE (1 << 18)
#define NPF_F_IMA EVENT GROUP_INSUFFICIENT_LINKS (1 << 19)
#define NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_FE (1 << 20)
#define NPF_F_IMA_EVENT_GROUP_BLOCKED FE (1 << 21)
#define NPF_F_IMA_EVENT_GROUP_TIMING_MISMATCH (1 << 22)
#define NPF_F_IMA_EVENT_GROUP_TEST_LINK_STATUS (1 << 23)
#define NPF_F_IMA EVENT GROUP_STATE MACHINE_ TRANSITION (1 << 24)
#define NPF_F_IMA_EVENT_GROUP_TRAFFIC_STATE_MACHINE_TRANSITION (1 << 25)
#define NPF_F_IMA_EVENT_LAST (1 << 25)

The FAPI client may register for all events using NPF_EV_ALL_EVENTS_ENABLE.

4.3.2Event Notification Structures

This section describes the various events which MAY be implemented. It is important to note that
even if an implementation does not support any of these events, the implementation still needs to
provide the register and deregister event function to enable interoperability.

This structure defines all the possible event definitions for the IMA LFB FAPI. An event type field
indicates which member of the union is relevant in the specific structure.
/*
* IMA LFB Event reporting data type
* This structure represents a single event in an event array. The type
* Ffield indicates the specific event in the union.

*/
typedef struct {
NPF_F_IMA Event_t eventType; /* Type of event reported */
NPF_F_IMA Id t objld; /* Object for which event raised */
union {
/* Link states — filled for link specific events */
NPF_F IMA Link State t linkState;
/* Group states — Filled for group specific events */
NPF_F_IMA_Group_State_t groupState;

VCBIS Task Group

Network Processing Forum Software Working Group

} u;
} NPF_F_IMA_EventData t;

4.4 Error Codes
4.4.1 Common NPF Error Codes

The common error codes that are returned by IMA LFB are listed below:

e NPF_NO_ERROR - This value MUST be returned when a function was successfully invoked.
This value is also used in completion callbacks where it MUST be the only value used to
signify success.

e NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative.

e NPF_E_BAD CALLBACK_HANDLE - A function was invoked with a callback handle that did
not correspond to a valid NPF callback handle as returned by a registration function, or a
callback handle was registered with a registration function belonging to a different API than
the function call where the handle was passed in.

e NPF_E BAD_ CALLBACK_FUNCTION - A callback registration was invoked with a function
pointer parameter that was invalid.

e NPF_E_CALLBACK_ALREADY_REGISTERED - A callback or event registration was invoked
with a pair composed of a function pointer and a user context that was previously used for an
identical registration.

e NPF_E_FUNCTION_NOT_SUPPORTED - This error value MUST be returned when an optional
function call is not implemented by an implementation. This error value MUST NOT be
returned by any required function call. This error value MUST be returned as the function
return value (i.e., synchronously).

4.4.2 LFB Specific Error Codes

This section defines IMA LFB APIs error codes. These codes are used in callbacks to deliver results
of the requested operations. The base for the error codes used in ATM LFBs is derived as
LFB_TYPE_CODE * 100.

/* Asynchronous error codes (returned in function callbacks) */
typedef NPF_uint32_t NPF_F Ima_ErrorType_t;

#define NPF_IMA_BASE_ERR (NPF_F_IMA_LFB_TYPE * 100)
#define IMA_ERR(nN) ((NPF_F_IMA ErrorType_t) (NPF_IMA BASE ERR+ (n))

/* LFB ID is not an ID of LFB that has IMA functionality*/
#define NPF_IMA_F_E_INVALID_IMA BLOCK_ID IMA_ERR (0)

/* Invalid configuration attributes */
#define NPF_IMA_F_E INVALID_ATTRIBUTE IMA_ERR (1)

/* Test procedure failed on one or more receive links */
#define NPF_IMA F_E TEST_PROC_FAILED IMA_ERR (2)

/* Group specified in link configuration not recognized */
#define NPF_IMA_F_E_UNKNOWN_GROUP IMA_ERR (3)

/* Group cannot be deleted as it has associated links and FAPI client has not

* requested deletion of contained links */
#define NPF_IMA_F_E CONT_LINKS_EXIST IMA_ERR (4)

VCBIS Task Group 25

Network Processing Forum Software Working Group

5 Functional API (FAPI)

5.1 Required Functions

5.1.1 Completion Callback Function

This callback function is for the application to register an asynchronous response handling routine to
the IMA API implementation. This callback function is intended to be implemented by the
application. The application should register this function with the IMA API implementation using the
NPF_F_IMA_Register function.

typedef void (*NPF_F_IMA_CallbackFunc t) (

NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_F_IMA_CallbackData_t data);

5.1.1.1 Description
This function is a routine to handle to IMA asynchronous responses.
5.1.1.2 Input Parameters

e userContext - The context item supplied by the application when the completion
callback routine was registered.

e correlator - The correlator item that was supplied by the application when the IMA
API function call was invoked.

e data - The response information related to the particular callback type
5.1.1.3 Output Parameters
None
5.1.1.4 Return Values
None

5.1.2 Completion Callback Registration Function
NPF_error_t NPF_F IMA Register (

NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_F_IMA CallbackFunc_t callbackFunc,
NPF_OUT NPF_callbackHandle_t *callbackHandle);

5.1.2.1 Description

This function is used by an application to register its completion callback function for receiving
asynchronous responses related to IMA API function calls. Applications MAY register multiple
callback functions using this function. The pair of userContext and cal IbackFunc identifies the
callback function. For each individual pair, a unique cal IbackHandle will be assigned for future
reference. Since the callback function is identified by both userContext and cal IbackFunc,
duplicate registration of the same callback function with a different userContext is allowed. Also,
the same userContext can be shared among different callback functions. Duplicate registration of
the same userContext and cal IbackFunc pair has no effect. On attempting to register a duplicate
callback function the handle of the callback previously registered will be returned in

cal IBackHandle and the return code will indicate NPF_E_ALREADY_REGISTERED.

5.1.2.2 Input Parameters

e userContext — A parameter for uniquely identifying the context of the application
registering the completion callback function. The exact value will be provided back to the
registered completion callback function as its first parameter when it is called.
Applications can assign any value to the userContext and the value is completely
opaque to the APl implementation.

VCBIS Task Group 26

Network Processing Forum Software Working Group

e callbackFunc - The pointer to the completion callback function to be registered.

5.1.2.3 Output Parameters

o callbackHandle - A unique identifier assigned for the registered userContext and
cal IbackFunc pair. This handle will be used by the application to specify which
callback function to be called when invoking asynchronous NPF IMA API functions. It
will also be used when deregistering the userContext and cal IbackFunc pair.

5.1.2.4 Return Values
e NPF_NO_ERROR - The registration completed successfully.
e NPF_E_BAD_ CALLBACK_FUNCTION — The callbackFunc is NULL or invalid.
e NPF_E_ALREADY_REGISTERED — No new registration was made since the userContext
and callbackFunc pair was already registered.
5.1.2.5 Notes

o This API function may be invoked by any application interested in receiving
asynchronous responses for IMA API function calls.

e This function operates in a synchronous manner, providing a return value as listed above.

5.1.3 Completion Callback Deregistration Function

NPF_error_t NPF_F _IMA Deregister (
NPF_IN NPF_callbackHandle_t callbackHandle);

5.1.3.1 Description
This function is used by an application to deregister a user context and callback function pair.
5.1.3.2 Input Parameters

e callbackHandle - The unique identifier returned to the application when the
completion callback routine was registered.

5.1.3.3 Output Parameters
None
5.1.3.4 Return Values
e NPF_NO_ERROR - De-registration was completed successfully.
e NPF_E_BAD_CALLBACK_HANDLE — De-registration did not complete successfully due to
problems with the callback handle provided.
5.1.3.5 Notes

e This API function MAY be invoked by any application no longer interested in receiving
asynchronous responses for IMA API function calls.

e This function operates in a synchronous manner, providing a return value as listed above.

e There may be a timing window where outstanding callbacks continue to be delivered to
the callback routine after de-registration function has been invoked. It is the
implementation’s responsibility to guarantee that the callback function is not called after
the deregister function has returned.

5.1.4 Event Handler Function

typedef void (*NPF_F_IMA_EventCallFunc_t) (
NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_uint32_t nEvent,
NPF_IN NPF_F_IMA EventData_t *imaEventArray);

VCBIS Task Group 27

Network Processing Forum Software Working Group

5.1.4.1 Description

This handler function is for the FAPI client to register an event handling routine to the IMA LFB.
One or more events can be notified to the application through a single invocation of this event handler
function. Information on each event is represented in an array in the imaEventArray structure,
where a client can traverse through the array and process each of the events.

The registered event handler function is intended to be implemented by the FAPI client, and be
registered to the IMA LFB implementation through NPF_F_IMA_EventHandler_Register()
function.

This function is invoked when the related event happens. The IMA LFB may invoke the registered
event handler function any time after the NPF_F_IMA_EventHandler_Register () is invoked by
the FAPI client.

5.1.4.2 Input Parameters

e userContext — A context item used for uniquely identifying the context of the
application registering the completion callback function. The exact value will be provided
back to the registered completion callback function as its first parameter when it is called.
The application can assign any value to the userContext and the value is completely
opaque to the implementation.

¢ nEvent — Number of events reported.
e imaEventArray — A structure containing an array of event information structures.
5.1.4.3 Output Parameters
None
5.1.4.4 Return Values
None

5.1.5 Event Registration Function
NPF_error_t NPF_F_IMA_EventHandler_Register(

NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_F_IMA EventCallFunc_t imakEvtCallFn,
NPF_IN NPF_eventMask t imaEvtMask,
NPF_OUT NPF_callbackHandle_ t *imaEvtCallHdD);

5.1.5.1 Description

A FAPI client to register its event handling routine for receiving notifications of LFB Events uses this
function. The FAPI client may register multiple event handling routines using this function. The pair
of userContext and imaEvtCal IFn identifies the event handling routine. For each individual pair, a
unique imaEvtCal IHdI will be assigned for future reference. Since the event handling routine is
identified by both userContext and imaEventCal IFunc, duplicate registration of same event
handling routine with different userContext is allowed. Also, the same userContext can be shared
among different event handling routines. Duplicate registration of the same userContext and
imaEventCal IFunc pair has no effect, and will output a handle that is already assigned to the pair,
and will return an error that indicates that the callback has already been registered.

5.1.5.2 Input Parameters

e userContext — A context item used for uniquely identifying the context of the
application registering the completion callback function. The exact value will be provided
back to the registered completion callback function as its 1st parameter when it is called.
Application can assign any value to the userContext and the value is completely opaque
to the implementation.

e imaEvtCalIFn — Contains the class of event for which handler is being registered and a
pointer to the event handling routine to be registered.

VCBIS Task Group 28

Network Processing Forum Software Working Group

¢ imaEvtMask — Indicates which events the FAPI client wishes to receive. An application
can register a handler to receive selected events by setting a bit in the
NPF_eventMask_t parameter for each event it wishes to receive, when it calls the event
registration function. A mask value set to NPF_EV_ALL_EVENTS_ENABLE selects all
events. If the FAPI client wishes to change the selection of events for a particular handler
function, it may call the event registration function again with the same handler function
address and context, but with a different event selection mask.

5.1.5.3 Output Parameters

e imaEvtCalIHdI — A unique identifier assigned for the registered userContext and
imaEventCal IFunc pair. The FAPI client to specify which event handling routine to be
called when invoking asynchronous functions will use this handle. It will also be used
when de-registering the userContext and imaEventCal IFunc pair.

5.1.5.4 Return Values
e NPF_NO_ERROR - The registration completed successfully.

e NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
no error code defined that is more appropriate or informative

e NPF_E_BAD CALLBACK_FUNCTION: imaEventCallFunc is NULL.

e NPF_E_CALLBACK_ALREADY_REGISTERED: No new registration was made since the
userContext and imaEventCal IFunc pair was already registered.

5.1.6 Event Handler Deregistration Function

NPF_error_t NPF_F_IMA_EventHandler_Deregister(
NPF_IN NPF_callbackHandle_t imaEventCal lHandle);

5.1.6.1 Description

This function is used by an application to de-register a pair of user context and event handler. If there
are any outstanding calls related to the de-registered callback function, the callback function might be
called for those outstanding calls even after de-registration. This is a synchronous function and has no
associated completion callback.

5.1.6.2 Input Parameters

e imaEventCal IHandle — The unique identifier representing the pair of user context and
event Handler to be de-registered.

5.1.6.3 Output Parameters
None
5.1.6.4 Return Values
e NPF_NO_ERROR - De-registration was completed successfully.

e NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
no error code defined that is more appropriate or informative

e NPF_E_BAD_CALLBACK_HANDLE - The function does not recognize the event callback
handle. There is no effect to the registered event handler.

5.1.7 LFB Attributes Query Function

NPF_error_t NPF_F _IMA_LFB AttributesQuery (
NPF_IN NPF_callbackHandle_t cal lbackHandle,

NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle t feHandle,
NPF_IN NPF_Blockld_t blockld);

VCBIS Task Group 29

Network Processing Forum Software Working Group

5.1.7.1 Description

This function call is used to query ONLY one IMA LFB’s attributes at a time. If the IMA LFB exists,
the attributes of this LFB are returned in the completion callback.

5.1.7.2 Input Parameters

e callbackHandle - The unique identifier provided to the application when the
completion callback routine was registered.

e correlator - A unique application invocation context that will be supplied to the
asynchronous completion callback routine.

e errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this API invocation.

e feHandle - The forwarding element Handle returned by
NPF_F_topologyGetFEInfoList() call.

e blockld - The unique identification of the IMA LFB.
5.1.7.3 Output Parameters
None
5.1.7.4 Return Values
e NPF_NO_ERROR - The operation is in progress.

e NPF_E_UNKNOWN - The LFB attributes were not queried due to invalid IMA block 1D
passed in input parameters.

e NPF_E_BAD_CALLBACK_HANDLE - The LFB attributes were not queried because the
callback handle was invalid.

e NPF_E_FUNCTION_NOT_SUPPORTED - The function call is not supported.
5.1.7.5 Asynchronous Response
There may be multiple asynchronous callbacks to this request. Possible error codes are:
e NPF_NO_ERROR — Operation completed successfully.

e NPF_E IMA_INVALID IMA BLOCK_ID-LFB ID is notan ID of LFB that has IMA
functionality.

The IfbAttrQueryResponse field of the union in the NPF_F_IMA_AsyncResponse_t structure
returned in callback contains response data. The error code is returned in the error field.

5.1.8 Add or Modify an IMA group
NPF_error_t NPF_F IMA GroupSet (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_ t feHandle,
NPF_IN NPF_Blockld_t blockld,

NPF_IN NPF uint32_t numentries,

NPF_IN NPF_F_IMA Group_Config_t *cfgArray);
5.1.8.1 Description

This function adds/creates one or more IMA groups, or modifies the attributes of an existing group. If
the administrative status of the group is set as NPF_STATUS_DOWN, the group will not transition
further from down state.

5.1.8.2 Input Parameters
e chHandle - The callback handle returned by NPF_F_IMA_Register()

e cbCorrelator - A unigue application invocation value that will be supplied to the
asynchronous completion callback routine.

VCBIS Task Group 30

Network Processing Forum Software Working Group

errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.

feHandl e - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.

blockld - The unique identification of the IMA LFB.
numEntries - Number of IMA groups to set
cfgArray - Pointer to an array of IMA group attribute structures

5.1.8.3 Output Parameters

None

5.1.8.4 Return Values

NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The configurations did not complete successfully due to problems

encountered when handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The configuration did not complete successfully as

the callback handle was invalid.

5.1.8.5 Asynchronous Response

A total of numEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to the
callback function, in one or more invocations. Each response contains a group ID in the obj Id field
of the response structure and a success code or a possible error code for that connection. If the
function invocation was successful, an error code NPF_NO_ERROR is returned.

The following errors could be returned:

NPF_NO_ERROR - Operation successful

NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is

no error code defined that is more appropriate or informative
NPF_IMA_F_E_INVALID_ATTRIBUTE - Invalid attribute

5.1.9 Delete an IMA group
NPF_error_t NPF_F _IMA_GroupDelete (

NPF_IN NPF_callbackHandle_t cbHandle,

NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_ t feHandle,

NPF_IN NPF_Blockld_t blockld,

NPF_IN NPF_boolean_t delContainedLnks,
NPF_IN NPF_uint32_t numentries,
NPF_IN NPF_F _IMA Group ID_ t *delArray);

5.1.9.1 Description
This function is used to delete a previously configured group.
5.1.9.2 Input Parameters

cbHandle — The callback handle returned by NPF_F_IMA_Register()

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.

errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.

feHandl e - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.

blockld - The unique identification of the IMA LFB.

VCBIS Task Group

31

Network Processing Forum Software Working Group

¢ delContainedLnks —When set to NPF_TRUE indicates that all associated links should
be deleted. If this parameter is set to NPF_FALSE, the function will return an error if there
are links contained within the group being deleted.

e numEntries - Number of IMA groups to delete
e delArray - Pointer to an array of IMA group 1Ds of IMA groups to delete
5.1.9.3 Output Parameters
None
5.1.9.4 Return Values
e NPF_NO_ERROR - The operation is in progress.

e NPF_E_UNKNOWN - The configurations did not complete successfully due to problems
encountered when handling the input parameters.

e NPF_E BAD_CALLBACK_HANDLE - The configuration did not complete successfully as
the callback handle was invalid.

5.1.9.5 Asynchronous Response

A total of numEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to the
callback function, in one or more invocations. Each response contains a group ID in the obj Id field
of the response structure and a success code or a possible error code for that connection. If the
function invocation was successful, an error code NPF_NO_ERROR is returned.

The following errors could be returned:
e NPF_NO_ERROR - Operation successful

e NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
no error code defined that is more appropriate or informative

e NPF_IMA _F E CONT_LINKS_EXIST — The specified group could not be deleted as there
are links associated with this group and the parameter delContainedLnks was set to
NPF_FALSE.

e NPF_E_RESOURCE_NONEXIST - Specified IMA group doesn’t exist

5.1.10 Put an IMA group in service
NPF_error_t NPF_F _IMA GroupEnable (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_ t feHandle,
NPF_IN NPF_Blockld_t blockld,

NPF_IN NPF uint32_t numentries,
NPF_IN NPF_F_IMA_Group_ID_t *enaArray);

5.1.10.1 Description

This function is used to mark the administrative status of an IMA group as enabled. Enabling the
IMA group cause the inhibition of the group state to be removed allowing the group state machine to
transition if allowed from the BLOCKED state to OPERATIONAL state.

5.1.10.2 Input Parameters
e chHandle - The callback handle returned by NPF_F_IMA_Register()

e cbCorrelator - A unigue application invocation value that will be supplied to the
asynchronous completion callback routine.

e errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.

VCBIS Task Group 32

Network Processing Forum Software Working Group

feHandle - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.

blockld - The unique identification of the IMA LFB.
numEntries - Number of IMA groups to enable
enaArray - Pointer to an array of IMA group IDs of IMA groups to enable

5.1.10.3 Output Parameters

None

5.1.10.4 Return Values

NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The configurations did not complete successfully due to problems
encountered when handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The configuration did not complete successfully as
the callback handle was invalid.

5.1.10.5 Asynchronous Response

A total of numEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to the
callback function, in one or more invocations. Each response contains a group ID in the obj Id field
of the response structure and a success code or a possible error code for that connection. If the
function invocation was successful, an error code NPF_NO_ERROR is returned.

The following errors could be returned:

NPF_NO_ERROR - Operation successful

NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
no error code defined that is more appropriate or informative

NPF_E_RESOURCE_NONEXIST - Specified IMA group doesn’t exist

5.1.11 Put an IMA group out of service
NPF_error_t NPF_F IMA GroupDisable (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_Blockld_t blockld,

NPF_IN NPF_uint32_t numEntries,
NPF_IN NPF_F_IMA Group_ID_t *enaArray);

5.1.11.1 Description

This function is used to mark the administrative status of an IMA group as disabled. Disabling the
IMA group cause the inhibition of the group and causes the group state machine to transition to the
BLOCKED state.

5.1.11.2 Input Parameters

cbHandle — The callback handle returned by NPF_F_IMA_Register()

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.

errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.

feHandl e - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.

blockld - The unique identification of the IMA LFB.
numEntries - Number of IMA groups to disable

VCBIS Task Group 33

Network Processing Forum Software Working Group

e enaArray - Pointer to an array of IMA group IDs of IMA groups to disable
5.1.11.3 Output Parameters
None
5.1.11.4 Return Values
e NPF_NO_ERROR - The operation is in progress.

e NPF_E_UNKNOWN - The configurations did not complete successfully due to problems
encountered when handling the input parameters.

e NPF_E_BAD_CALLBACK_HANDLE - The configuration did not complete successfully as
the callback handle was invalid.

5.1.11.5 Asynchronous Response

A total of numEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to the
callback function, in one or more invocations. Each response contains a group ID in the obj Id field
of the response structure and a success code or a possible error code for that connection. If the
function invocation was successful, an error code NPF_NO_ERROR is returned.

The following errors could be returned:
e NPF_NO_ERROR - Operation successful

e NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
no error code defined that is more appropriate or informative

e NPF_E_RESOURCE_NONEXIST - Specified IMA group doesn’t exist

5.1.12 Query an IMA Group
NPF_error_t NPF_F_IMA GroupQuery (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_ t feHandle,
NPF_IN NPF_Blockld_t blockld,

NPF_IN NPF uint32_t numentries,
NPF_IN NPF_F_IMA_Group_ID_t *grpldArr);

5.1.12.1 Description

This function is used to query the configuration and current state of one or more IMA groups. If the
numEntries is set to 0, information for all IMA groups configured in the LFB is returned in the
response.

5.1.12.2 Input Parameters
e cbHandle - The callback handle returned by NPF_F_IMA_Register()

e cbhCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.

e errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.

e feHandle - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.

e blockld - The unique identification of the IMA LFB.
e numEntries - Number of IMA groups to query
e grpldArr - Pointer to an array of IMA group I1Ds of IMA groups to query
5.1.12.3 Output Parameters
None

VCBIS Task Group 34

Network Processing Forum Software Working Group

5.1.12.4 Return Values

NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The configurations did not complete successfully due to problems
encountered when handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The configuration did not complete successfully as
the callback handle was invalid.

5.1.12.5 Asynchronous Response

A total of numEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to the
callback function, in one or more invocations. Each response contains a group ID in the obj Id field
of the response structure and a success code or a possible error code for that connection. If the
function invocation was successful, an error code NPF_NO_ERROR is returned and the group
information is returned in the group Info field of the union in the response structure. The following
errors could be returned:

NPF_NO_ERROR - Operation successful

NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
no error code defined that is more appropriate or informative

NPF_E_RESOURCE_NONEXIST - Specified IMA group doesn’t exist

5.1.13 Get statistics accumulated for an IMA Group
NPF_error_t NPF_F_IMA GroupStatsGet (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_Blockld_t blockld,

NPF_IN NPF_boolean_t resetStats,
NPF_IN NPF uint32_t numentries,
NPF_IN NPF_F_IMA_Group_ID_t *grpldArr);

5.1.13.1 Description
This function is used to get via a callback the current counter values for one or more IMA groups.
5.1.13.2 Input Parameters

cbHandle — The callback handle returned by NPF_F_IMA_Register()

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.

errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.

feHandl e - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.

blockld - The unique identification of the IMA LFB.

resetStats — If set to TRUE, the statistics counters being read are reset to 0
numEntries - Number of IMA groups to query

grpldArr - Pointer to an array of IMA group IDs of IMA groups to query

5.1.13.3 Output Parameters

None

5.1.13.4 Return Values

NPF_NO_ERROR - The operation is in progress.

VCBIS Task Group 35

Network Processing Forum Software Working Group

NPF_E_UNKNOWN - The configurations did not complete successfully due to problems
encountered when handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The configuration did not complete successfully as
the callback handle was invalid.

5.1.13.5 Asynchronous Response

A total of numEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to the
callback function, in one or more invocations. Each response contains a group ID in the obj Id field
of the response structure and a success code or a possible error code for that connection. If the
function invocation was successful, an error code NPF_NO_ERROR is returned and the counters are
returned in the groupStats field of the union in the response structure.

The following errors could be returned:

NPF_NO_ERROR - Operation successful

NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
no error code defined that is more appropriate or informative

NPF_E_RESOURCE_NONEXIST - Specified IMA group doesn’t exist

5.1.14 Get state information for an IMA Group
NPF_error_t NPF_F_IMA GroupStateGet (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF _Blockld_t blockld,

NPF_IN NPF_uint32_t numeEntries,
NPF_IN NPF_F IMA Group ID_ t *grpldArr);

5.1.14.1 Description

This function is used to get via a callback the current group state machine and group traffic state
machine states for the queried IMA group.

5.1.14.2 Input Parameters

cbHandle — The callback handle returned by NPF_F_IMA_Register()

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.

errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.

feHandl e - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.

blockld - The unique identification of the IMA LFB.
numeEntries - Number of IMA groups to query
grpldArr - Pointer to an array of IMA group IDs of IMA groups to query

5.1.14.3 Output Parameters

None

5.1.14.4 Return Values

NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The configurations did not complete successfully due to problems
encountered when handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The configuration did not complete successfully as
the callback handle was invalid.

VCBIS Task Group 36

Network Processing Forum Software Working Group

5.1.14.5 Asynchronous Response

A total of numEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to the
callback function, in one or more invocations. Each response contains a group ID in the obj Id field
of the response structure and a success code or a possible error code for that connection. If the
function invocation was successful, an error code NPF_NO_ERROR is returned and the counters are
returned in the groupState field of the union in the response structure.

The following errors could be returned:
e NPF_NO_ERROR - Operation successful

e NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
no error code defined that is more appropriate or informative

e NPF_E_RESOURCE_NONEXIST - Specified IMA group doesn’t exist

5.1.15 Configure Test Pattern procedure for an IMA group
NPF_error_t NPF_F _IMA GroupTestSet (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF _Blockld_t blockld,

NPF_IN NPF_uint32_t numentries,

NPF_IN NPF_F _IMA Group Test Proc Config t *grpldArr);
5.1.15.1 Description

This function is used to configure test pattern procedure for an IMA group. The FAPI client may
either choose the test link ID and test pattern for generating the test pattern or let the FAPI
implementation select the test link ID and the test pattern. The status of the test pattern procedure is
indicated back to the FAPI client in the asynchronous response. If the test pattern procedure is not
disabled, the LFB continues to send the test pattern on the specified test link. Any subsequent change
in the test procedure status for the recognized links and the group is indicated to the FAPI client via
corresponding events.

5.1.15.2 Input Parameters
e cbHandle — The callback handle returned by NPF_F_IMA_Register()

e chCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.

e errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.

e fTeHandle - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.

e blockld - The unique identification of the IMA LFB.
e numEntries - Number of IMA groups to test
e grpldArr - Pointer to an array of IMA group I1Ds of IMA groups to test
5.1.15.3 Output Parameters
None
5.1.15.4 Return Values
e NPF_NO_ERROR - The operation is in progress.

e NPF_E_UNKNOWN - The configurations did not complete successfully due to problems
encountered when handling the input parameters.

VCBIS Task Group 37

Network Processing Forum Software Working Group

NPF_E_BAD_CALLBACK_HANDLE - The configuration did not complete successfully as
the callback handle was invalid.

5.1.15.5 Asynchronous Response

A total of numEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to the
callback function, in one or more invocations. Each response contains a group ID in the obj Id field
of the response structure and a success code or a possible error code for that connection. If the
function invocation was successful, an error code NPF_NO_ERROR is returned. If the test link
procedure failed, a bitmap testResultBitMap indicating the receive links on which the test pattern
failed to loop back is indicated to the FAPI client. Each bit in the bit map corresponds to the logical
link ID of a link in the group and if set indicates that the test pattern failed to loop back on that link.
The least significant bit corresponds to the lowest numbered link in the group.

The following errors could be returned:

NPF_NO_ERROR - Operation successful

NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
no error code defined that is more appropriate or informative
NPF_E_RESOURCE_NONEXIST - Specified IMA group doesn’t exist

NPF_IMA_F_E_TEST_PROC_FAILED - Test pattern failed to loop back on one or more
links in the group.

5.1.16 Add or Modify an IMA link
NPF_error_t NPF_F IMA LinkSet (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_Blockld_t blockld,

NPF_IN NPF_uint32_t numeEntries,

NPF_IN NPF_F IMA Link Config t *cfgArray);
5.1.16.1 Description

This function adds/creates one or more IMA link, or modifies the attributes of an existing link. If the
administrative status of the link is set as NPF_STATUS_DOWN, the link will not transition further from
unusable state. If the administrative status is set as NPF_STATUS_UP, the link will transition to usable

status.

5.1.16.2 Input Parameters

cbHandle — The callback handle returned by NPF_F_IMA_Register()

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.

errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.

feHandl e - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.

blockld - The unique identification of the IMA LFB.
numentries - Number of IMA links to set
cfgArray - Pointer to an array of IMA link attribute structures

5.1.16.3 Output Parameters

None

VCBIS Task Group 38

Network Processing Forum Software Working Group

5.1.16.4 Return Values

NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The configurations did not complete successfully due to problems

encountered when handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The configuration did not complete successfully as

the callback handle was invalid.

5.1.16.5 Asynchronous Response

A total of numEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to the
callback function, in one or more invocations. Each response contains a link ID in the obj I1d field of
the response structure and a success code or a possible error code for that connection. If the function
invocation was successful, an error code NPF_NO_ERROR is returned.

The following errors could be returned:

NPF_NO_ERROR - Operation successful

NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is

no error code defined that is more appropriate or informative
NPF_IMA_F_E_INVALID_ATTRIBUTE - Invalid attribute

NPF_IMA_F_E_UNKNOWN_GROUP — Group specified in link configuration is not
recognized

5.1.17 Delete an IMA Link
NPF_error_t NPF_F _IMA LinkDelete (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF _Blockld_t blockld,

NPF_IN NPF_uint32_t numeEntries,
NPF_IN NPF_F_IMA_Link_ID_t *delArray);

5.1.17.1 Description
This function is used to delete a previously configured link.
5.1.17.2 Input Parameters

cbHandle — The callback handle returned by NPF_F_IMA_Register()

chCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.

errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.

feHandle - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.

blockld - The unique identification of the IMA LFB.
numentries - Number of IMA links to delete
delArray - Pointer to an array of IMA link IDs of IMA links to delete

5.1.17.3 Output Parameters

None

5.1.17.4 Return Values

NPF_NO_ERROR - The operation is in progress.

VCBIS Task Group

39

Network Processing Forum Software Working Group

e NPF_E_UNKNOWN - The configurations did not complete successfully due to problems
encountered when handling the input parameters.

e NPF_E_BAD_CALLBACK_HANDLE - The configuration did not complete successfully as
the callback handle was invalid.

5.1.17.5 Asynchronous Response

A total of numEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to the
callback function, in one or more invocations. Each response contains a link ID in the obj 1d field of
the response structure and a success code or a possible error code for that connection. If the function
invocation was successful, an error code NPF_NO_ERROR is returned.

The following errors could be returned:
e NPF_NO_ERROR - Operation successful

e NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
no error code defined that is more appropriate or informative

e NPF_E_RESOURCE_NONEXIST -Specified IMA link doesn’t exist

5.1.18 Put an IMA link in service
NPF_error_t NPF_F_IMA_LinkEnable (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle t feHandle,
NPF_IN NPF_Blockld_t blockld,
NPF_IN NPF_uint32_t numentries,
NPF_IN NPF_F IMA Link ID_ t *enaArray);

5.1.18.1 Description

This function is used to mark the administrative status of an IMA link as enabled. Enabling the IMA
link cause the inhibition of the link state to be removed allowing the link state machine to transition if
allowed from the UNUSABLE state to USABLE state.

5.1.18.2 Input Parameters
e cbHandle — The callback handle returned by NPF_F_IMA_Register()

e chCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.

e errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.

e fTeHandle - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.

e blockld - The unique identification of the IMA LFB.
e numEntries - Number of IMA links to enable
e enaArray - Pointer to an array of IMA link IDs of IMA links to enable
5.1.18.3 Output Parameters
None
5.1.18.4 Return Values
e NPF_NO_ERROR - The operation is in progress.

e NPF_E_UNKNOWN - The configurations did not complete successfully due to problems
encountered when handling the input parameters.

e NPF_E BAD_CALLBACK_HANDLE - The configuration did not complete successfully as
the callback handle was invalid.

VCBIS Task Group 40

Network Processing Forum Software Working Group

5.1.18.5 Asynchronous Response

A total of numEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to the
callback function, in one or more invocations. Each response contains a link ID in the obj I1d field of
the response structure and a success code or a possible error code for that connection. If the function
invocation was successful, an error code NPF_NO_ERROR is returned.

The following errors could be returned:

NPF_NO_ERROR - Operation successful

NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
no error code defined that is more appropriate or informative

NPF_E_RESOURCE_NONEXIST - Specified IMA group doesn’t exist

5.1.19 Put an IMA link out of service
NPF_error_t NPF_F _IMA_LinkDisable (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle t feHandle,
NPF_IN NPF_Blockld_t blockld,

NPF_IN NPF_uint32_t numentries,
NPF_IN NPF_F IMA Link ID_t *enaArray);

5.1.19.1 Description

This function is used to mark the administrative status of an IMA link as disabled. Disabling the IMA
link cause the inhibition of the link and leading to the link being marked BLOCKED.

5.1.19.2 Input Parameters

cbHandle — The callback handle returned by NPF_F_IMA_Register()

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.

errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.

feHandl e - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.

blockld - The unique identification of the IMA LFB.
numEntries - Number of IMA links to disable
enaArray - Pointer to an array of IMA link IDs of IMA links to disable

5.1.19.3 Output Parameters

None

5.1.19.4 Return Values

NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The configurations did not complete successfully due to problems
encountered when handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The configuration did not complete successfully as
the callback handle was invalid.

5.1.19.5 Asynchronous Response

A total of numEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to the
callback function, in one or more invocations. Each response contains a group ID in the obj Id field
of the response structure and a success code or a possible error code for that connection. If the
function invocation was successful, an error code NPF_NO_ERROR is returned.

VCBIS Task Group 41

Network Processing Forum Software Working Group

The following errors could be returned:
e NPF_NO_ERROR - Operation successful

e NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
no error code defined that is more appropriate or informative

e NPF_E_RESOURCE_NONEXIST - Specified IMA link doesn’t exist

5.1.20 Query an IMA Link
NPF_error_t NPF_F_IMA_LinkQuery (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle t feHandle,
NPF_IN NPF_Blockld_t blockld,

NPF_IN NPF uint32_t numentries,
NPF_IN NPF_F IMA Link ID t *InkIldArr);

5.1.20.1 Description

This function is used to query the configuration and current state of one or more IMA links. If the
numEntries is set to 0, information for all IMA links configured in the LFB is returned in the
response.

5.1.20.2 Input Parameters
e cbHandle - The callback handle returned by NPF_F_IMA_Register()

e cbhCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.

e errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.

e feHandle - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.

e blockld - The unique identification of the IMA LFB.
e numEntries - Number of IMA links to query
e InkldArr - Pointer to an array of IMA link IDs of IMA links to query
5.1.20.3 Output Parameters
None
5.1.20.4 Return Values
e NPF_NO_ERROR - The operation is in progress.

e NPF_E_UNKNOWN - The configurations did not complete successfully due to problems
encountered when handling the input parameters.

e NPF_E_BAD_CALLBACK_HANDLE - The configuration did not complete successfully as
the callback handle was invalid.

5.1.20.5 Asynchronous Response

A total of numEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to the
callback function, in one or more invocations. Each response contains a link ID in the obj 1d field of
the response structure and a success code or a possible error code for that connection. If the function
invocation was successful, an error code NPF_NO_ERROR is returned and the group information is
returned in the TinkInfo field of the union in the response structure.

The following errors could be returned:
e NPF_NO_ERROR - Operation successful

VCBIS Task Group 42

Network Processing Forum Software Working Group

e NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
no error code defined that is more appropriate or informative

e NPF_E_RESOURCE_NONEXIST - Specified IMA link doesn’t exist

5.1.21 Get statistics accumulated for an IMA Link
NPF_error_t NPF_F_IMA_LinkStatsGet (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle t feHandle,
NPF_IN NPF_boolean_t resetStats,
NPF_IN NPF_Blockld_t blockld,

NPF_IN NPF_uint32_t numentries,
NPF_IN NPF_F_IMA_Link_ID_t *InkldArr);

5.1.21.1 Description
This function is used to get via a callback the current counter values for one or more IMA links.
5.1.21.2 Input Parameters
e chHandle - The callback handle returned by NPF_F_IMA_Register()

e cbCorrelator - A unigue application invocation value that will be supplied to the
asynchronous completion callback routine.

e errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.

e TfeHandle - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.

e resetStats - If set to TRUE, the statistics counters being read are reset to 0
e blockld - The unique identification of the IMA LFB.
e numEntries - Number of IMA groups to query
e InkldArr - Pointer to an array of IMA link IDs of IMA links to query
5.1.21.3 Output Parameters
None
5.1.21.4 Return Values
e NPF_NO_ERROR - The operation is in progress.

e NPF_E_UNKNOWN - The configurations did not complete successfully due to problems
encountered when handling the input parameters.

e NPF_E_BAD_CALLBACK_HANDLE - The configuration did not complete successfully as
the callback handle was invalid.

5.1.21.5 Asynchronous Response

A total of numEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to the
callback function, in one or more invocations. Each response contains a link ID in the obj I1d field of
the response structure and a success code or a possible error code for that connection. If the function
invocation was successful, an error code NPF_NO_ERROR is returned and the counters are returned in
the 1inkStats field of the union in the response structure.

The following errors could be returned:
e NPF_NO_ERROR - Operation successful

e NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
no error code defined that is more appropriate or informative

e NPF_E_RESOURCE_NONEXIST - Specified IMA link doesn’t exist

VCBIS Task Group 43

Network Processing Forum Software Working Group

5.1.22 Get state information for an IMA Link
NPF_error_t NPF_F _IMA_LinkStateGet (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_Blockld_t blockld,

NPF_IN NPF_uint32_t numentries,
NPF_IN NPF_F_IMA_Link_ID_t *InkldArr);

5.1.22.1 Description

This function is used to get via a callback the current link state machine states for the queried IMA
links.

5.1.22.2 Input Parameters
e cbHandle — The callback handle returned by NPF_F_IMA_Register()

e cbhCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.

e errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.

e feHandle - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.

e blockld - The unique identification of the IMA LFB.
e numEntries - Number of IMA links to query
e InkldArr - Pointer to an array of IMA link IDs of IMA links to query
5.1.22.3 Output Parameters
None
5.1.22.4 Return Values
e NPF_NO_ERROR - The operation is in progress.

e NPF_E_UNKNOWN - The configurations did not complete successfully due to problems
encountered when handling the input parameters.
e NPF_E_BAD_CALLBACK_HANDLE - The configuration did not complete successfully as
the callback handle was invalid.
5.1.22.5 Asynchronous Response

A total of numEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to the
callback function, in one or more invocations. Each response contains a link ID in the obj 1d field of
the response structure and a success code or a possible error code for that connection. If the function
invocation was successful, an error code NPF_NO_ERROR is returned and the counters are returned in
the 1inkState field of the union in the response structure.
The following errors could be returned:

e NPF_NO_ERROR - Operation successful

e NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is

no error code defined that is more appropriate or informative

e NPF_E_RESOURCE_NONEXIST - Specified IMA link doesn’t exist

5.1.23 Get last received ICP cell for an IMA Link

NPF_error_t NPF_F_IMA_LinkLastICPInfoGet (
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,

VCBIS Task Group 44

Network Processing Forum Software Working Group

NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle t feHandle,
NPF_IN NPF_Blockld_t blockld,
NPF_IN NPF uint32_t numentries,
NPF_IN NPF_F IMA Link ID t *InkldArr);

5.1.23.1 Description

This function is used to get via a callback the contents of the last ICP cell received on the queried
IMA links. This is an optional function.

5.1.23.2 Input Parameters

cbHandle — The callback handle returned by NPF_F_IMA_Register()

cbCorrelator - A unique application invocation value that will be supplied to the
asynchronous completion callback routine.

errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this function call.

feHandl e - The forwarding element Handle returned by
NPF_F_ATM_topologyGetFEInfoList() call.

blockld — The unique identification of the IMA LFB.
numentries - Number of IMA links to query
InkIdArr - Pointer to an array of IMA link IDs of IMA links to query

5.1.23.3 Output Parameters

None

5.1.23.4 Return Values

NPF_NO_ERROR - The operation is in progress.

NPF_E_UNKNOWN - The configurations did not complete successfully due to problems
encountered when handling the input parameters.

NPF_E_BAD_CALLBACK_HANDLE - The configuration did not complete successfully as
the callback handle was invalid.

5.1.23.5 Asynchronous Response

A total of numEntries asynchronous (NPF_F_IMA_AsyncResponse_t) responses are passed to the
callback function, in one or more invocations. Each response contains a link ID in the obj I1d field of
the response structure and a success code or a possible error code for that connection. If the function
invocation was successful, an error code NPF_NO_ERROR is returned and the counters are returned in
the icpCell field of the union in the response structure.

The following errors could be returned:

NPF_NO_ERROR - Operation successful

NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is
no error code defined that is more appropriate or informative

NPF_E_RESOURCE_NONEXIST - Specified IMA link doesn’t exist

VCBIS Task Group 45

6 References

Network Processing Forum Software Working Group

The following documents contain provisions, which through reference in this text constitute provisions of
this specification. At the time of publication, the editions indicated were valid. All referenced documents
are subject to revision, and parties to agreements based on this specification are encouraged to investigate
the possibility of applying the most recent editions of the standards indicated below.

[FORCESREQ] “Requirement for separation of IP control and forwarding”, H.Khosravi,

[FAPITOPO]

[SWAPICON]

[ATMLFBARC]
[ATMMGR]

[ATMIMAPI]

T.Anderson et al, November, 2003 (RFC 3654)

"Topology Manager Functional API”,
http://www.npforum.org/techinfo/topology_fapi_npf2002%20438%2023.pdf,
Network Processing Forum.

“Software APl Conventions Revision 27,
http://www.npforum.org/techinfo/APIConventions2 |1A.pdf, Network Processing
Forum

“ATM Software API Architecture Framework”,
http://www.npforum.org/techinfo/npf2004.088.12.pdf, Network Processing Forum.
“ATM Configuration Manager Functional API”,
http://www.npforum.org/techinfo/npf2004.165.31.pdf, Network Processing Forum

“Interface Management API Implementation Agreement (ATM Interfaces) revision
3.0”, http://www.npforum.org/techinfo/IM_API_IA_npf2004.218.12.pdf, Network
Processing Forum.

VCBIS Task Group 46

Network Processing Forum Software Working Group

Appendix A Header File Information

/*

* This header file defines typedef, constants and structures
* for the NP Forum ATM Policer Functional API

*/

#ifndef
#define

_ NPF_F_ATM_IMA_H__
_ NPF_F_ATM_IMA_H__

#ifdef _ cplusplus
extern "C" {

#endi

/* 1t is possible to use the FAPI Topology Discovery

APIs
in a

[npf2002.438] to discover an ATM IMA LFB
forwarding element. */

/* LFB type for IMA LFB */

#define

/* Asynchronous error codes (returned in function callbacks) */

#define

NPF_F_IMA_LFB_TYPE 46

NPF_IMA_BASE_ERR (NPF_F_IMA_LFB_TYPE * 100)

#define IMA_ERR(nN) ((NPF_F_IMA ErrorType_t) (NPF_IMA BASE ERR+ (n))

/* LFB ID is not an ID of LFB that has IMA functionality*/

#define

NPF_IMA_F_E_INVALID_IMA_BLOCK_ID IMA_ERR (O)

/* Invalid configuration attributes */

#define

/* Test procedure failed on one or more receive links */

#define

/* Group specified in link configuration not recognized */

#define

NPF_IMA_F_E_INVALID_ATTRIBUTE IMA_ERR (1)
NPF_IMA_F_E_TEST_PROC_FAILED IMA_ERR (2)

NPF_IMA_F_E_UNKNOWN_GROUP IMA_ERR (3)

/* Group cannot be deleted as it has associated links and FAPI
* requested deletion of contained links */

#define

/*

* Definitions for selectively enabling IMA LFB Events

*/

/* Link
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

NPF_IMA_F_E_CONT_LINKS_EXIST

specific alarms */
NPF_F_IMA_EVENT_LINK_LIF
NPF_F_IMA_EVENT_LINK_LODS
NPF_F_IMA_EVENT_LINK_RFI
NPF_F_IMA_EVENT_LINK_TX_MISCONNECT
NPF_F_IMA_EVENT_LINK_RX_MISCONNECT
NPF_F_IMA_EVENT_LINK_TX_FAULT
NPF_F_IMA_EVENT_LINK_RX_FAULT
NPF_F_IMA_EVENT_LINK_TX_UNUSABLE_FE
NPF_F_IMA_EVENT_LINK_RX_UNUSABLE_FE
NPF_F_IMA_EVENT_LINK_TEST_LINK_STATUS
NPF_F_IMA_EVENT_LINK_STATE_MACHINE_TRANSITION

/* Group specific alarms */

VCBIS Task Group

IMA_ERR (4)

client has not

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

47

Network Processing Forum Software Working Group

#define NPF_F_IMA_EVENT_GROUP_STARTUP_FE 1 <<
#define NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED (1 <<
#define NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_FE 1 <<
#define NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS 1 <<
#define NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_FE 1 <<
#define NPF_F_IMA_EVENT_GROUP_BLOCKED_FE 1 <<
#define NPF_F_IMA_EVENT_GROUP_TIMING_MISMATCH 1 <<
#define NPF_F_IMA_EVENT_GROUP_TEST_LINK_STATUS 1 <<
#define NPF_F_IMA_EVENT_GROUP_STATE_MACHINE_TRANSITION 1 <<
#define NPF_F_IMA_EVENT_GROUP_TRAFFIC_STATE_MACHINE_TRANSITION (1
#define NPF_F_IMA_EVENT_LAST 1 <<
/**

* Enumerations and types for ATM IMA attributes and *

* completion callback data types *

**/

typedef NPF_uint32_t NPF_F Ima_ErrorType_t; /* Error type */
typedef NPF_uint32_t NPF_F IMA Group ID_t; /* IMA group ID */
typedef NPF_uint32_t NPF_F _IMA Link ID_t; /* IMA link ID */

/* Link state machine states */

typedef enum {
/* Link not configured */
NPF_F_IMA_LSM STATE_NOT_IN_GROUP = 1,

/* Link configured but cannot be used */
NPF_F_IMA_LSM_STATE_UNUSABLE_UNKNOWN = 2,
NPF_F_IMA_LSM_STATE_UNUSABLE_FAULT_LINK_DEFECT = 3,
NPF_F_IMA_LSM_STATE_UNUSABLE_FAULT_LIF = 3,
NPF_F_IMA_LSM_STATE_UNUSABLE_FAULT_LODS = 3,

NPF_F_IMA_LSM_STATE_UNUSABLE_MISCONNECTED = 4,
NPF_F_IMA_LSM_STATE_UNUSABLE_INHIBITED = 5,
NPF_F_IMA_LSM_STATE_UNUSABLE_FAILED = 6,

/* Link is ready to use */
NPF_F_IMA_LSM_STATE_USABLE = 7,

/* Link is active and capable of passing cells to/from ATM Laye
NPF_F_IMA_LSM_STATE_ACTIVE = 8
} NPF_F_IMA_LSM_State t;

/* Group State Machine State. */

typedef enum {
NPF_F _IMA_GSM_NOT_CONFIGURED = 1,
NPF_F_IMA_GSM_START_UP = 2,
NPF_F_IMA_GSM_START_UP_ACK = 3,
NPF_F_IMA_GSM_CONFIG_ABORTED_UNSUPPORTED_FRAME_LEN
NPF_F _IMA_GSM_CONFIG_ABORTED_INCOMPATIBLE_SYMMETRY
NPF_F_IMA_GSM_CONFI1G_ABORTED_UNSUPPORTED_IMA_VERSION
NPF_F_IMA_GSM_CONFIG_ABORTED_OTHER = 7,
NPF_F_IMA_GSM_INSUFFICIENT_LINKS = 8,
NPF_F_IMA_GSM_BLOCKED = 9,
NPF_F _IMA_GSM_OPERATIONAL = 10

} NPF_F_IMA_GSM_State_t;

4’
5,
= 6,

/* IMA Group Traffic Machine State */
typedef enum {
NPF_F_IMA_GTSM_DOWN = O,
NPF_F_IMA_GTSM_UP

VCBIS Task Group

16)
17)
18)
19)
20)
21)
22)
23)
24)
<< 25)
25)

r */

48

Network Processing Forum Software Working Group
} NPF_F_IMA_GTSM_State t;

/* IMA Group Testing Mode */
typedef enum {
NPF_F_TEST_PROC_DISABLED = 1,
NPF_F_TEST_PROC_OPERATIONAL = 2,
} NPF_F _IMA Test Proc_Status_t;
/* Group Test Mode */
typedef struct {
/* Testing link ID */
NPF_int8_ t testLID;

/* Test pattern */
NPF_int32_ t testPattern;

/* Test Procedure Status */
NPF_F _IMA _Test Proc_Status_t testStatus;

/* Test verification Duration. The far end is expected to loop back the
* test pattern on all links in the group within this duration. Failing
* which the end initiating the test procedure will declare a test
* procedure failure on the links on which the test pattern was not
* loopback.
*/
NPF_F_ATM_Timers_t expRespDuration;
} NPF_F_IMA Group_Test Mode_t;

/* Group test configuration */

typedef struct {
/* A unique ID to identify the group */
NPF_F_IMA Group_ID_t grouplD;

/* Start/Stop/Change pattern */
NPF_F_IMA Group_Test Mode_t groupTestMode;
} NPF_F_IMA Group_Test_Proc_Config_t;

typedef struct {
/* The Interface handle of the IMA group */
NPF_IfHandle_t imalfID;

/* A unique ID to identify the group. The interface handle for the group
is an arbitrary value assigned by the IM APIs. The grouplD may be used

*

* to provide a fast way to lookup the group information. The FAPI

* implementations may restrict the range of values assigned to this field
* or may impose restrictions on the way this number is constructed and

* any such restrictions are outside the scope of NPF. This field is not
* the IMA ID sent in the ICP cells.

*/

NPF_F_IMA _Group_ID_t grouplD;

/* IMA protocol version — 1 0 or 1_1. Refer section 2.1.2.2 of Interface
* Management APl Implementation Agreement (ATM Interfaces) Revision 3.0
* for type definition
*/

NPF_ITATM_IMA Ver_t imaVer;

/* Minimum number of active receive links to make group operational */
NPF uint8_ t minNumRxLinks;

VCBIS Task Group 49

Network Processing Forum Software Working Group

/* Minimum number of active transmit links to make group operational */
NPF_uint8_ t minNumTxLinks;

/* Expected bandwidth in bits per second of the links which may be
* added to this group. IFf configured as 0, it indicates that the FAPI
* implementation may derive this from the Ffirst link that is added to the
* group
*/
NPF _uint32_t expLinkRate;

/* IMA Group Symmetry Mode. Refer section 2.1.2.2 of Interface Management
* APl Implementation Agreement (ATM Interfaces) Revision 3.0

* for type definition */

NPF_ITATM_IMA_Symmetry t symmetry;

/* Transmit clocking mode — CTC/ITC. Refer section 2.1.2.4 of Interface
* Management APl Implementation Agreement (ATM Interfaces) Revision 3.0
* for type definition
*/

NPF_I1TATM_IMA_Tclock_t neTxClockMode;

/* Link ID of the default transmit timing reference link

The Tx reference link 1D specified below is used as a hint by the

FAP1 implementation to choose the TX timing reference link. If the link
link corresponding to the LID hinted below is available, it is selected
as the timing reference link. A value of -1 specifies that no hint is
being provided by the FAPI client to the FAPI implementation and the
LFB/FAPI are free to choose a suitable link as the timing reference

* link */

NPF_int8_t defTxTimingRefLinkLID;

X ok % % ¥

/* IMA ID configured for the near end */
NPF uint8 t txImalD;

/* Frame length to use iIn transmit direction. Refer section 2.1.2.3 of
* Interface Management APl Implementation Agreement (ATM Interfaces)
* Revision 3.0 for type definition */

NPF_ITATM_IMA_FramelLength_t txFramelLength;

/* Maximum tolerated differential delay in milliseconds. Refer section
* 4.1.16 of ATM Configuration Manager Functional APl (Work in progress)
* for type definition
*/

NPF_F_ATM_Timers_t diffDelayMax;

/* Alpha value to be used by IFSM */
NPF_F_IMA_Alphavalue_t alphavalue;

/* Beta value to be used by the IFSM */
NPF_F_IMA_BetaValue_t betavalue;

/* Gamma value to be used by the IFSM */
NPF_F_IMA_GammaValue_t gammaValue;

/* Administrative status of the group — UP/DOWN. Refer section
* 4.1.17 of ATM Configuration Manager Functional APl (Work in progress)
* for type definition
*/

VCBIS Task Group 50

Network Processing Forum Software Working Group
NPF_ObjStatus_t adminStatus;

/* Configuration for test procedure */
NPF_F_IMA Group_Test Mode_ t testMode;

} NPF_F_IMA Group_Config_t;

/* IMA Group States */

typedef struct {
/* Status of the group state machines for this group */
NPF_F_IMA_GSM_State_t neGroupState;
NPF_F _IMA_GSM_State_ t feGroupState;

/* Status of the group traffic state machine for this group */
NPF_F_IMA_GTSM_State_ t gtsmState;

/* Whether test procedure disabled or operational */
NPF_F IMA Test Proc_Status_t testProcStatus;

/* Status of the test (if operational) — failed/passed */
NPF_boolean_t testProcFailed; /* TRUE/FALSE */

} NPF_F_IMA _Group_State t;

/* IMA Group Query Information */
typedef struct {
/* IMA group configuration */
NPF_F_IMA Group_Config_t neGroupConfig;

/* Status of the state machines for this group */
NPF_F_IMA_Group_State_t gsmGtsmState;

/* FE Transmit clocking mode — CTC/ITC. Refer section 2.1.2.4 of Interface
* Management APl Implementation Agreement (ATM Interfaces) Revision 3.0

* for type definition

*/

NPF_IFATM_IMA Tclock t FfeTxClockMode;

/* IMA ID configured for the far end */
NPF_uint8_t rxImalD;

/* Frame length used in receive direction. Refer section 2.1.2.2 of

* Interface Management APl Implementation Agreement (ATM Interfaces)
* Revision 3.0 for type definition

*/

NPF_ITATM_IMA FramelLength_t rxFramelLength;

/* 1D of the link in group with least delay */
NPF_F_IMA_Link_ID_t leastDelayLinklID;

/* Link ID of the current transmit timing reference link */
NPF_F_IMA Link ID_ t curTxTimingRefLinkLID;

/* Link 1D of the current receive timing reference link */
NPF_F_IMA Link ID t CcurRxTimingRefLinkLID;

/* OAM label being Tx — identifies version negotiated/configured */
NPF_uint8_ t txOamLabel ;

VCBIS Task Group 51

Network Processing Forum Software Working Group

/* OAM label being Rx — identifies version negotiated/configured */
NPF uint8 t rxOamLabel ;

/* Available cell rate (cells per second) in transmit direction */
NPF_uint32_t txAvailCel lIRate;

/* Available cell rate (cells per second)in receive direction */
NPF _uint32_t rxAvailCel lRate;

/* Test procedure status. This Ffield if valid only if the test procedure
* s operation on link in this group. When set to NPF_TRUE it indicates
* that the test procedure failed and the bit map of links on which the
* test pattern failed to loop back is specified in the testResultBitMap
* field.

*/
NPF_boolean_t testProcFailed;

/* Bit map indicating the links on which the test pattern failed to loop
* back. Valid only if the test procedure is operation on this group
*/
NPF_uint32_t testResultBitMap;

/* Number of configured RX links */
NPF_uint8_t numRxCfgLinks;

/* Array of link Ids of Rx links configured for this group */
NPF_F_IMA Link _ID_ t *rxCfgLinkArr;

/* Number of configured TX links */
NPF_uint8_ t numTxCfgLinks;

/* Array of link Ids of Tx links configured for this group */
NPF_F_IMA_Link_ID_t *txCFgLinkArr;

/* Number of active RX links */
NPF_uint8_ t numRXActLiInks;

/* Array of link Ids of active Rx links for this group */
NPF_F_IMA Link ID t *rxActLinkArr;

/* Number of active TX links */
NPF uint8_ t numTxActLinks;

/* Array of link Ids of active Tx links for this group */
NPF_F_IMA Link ID t *tXActLinkArr;
3} NPF_F_IMA Group_Info_t;

/* IMA Link Configuration */

typedef struct {
/* The Interface handle of the PDH Link */
NPF_IfHandle_t imalfID;

/* A unique ID to identify the link. The interface handle for the link

is an arbitrary value assigned by the IM APIs. The linkID may be used
to provide a fast way to lookup the link information. The FAPI
implementations say restrict the range of values assigned to this field
or restrictions on the manner in which this number is constructed and
any such restrictions are outside the scope of NPF.

X F % %

VCBIS Task Group 52

Network Processing Forum Software Working Group

* This number is not the logical link ID of the link.
*/
NPF_F_IMA Link_ID_ t linkID;

/* Group to which the link is assigned. Value O indicate not in a group */
NPF_F_IMA Group_ID_t grouplD;

/* Administrative status of the link — UP/DOWN. Refer section

* 4.1.17 of ATM Configuration Manager Functional APl (Work in progress)
* for type definition

*/

NPF_ObjStatus_t adminStatus;

/* Logical Link ID (LID) used in Transmit direction. A value of -1

* assigned to the txLinkld indicates that the FAPI implementation is
* to choose the LID to be assigned to this link */

NPF_int8_t txLinkld;

/* 1CP cell offset for frames sent on this link. The FAPI client may

* assign a value of -1 to the icpCellOffset indicating that the

* FAPI implementation is free to choose the ICP cell offset

* When configured as -1, the FAPI implementation may choose to distribute
* ICP cells from link to link withing an IMA group in an uniform fashion

* across the IMA frame. The mechanism used to select the ICP cell offset
* by FAPI implementation when the icpCellOffset is set to -1 is outside

* the scope of NPF

*/

NPF _uintl6_t icpCellOffset;

} NPF_F_IMA_Link_Config_t;

/* IMA Link States */
typedef struct {
/* near end IMA Rx LSM State */
NPF_F IMA LSM State t neRxLinkState;

/* near end IMA Tx LSM State */
NPF_F_IMA LSM State t neTxLinkState;

/* far end IMA Rx LSM State */
NPF_F_IMA_LSM_State_t feRxLinkState;

/* far end IMA Tx LSM State */
NPF_F IMA LSM State_ t feTxLinkState;
} NPF_F_IMA Link State_t;

/* IMA Link Query Information */

typedef struct {
/* near end IMA link configuration */
NPF_F_IMA_Link_Config_t neLinkConfig;

/* NE/FE Rx and Tx LSM states */
NPF_F _IMA Link State t linkStates;

/* Logical Link ID (LID) in Receive direction. A value of -1 indicates
* that the LID is not known */
NPF_int8_t rxLinkld;

/* Differential delay measured between this link and the link within the
* IMA group with the least delay. Refer section 4.1.16 of ATM

VCBIS Task Group 53

Network Processing Forum Software Working Group

* Configuration Manager Functional APl (Work in progress) for type
* definition

*/

NPF_F_ATM_Timers_t relativeDelay;

3} NPF_F _IMA_Link Info_t;

/* IMA Group Statistics */
typedef struct {

/* Time in seconds for which this group has been in operation state */
NPF_uint32_t groupRunningSecs;

/* Count of one second intervals where the GTSM was unavailable (R136)*/
NPF_uint32_t groupUnavailSecs;

/* Count of near end group failures (R137)*/
NPF _uint32_t neNumFailures;

/* Count of far end group failures (025)*/
NPF_uint32_t feNumFailures;
} NPF_F_IMA Group_Stats t;

/* IMA Link Statistics */
typedef struct {
/* Count of errored, missing, invalid ICP except during
SES-IMAZUAS-IMA (R125) */
NPF_uint32_t imaViolations;

/* Number of OIF anomalies at near end except during
SES-IMAZ/UAS-IMA (020) */
NPF_uint32_t oifAnomalies;

/* Count of 1 sec intervals containing > 30% invalid
IMA, link defects, LIF, or LODS except during UAS-IMA (R126) */
NPF_uint32_t neSevErroredSecs;

/* Count of 1 sec intervals containing RDI-IMA defects
Except during UAS-IMA-FE condition (R127) */
NPF_uint32_t feSevErroredSecs;

/* Count of unavailable seconds at near end (R128) */
NPF_uint32_t neUnavailSecs;

/* Count of unavailable seconds at far end (R129) */
NPF_uint32_t feUnavailSecs;

/* Count of unusable seconds at near end LSM (R130) */
NPF_uint32_t neTxUnusableSecs;

/* Count of unusable seconds at near end LSM (R131) */
NPF_uint32_t neRxUnusableSecs;

/* Count of seconds with Tx unusable indications from
far end Tx LSM (R132) */
NPF_uint32_t feTxUnusableSecs;

/* Count of seconds with Rx unusable indications from

VCBIS Task Group

far end Rx
NPF_uint32_t

/* Number of
condition
NPF_uint32_t

/* Number of
condition
NPF_uint32_t

/* Number of
condition
NPF _uint32_t

/* Number of
condition
NPF_uint32_t

/* Number of
NPF_uint32_t

/* Number of
NPF _uint32_t

Network Processing Forum Software Working Group

LSM (R133) */
feRxUnusableSecs;

times near end transmit failure alarm
entered (R134)*/
neTxNumFai lures;

times near end receive failure alarm
entered (R135)*/
neRxNumFai lures;

times far end transmit failure alarm
entered (021)*/
feTxNumFailures;

times far end receive failure alarm
entered (022)*/
feRxNumFailures;

stuff events inserted in tx direction (0-23) */

t™>@Stuffs;

stuff events detected in rx direction (0-24) */

rxStuffs;

/* Flag helping the FAPI user to simplify and make the reporting of

Unavailable Seconds more efficient at 15 minutes PM

Flag indicates the following.

1) Link is in Available state and did count SES in the

before

2) Link is in Unavailability state and did not count SES in the last

Second

the statistic query.

before the statistic query.

3) None of 1 or 2.

The flag set to 1 indicates that Unavailability state is about to be
Entered and the flag set to 2 indicates that Unavailability state is

about to be left.

intervals. The

last second

In both these cases, the FAPI user must do a new query 10 seconds later

To secure reporting the correct SES and UAS values. When the flag is

set to 3, the FAPI user can use the SES and UAS counter values directly

and does not need to make another query 10 seconds later. */

NPF_uint32_t uaslinfoFlag;
} NPF_F _IMA_Link Stats_t;

/* 1CP Query Response Structure */
typedef struct {
NPF_boolean_t icpValid;
NPF_uint8_t icp_bytes[48];
} NPF_F _IMA Icp Cell_t;

/* IMA LFB Attributes query response */
typedef struct {
NPF_uint32_t
NPF_uint32_t

maxNumGroups;
curNumGroups;

/* Whether ICP cell information valid */
/* 1CP Cell payload */

/* Maximum possible IMA groups
/* Current number of IMA groups

VCBIS Task Group

*/
*/

55

NPF _uint32_t maxNumLinks;

Network Processing Forum Software Working Group

/* Maximum possible IMA links

NPF _uint32_t curNumLinks; /* Current number of IMA links
} NPF_F_IMA_LFB_AttrQueryResponse_t;

/* Structures for Completion Callbacks */

/*

* This union is a handy way of representing

* used by the APIs.

*/

typedef union {
/* IMA Group ID */
NPF_F _IMA _Group_ID_t groupliD;

/*

*
*
*
*
*

*/

/* IMA Link ID */
NPF_F_IMA_Link_ID_t 1inkID;
} NPF_F_IMA_1d_t;

An asynchronous response contains a configuration object ID,
an error or success code, and in some cases a function-
specific structure embedded in a union. One or more of

these is passed to the callback function as an array
within the callback data structure (below)
typedef struct {/* Asynchronous Response Structure */
NPF_error_t error; /* Error code for this
NPF_F_IMA Id t objld; /* Object Indetifier
union {

/* NPF_F_IMA_LFB_AttributesQuery() */
NPF_F_IMA_LFB_AttrQueryResponse_t IfbAttrQueryResponse;

/* NPF_F_IMA_Link_StatsGet() */

NPF_F IMA Link Stats t linkStats;
/* NPF_F_IMA Link_StateGet() */
NPF_F_IMA Link State t linkState;
/* NPF_F_IMA_Link_Query(Q */

NPF_F IMA Link Info_t linkInfo;
/* NPF_F_IMA Link LastICPInfoGet() */
NPF_F_IMA Icp_Cell_t icpCell;

/* NPF_F_IMA Group_StatsGet() */
NPF_F_IMA Group_Stats_t groupStats;
/* NPF_F_IMA Group_StateGet() */

NPF_F _IMA Group_State_t groupState;
/* NPF_F_IMA Group_Query(Q) */
NPF_F_IMA_Group_Info_t grouplnfo;
/* NPF_F_IMA Group_TestSet() */
NPF_uint32_t testResultBitMap;

} u;

} NPF_F_IMA_AsyncResponse_t;

/*

* Completion Callback Types, to be found in the callback

VCBIS Task Group

the various object identifiers

resp

*/
*/

*/

56

*

Network Processing Forum Software Working Group

data structure, NPF_F IMA CallbackData_ t.

*/
typedef enum NPF_F_IMA_CallbackType {

}

/* Function to query IMA LFB attributes */
NPF_F_IMA_ATTR_QUERY = 1,

/* Functions for IMA group configuration and management */

NPF_F IMA_GROUP_SET = 2, /* Add or Modify an IMA group

NPF_F _IMA_GROUP_DELETE = 3, /* Delete an IMA group
NPF_F_IMA_GROUP_ENABLE = 4, /* Put an IMA group in service
NPF_F_IMA GROUP_DISABLE = 5, /* Take an IMA group out of service
NPF_F_IMA_GROUP_QUERY = 6, /* Query config. And states of group
NPF_F_IMA_GROUP_STATS GET /* Query statistics of an IMA group

7,
NPF_F IMA GROUP_STATE_GET 8, /* Query state m/c states of a group
NPF_F_IMA GROUP_TEST SET = 9, /* Start/Stop Test pattern procedure

/* Functions for IMA link configuration and management */
NPF_F_IMA_LINK_SET = 10, /* Add or Modify an IMA link

NPF_F_IMA LINK DELETE = 11, /> Delete an IMA link

NPF_F_IMA_LINK ENABLE = 12, /* Put an IMA link in service
NPF_F_IMA LINK DISABLE = 13, /* Put an IMA link out of service
NPF_F_IMA LINK QUERY = 14, /* Query config and states of a link

NPF_F_IMA LINK STATS GET = 15, /* Query statistics of an IMA link
NPF_F IMA_LINK STATE GET = 16, /* Query state m/c states of a link
NPF_F IMA LINK LAST ICP_GET = 17,/* Get the payload of last ICP
* cell received on queried link */
NPF_F_IMA CallbackType t;

/*

*

X ok 3k b 3k b 3k % 3k % ok % o X 3k X ok X o X ok X

The callback function receives the following structure containing
one or more asynchronous responses from a single function call.
There are several possibilities:

1. The called function does a single request

- n_resp = 1, and the resp array has just one element.

- allOK = TRUE if the request completed without error

and the only return value is the response code.

- if allOK = FALSE, the "resp" structure has the error code.

2. the called function supports an array of requests

a. All completed successfully, at the same time, and the

only returned value is the response code:

- allOK = TRUE, n_resp = O.

b. Some completed, but not all, or there are values besides
the response code to return:

- allOK = FALSE, n_resp = the number completed

- the "resp" array will contain one element for

each completed request, with the error code

in the NPF_F _IMA_AsyncResponse_t structure, along

with any other information needed to identify

which request element the response belongs to.

- Callback function invocations are repeated in

this fashion until all requests are complete.

Responses are not repeated for request elements

already indicated as complete in earlier callback function invocations.

*/

typedef struct {
NPF_F_IMA CallbackType t type; /* Function called
NPF_boolean_t alloK; /* TRUE if all completed OK
NPF_uint32_t n_resp; /* Number of responses iIn array
NPF_F_IMA_AsyncResponse_t resp; /* Response struct

VCBIS Task Group

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

57

Network Processing Forum Software Working Group
} NPF_F_IMA_CallbackData_t;

/*

* IMA LFB Event Types

*/

typedef enum {
/* LIF defect detected at NE for the link */
NPF_F_IMA EVENT _LINK LIF RAISED = 1,

/* LIF defect cleared at NE for the link */
NPF_F IMA EVENT_LINK_LIF _CLEARED = 2,

/* LODS defect detected at NE for the link */
NPF_F_IMA EVENT _LINK LODS RAISED = 3,

/* LODS defect cleared at NE for the link */
NPF_F IMA EVENT LINK_LODS CLEARED = 4,

/* RDI-IMA defect detected at NE for the link */
NPF_F_IMA EVENT_LINK RFI_RAISED = 5,

/* RDI-IMA defect detected at NE for the link */
NPF_F IMA EVENT_LINK _RFI_CLEARED = 6,

/* Tx link found to be not connected to matching IMA unit at FE */
NPF_F_IMA_EVENT_LINK_TX_MISCONNECT_RAISED = 7,

/* Tx link misconnection cleared */
NPF_F_IMA EVENT_LINK TX MISCONNECT CLEARED = 8,

/* Rx link found to be not connected to matching IMA unit at FE */
NPF_F_IMA_EVENT_LINK_RX_MISCONNECT_RAISED = 9,

/* Rx link misconnection cleared */
NPF_F_IMA_EVENT_LINK RX_MISCONNECT_CLEARED = 10,

/* Implementation specific Tx fault raised */
NPF_F_IMA_EVENT_LINK_TX_ FAULT RAISED = 11,

/* Implementation specific Tx fault cleared */
NPF_F_IMA_EVENT_LINK_TX_FAULT_CLEARED = 12,

/* Implementation specific Rx fault raised */
NPF_F_IMA_EVENT_LINK_RX_FAULT_RAISED = 13,

/* Implementation specific Rx fault cleared */
NPF_F_IMA_EVENT_LINK_RX_FAULT_CLEARED = 14,

/* FE reports Tx link unusable */
NPF_F IMA EVENT_LINK_TX UNUSABLE_FE_RAISED = 15,

/* FE reports Tx link usable/active */
NPF_F_IMA_EVENT_LINK_TX_ UNUSABLE_FE CLEARED = 16,

/* FE reports Rx link unusable */
NPF_F_IMA_EVENT_LINK_RX_UNUSABLE_FE_RAISED = 17,

/* FE reports Rx link usable/active */
NPF_F_IMA_EVENT_LINK_RX_UNUSABLE_FE_CLEARED = 18,

VCBIS Task Group

58

Network Processing Forum Software Working Group
/* Test pattern failed to loop on specified link */
NPF_F _IMA_EVENT_LINK_TEST_LINK_FAIL_RAISED = 19,

/* Test link failure condition on specified link cleared */
NPF_F_IMA_EVENT_LINK_TEST_LINK_FAIL_CLEARED = 20,

/* Event to notify change in near end link state machine transition */
NPF_F_IMA_EVENT_LINK_STATE_MACHINE_TRANSITION = 21,

/* Far end group in startup state */
NPF_F_IMA_EVENT_GROUP_STARTUP_FE_RAISED_RAISED = 22,

/* Far end tried to use unacceptable configuration params */
NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_RAISED = 23,

/* Far end uses new acceptable configuration params */
NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED CLEARED = 24,

/* Far end reports unacceptable configuration params */
NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_FE_RAISED = 25,

/* Far end accepts new configuration params */

NPF_F_IMA_EVENT_GROUP_CONFIG_ABORTED_ FE CLEARED = 26,
/* Less than P(tx) or P(rx) links are active */
NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_RAISED = 27,

/* Condition where less than P(tx) or P(rx) links are active cleared */
NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_CLEARED = 28,

/* Far end reports less than P(rx) or P(tx) links are active */
NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_FE RAISED = 29,

/* Condition where Far end reports less than P(rx) or P(tx)
links are active cleared */
NPF_F_IMA_EVENT_GROUP_INSUFFICIENT_LINKS_FE_CLEARED = 30,

/* Far end reports that it is blocked */
NPF_F_IMA_EVENT_GROUP_BLOCKED_FE_RAISED = 31,

/* Far end reports that blocking no longer exists */
NPF_F_IMA_EVENT_GROUP_BLOCKED_ FE_CLEARED = 32,

/* Far end transmit clock mode is different than NE transmit clock mode */
NPF_F IMA _EVENT_GROUP_TIMING_MISMATCH RAISED = 33,

/* Mismatch of far end transmit clock mode and NE transmit clock mode
* cleared */
NPF_F_IMA_EVENT_GROUP_TIMING_MISMATCH_CLEARED = 34,

/* Test pattern failed to loop on some links */
NPF_F_IMA_EVENT_GROUP_TEST_LINK_FAIL_RAISED = 35,

/* Test link failure condition cleared on all link */
NPF_F_IMA_EVENT_GROUP_TEST_LINK_FAIL_CLEARED = 36,

/* Event to notify change in near end group state machine transition */
NPF_F_IMA_EVENT_GROUP_STATE_MACHINE_TRANSITION = 37,

VCBIS Task Group 59

Network Processing Forum Software Working Group

/* Event to notify change in near end group traffic state machine
transition */
NPF_F _IMA_EVENT_GROUP_TRAFFIC_STATE_MACHINE_TRANSITION = 38,

3} NPF_F_IMA _Event_t;

/*

* IMA LFB Event reporting data type

* This structure represents a single event in an event array. The type
* field indicates the specific event in the union.

*/
typedef struct {
NPF_F_IMA Event_t eventType; /* Type of event reported */
NPF_ F IMA Id t objld; /* Object for which event raised */
union {
/* Link states — filled for link specific events */
NPF_F IMA Link State t linkState;
/* Group states — Filled for group specific events */
NPF_F_IMA_Group_State_t groupState;
¥ u;

} NPF_F_IMA_EventData t;

/* Completion Callback Function */
typedef void (*NPF_F_IMA_CallbackFunc_t) (

NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_F IMA CallbackData_ t data);

/* Completion Callback Registration Function */
NPF_error_t NPF_F IMA Register (

NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_F _IMA CallbackFunc_t callbackFunc,
NPF_OUT NPF_callbackHandle_t *callbackHandle);

/* Completion Callback Deregistration Function */
NPF_error_t NPF_F _IMA Deregister (
NPF_IN NPF_callbackHandle_t callbackHandle);

/* Event Handler Function */

typedef void (*NPF_F_IMA EventCallFunc_t) (
NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_uint32_t nEvent,
NPF_IN NPF_F_IMA_EventData_t *imaEventArray);

/* Event Registration Function */
NPF_error_t NPF_F_IMA_EventHandler_Register(

NPF_IN NPF_userContext_t userContext,

NPF_IN NPF_F_IMA_EventCallFunc_t imaEvtCallFn,
NPF_IN NPF_eventMask_t imaEvtMask,

NPF_OUT NPF_callbackHandle_t *imagvtCallHdI);

/* Event Handler Deregistration Function */
NPF_error_t NPF_F_IMA EventHandler_Deregister(
NPF_IN NPF_callbackHandle_t imaEventCal lHandle);

/* LFB Attributes Query Function */

NPF_error_t NPF_F_IMA_LFB AttributesQuery (
NPF_IN NPF_callbackHandle_t callbackHandle,

VCBIS Task Group

60

Network Processing Forum Software Working Group

NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_Blockld_t blockld);

/* Add or Modify an IMA group */
NPF_error_t NPF_F IMA GroupSet (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_ t feHandle,
NPF_IN NPF_Blockld_t blockld,
NPF_IN NPF uint32_t numentries,

NPF_IN NPF_F_IMA Group_Config_t *cfgArray);
/* Delete an IMA group */
NPF_error_t NPF_F _IMA GroupDelete (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_Blockld_t blockld,
NPF_IN NPF_boolean_t delContainedLnks,
NPF_IN NPF uint32_t numentries,
NPF_IN NPF_F_IMA Group ID_t *delArray);

/* Put an IMA group in service */
NPF_error_t NPF_F IMA GroupEnable (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_ t feHandle,
NPF_IN NPF_Blockld_t blockld,
NPF_IN NPF uint32_t numentries,
NPF_IN NPF_F_IMA Group_ ID_t *enaArray);

/* Put an IMA group out of service */
NPF_error_t NPF_F IMA GroupDisable (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_Blockld_t blockld,
NPF_IN NPF_uint32_t numentries,
NPF_IN NPF_F_IMA Group_ID_t *enaArray);

/* Query an IMA Group */
NPF_error_t NPF_F_IMA GroupQuery (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_Blockld_t blockld,
NPF_IN NPF_uint32_t numentries,
NPF_IN NPF_F _IMA Group ID_ t *grpldArr);

/* Get statistics accumulated for an IMA Group */
NPF_error_t NPF_F_IMA GroupStatsGet (

NPF_IN NPF_callbackHandle_t cbHandle,

NPF_IN NPF_correlator_t cbCorrelator,

NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_t feHandle,

VCBIS Task Group

61

Network Processing Forum Software Working Group

NPF_IN NPF_Blockld_t blockld,
NPF_IN NPF_boolean_t resetStats,
NPF_IN NPF uint32_t numentries,
NPF_IN NPF_F_IMA _Group_ID_t *grpldArr);

/* Get state information for an IMA Group */

NPF_error_t NPF_F_IMA GroupStateGet (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle t feHandle,
NPF_IN NPF_Blockld_t blockld,
NPF_IN NPF uint32_t numentries,
NPF_IN NPF_F_IMA_Group_ID_t *grpldArr);

/* Configure Test Pattern procedure for an IMA group */
NPF_error_t NPF_F _IMA_GroupTestSet (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle t feHandle,
NPF_IN NPF_Blockld_t blockld,
NPF_IN NPF uint32_t numentries,

NPF_IN NPF_F _IMA Group Test Proc Config t *grpldArr);

/* Add or Modify an IMA link */
NPF_error_t NPF_F_IMA_ LinkSet (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle t feHandle,
NPF_IN NPF_Blockld_t blockld,
NPF_IN NPF uint32_t numentries,

NPF_IN NPF_F_IMA_Link Config_t *cfgArray);
/* Delete an IMA Link */
NPF_error_t NPF_F IMA LinkDelete (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_ t feHandle,
NPF_IN NPF_Blockld_t blockld,
NPF_IN NPF uint32_t numentries,
NPF_IN NPF_F_IMA Link ID_t *delArray);

/* Put an IMA link iIn service */
NPF_error_t NPF_F _IMA LinkEnable (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_t feHandle,
NPF_IN NPF_Blockld_t blockld,
NPF_IN NPF_uint32_t numeEntries,
NPF_IN NPF_F_IMA Link ID_t *enaArray);

/* Put an IMA link out of service */
NPF_error_t NPF_F_IMA_LinkDisable (

NPF_IN NPF_callbackHandle_t cbHandle,

NPF_IN NPF_correlator_t cbCorrelator,

NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FEHandle_t feHandle,

VCBIS Task Group 62

Network Processing Forum Software Working Group

NPF_IN NPF_Blockld_t
NPF_IN NPF_uint32_t
NPF_IN NPF_F_IMA Link ID_ t
/* Query an IMA Link */
NPF_error_t NPF_F_IMA_LinkQuery (
NPF_IN NPF_callbackHandle_t
NPF_IN NPF_correlator_t
NPF_IN NPF_errorReporting_t
NPF_IN NPF_FEHandle_t
NPF_IN NPF_Blockld_t
NPF_IN NPF_uint32_t
NPF_IN NPF_F_IMA_Link_ID_t

/* Get statistics accumulated for an

NPF_error_t NPF_F _IMA_LinkStatsGet (

NPF_IN NPF_callbackHandle_t
NPF_IN NPF_correlator_t
NPF_IN NPF_errorReporting_t
NPF_IN NPF_FEHandle_t
NPF_IN NPF_boolean_t

NPF_IN NPF_Blockld_t

NPF_IN NPF_uint32_t

NPF_IN NPF_F_IMA Link ID_t

blockld,
numEntries,
*enaArray);

cbHandle,
cbCorrelator,
errorReporting,
feHandle,
blockld,
numEntries,
*InkldArr);

IMA Link */

cbHandle,
cbCorrelator,
errorReporting,
feHandle,
resetStats,
blockld,
numEntries,
*InkldArr);

/* Get state information for an IMA Link */

NPF_error_t NPF_F IMA_ LinkStateGet (

NPF_IN NPF_callbackHandle_t
NPF_IN NPF_correlator_t
NPF_IN NPF_errorReporting_t
NPF_IN NPF_FEHandle_t
NPF_IN NPF_Blockld_t

NPF_IN NPF_uint32_t

NPF_IN NPF_F_IMA Link ID_ t

/* Get last received ICP cell for an

cbHandle,
cbCorrelator,
errorReporting,
feHandle,
blockld,
numEntries,
*InkldArr);

IMA Link */

NPF_error_t NPF_F _IMA LinkLastICPInfoGet (

NPF_IN NPF_callbackHandle_t
NPF_IN NPF_correlator_t
NPF_IN NPF_errorReporting_t
NPF_IN NPF_FEHandle_t
NPF_IN NPF_Blockld_t

NPF_IN NPF_uint32_t

NPF_IN NPF_F_IMA Link ID_t

#ifdeFf _ cplusplus
}
#endif

#endif /* __NPF_F_ATM_IMA H__ */

cbHandle,
cbCorrelator,
errorReporting,
feHandle,
blockld,
numEntries,
*InkldArr);

VCBIS Task Group

63

Network Processing Forum Software Working Group

Appendix B Acknowledgements

Working Group Chair: Alex Conta

Task Group Chair: Per Wollbrand

The following individuals are acknowledged for their participation to ATM Task Group teleconferences,

plenary meetings, mailing list, and/or for their NPF contributions used for the development of this
Implementation Agreement. This list may not be all-inclusive since only names supplied by member
companies for inclusion here will be listed. The NPF wishes to thank all active participants to this

Implementation Agreement, whether listed here or not.

The list is in alphabetical order of last names:

Pat Carr, Wintegra

P&l Dammvik, Ericsson
Stephen Doyle, Intel

Conor Ferguson, Intel

Patrik Herneld, Ericsson

Ajay Kamalvanshi, Nokia
Jaroslaw Kogut, Intel

Arthur Mackay, Freescale
Michael Persson, Ericsson
Tiberu Petrica, Freescale

John Renwick, Agere Systems
Vedvyas Shanbhogue (ed.), Intel
Roger Smith, Wintegra

Keith Williamson, Motorola
Paul Wilson, Freescale
Weislaw Wisniewski, Intel
Per Wollbrand, Ericsson

VCBIS Task Group

64

Network Processing Forum Software Working Group

Appendix C List of companies belonging to NPF during approval process

Agere Systems IDT Sensory Networks
AMCC Infineon Technologies AG Sun Microsystems
Analog Devices Intel Teja Technologies
Cypress Semiconductor IP Fabrics TranSwitch
Enigma Semiconductor IP Infusion U4EA Group
Ericsson Motorola Wintegra
Flextronics Mercury Computer Systems Xelerated
Freescale Semiconductor Nokia Xilinx

HCL Technologies NTT Electronics

Hifn PMC-Sierra

VCBIS Task Group

	Revision History
	Introduction
	Acronyms
	Assumptions
	Scope
	External Requirements and Dependencies

	IMA LFB Description
	IMA LFB Inputs
	Metadata Required

	IMA LFB Outputs
	Metadata Produced on CELL_RX_OUT output
	Metadata Produced on CELL_TX_OUT output

	Accepted Cell Types
	Cell Modifications
	Relationship with Other LFBs

	Data Types
	Common LFB Data Types
	LFB Type Code
	IMA Configurations
	IMA Group ID
	IMA Link ID
	IMA Link Status
	IMA Group State Machine states
	IMA Group Traffic Machine State
	IMA Group Testing Mode
	IMA Group Configuration
	IMA Group States
	IMA Group Query Information
	IMA Link Configuration
	IMA Link States
	IMA Link Query Information
	IMA Group Statistics
	IMA Link Statistics
	ICP Query Response Structure
	IMA LFB Attributes query response

	Data Structures for Completion Callbacks
	Asynchronous Response
	Callback Type
	Callback Data

	Data Structures for Event Notifications
	Event Notification Types
	Event Mask bit definitions

	Event Notification Structures

	Error Codes
	Common NPF Error Codes
	LFB Specific Error Codes

	Functional API (FAPI)
	Required Functions
	Completion Callback Function
	Description
	Input Parameters
	Output Parameters
	Return Values

	Completion Callback Registration Function
	Description
	Input Parameters
	Output Parameters
	Return Values
	Notes

	Completion Callback Deregistration Function
	Description
	Input Parameters
	Output Parameters
	Return Values
	Notes

	Event Handler Function
	Description
	Input Parameters
	Output Parameters
	Return Values

	Event Registration Function
	Description
	Input Parameters
	Output Parameters
	Return Values

	Event Handler Deregistration Function
	Description
	Input Parameters
	Output Parameters
	Return Values

	LFB Attributes Query Function
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Add or Modify an IMA group
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Delete an IMA group
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Put an IMA group in service
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Put an IMA group out of service
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Query an IMA Group
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Get statistics accumulated for an IMA Group
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Get state information for an IMA Group
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Configure Test Pattern procedure for an IMA group
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Add or Modify an IMA link
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Delete an IMA Link
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Put an IMA link in service
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Put an IMA link out of service
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Query an IMA Link
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Get statistics accumulated for an IMA Link
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Get state information for an IMA Link
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	Get last received ICP cell for an IMA Link
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response

	References

