
Network Processing Forum Software Working Group

Switch Address Generator ATM LFB and
Functional API

Implementation Agreement
May 29, 2006
Revision 1.0

Editor: Patrik Herneld, Ericsson, patrik.herneld@ericsson.com

Copyright © 2006 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THIS DOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", “MAY", and "OPTIONAL" in the
remainder of this document are to be interpreted as described in the NPF Software API
Conventions Implementation Agreement revision 1.0.

For additional information contact:
The Network Processing Forum, 39355 California Street,

Suite 307, Fremont, CA 94538
+1 510 608-5990 phone info@npforum.org

 VCBIS Task Group 1

mailto:patrik.herneld@ericsson.com

Network Processing Forum Software Working Group

Table of Contents

1 Revision History ... 5
2 Introduction... 6

2.1 Purpose and motivation... 6
2.1.1 OPTIONAL FORMATTING FUNCTION ..6

2.2 Assumptions.. 6
2.3 Scope ... 6
2.4 External Requirements and Dependencies.. 6

3 Switch Address Generator ATM LFB Description .. 8
3.1 Switch Address Generator ATM Inputs ... 10

3.1.1 METADATA REQUIRED ...11
3.2 Switch Address Generator ATM Outputs... 13

3.2.1 METADATA PRODUCED..13
3.3 Accepted Packet Types ... 13
3.4 Packet Modifications .. 13
3.5 Relationship with Other LFBs .. 14

4 Data Types .. 16
4.1 Common LFB Data Types .. 16

4.1.1 LFB TYPE CODE ..16
4.1.2 SWITCH ADDRESS GENERATOR ATM CONFIGURATIONS16
4.1.3 INPUT TYPE..16
4.1.4 ATM SDU METADATA TYPE..16
4.1.5 AAL5 PACKET METADATA TYPE..16
4.1.6 AAL2 CPS SDU METADATA TYPE ..17
4.1.7 AAL2 SSSAR SDU METADATA TYPE ...17
4.1.8 STRING TYPE...17
4.1.9 FORMAT TYPE ...17

4.2 Data Structures for Completion Callbacks ... 19
4.2.1 SWITCH ADDRESS GENERATOR ATM LFB ATTRIBUTES QUERY

RESPONSE...19
4.2.2 ASYNCHRONOUS RESPONSE ...19
4.2.3 CALLBACK TYPE..19
4.2.4 CALLBACK DATA ...19

4.3 Data Structures for Event Notifications.. 20
4.3.1 EVENT NOTIFICATION TYPES..20
4.3.2 EVENT NOTIFICATION STRUCTURES...20

4.4 Error Codes ... 20
4.4.1 COMMON NPF ERROR CODES ..20
4.4.2 LFB SPECIFIC ERROR CODES...20

5 Functional APIs (FAPIs)... 22
5.1 Required Functions ... 22
5.2 Conditional Functions... 22

5.2.1 COMPLETION CALLBACK FUNCTION..22
5.2.2 COMPLETION CALLBACK REGISTRATION FUNCTION................22
5.2.3 COMPLETION CALLBACK DEREGISTRATION FUNCTION...........23

5.3 Optional Functions.. 24
5.3.1 LFB ATTRIBUTES QUERY FUNCTION ...24

 VCBIS Task Group 2

Network Processing Forum Software Working Group

5.3.2 FORMATTING FUNCTION ...25
6 References ... 27
Appendix A ... 28

A.1. API Call Capabilities .. 28
A.2. Header file – npf_f_SwAddrGenATM.h .. 28

Appendix B Acknowledgements... 32
Appendix C List of companies belonging to NPF DURING APPROVAL PROCESS 33

Table of Figures
Figure 1 Switch Address Generator ATM LFB..8
Figure 2 Backplane link Instances ...8
Figure 3 Overview of the LFB functionality ...9
Figure 4 Cooperation between Switch Address Generator ATM LFB and Messaging LFB14
Figure 5 Bit numbering, showing an overwrite operation ...18
Figure 6 Bit numbering, showing an insert operation..18

List of Tables
Table 1 Glossary ..4
Table 2 Revision History ...5
Table 3 Switch Address Generator ATM LFB Inputs ..10
Table 4 Input Metadata for Switch Address Generator ATM LFB 11
Table 5 Switch Address Generator ATM LFB Outputs ...13
Table 6 Output Metadata for Switch Address Generator ATM LFB13
Table 7 Callback type to Callback data mapping table..20
Table 8 API Call Capabilities...28
Table 9 List of Companies ...33

 VCBIS Task Group 3

Network Processing Forum Software Working Group

Glossary

Table 1 Glossary

AAL

ATM Adaptation Layer: The standards layer that allows multiple
applications to have data converted to and from the ATM cell. A
protocol used that translates higher layer services into the size and
format of an ATM cell.
Examples of AALs are AAL1, AAL2 and AAL5.

AAL2
ATM Adaptation Layer 2 defined in ITU-T I.363.2. The type of ATM
adaptation principally used for variable-bit-rate Voice-Over-ATM
services.

AAL5
ATM Adaptation Layer 5 defined in ITU-T I.363.5. The type of ATM
adaptation principally used for frame and packet transport over an
ATM network.

ATM Asynchronous Transfer Mode
BP Backplane
CLP Cell Loss Priority
CPCS Common Part Convergence Sublayer
CPS Common Part Sub-Layer
HEC Header Error Control
IA Implementation Agreement
ID Identifier
LI Length Indication
NNI Network Node Interface
PDU Protocol Data Unit
PTI Payload Type Identifier
SAR Segmentation and Reassembly (Sublayer)
SDU Service Data Unit
SSSAR Service Specific Segmentation and Reassembly sublayer
UNI User Network Interface
UUI User-to-User Indication
VC Virtual Connection
VCC Virtual Channel Connection
VCI Virtual Channel Identifier
VPC Virtual Path Connection
VPI Virtual Path Identifier

 VCBIS Task Group 4

Network Processing Forum Software Working Group

1 Revision History

Table 2 Revision History

Revision Date Reason for Changes

1.0 05/29/2006 Rev 1.0 of the Switch Address Generator ATM LFB and
Functional API Implementation Agreement. Source :
npf2005.048.11

 VCBIS Task Group 5

Network Processing Forum Software Working Group

2 Introduction
This contribution defines the Switch Address Generator ATM and lists configurations that are required in
the LFB.

2.1 Purpose and motivation
The purpose of this LFB is to generate a backplane PDU, which is to be forwarded over a backplane
between FEs, which could be used and formatted by a following Messaging LFB. A header or trailer is
added to the incoming packet (e.g. ATM SDU), the result is called the backplane PDU.

2.1.1 Optional formatting function
The Messaging LFB can alter the location of a metadata within the metadata stream and reduce the size of
a metadata to a minimum of a byte granule.
Many implementations would like to construct e.g. an internal ATM Header, as part of the so-called
switch address (configured through the ATM Configuration Manager Functional API). This would
require a merge of incoming metadata and generated metadata on a bit level. This merge cannot be done
with the Messaging LFB (without a FAPI implementation change for each wanted bit merging – not very
flexible solution).
Furthermore when e.g. adding and deleting ATM VCs that are cross connected over different backplane
links, a switch address needs to be configured for each VC link through the ATM Configuration Manager
Functional API. This switch address will be distributed to the Switch Address Generator ATM LFB, and
will be used to generate the backplane PDU. In many implementations there are octets in the switch
address that are static and common for all backplane links within the LFB. An example of such fields
could be the HEC field, which might not be generated per VC inside a switch and would therefore be the
same for all VCs.
To optimize performance it would be useful to be able to configure the LFB once with the static octets
that are to be generated for each backplane link instance within the LFB. These octets can then be omitted
in the frequent configurations of e.g. ATM VCs within the ATM Configuration Manager Functional API.
Therefore the Switch Address Generator ATM contains the optional function,
NPF_F_SwAddrGenATM_Format(). This function can merge incoming metadata or static defined strings
into the txAddress (which forms the header or trailer part of the backplane PDU). The optional function
can also specify the placement of the metadata-generated part in relation to the packet (header or trailer).

2.2 Assumptions
The Switch Address Generator ATM LFB obtains its configurations from the ATM Configuration
Manager LFB. The mechanism used to obtain this configuration is not in the scope of NPF.

2.3 Scope
This IA describes the configurations required by the LFB for backplane links. The IA also specifies the
metadata generated and consumed by this LFB.

2.4 External Requirements and Dependencies
This IA depends on the following IA’s:

o NPF Software API Conventions Implementation Agreement document [SWAPICON] for basic
type definitions.

o ATM Software API Architecture Framework defines the architectural framework for the ATM
FAPIs

 VCBIS Task Group 6

Network Processing Forum Software Working Group

o ATM Configuration Manager Functional API defines the functions for configuration and
management of the ATM LFBs on a forwarding element.

o This document depends on Software API Conventions Implementation agreement Revision 2.0
for below type definitions

o NPF_error_t – Refer section 5.2 of Software API Conventions IA Rev 2.0
o NPF_callbackHandle_t - Refer section 5.2 of Software API Conventions IA Rev 2.0
o NPF_userContext_t - Refer section 5.2 of Software API Conventions IA Rev 2.0
o NPF_errorReporting_t - Refer section 5.2 of Software API Conventions IA Rev 2.0
o NPF_boolean_t - Refer section 5.1 of Software API Conventions IA Rev 2.0
o NPF_uint8_t - Refer section 5.1 of Software API Conventions IA Rev 2.0
o NPF_uint32_t - Refer section 5.1 of Software API Conventions IA Rev 2.0
o NPF_correlator_t - Refer section 5.2 of Software API Conventions IA Rev 2.0

o This document depends on Topology Manager Functional API Implementation Agreement
Revision 1.0 for below type definitions

o NPF_BlockId_t – Refer section 3.1.1 of Topology Manager Functional API IA Rev 1.0
o NPF_FE_Handle_t – Refer section 3.1.1 of Topology Manager Functional API IA Rev

1.0

 VCBIS Task Group 7

Network Processing Forum Software Working Group

3 Switch Address Generator ATM LFB Description
The Switch Address Generator ATM LFB receives a packet on one of the four inputs from the previous
LFB in the pipeline, performs a lookup to find the backplane link, produces the required backplane PDU
and forwards the PDUs to the next LFB. The Switch Address Generator ATM LFB uses the BP Link ID
signaled in the metadata to find the backplane link to be used to transport the packet over the backplane.
The Switch Address Generator ATM LFB is modeled as shown in Figure 1:

Figure 1 Switch Address Generator ATM LFB

The Switch Address Generator ATM LFB may contain multiple instances of backplane links that are
identified by unique backplane link IDs. The incoming packets are associated with the appropriate
backplane link instance using the metadata received with the packet. Such backplane link instances are
depicted in Figure 2 below. The maximum number of such backplane links is an attribute of the Switch
Address Generator ATM LFB and may be queried as such.

Figure 2 Backplane link Instances

 VCBIS Task Group 8

Network Processing Forum Software Working Group

The Switch Address Generator ATM LFB maintains the following statistics for each backplane link:
• None.

The Switch Address Generator ATM LFB forms the output backplane PDU as shown, by using an ATM
SDU as example, in Figure 3 below. The metadata-generated portion of the PDU can be placed either in
front of the ATM SDU as a header (default) or as a trailer to the ATM SDU. The metadata-generated
portion of the backplane PDU is based on the txAddress (from the SwitchAddress within the ATM
Configuration Manager); an optional function (NPF_F_SwAddrGenATM_Format ()) could be used to
merge incoming metadata or static defined strings into the txAddress. The optional function can also
specify the placement of the metadata-generated part in relation to the ATM SDU (header or trailer). All
four inputs of the Switch Address Generator ATM LFB form the backplane PDU in the same way as
shown in this example.

ATM Configuration

Manager

FAPI Client

LinkX SwitchAddress:
txaddressLength=N,

txAddress=A0, A1, .. , AN-1
A1 AN-1A0

NPF_F_SwAddrGenATM_Format():

Link X

CLP

PTI
ATM SDU

Switch Address Gen
ATM LFB

S0• String insert in A1,

S1• String overwrite A2,
S2• String insert before A4.

A4AN-1 A3 A2 A1 A0S0S1S2

A4AN-1 A3 A2 A1 A0S0S1S2

Header version

or
Trailer version

Note that A0 will always be
placed, in relation to the SDU
part, as shown below.

• PTI overwrite A0.

Definitions: The pointer txAddress (within the ATM
Configuration Manager) always points at the

octet represented by A0. The pointer
(txAddress+1) always points at the octet

represented by A1 etcetera.

Example operations:

Figure 3 Overview of the LFB functionality

 VCBIS Task Group 9

Network Processing Forum Software Working Group

3.1 Switch Address Generator ATM Inputs

Table 3 Switch Address Generator ATM LFB Inputs

Symbolic Name Input ID Description
ATM_SDU_IN 0 This is the ATM SDU input for the Switch Address

Generator ATM LFB that is used to receive ATM SDUs
to be sent over the backplane link.

AAL5_CPCS_IF_DATA_IN 1 This is the AAL5 packet input for the Switch Address
Generator ATM LFB that is used to receive AAL5
packets to be sent over the backplane link.

AAL2_CPS_SDU_IN 2 This is the AAL2 CPS SDU input for the Switch
Address Generator ATM LFB that is used to receive
AAL2 CPS SDUs to be sent over the backplane link.

AAL2_SSSAR_SDU_IN 3 This is the AAL2 SSSAR SDU input for the Switch
Address Generator ATM LFB that is used to receive
AAL2 SSSAR SDUs to be sent over the backplane link.

 VCBIS Task Group 10

Network Processing Forum Software Working Group

3.1.1 Metadata Required

Table 4 Input Metadata for Switch Address Generator ATM LFB

Metadata tag Access
method

Description

META_BPL_ID Read-and-
consumed

Metadata identifying the Backplane link on which
the Backplane PDU is to be transmitted. This
metadata is received on all four inputs respectively.

META_ATM_PTI Read Conditional metadata representing the Payload Type
of the ATM SDU. This metadata only needs to be
read in case the optional function is being used and
the function needs this metadata. This metadata is
received on the ATM_SDU_IN input only.

META_ATM_LP Read Conditional metadata representing the Loss Priority
of the ATM SDU. This metadata only needs to be
read in case the optional function is being used and
the function needs this metadata. This metadata is
received on the ATM_SDU_IN input only.

META_ATM_VCI Read Conditional metadata representing the VCI of the
ATM SDU. This metadata only needs to be read in
case the optional function is being used and the
function needs this metadata. This metadata is
received on the ATM_SDU_IN input only.

META_AAL5_CPCS_LP Read Conditional metadata representing the CPCS Loss
Priority of the re-assembled AAL5 packet. This
metadata only needs to be read in case the optional
function is being used and the function needs this
metadata. This metadata is received on the
AAL5_CPCS_IF_DATA_IN input only.

META_AAL5_UUI Read Conditional metadata representing the CPCS UUI of
the re-assembled AAL5 packet. This metadata only
needs to be read in case the optional function is
being used and the function needs this metadata.
This metadata is received on the
AAL5_CPCS_IF_DATA_IN input only.

META_AAL5_FRAME_LEN Read Conditional metadata representing the length of the
re-assembled AAL5 packet. This metadata only
needs to be read in case the optional function is
being used and the function needs this metadata.
This metadata is received on the
AAL5_CPCS_IF_DATA_IN input only.

META_AAL5_BOUND_IF Read Conditional metadata representing the handle of the
child interface bound to the link. This metadata only
needs to be read in case the optional function is
being used and the function needs this metadata.

 VCBIS Task Group 11

Network Processing Forum Software Working Group

This metadata is received on the
AAL5_CPCS_IF_DATA_IN input only.

META_AAL5_RCV_STATUS Read Conditional metadata representing the type of error
encountered in the reassembly process. This
metadata only needs to be read in case the optional
function is being used and the function needs this
metadata. This metadata is received on the
AAL5_CPCS_IF_DATA_IN input only.

META_AAL2_CPS_UUI Read Conditional metadata representing the UUI of the
CPS packet. This metadata only needs to be read in
case the optional function is being used and the
function needs this metadata. This metadata is
received on the AAL2_CPS_SDU_IN input only.

META_AAL2_CPS_LI Read Conditional metadata representing the length of the
CPS SDU. This metadata only needs to be read in
case the optional function is being used and the
function needs this metadata. This metadata is
received on the AAL2_CPS_SDU_IN input only.

META_AAL2_CPS_SSCS_TYPE Read Conditional metadata representing the type of SSCS
to process this CPS SDU. This metadata only needs
to be read in case the optional function is being used
and the function needs this metadata. This metadata
is received on the AAL2_CPS_SDU_IN input only.

META_AAL2_CPS_BOUND_IF Read Conditional metadata representing the handle of the
higher layer interface bound to this AAL2 channel.
This metadata only needs to be read in case the
optional function is being used and the function
needs this metadata. This metadata is received on
the AAL2_CPS_SDU_IN input only.

META_AAL2_SSSAR_UUI Read Conditional metadata representing the UUI signaled
in the re-assembled AAL2 SAR SDU. This
metadata only needs to be read in case the optional
function is being used and the function needs this
metadata. This metadata is received on the
AAL2_SSSAR_SDU_IN input only.

META_AAL2_SSSAR_LI Read Conditional metadata representing the length of the
re-assembled AAL2 SAR SDU. This metadata only
needs to be read in case the optional function is
being used and the function needs this metadata.
This metadata is received on the
AAL2_SSSAR_SDU_IN input only.

 VCBIS Task Group 12

Network Processing Forum Software Working Group

3.2 Switch Address Generator ATM Outputs

Table 5 Switch Address Generator ATM LFB Outputs

Symbolic Name Output ID Description
BP_PDU_OUT 4 This is the normal output for the Switch Address

Generator ATM LFB. Backplane PDUs that could be
identified with an established backplane link are sent on
this output for further processing. Adding a header or a
trailer part in front/behind the input packet generates the
backplane PDUs. The header/trailer is generated from
the txAddress (ATM Configuration Manager) that may
be formatted by an optional function (within the Switch
Address Generator ATM LFB).

EXC 5 The cell is sent to this output if an error is encountered.

3.2.1 Metadata Produced

Table 6 Output Metadata for Switch Address Generator ATM LFB

Metadata tag Access method Description
META_BP_IF_ID Write Metadata to associate a backplane interface on which

the Backplane PDU is to be transmitted over.
META_BP_PDU_TYPE Write Metadata to associate what type the backplane PDU

consists of. This metadata links the transmitted PDU to
one of the four inputs of the Switch Address Generator
ATM LFB; it could be used by e.g. the Messaging LFB
to associate a format profile to the PDU.

3.3 Accepted Packet Types
The Switch Address Generator ATM LFB can accept ATM SDUs, AAL5 packets, AAL2 CPS SDUs and
AAL2 SSSAR SDUs received on its inputs.

3.4 Packet Modifications
The different packets received by the Switch Address Generator ATM LFB are not consumed or modified
by the LFB and always exit through one of the outputs. The Switch Address Generator ATM LFB
processes packets entering each one of the LFB inputs sequentially. That means that the Switch Address
Generator ATM LFB does not change the order of transmission of the packets.

 VCBIS Task Group 13

Network Processing Forum Software Working Group

3.5 Relationship with Other LFBs
The Switch Address Generator ATM LFB could e.g. be placed in the processing chain before the
Messaging LFB. The Switch Address Generator ATM LFB receives packets from the previous LFB and
passes the Backplane PDUs to the Messaging LFB for transmission over a backplane.
The recipient and producers of the SDUs and metadata that are described in this section may be replaced
by LFBs that are able to generate information that is required by the Switch Address Generator ATM
LFB at its input, and are able to utilize information present at the output of the Switch Address Generator
ATM LFB. The exact design and connections between the Switch Address Generator ATM LFB and
cooperating blocks is specific to the vendor that provides the Forwarding Element design and FAPI
implementation.
The EXC output of the Switch Address Generator ATM LFB could be connected to an LFB that receives
SDUs for which the proper backplane link instance could not be found. Depending on system design this
may be either a dropper, which drops SDUs that could not be properly associated with a backplane link,
or other LFB that makes a decision how to utilize such SDUs.
The sequence of actions that configures the Switch Address Generator ATM LFB and cooperating
Messaging LFB instance, and cooperation between these two LFBs is schematically depicted in Figure 4.
Note that only the ATM_SDU_IN input is shown in the figure as an example.

3

Metadata:
BP_IF_ID := If1
PTI := X
LP := Y
BP_PDU_TYPE

Incoming
ATM SDU

2

Switch Address
Generator ATM

Switch Address
Generator ATM LFB

ATM_SDU_IN BP_PDU_OUT

EXC

BP PDU
To next

LFBBP Link 1

NPF ATM SAPI Implementation

1

Metadata:
BPLinkID:=ID1
PTI:=X
LP:=Y

BP_PDU_IN

Messaging LFB

Messaging

NPF ATM Configuration Manager

Figure 4 Cooperation between Switch Address Generator ATM LFB and Messaging LFB

This figure shows part of an example Forwarding Element that contains the Switch Address Generator
ATM and the Messaging LFBs. These two blocks are connected in chain and configured by a NPF SAPI
implementation. The sequence of actions that configure the backplane link on the interface may be
defined as follows (see corresponding numbers in circles in the figure):

1. The NPF ATM SAPI Implementation creates a backplane link instance. The system software
below the NPF ATM SAPI assigns a BP Link ID (‘ID1’) to the backplane link and invokes the

 VCBIS Task Group 14

Network Processing Forum Software Working Group

ATM configuration manager FAPI to create the link. The ATM configuration manager FAPI call
leads to creation of a backplane link instance in the Switch Address Generator ATM LFB.

2. The Switch Address Generator ATM LFB uses the backplane Link ID signaled in metadata to
find a matching backplane link instance on receiving an ATM SDU. The PTI and LP signaled in
the metadata are passed transparent to the Switch Address Generator ATM LFB.

3. The generated Backplane PDU is forwarded to the Messaging LFB input together with metadata
created by the Switch Address Generator ATM LFB.

 VCBIS Task Group 15

Network Processing Forum Software Working Group

4 Data Types
4.1 Common LFB Data Types
4.1.1 LFB Type Code
It is possible to use the FAPI Topology Manager APIs to discover a Switch Address Generator ATM LFB
in a forwarding element using a block type value for the Switch Address Generator ATM LFB.

#define NPF_F_SWADDRGENATM_LFB_TYPE 45

4.1.2 Switch Address Generator ATM Configurations
4.1.2.1 Backplane Link Characteristics
The Switch Address Generator LFB requires below configurations for each backplane link.

• Backplane Link ID
• TX Backplane Interface ID
• TX Address Length
• TX Address

4.1.3 Input Type
This type defines the LFB input to apply the formatting on.
typedef enum {
 NPF_F_SWADDRGENATM_ATM_SDU_IN = 0, /* ATM SDU input. */
 NPF_F_SWADDRGENATM_AAL5_CPCS_IF_DATA_IN = 1, /* AAL5 packet input. */
 NPF_F_SWADDRGENATM_AAL2_CPS_SDU_IN = 2, /* AAL2 CPS SDU input. */
 NPF_F_SWADDRGENATM_AAL2_SSSAR_SDU_IN = 3 /* AAL2 SSSAR SDU input. */
} NPF_F_SwAddrGenATM_Input_t;

4.1.4 ATM SDU metadata Type
This type defines the metadata on the ATM_SDU_IN input that can be formatted and put into the output
header/trailer part of the Backplane PDU.
typedef enum {
 NPF_F_SWADDRGENATM_ATM_SDU_PTI = 0, /* Payload Type Identifier */
 NPF_F_SWADDRGENATM_ATM_SDU_LP = 1, /* Loss Priority */
 NPF_F_SWADDRGENATM_ATM_SDU_VCI = 2 /* Virtual Channel Identifier */
} NPF_F_SwAddrGenATM_AtmSduMetadata_t;

4.1.5 AAL5 packet metadata Type
This type defines the metadata on the AAL5_CPCS_IF_DATA_IN input that can be formatted and put
into the output header/trailer part of the Backplane PDU.
typedef enum {
 NPF_F_SWADDRGENATM_AAL5_CPCS_LP = 0, /* CPCS Loss Priority */
 NPF_F_SWADDRGENATM_AAL5_UUI = 1, /* CPCS UUI */
 NPF_F_SWADDRGENATM_AAL5_FRAMELENGTH = 2, /* Length of the packet */
 NPF_F_SWADDRGENATM_AAL5_BOUND_IF = 3, /* Handle of the child interface */
 NPF_F_SWADDRGENATM_AAL5_RCV_STATUS = 4 /* Type of error in reassembly */
} NPF_F_SwAddrGenATM_Aal5CpcsMetadata_t;

 VCBIS Task Group 16

Network Processing Forum Software Working Group

4.1.6 AAL2 CPS SDU metadata Type
This type defines the metadata on the AAL2_CPS_SDU_IN input that can be formatted and put into the
output header/trailer part of the Backplane PDU.
typedef enum {
 NPF_F_SWADDRGENATM_AAL2_CPS_UUI = 0, /* CPS UUI */
 NPF_F_SWADDRGENATM_AAL2_CPS_LI = 1, /* CPS LI */
 NPF_F_SWADDRGENATM_AAL2_BOUND_IF = 2 /* Handle of higher layer i/f */
} NPF_F_SwAddrGenATM_Aal2CpsSduMetadata_t;

4.1.7 AAL2 SSSAR SDU metadata Type
This type defines the metadata on the AAL2_SSSAR_SDU_IN input that can be formatted and put into
the output header/trailer part of the Backplane PDU.
typedef enum {
 NPF_F_SWADDRGENATM_AAL2_SSSAR_UUI = 0, /* UUI of SAR SDU */
 NPF_F_SWADDRGENATM_AAL2_SSSAR_LI = 1 /* LI of SAR SDU */
} NPF_F_SwAddrGenATM_Aal2SssarSduMetadata_t;

4.1.8 String Type
This type defines the string that can be formatted and put into the output header/trailer part of the
Backplane PDU.
typedef struct {
 NPF_uint32_t stringLength; /* Length of the String. */
 /* Pointer to an array of string octets. */
 NPF_uint8_t *string;
} NPF_F_SwAddrGenATM_String_t;

4.1.9 Format Type
This type defines the metadata format structure.
typedef struct {
 /* Specifies which of the four inputs to apply the formatting to. */
 NPF_F_SwAddrGenATM_Input_t inputToFormat;
 /* Specifies if the formatting operation shall use an input metadata
 * or a static string. If set to NPF_TRUE the ‘metadataIn’ is used,
 * if set to NPF_FALSE ‘string’ is used. */
 NPF_boolean_t metadata;
 /* Specifies if the metadata/string shall be overwriting existing bits
 * of the txAddress or be inserted at a specified bit position. If
 * set to NPF_TRUE an overwrite operation is performed, if set to
 * NPF_FALSE an insert operation is performed. */
 NPF_boolean_t overwrite;
 union {
 /* The metadata input to be used for the formatting. */
 union {
 NPF_F_SwAddrGenATM_AtmSduMetadata_t atmSduMetaIn;
 NPF_F_SwAddrGenATM_Aal5CpcsMetadata_t aal5CpcsMetaIn;
 NPF_F_SwAddrGenATM_Aal2CpsSduMetadata_t aal2CpsSduMetaIn;
 NPF_F_SwAddrGenATM_Aal2SssarSduMetadata_t aal2SssarSduMetaIn;
 }u1;
 /* The string to be used for the formatting. */
 NPF_F_SwAddrGenATM_String_t string;

 VCBIS Task Group 17

Network Processing Forum Software Working Group

 }u2;
 /* The start bit of where the input metadata/string shall be overwriting
 * existing bits or be inserted. See Figure 5 and Figure 6 for an
 * overview of the bit numbering definition. */
 NPF_uint32_t startBit;
 /* The bit length of the input metadata/string that shall be overwriting
 * existing bits or be inserted. See Figure 5 and Figure 6 for an
 * overview of the bit numbering definition. For an insert operation
 * the bitlength MUST be a multiple of 8 (i.e. 8, 16, ..). An overwrite
 * operation has no such limitations. */
 NPF_uint32_t bitLength;
 /* This parameter specifies the order of formatting. If numEntries = 1,
 * the formatOrder MUST be set to ‘1’. If numEntries > 1, the formatOrder
 * must be set to ‘1, 2, 3, ... , numEntries’ respectively. The format
 * operation with formatOrder = 1 SHALL always be executed first, the
 * format operation with formatOrder = 2 SHALL always be executed second
 * and so on. */

 NPF_uint32_t formatOrder;
} NPF_F_SwAddrGenATM_Format_t;

. . . A0A1

0

An-1An

71
5(n-1)*8n*8+7 bits

Example on overwrite
with 'startBit=6' and

'bitLength=4'

msb=7 lsb=0

A0.. An is the txAddress from
the ATM Configuration

Manager

msb lsb

Figure 5 Bit numbering, showing an overwrite operation

. . . A0A1

0

An-1An

72
3

(n-
1)*8+8n*8+15 bits

Example on insert with
'startBit=8' and
'bitLength=8'

msb=7 lsb=0

A0.. An is the txAddress from
the ATM Configuration

Manager

Notice that the bits to the left
of 'startBit' are shifted up
'bitLength' bit positions

Figure 6 Bit numbering, showing an insert operation

 VCBIS Task Group 18

Network Processing Forum Software Working Group

4.2 Data Structures for Completion Callbacks
4.2.1 Switch Address Generator ATM LFB Attributes query response
The attributes of a Switch Address Generator ATM LFB are the following:
typedef struct {
 NPF_uint32_t maxBpls; /* Maximum possible BP links */
 NPF_uint32_t curNumBpls; /* Current number of BP links */
 NPF_uint32_t maxTxAddrLength; /* Maximum possible TX Address length
 * that can be set by the Configuration
 * Manager. */
} NPF_F_SwAddrGenATM_LFB_AttrQueryResponse_t;

The maxBpls field contains the maximum number of backplane links supported in this Switch Address
Generator ATM LFB. The curNumBpls field contains the current number of Backplane links configured
in the Switch Address Generator ATM LFB. The maxTxAddrLength field contains the maximum TX
Address length (used in the Configuration Manager) supported by this Switch Address Generator ATM
LFB.

4.2.2 Asynchronous Response
The Asynchronous Response data structure is used during callbacks in response to API invocations.
/*
 * An asynchronous response contains an error or success code, and in some
 * cases a function specific structure embedded in a union. */
typedef struct { /* Asynchronous Response Structure */
 NPF_F_SwAddrGenATM_ErrorType_t error;/* Error code for response */
 union {
 /* NPF_F_SwAddrGenATM_LFB_AttributesQuery() */
 NPF_F_SwAddrGenATM_LFB_AttrQueryResponse_t lfbAttrQueryResponse;
 } u;
} NPF_F_SwAddrGenATM_AsyncResp_t;

4.2.3 Callback Type
This enumeration is used to indicate reason for invoking the callback function.
/*
 * Completion Callback Types, to be found in the callback
 * data structure, NPF_F_SwAddrGenATM_CallbackData_t.
 */
typedef enum NPF_F_SwAddrGenATM_CallbackType {
 NPF_F_SWADDRGENATM_ATTR_QUERY = 1,
} NPF_F_SwAddrGenATM_CallbackType_t;

4.2.4 Callback Data
An asynchronous response contains an error/success code and a function-specific structure embedded in a
union in the NPF_F_SwAddrGenATM_CallbackData_t structure.
/*
 * The callback function receives the following.
 * For the completed request, the error code is specified in the
 * NPF_ATM_AsyncResponse_t structure, along with any other information
 */
typedef struct {
 NPF_F_SwAddrGenATM_CallbackType_t type; /* Which function called? */

 VCBIS Task Group 19

Network Processing Forum Software Working Group

 NPF_IN NPF_BlockId_t blockId;/* ID of LFB generating callback */
 NPF_F_SwAddrGenATM_AsyncResp_t resp;/* response structure */
} NPF_F_SwAddrGenATM_CallbackData_t;

The callback data returned for different callback types is summarized in Table 7.

Table 7 Callback type to Callback data mapping table

Callback Type Callback Data
NPF_F_SWADDRGENATM_ATTR_QUERY NPF_F_SwAddrGenATM_LFB_AttrQueryResponse_t

4.3 Data Structures for Event Notifications
4.3.1 Event Notification Types
None

4.3.2 Event Notification Structures
None

4.4 Error Codes
4.4.1 Common NPF Error Codes
The common error codes that are returned by the Switch Address Generator ATM LFB are listed below:

- NPF_NO_ERROR - This value MUST be returned when a function was successfully invoked. This
value is also used in completion callbacks where it MUST be the only value used to signify
success.

- NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no error
code defined that is more appropriate or informative.

- NPF_E_BAD_CALLBACK_HANDLE - A function was invoked with a callback handle that did not
correspond to a valid NPF callback handle as returned by a registration function, or a callback
handle was registered with a registration function belonging to a different API than the function
call where the handle was passed in.

- NPF_E_BAD_CALLBACK_FUNCTION - A callback registration was invoked with a function
pointer parameter that was invalid.

- NPF_E_CALLBACK_ALREADY_REGISTERED - A callback or event registration was invoked with
a pair composed of a function pointer and a user context that was previously used for an identical
registration.

- NPF_E_FUNCTION_NOT_SUPPORTED - This error value MUST be returned when an optional
function call is not implemented by an implementation. This error value MUST NOT be returned
by any required function call. This error value MUST be returned as the function return value (i.e.
synchronously).

- NPF_E_RESOURCE_EXISTS - A duplicate request to create a resource was detected. No new
resource was created.

- NPF_E_RESOURCE_NONEXISTENT - A duplicate request to destroy or free a resource was
detected. The resource was previously destroyed or never existed.

4.4.2 LFB Specific Error Codes
This section defines the Switch Address Generator ATM configuration and management APIs error
codes. These codes are used in callbacks to deliver results of the requested operations.

 VCBIS Task Group 20

Network Processing Forum Software Working Group

/* Asynchronous error codes (returned in function callbacks) */
typedef NPF_uint32_t NPF_F_SwAddrGenATM_ErrorType_t;

#define NPF_SWADDRGENATM_BASE_ERR (NPF_F_SWADDRGENATM_LFB_TYPE * 100)
#define NPF_E_SWADDRGENATM_INVALID_BLOCK_ID
 (NPF_SWADDRGENATM_BASE_ERR + 0)

 VCBIS Task Group 21

Network Processing Forum Software Working Group

5 Functional APIs (FAPIs)
5.1 Required Functions
None

5.2 Conditional Functions
The conditional API functions for registration and de-registration of the completion callback functions
need to be implemented if any of the optional functions defined for this LFB are implemented.

5.2.1 Completion Callback Function
This callback function is for the application to register an asynchronous response handling routine to the
Switch Address Generator ATM API implementation. This callback function is intended to be
implemented by the application, and be registered to the Switch Address Generator ATM API
implementation through the NPF_F_SwAddrGenATM_Register function.

Syntax
typedef void (*NPF_F_SwAddrGenATM_CallbackFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_F_SwAddrGenATM_CallbackData_t data);

Description
This function is a routine to handle the Switch Address Generator ATM asynchronous responses.

Input Parameters
- userContext - The context item that was supplied by the application when the completion

callback routine was registered.
- correlator - The correlator item that was supplied by the application when the Switch Address

Generator ATM API function call was invoked.
- data - The response information related to the particular callback type.

Output Parameters
None

Return Values
None

5.2.2 Completion Callback Registration Function
Syntax
NPF_error_t NPF_F_SwAddrGenATM_Register(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_F_SwAddrGenATM_CallbackFunc_t callbackFunc,
 NPF_OUT NPF_callbackHandle_t *callbackHandle);

Description
This function is used by an application to register its completion callback function for receiving
asynchronous responses related to the Switch Address Generator ATM API function calls. Applications
MAY register multiple callback functions using this function. The pair of userContext and callbackFunc
identifies the callback function. For each individual pair, a unique callbackHandle will be assigned for

 VCBIS Task Group 22

Network Processing Forum Software Working Group

future reference. Since the callback function is identified by both userContext and callbackFunc, duplicate
registration of the same callback function with a different userContext is allowed. Also, the same
userContext can be shared among different callback functions. Duplicate registration of the same
userContext and callbackFunc pair has no effect, and will output a handle that is already assigned to the
pair, and will return NPF_E_ALREADY_REGISTERED.

Input Parameters
- userContext – A context item for uniquely identifying the context of the application registering the

completion callback function. The exact value will be provided back to the registered completion
callback function as its first parameter when it is called. Applications can assign any value to the
userContext and the value is completely opaque to the API implementation.

- callbackFunc – The pointer to the completion callback function to be registered.
Output Parameters

- callbackHandle - A unique identifier assigned for the registered userContext and callbackFunc
pair. This handle will be used by the application to specify which callback function to be called when
invoking asynchronous NPF Switch Address Generator ATM API functions. It will also be used
when deregistering the userContext and callbackFunc pair.

Return Values
- NPF_NO_ERROR - The registration completed successfully.
- NPF_E_BAD_CALLBACK_FUNCTION – The callbackFunc is NULL, or otherwise invalid.
- NPF_E_ALREADY_REGISTERED – No new registration was made since the userContext and

callbackFunc pair was already registered.
Notes

- This API function may be invoked by any application interested in receiving asynchronous responses
for the Switch Address Generator ATM API function calls.

- This function operates in a synchronous manner, providing a return value as listed above.

5.2.3 Completion Callback Deregistration Function
Syntax
NPF_error_t NPF_F_SwAddrGenATM_Deregister(
 NPF_IN NPF_callbackHandle_t callbackHandle);

Description
This function is used by an application to deregister a user context and callback function pair.

Input Parameters
- callbackHandle - The unique identifier returned to the application when the completion callback

routine was registered.
Output Parameters
None

Return Values
- NPF_NO_ERROR - De-registration was completed successfully.
- NPF_E_BAD_CALLBACK_HANDLE – De-registration did not complete successfully due to problems

with the callback handle provided.
Notes

 VCBIS Task Group 23

Network Processing Forum Software Working Group

- This API function MAY be invoked by any application no longer interested in receiving
asynchronous responses for the Switch Address Generator ATM API function calls.

- This function operates in a synchronous manner, providing a return value as listed above.
- There may be a timing window where outstanding callbacks continue to be delivered to the callback

routine after de-registration function has been invoked. It is the implementation’s responsibility to
guarantee that the callback function is not called after the deregister function has returned.

5.3 Optional Functions
5.3.1 LFB Attributes Query Function
Syntax
NPF_error_t NPF_F_SwAddrGenATM_LFB_AttributesQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId);

Description
This function call is used to query ONLY one Switch Address Generator ATM LFBs attributes at a time.
If the Switch Address Generator ATM LFB exists, the various attributes of this LFB are returned in the
completion callback.

Input Parameters
- callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
- correlator - A unique application invocation context that will be supplied to the asynchronous

completion callback routine.
- errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API invocation.
- feHandle - The FE Handle returned by NPF_F_topologyGetFEInfoList() call.
- blockId – The unique identification of the Switch Address Generator ATM LFB.

Output Parameters
None

Return Values
- NPF_NO_ERROR - The operation is in progress.
- NPF_E_UNKNOWN - The LFB attributes was not queried due to invalid Switch Address Generator

ATM block ID passed in input parameters.
- NPF_E_BAD_CALLBACK_HANDLE - The LFB attributes was not queried because the callback handle

was invalid.
- NPF_E_FUNCTION_NOT_SUPPORTED - The function call is not supported.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. Possible error codes are:

- NPF_NO_ERROR – Operation completed successfully.
- NPF_E_SWADDRGENATM_INVALID_BLOCK_ID – LFB ID is not an ID of LFB that has Switch

Address Generator ATM functionality.

 VCBIS Task Group 24

Network Processing Forum Software Working Group

The lfbAttrQueryResponse field of the union in the NPF_F_SwAddrGenATM_AsyncResp_t
structure is returned in callback contains response data. The error code is returned in the error field.

5.3.2 Formatting Function
Syntax
NPF_error_t NPF_F_SwAddrGenATM_Format(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_boolean_t formatEnable,
 NPF_IN NPF_boolean_t header,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_SwAddrGenATM_Format_t *formatArray);

Description
This function call is used to overwrite or insert a static string or a metadata into the header/trailer part of
the Backplane PDU. It is also possible to specify if the added octets to the SDU (which together forms the
Backplane PDU) shall be placed as a header or a trailer. If this optional function is not being used, the
default behavior of the LFB is to place the txAddress (from the ATM Configuration Manager) as a header
with no formatting applied.

Input Parameters
- callbackHandle - The unique identifier provided to the application when the completion callback

routine was registered.
- correlator - A unique application invocation context that will be supplied to the asynchronous

completion callback routine.
- errorReporting - An indication of whether the application desires to receive an asynchronous

completion callback for this API invocation.
- feHandle - The FE Handle returned by NPF_F_topologyGetFEInfoList() call.
- blockId – The unique identification of the Switch Address Generator ATM LFB.
- formatEnable – If set to NPF_FALSE no formatting is performed as a result of calling this

function, the parameters ‘header’, ‘numEntries’ and ‘formatArray’ are not valid and the LFB is
returning operation to default mode (which is: take the txAddress, from the ATM Configuration
Manager, as a header with no formatting applied). This is the way to remove all formatting that might
have been applied in earlier function calls. If set to NPF_TRUE formatting is performed as specified
by the parameters ‘header’, ‘numEntries’ and ‘formatArray’.

- header – If set to NPF_FALSE the txAddress (from the ATM Configuration Manager) is placed as a
trailer in relation to the packet SDU. If set to NPF_TRUE the txAddress (from the ATM
Configuration Manager) is placed as a header in relation to the packet SDU. See Figure 3 for a better
understanding.

- numEntries – Number of metadata/strings to format into the header/trailer part of the Backplane
PDU.

- formatArray – Pointer to an array of metadata/string structures that shall be formatted. The order of
the formatting is specified with the ‘formatOrder’ parameter inside the
NPF_F_SwAddrGenATM_Format_t structure.

 VCBIS Task Group 25

Network Processing Forum Software Working Group

Output Parameters
None

Return Values
- NPF_NO_ERROR - The operation is in progress.
- NPF_E_UNKNOWN - The format operation did not complete successfully due to problems encountered

when handling the input parameters.
- NPF_E_BAD_CALLBACK_HANDLE - The format operation was not completed because the callback

handle was invalid.
- NPF_E_FUNCTION_NOT_SUPPORTED - The function call is not supported by this implementation.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. Possible error codes are:

- NPF_NO_ERROR – Operation completed successfully.
- NPF_E_SWADDRGENATM_INVALID_BLOCK_ID – LFB ID is not an ID of LFB that has Switch

Address Generator ATM functionality.
The error code is returned in the error field.

 VCBIS Task Group 26

Network Processing Forum Software Working Group

6 References
[SWAPICON] Software API Conventions Revision 2
[ATMLFBARC] ATM Software API Architecture Framework Revision 1.0
[ATMMGR] ATM Configuration Manager Functional API Revision 1.0

 VCBIS Task Group 27

http://www.npforum.org/techinfo/APIConventions2_IA.pdf
http://www.npforum.org/techinfo/npf2004.088.12.pdf
http://www.npforum.org/techinfo/npf2004.165.31.pdf

Network Processing Forum Software Working Group

APPENDIX A

A.1. API CALL CAPABILITIES
This table lists the mandatory, conditional and optional functions to be present in an implementation of
this FAPI.
The registration/deregistration functions are required if any of the optional APIs is implemented by the
LFB.

Note: M = mandatory; O = optional; C = Conditional
Table 8 API Call Capabilities

API function Function Required
NPF_F_SwAddrGenATM_Register C
NPF_F_SwAddrGenATM_Deregister C
NPF_F_SwAddrGenATM_LFB_AttributesQuery O
NPF_F_SwAddrGenATM_Format O

A.2. HEADER FILE – NPF_F_SWADDRGENATM.H
/*
 * This header file defines typedefs, constants and structures
 * for the NP Forum Switch Address Generator ATM Functional API
 */
#ifndef __NPF_F_SW_ADDRESS_GENERATOR_ATM_H__
#define __NPF_F_SW_ADDRESS_GENERATOR_ATM_H__

#ifdef __cplusplus
extern "C" {
#endif

#define NPF_F_SWADDRGENATM_LFB_TYPE 45

/* Asynchronous error codes (returned in function callbacks) */
typedef NPF_uint32_t NPF_F_SwAddrGenATM_ErrorType_t;

#define NPF_SWADDRGENATM_BASE_ERR (NPF_F_ATMHDRGEN_LFB_TYPE * 100)
#define NPF_E_SWADDRGENATM_INVALID_BLOCK_ID\
 (NPF_SWADDRGENATM_BASE_ERR + 0)

/**
 * Enumerations and types for Switch Address Generator ATM LFB *
 **/
/* This type defines the input to apply the formatting on. */
typedef enum {
 NPF_F_SWADDRGENATM_ATM_SDU_IN = 0, /* ATM SDU input. */
 NPF_F_SWADDRGENATM_AAL5_CPCS_IF_DATA_IN = 1, /* AAL5 packet input. */
 NPF_F_SWADDRGENATM_AAL2_CPS_SDU_IN = 2, /* AAL2 CPS SDU input. */
 NPF_F_SWADDRGENATM_AAL2_SSSAR_SDU_IN = 3 /* AAL2 SSSAR SDU input. */
} NPF_F_SwAddrGenATM_Input_t;

 VCBIS Task Group 28

Network Processing Forum Software Working Group

/* This type defines the metadata on the ATM_SDU_IN input that can be
 * formatted and put into the output header/trailer part of the
 * Backplane PDU */
typedef enum {
 NPF_F_SWADDRGENATM_ATM_SDU_PTI = 0, /* Payload Type Identifier */
 NPF_F_SWADDRGENATM_ATM_SDU_LP = 1, /* Loss Priority */
 NPF_F_SWADDRGENATM_ATM_SDU_VCI = 2 /* Virtual Channel Identifier */
} NPF_F_SwAddrGenATM_AtmSduMetadata_t;

/* This type defines the metadata on the AAL5_CPCS_IF_DATA_IN input
 * that can be formatted and put into the output header/trailer
 * part of the Backplane PDU */
typedef enum {
 NPF_F_SWADDRGENATM_AAL5_CPCS_LP = 0, /* CPCS Loss Priority */
 NPF_F_SWADDRGENATM_AAL5_UUI = 1, /* CPCS UUI */
 NPF_F_SWADDRGENATM_AAL5_FRAMELENGTH = 2, /* Length of the packet */
 NPF_F_SWADDRGENATM_AAL5_BOUND_IF = 3, /* Handle of the child interface */
 NPF_F_SWADDRGENATM_AAL5_RCV_STATUS = 4 /* Type of error in reassembly */
} NPF_F_SwAddrGenATM_Aal5CpcsMetadata_t;

/* This type defines the metadata on the AAL2_CPS_SDU_IN input
 * that can be formatted and put into the output header/trailer
 * part of the Backplane PDU */
typedef enum {
 NPF_F_SWADDRGENATM_AAL2_CPS_UUI = 0, /* CPS UUI */
 NPF_F_SWADDRGENATM_AAL2_CPS_LI = 1, /* CPS LI */
 NPF_F_SWADDRGENATM_AAL2_BOUND_IF = 2 /* Handle of higher layer i/f */
} NPF_F_SwAddrGenATM_Aal2CpsSduMetadata_t;

/* This type defines the metadata on the AAL2_SSSAR_SDU_IN input
 * that can be formatted and put into the output header/trailer
 * part of the Backplane PDU */
typedef enum {
 NPF_F_SWADDRGENATM_AAL2_SSSAR_UUI = 0, /* UUI of SAR SDU */
 NPF_F_SWADDRGENATM_AAL2_SSSAR_LI = 1 /* LI of SAR SDU */
} NPF_F_SwAddrGenATM_Aal2SssarSduMetadata_t;

/* Defines the string that can be formatted and put into the
 * output header/trailer part of the Backplane PDU. */
typedef struct {
 NPF_uint32_t stringLength; /* Length of the String. */
 /* Pointer to an array of string octets. */
 NPF_uint8_t *string;
} NPF_F_SwAddrGenATM_String_t;

/* This type defines the metadata format structure. */
 typedef struct {
 /* Specifies which of the four inputs to apply the formatting to. */
 NPF_F_SwAddrGenATM_Input_t inputToFormat;
 /* Specifies if the formatting operation shall use an input metadata
 * or a static string. If set to NPF_TRUE the ‘metadataIn’ is used,
 * if set to NPF_FALSE ‘string’ is used. */
 NPF_boolean_t metadata;
 /* Specifies if the metadata/string shall be overwriting existing bits
 * of the txAddress or be inserted at a specified bit position. */
 NPF_boolean_t overwrite;
 union {

 VCBIS Task Group 29

Network Processing Forum Software Working Group

 /* The metadata input to be used for the formatting. */
 union {
 NPF_F_SwAddrGenATM_AtmSduMetadata_t atmSduMetaIn;
 NPF_F_SwAddrGenATM_Aal5CpcsMetadata_t aal5CpcsMetaIn;
 NPF_F_SwAddrGenATM_Aal2CpsSduMetadata_t aal2CpsSduMetaIn;
 NPF_F_SwAddrGenATM_Aal2SssarSduMetadata_t aal2SssarSduMetaIn;
 }u1;
 /* The string to be used for the formatting. */
 NPF_F_SwAddrGenATM_String_t string;
 }u2;
 /* The start bit of where the input metadata/string shall be overwriting
 * existing bits or be inserted. See Figure 5 and Figure 6 for an
 * overview of the bit numbering definition. */
 NPF_uint32_t startBit;
 /* The bit length of the input metadata/string that shall be overwriting
 * existing bits or be inserted. See Figure 5 and Figure 6 for an
 * overview of the bit numbering definition. For an insert operation
 * the bitlength MUST be a multiple of 8 (i.e. 8, 16, ..). An overwrite
 * operation has no such limitations. */
 NPF_uint32_t bitLength;
 /* This parameter specifies the order of formatting. If numEntries = 1,
 * the formatOrder MUST be set to ‘1’. If numEntries > 1, the formatOrder
 * must be set to ‘1, 2, 3, ... , numEntries’ respectively. The format
 * operation with formatOrder = 1 SHALL always be executed first, the
 * format operation with formatOrder = 2 SHALL always be executed second
 * and so on. */
 NPF_uint32_t formatOrder;
} NPF_F_SwAddrGenATM_Format_t;

/* Attributes Query Response. */
typedef struct {
 NPF_uint32_t maxBpls; /* Maximum possible BP links */
 NPF_uint32_t curNumBpls; /* Current number of BP links */
 NPF_uint32_t maxTxAddrLength; /* Maximum possible TX Address length */
} NPF_F_SwAddrGenATM_LFB_AttrQueryResponse_t;

/*
 * Completion Callback Types, to be found in the callback
 * data structure, NPF_F_SwAddrGenATM_CallbackData_t.
 */
typedef enum NPF_F_SwAddrGenATM_CallbackType {
 NPF_F_SWADDRGENATM_ATTR_QUERY = 1,
} NPF_F_SwAddrGenATM_CallbackType_t;
/*
 * An asynchronous response contains an error or success code, and in some
 * cases a function specific structure embedded in a union. */
typedef struct { /* Asynchronous Response Structure */
 NPF_F_SwAddrGenATM_ErrorType_t error;/* Error code for response */
 union {
 /* NPF_F_SwAddrGenATM_LFB_AttributesQuery() */
 NPF_F_SwAddrGenATM_LFB_AttrQueryResponse_t lfbAttrQueryResponse;
 } u;
} NPF_F_SwAddrGenATM_AsyncResp_t;

/*
 * The callback function receives the following structure containing
 * of a asynchronous responses from a function call.

 VCBIS Task Group 30

Network Processing Forum Software Working Group

 * For the completed request, the error code is specified in the
 * NPF_ATM_AsyncResponse_t structure, along with any other information
 */
typedef struct {
 NPF_F_SwAddrGenATM_CallbackType_t type; /* Which function called? */
 NPF_IN NPF_BlockId_t blockId;/* ID of LFB generating callback */
 NPF_F_SwAddrGenATM_AsyncResp_t resp;/* response structure */
} NPF_F_SwAddrGenATM_CallbackData_t;

/***
 * Switch Address Generator ATM LFB Registration/De-registration Functions *
 ***/
typedef void (*NPF_F_SwAddrGenATM_CallbackFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_F_SwAddrGenATM_CallbackData_t data);

NPF_error_t NPF_F_SwAddrGenATM_Register(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_F_SwAddrGenATM_CallbackFunc_t callbackFunc,
 NPF_OUT NPF_callbackHandle_t *callbackHandle);

NPF_error_t NPF_F_SwAddrGenATM_Deregister(
 NPF_IN NPF_callbackHandle_t callbackHandle);

/***
 * Switch Address Generator ATM LFB optional functions *
 ***/
NPF_error_t NPF_F_SwAddrGenATM_LFB_AttributesQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId);

NPF_error_t NPF_F_SwAddrGenATM_Format(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FE_Handle_t feHandle,
 NPF_IN NPF_BlockId_t blockId,
 NPF_IN NPF_boolean_t formatEnable,
 NPF_IN NPF_boolean_t header,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_SwAddrGenATM_Format_t *formatArray);

#ifdef __cplusplus
}
#endif
#endif /* __NPF_F_SW_ADDRESS_GENERATOR_ATM_H__ */

 VCBIS Task Group 31

Network Processing Forum Software Working Group

APPENDIX B ACKNOWLEDGEMENTS

Working Group Chair:

Alex Conta, Transwitch, aconta@txc.com

Task Group Chair:

Per Wollbrand, Ericsson, per.wollbrand@ericsson.com

The following individuals are acknowledged for their participation to VCBIS TG
teleconferences, plenary meetings, mailing list, and/or for their NPF contributions used for the
development of this Implementation Agreement. This list may not be all-inclusive since only
names supplied by member companies for inclusion here will be listed. The NPF wishes to thank
all active participants to this Implementation Agreement, whether listed here or not.

The list is in alphabetical order of last names:

Pat Carr, Wintegra

Pål Dammvik, Ericsson

Patrik Herneld, Ericsson

Alistair Munro, U4EA

John Renwick, Agere Systems

Vedvyas Shanbhogue, Intel

Roger Smith, Wintegra

Per Wollbrand, Ericsson

 VCBIS Task Group 32

mailto:aconta@txc.com
mailto:per.wollbrand@ericsson.com

Network Processing Forum Software Working Group

APPENDIX C LIST OF COMPANIES BELONGING TO NPF DURING APPROVAL
PROCESS

Table 9 List of Companies

Agere Systems Mercury Computer Systems

AMCC Nokia

Analog Devices NTT Electronics

Cypress Semiconductor PMC Sierra

Enigma Semiconductor Sensory Networks

Ericsson Sun Microsystems

Flextronics Teja Technologies

Freescale Semiconductor TranSwitch

HCL Technologies U4EA Group

Hifn Wintegra

IDT Xelerated

Infineon Technologies AG Xilinx

Intel

IP Fabrics

IP Infusion

Motorola

 VCBIS Task Group 33

	1 Revision History
	2 Introduction
	2.1 Purpose and motivation
	2.1.1 Optional formatting function

	2.2 Assumptions
	2.3 Scope
	2.4 External Requirements and Dependencies

	3 Switch Address Generator ATM LFB Description
	3.1 Switch Address Generator ATM Inputs
	3.1.1 Metadata Required

	3.2 Switch Address Generator ATM Outputs
	3.2.1 Metadata Produced

	3.3 Accepted Packet Types
	3.4 Packet Modifications
	3.5 Relationship with Other LFBs

	4 Data Types
	4.1 Common LFB Data Types
	4.1.1 LFB Type Code
	4.1.2 Switch Address Generator ATM Configurations
	4.1.2.1 Backplane Link Characteristics

	4.1.3 Input Type
	4.1.4 ATM SDU metadata Type
	4.1.5 AAL5 packet metadata Type
	4.1.6 AAL2 CPS SDU metadata Type
	4.1.7 AAL2 SSSAR SDU metadata Type
	4.1.8 String Type
	4.1.9 Format Type

	4.2 Data Structures for Completion Callbacks
	4.2.1 Switch Address Generator ATM LFB Attributes query response
	4.2.2 Asynchronous Response
	4.2.3 Callback Type
	4.2.4 Callback Data

	4.3 Data Structures for Event Notifications
	4.3.1 Event Notification Types
	4.3.2 Event Notification Structures

	4.4 Error Codes
	4.4.1 Common NPF Error Codes
	4.4.2 LFB Specific Error Codes

	5 Functional APIs (FAPIs)
	5.1 Required Functions
	5.2 Conditional Functions
	5.2.1 Completion Callback Function
	5.2.2 Completion Callback Registration Function
	5.2.3 Completion Callback Deregistration Function

	5.3 Optional Functions
	5.3.1 LFB Attributes Query Function
	5.3.2 Formatting Function

	6 References

