
 Network Processing Forum Software Working Group

Mobile IPv6 Home Agent Service API
Implementation Agreement

February 7, 2005
Revision 1.0

Editors:

 Karen Nielsen, Ericsson, karen.e.nielsen@ericsson.com
 Erik B. Pedersen, Ericsson, erik.b.pedersen@ericsson.com

Copyright © 2005, The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THIS DOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", “MAY", and "OPTIONAL" in the remainder of this
document are to be interpreted as described in the NPF Software API Conventions
Implementation Agreement revision 1.0.

For additional information contact:
The Network Processing Forum, 39355 California Street,

Suite 307, Fremont, CA 94538
+1 510 608-5990 phone info@npforum.org

 DBIS Task Group Page 1 of 67

mailto:karen.e.nielsen@ericsson.com
mailto:info@npforum.org

 Network Processing Forum Software Working Group

Table of Contents

1. REVISION HISTORY ... 5

2. INTRODUCTION... 6
2.1 NPF MIPV6 HA FRAMEWORK.. 7

2.1.1 Control Plane Functions... 7
2.1.2 Forwarding Plane Functions.. 8

2.2 ASSUMPTIONS AND PREREQUISITES.. 9
2.3 DEPENDENCIES .. 9
2.4 SCOPE .. 10
2.5 MISCELLANEOUS ... 10

3. API USAGE MODEL... 11
3.1 MIPV6 HA - MN TUNNEL HANDLING FUNCTIONS... 11
3.2 MIPV6 HA ND PROXY FUNCTION ... 12

4. DATA TYPES ... 14
4.1 MIPV6 SAPI DATA TYPES .. 14

4.1.1 MIPv6HA subtunnel handle: NPF_MIPv6HA_SubtunnelHandle_t..................... 14
4.1.2 MIPv6HA subtunnel identifiers: NPF_MIPv6HA_SubtunnelIdentifiers_t........... 14
4.1.3 MIPv6HA subtunnel identifiers Array :
NPF_MIPv6HA_SubtunnelIdentifiersArray_t.. 14
4.1.4 MIPv6HA Binding Cache Entry: NPF_MIPv6HA_BC_Entry_t 14
4.1.5 MIPv6HA MN Statistics: NPF_MIPv6HA_BC_EntryStats_t 15
4.1.6 MIPv6HA Proxy ND Address entry: NPF_MIPv6HA_ProxyND_Entry_t........... 15
4.1.7 IPv6 address Array: NPF_IPv6AddressArray_t .. 16

4.2 DATA STRUCTURES FOR COMPLETION CALLBACKS... 17
4.2.1 Completion Callback Types .. 17
4.2.2 Completion Callback Data Structure.. 17
4.2.3 Asynchronous Response Data Structure... 18

4.3 DATA STRUCTURES FOR EVENT NOTIFICATIONS.. 20
4.3.1 Mipv6HA Event Type: NPF_MIPv6HA_Event_t.. 20
4.3.2 Event Notification Structures:... 20

4.3.2.1 MIPv6HA Proxy ND DAD event: NPF_MIPv6HA_ProxyND_DAD_t 21
4.3.2.2 MIPv6HA Binding lifetime expired Event:
NPF_MIPv6HA_BindingLifetimeExpired_t.. 21
4.3.2.3 MIPv6HA no BC Entry found: NPF_MIPv6HA_BC_EntryMiss_t................. 21
4.3.2.4 MIPv6HA endpoint authentication check failed:
NPF_MIPv6HA_SubtunnelEndpointAuthFailed_t .. 22

4.3.3 MIPv6HA Event Mask : NPF_MIPv6HA_EventMask_t....................................... 22
4.3.4 Rate Limiting Events: NPF_MIPv6HA_EventLimit_t .. 22

4.4 ERROR CODES.. 23

5. FUNCTIONS... 25
5.1 COMPLETION CALLBACKS AND ERROR RETURNS .. 25

 DBIS Task Group Page 2 of 67

 Network Processing Forum Software Working Group

5.2 COMPLETION CALLBACK ... 25
5.2.1 Completion Callback Function ... 25
5.2.2 Completion Callback Registration Function .. 26
5.2.3 Completion Callback Deregistration.. 27

5.3 EVENT NOTIFICATION.. 28
5.3.1 Event Notification Signature... 28
5.3.2 Event Notification Registration... 28
5.3.3 Event Notification Deregistration... 30
5.3.4 MIPv6HA Control Event Frequency... 30

5.4 MIPV6 HA SERVICE API .. 32
5.4.1 NPF_Mipv6HA_BC_EntryAdd... 32
5.4.2 NPF_Mipv6HA_BC_EntryDelete ... 33
5.4.3 NPF_Mipv6HA_BC_Flush ... 34
5.4.4 NPF_Mipv6HA_BC_EntryAttrGet ... 35
5.4.5 NPF_Mipv6HA_BC_EntryStatsGet.. 36
5.4.6 NPF_Mipv6HA_ProxyND_AddressAdd... 37
5.4.7 NPF_Mipv6HA_ProxyND_AddressDelete ... 38
5.4.8 NPF_Mipv6HA_ProxyND_Flush ... 39
5.4.9 NPF_Mipv6HA_ProxyND_AddrStateGet .. 39
5.4.10 NPF_Mipv6HA_BC_TableSpaceGet.. 40
5.4.11 NPF_Mipv6HA_BC_GetAll.. 41
5.4.12 NPF_Mipv6HA_ProxyND_TableSpaceGet.. 42
5.4.13 NPF_Mipv6HA_ProxyND_GetAll.. 43

5.5 ORDER OF OPERATIONS ... 44

6. REFERENCES.. 45

7. API CAPABILITIES.. 46

APPENDIX A. NPF_MIPV6.H.. 47

APPENDIX B. NPF MIPV6 HA FRAMEWORK ... 57

APPENDIX C. ACKNOWLEDGEMENTS ... 66

APPENDIX D. LIST OF COMPANIES BELONGING TO NPF DURING APPROVAL
PROCESS 67

 DBIS Task Group Page 3 of 67

 Network Processing Forum Software Working Group

List of Figures
Figure 1 MIPv6 HA framework.. 7
Figure 2 Redirect function modeling .. 64

Glossary

API Applications Programming Interface
BC Binding Cache
CoA Care-of-Address
CP Control Plane
DAD Duplicate Address Detection
FAPI NPF Functional API
FIB Forwarding Information Base
HA Home Agent
HAO Home Address Destination Option
HoA Home Address (of mobile node)
IETF Internet Engineering Task Force
IKE Internet Key Exchange
IP Internet Protocol
IPSec IP Security
IPv6 Internet Protocol version 6
LFB Logical Functional Block
MIPv6 Mobile IPv6
MIPv6 HA Mobile IPv6 Home Agent
MH MIPv6 Mobility header
MN Mobile Node
MTU Maximum Transmission Unit
NE Network Element
ND Neighbor Discovery
NP Network Processor
NPE Network Processing Element
NPF Network Processing Forum
PMTU Path Maximum Transmission Unit
RFC Request For Comments (IETF standard)
SA Security Association
SAPI NPF Service API
SL Service lLayer
IM API NPF Interface Management API
PH API NPF Packet idr API

 DBIS Task Group Page 4 of 67

 Network Processing Forum Software Working Group

1. Revision History

Revision Date Reason for Changes
1.0 2/7/2005 Rev. 1.0 of the Mobile IPv6 Home Agent Service API

Implementation Agreement. Source: npf2004.071.06.

 DBIS Task Group Page 5 of 67

 Network Processing Forum Software Working Group

2. Introduction
This document defines a NPF Service API for the Mobile IPv6 Home Agent function (MIPv6
HA for short). The MIPv6 HA Service API serves to configure and manage some specific MIPv6
HA forwarding path functions.

The primary data plane task performed by a MIPv6 HA is to tunnel packets destined to mobile
nodes (MNs for short), identified with their home addresses – denoted the HoA, to their current
location in the IPv6 internet, the Care-of-Address - denoted the CoA, as well as conversely, to
accept and decapsulate reversely tunneled packet from the mobile nodes and forward those onto
the internet for further delivery.

On the MIPv6 HA to/from MN path, the packets are tunneled using IPv6-in-IPv6, possibly with
the addition of IP Security ESP depending on the nature of the payload. In the first case the
MIPv6 HA decapsulation and encapsulation function should be applied to the packets. In the
latter case, the packets are processed by the corresponding IP Security decryption and encryption
functions.

Mobile nodes use MIPv6 signaling to register for the MIPv6 HA service as well as to notify their
Home Agents about their current location. Mobile node registration data, the HoA, the CoA as
well as a number of auxiliary parameters, lifetime and more, are cached in the conceptual
Binding Cache of the MIPv6 HA.

In an architecture with separation of forwarding and control elements, the (MIPv6) signaling
processing is normally handled in the control plane, whereas payload handling functions such as
IP forwarding and interface processing functions, and for the MIPv6 HA node function
specifically, the MIPv6 HA tunnel encapsulation and decapsulation functions, are implemented
in the forwarding plane.

The MIPv6 HA Service API provides the means for a HA control plane entity to manage the
MIPv6 HA encapsulation and decapsulation tunneling function of the forwarding plane as well
as to manage one auxiliary MIPv6 HA forwarding path function, the MIPv6 HA Proxy Neighbor
Discovery function.

The anticipated user of the MIPv6 HA Service API is a conceptual MIPv6 HA Service Layer
Module responsible for the processing of the MIPv6 signaling messages, for the maintenance of
the Binding Cache in accordance with the MIPv6 signaling messages received and for the push
down and retrieval of the appropriate Binding Cache attributes to the afore mentioned MIPv6
HA specific forwarding path functions.

The conceptual MIPv6HA Service Layer module may also be responsible for the instantiation of
other forwarding path functions required for the MIPv6 HA function, this either directly via the
respective Service APIs or indirectly via mediation with the Service Layer Users of the
respective Service APIs

 DBIS Task Group Page 6 of 67

 Network Processing Forum Software Working Group

2.1 NPF MIPv6 HA Framework
The MIPv6 HA Service API is designed in accordance with how the MIPv6 HA node function is
envisaged split in control and forwarding path functions as well as in accordance with how the
management of the various forwarding path functions of a MIPv6 HA node then should be
distributed over the suite of Service APIs of the NP Forum

MIPv6
HA

tunnel
IF

 MIPv6 HA
encap/decap

function

IPv6
 IF

IP Sec
decrypt and
encrypt & MN

Packet
Redirect RS/RA

handler

MIPv6
HA ND
Proxy

Forwarding Plane

IP
Forwarding

Prefix list

Binding Cache

MIPv6 HA
SAPI IM

API

IPv6 Forw
SL Appl.

IP Security
SL Appl.

IP Sec SAPI

MIPv6 HA
SL Appl.

HA list

IPv6 Forw
SAPI

SAPI

PH

API

Control Plane

Figure 1 MIPv6 HA framework

2.1.1 Control Plane Functions
It is assumed that all functions associated with the processing of MIPv6 signaling messages
reside in the Control Plane. This in particular means that the following data structures related to
HA and MN Mobile IPv6 protocol signaling are assumed maintained and validated by the MIPv6
HA Service Layer module:

• Binding Cache
• HA lists
• Mobile Prefix Lists

 DBIS Task Group Page 7 of 67

 Network Processing Forum Software Working Group

The Binding Cache contains CoA and HoA address binding information1 for the MNs currently
served by the MIPv6 HA. Binding cache entries are created, modified and deleted on the basis of
MIPv6 signaling messages interchanged in between the MIPv6 HA and mobile nodes.
The Mobile IPv6 Service API does not address the functions associated with the pure control
plane functions associated with HA and Mobile Prefix list creation.

A Mobile IPv6 Home Agent naturally relies on a number of additional, generic IP router control
plane functions such as Interface, Routing Table and IP Security Management in particular.

2.1.2 Forwarding Plane Functions
The MIPv6 HA SAPI addresses only a subset of the forwarding path functions needed in a
MIPv6 HA node (see Figure 1). In general, the forwarding path functions on which the MIPv6
HA node function depends can be divided into the following two categories:

• Generic forwarding path functions such as Unicast Forwarding functions, Interface
Management functions as well as IP Security decryption and encryption functions.

• Particular MIPv6 HA forwarding path functions and MIPv6 HA enhancements of generic
forwarding path functions.

Generic forwarding path functions are handled via their respective Service APIs. Forwarding
Path functions falling into the second category are the following:

• Functions that should be performed within the forwarding plane:
o Redirect of packets destined for MNs
o Reverse decapsulation and forward encapsulation of traffic from/to MNs
o MIPv6 HA interface processing functions

• Functions that may be invoked in the forwarding plane or in the control plane depending
on the implementation, the optional off load of which it is considered a MUST for the
API framework to support:

o MIPv6 HA ND proxy functions for MN packet intercept
o Transmittal of IPv6 Router Advertisements with the MIPv6 HA specific attributes

and options

Of these, the MIPv6 HA decapsulation and encapsulation function and the, optional, MIPv6 HA
ND proxy function are managed via the specific MIPv6 HA Service API. Whereas the other
functions are envisaged managed via other Service APIs; the MN packet redirect function is
thought integrated with the unicast forwarding function and thus handled via the Unicast
Forwarding Service API ([2]), the specific RS/RA options and attributes needed for the MIPv6
HA particular usage of the IPv6 Router Advertisement function is thought integrated with the
generic IPv6 Router Advertisement function handled via the Interface Management API ([4]),

1 In addition to the HoA and CoA binding information, each Binding Cache entry contains
service attributes and status information including link-local address compatibility on/off, Key
Management Mobility Capability on/off, sequence number of last BU received and lifetime of
binding.

 DBIS Task Group Page 8 of 67

 Network Processing Forum Software Working Group

and finally, a specific MIPv6 HA tunnel interface is envisaged instantiated and managed via the
Interface Management API ([4]). The latter interface is closely related to the MIPv6 HA
encapsulation and decapsulation function.

The reader is referred to Appendix B for a full description of the MIPv6 HA software framework
of the NP forum; This include a description of the split up of the MIPv6 HA node function in
forwarding plane and control plane functions, the operation of the individual forwarding path
functions and the overall managing of these functions over the Service API boundary.

Appendix B is informational. It is included as background information to put the MIPv6 HA
Service API in its right context and present the rationale behind the particular design of the
MIPv6 HA SAPI.

2.2 Assumptions and prerequisites
1. The design of the MIPv6 Service API is fundamentally based on the following split in

functionality in between the Mobile IPv6 Home Agent Service API and the Interface
Management API ([4]):

i. Data structures related to the Mobile IPv6 Home Agent operation on link
local/interface level which are dynamic in nature, that is, which reflect run-time
behavior, are managed and instantiated by the MIPv6 HA Service Layer module
by means of function calls within the Mobile IPv6 Home Agent SAPI.

ii. Data structures related to the Mobile IPv6 Home Agent function on an
interface which are static in nature, that is, which are associated with the
enabling/disabling and general configuration of the Mobile IPv6 Home Agent
function on an interface, is managed and instantiated by means of (an extension
of) the Interface Management API.

2. Interface binding of data structures specifically related to Mobile IPv6 Home Agent
function and managed by the Mobile IPv6 Home Agent Service Layer module, is realized
via function calls in the Mobile IPv6 Home Agent SAPI (by passing down respective
interface handles). It is by purpose not realized by passing down handles of these specific
data structures through the Interface Management API. This mirrors the design decision
made for the IP Security Service API ([3]).

2.3 Dependencies
The document depends on the NPF Software Implementation Agreement - Software API
Conventions (Revision 2, September 2003) document ([1]) for basic type definitions.

The document depends on the NPF Software Implementation Agreement – Interface
Management API document ([4]) for the definition of NPF_IfHandle_t and the encompassing
definition of IPv6 interfaces and other functions to manage IPv6 interfaces, the IPv6“home link
interface” in particular.

The document depends on the definition of a MIPv6 HA IPv6-in-IPv6 tunnel interface in an
extension of the Interface Management API.
The MIPv6 HA Service Layer function as such, opposed to the MIPv6 HA Service API, depend
on a number of functions of the forwarding plane which are instantiated by means of other APIs;
forwarding and MN packet redirect functions instantiated via the IPv6 Unicast Forwarding

 DBIS Task Group Page 9 of 67

 Network Processing Forum Software Working Group

Service API ([2]), IP Security functions instantiated via the IP Security Service API ([3]) and
MIPv6 HA Router Advertisement functions instantiated via an extension of the Interface
Management API ([4]). Further the MIPv6 HA Service Layer function depends on APIs for
transferal of packets from the control plane to the forwarding plane and vise-versa.

2.4 Scope
The Service API serves the Mobile IPv6 Home Agent function only. Other Mobile IPv6 node
functions such as the Mobile Node and Corresponding Node functions are not covered.

The MIPv6 HA functionality is defined in [5] and [6].

2.5 Miscellaneous
With the aim of homogeneity over the various APIs of the NPF, the event rate limiting control
function of the MIPv6 HA Service API has been modeled in a similar fashion as the
corresponding function of the IP Security Service API.

 DBIS Task Group Page 10 of 67

 Network Processing Forum Software Working Group

3. API usage Model

The MIPv6 HA Service API is fundamentally based on the assumption that a “home link” IPv6
interface and a MIPv6 HA tunnel interface will be instantiated via the Interface Management
API.

The “home link” interface is a logical IPv6 interface on which the IPv6 address of the MIPv6
HA is configured.

The MIPv6 HA tunnel interface is an open-ended IPv6-in-IPv6 tunnel interface which in turn is
using the IPv6 “home link” interface as IP bearer interface with anchoring on the MIPv6 HA
address. The MIPv6 HA tunnel interface should be thought of as the envelopment, in the IPv6
interface realm, of the individual, conceptual, tunnels in between the MIPv6 HA and the MNs it
serves.

Henceforth, the conceptual tunnels in between the MIPv6 HA and its MNs are denoted “MIPv6
HA MN sub-tunnels” or simply “sub-tunnels”.

The creation via the Interface Management API of a MIPv6 HA tunnel interface anchored on an
IPv6 address of an underlying IPv6 interface effectively represent the enabling of the MIPv6 HA
function on the underlying IPv6 interface.

3.1 MIPv6 HA - MN tunnel handling functions
The function calls, data types and structures of the MIPv6 HA Service API related to the MIPv6
HA tunnel encapsulation and decapsulation functions are in this specification prefixed with the
term “BC” for “Binding Cache”. Thereby illustrating the fact that the MIPv6 HA sub-tunnel
functions of the forwarding plane instantiates the binding registration data administratively
maintained in the conceptual Binding Cache on the MIPv6 HA.2

The attributes of an individual MIPv6 HA MN sub-tunnel/forwarding path Binding Cache entry
are the following:

• Home Address of MN
• Care-of-Address of MN
• Path MTU value
• Lifetime Mode
• Binding Lifetime
• Remaining Binding Lifetime

- plus, allocated by the implementation :
• A sub-tunnel handle, NPF_MIPv6HA_subtunnel_t

Of these only the Home Address, the Care-of-Address, the Lifetime mode and (possibly) the
Binding Lifetime are settable attributes.

2 The MIPv6 HA module also uses the Binding Cache information when sending and receiving MIPv6 signaling
messages to and from mobile nodes. The MIPv6 HA Service API does not address this usage of the Binding cache
information as these transmit and receive functions are assumed residing in the control plane.

 DBIS Task Group Page 11 of 67

 Network Processing Forum Software Working Group

The Lifetime Mode governs whether the lifetime of the sub-tunnel/the binding cache entry is
controlled by the forwarding path implementation or by the control plane. When controlled by
the implementation, the Binding Cache entry is deleted by the implementation when expired.
The remaining lifetime of a Binding Cache entry can optionally be queried using the BC query
function, NPF_Mipv6HA_BC_EntryAttrGet.

Each sub-tunnel/binding cache entry is via the API function calls bound to the corresponding
enveloping MIPv6 HA tunnel interface. The latter identified with its interface handle,
NPF_IfHandle_t.

The settings, via the Interface Management API, on the enveloping MIPv6 HA tunnel interface
governs part of the sub-tunnel functionality such as IPv6 source address (the MIPv6 HA
address), the values of the max hops, the DSCP and the IPv6 flow label fields in the outer IPv6
header for sending. Further the PATH MTU mode and the possible static MTU value set on the
MIPv6 HA tunnel interface governs the MTU handling on the sub-tunnels and whether PMTU
should be performed or not. When PMTU is performed, the PMTU values of the individual sub-
tunnels are retrieved via the BC query function call, NPF_MIPv6HA_BC_EntryAttrGet. Support
for per sub-tunnel PMTU is optional.

The MIPv6 HA Service API allow for the retrieval of packet statistics per sub-tunnel entity.
Collective packet statistics per MIPv6 HA entity can be retrieved using the corresponding
functions of the Interface Management API.

The individual sub-tunnels are over the API identified via a sub-tunnel handle,
NPF_MIPv6HA_subtunnelHandle_t, provided by the implementation, by the MN HoA address
or by a structure including both; the NPF_MIPv6HA_subtunnelIdentifiers_t.

The MIPv6 HA Service API provides the following function calls to manage the MIPv6 HA sub-
tunnels/the Binding Cache entry information of the forwarding plane.

• NPF_Mipv6HA_BC_EntryAdd
• NPF_Mipv6HA_BC_EntryDelete
• NPF_Mipv6HA_BC_EntryAttrGet
• NPF_Mipv6HA_BC_EntryStatsGet
• NPF_Mipv6HA_BC_GetAll
• NPF_Mipv6HA_BC_Flush
• NPF_Mipv6HA_BC_AttrGet

For further details on the individual function calls, the reader is referred to Section 5.

3.2 MIPv6 HA ND proxy function
The “home link” interface is the MIPv6 HAs link to the home network of the mobile nodes. Due
to standard routing, packets destined for the mobile nodes home addresses (HoA) are routed to
the home network regardless of whether the mobile nodes are at home or not. The MIPv6 ND
proxy function serves to make sure that packets that arrives on the home network, and which are
destined for mobile nodes away from home, locally are destined (in terms of last hop lower layer
addressing) for the MIPv6 HA.

 DBIS Task Group Page 12 of 67

 Network Processing Forum Software Working Group

An integral part of the MIPv6 ND Proxy function is that it must perform Duplicate Address
Detection (DAD) on the addresses for which it is ND proxy’ing. DAD is performed in
accordance with the generic IPv6 settings (NPF_IfIPv6DAD_Transmits_t) on the home link
interface.

The MIPv6 HA Service API supports off load of the MIPv6HA ND Proxy function to the
forwarding plane. Support for this function is however optional. The MIPv6HA ND Proxy
function can be managed via the following, optional, API calls:

• NPF_Mipv6HA_ProxyND_AddressAdd
• NPF_Mipv6HA_ProxyND_AddressDelete
• NPF_Mipv6HA_ProxyND_AddrStateGet
• NPF_Mipv6HA_ProxyND_GetAll
• NPF_Mipv6HA_ProxyND_Flush
• NPF_Mipv6HA_ProxyND_AttrGet

The API calls take the latter only or both of the following attributes:

• The address(es) of the Mobile Node(s) for which ND proxy’ing should be performed
• The home link interface handle

For the calls that return the address status after DAD validation, the following address states are
applicable:

• valid
• probing
• invalid

When “valid”, the address has passed DAD validation and will be ND proxy’ed until deleted.
When “invalid”, the address failed DAD validation and must be deleted (this also means that the
MIPv6 registration message for the address must be declined). When “probing”, the address is
undergoing DAD validation.

The NPF_Mipv6HA_ProxyND_AddressAdd function call will complete prior to DAD taking
place and the completion callback will not include the address state. The result of the DAD
validation is communicated in a subsequent event, the NPF_MIPv6HA_PROXYND_DAD
event, which returns the state of the address after DAD validation.

Multiple MIPv6 HA instances may be running on the same node, such instances should ideally
be anchored on different “home link” interfaces of the node but may, in principle, also merely be
anchored on different addresses configured on the same logical IPv6 interface.

Only one instance on the MIPv6 HA Service API is required for management of the forwarding
path functions of the multiple MIPv6 HA instances. It should be noted however, that in the case
of multiple MIPv6 HA instances being anchored on the same logical interface, then it will be
indistinguishable from the ND_Proxy function calls and attributes themselves which addresses
are accredited to which MIPv6 HA instance.

For further details on the individual function calls, the reader is referred to Section 5.

 DBIS Task Group Page 13 of 67

 Network Processing Forum Software Working Group

4. Data Types

4.1 MIPv6 SAPI Data Types

4.1.1 MIPv6HA subtunnel handle: NPF_MIPv6HA_SubtunnelHandle_t
/*
* A unique identifier selected by the implementation
*/
typdedef NPF_unit32_t NPF_MIPv6HA_SubtunnelHandle_t;

4.1.2 MIPv6HA subtunnel identifiers:
NPF_MIPv6HA_SubtunnelIdentifiers_t

/*
* Subtunnel Identifier
*
*/
typedef struct {
 NPF_MIPv6HA_SubtunnelHandle_t subtunnelHandle;
 NPF_IPv6Address_t HoA;
} NPF_MIPv6HA_SubtunnelIdentifiers_t;

4.1.3 MIPv6HA subtunnel identifiers Array :
NPF_MIPv6HA_SubtunnelIdentifiersArray_t

/*
* Subtunnel Identifier Array
*
*/
typedef struct {
 NPF_uint32_t nCount;
 NPF_MIPv6HA_SubtunnelIdentifiers_t *subtunnelIdentifiersArray;
} NPF_MIPv6HA_SubtunnelIdentifiersArray_t;

4.1.4 MIPv6HA Binding Cache Entry: NPF_MIPv6HA_BC_Entry_t
/*
* MIPv6HA Binding Cache Entry
*/
typedef struct {
 NPF_MIPv6HA_SubtunnelHandle_t subtunnelHandle;
 NPF_IPv6Address_t HoA;
 NPF_IPv6Address_t CoA;
 NPF_uint16_t PMTU;

 NPF_MIPv6HA_LifetimeMode_t lifetimeMode;
 NPF_unit32_t bindingLifetime;
 NPF_unit32_t remainingBindingLifetime;
} NPF_MIPv6HA_BC_Entry_t

Comments:

• The subtunnelhandle is selected by the implementation. It is a read only attribute.
• PMTU is a read only attribute. Per tunnel PMTU is only performed when PMTU mode of

associated MIPv6 HA tunnel interface is enabled. When PMTU mode is disabled the

 DBIS Task Group Page 14 of 67

 Network Processing Forum Software Working Group

value of this field should be ignored by the application, though an implementation may
choose to indicate the MTU of the associated MIPv6 HA tunnel interface in this field.

• The lifetime mode indicates whether the BC lifetime should be controlled by the
implementation. When the Lifetime mode is set as ON, the remaining lifetime will be
decremented by the implementation. When the remaining lifetime reaches zero the BC
entry will be deleted by the implementation (issuing a BC entry lifetime expired event).
When the Lifetime mode is set as OFF all BC entries are considered by the
implementation to have infinite lifetime. BC cache entries of infinite lifetime must be
controlled by the application.

/*
* BC entry Lifetime Mode
*/
typedef enum {
NPF_MIPv6HA_LIFETIME_ON =1, /* Lifetime (secs) monitoring on */
NPF_MIPv6HA_LIFETIME_OFF =2 /* Lifetime (secs) monitoring off */
} NPF_MIPv6HA_LifetimeMode_t

• Binding Lifetime is set by the application. When the Lifetime mode is not set, this field

will be ignored by the implementation and the remaining lifetime will not be controlled
for such entries.

• Remaining lifetime value is a read only attribute.

Support for Lifetime control in the implementation is an optional feature.

4.1.5 MIPv6HA MN Statistics: NPF_MIPv6HA_BC_EntryStats_t
/*
* BC Entry Packet Statistics
*/
typdedef struct {
NPF_MIPv6HA_SubtunnelHandle_t subtunnelHandle;
NPF_IPv6Address_t HoA;
NPF_unit64_t mipv6NodeHCInOctets;
NPF_unit64_t mipv6NodeHCInPkts;
NPF_unit64_t mipv6NodeHCOutOctets;
NPF_unit64_t mipv6NodeHCOutPkts;
NPF_unit64_t dropRxOctets;
NPF_unit64_t dropRxPkts;
NPF_unit64_t dropTxOctets;
NPF_unit64_t dropTxPkts;
} NPF_MIPv6HA_BC_EntryStats_t

4.1.6 MIPv6HA Proxy ND Address entry: NPF_MIPv6HA_ProxyND_Entry_t
/*
* MIPv6HA Proxy ND address entry
*/
typdedef struct {
 NPF_IPv6Address_t Addrs;
 NPF_IPv6AddrState_t AddrsState;
} NPF_MIPv6HA_ProxyND_Entry_t

 DBIS Task Group Page 15 of 67

 Network Processing Forum Software Working Group

Comments:

• NPF_IPv6AddrState_t is a read only attribute. NPF_IPv6AddrState is defined in the IM
API, but included here for completeness:

/*
* IPv6 address state
*/
typedef enum {
NPF_IPv6_ADDR_VALID = 1,
NPF_IPv6_ADDR_PROBING = 2,
NPF_IPv6_ADDR_INVALID = 3
} NPF_IPv6AddrState_t

An address that is added to the MIPv6HA Proxy ND Address Entry table on the home
link interface will initially be in probing state until DAD has concluded. After that it will
be in valid state if DAD succeeded and in invalid state if a DAD collision occurred. An
invalid address must be deleted by the application. DAD is performed is accordance with
the NPF_IfIPv6DAD_Transmits_t value set on the home link interface.

• For any address that is added to an interfaces MIPv6HA_Proxy ND structure the
implementation will attempt to perform DAD and further if DAD succeeds if will
multicast an unsolicited NA for the address with the overwrite bit set. After that and until
the address entry is removed the implementation will defend the address using the
standard Proxy ND mechanisms. In case the interface’s operational or administrative
status is down for a period of time, all addresses in the MIPv6HA_Proxy ND structure of
the interface must be DAD validated anew when the interface comes up again.

4.1.7 IPv6 address Array: NPF_IPv6AddressArray_t
/*
* Ipv6 address array
*
*/
typedef struct {
 NPF_uint32_t nCount;
 NPF_IPv6Address_t *Ipv6AddressArray;
} NPF_IPv6AddressArray_t;

 DBIS Task Group Page 16 of 67

 Network Processing Forum Software Working Group

4.2 Data Structures for Completion Callbacks

This section defines the control structures needed for a Completion Callback, which provides the
response information to the application that invoked an asynchronous function call. Although an
asynchronous function call may request the execution of a single operation, most of the
asynchronous call functions of the MIPv6 HA SAPI have the ability to request the execution of
multiple operations. The implementation may invoke the completion callback one or more times
in order to provide responses for the total number of operations requested.

4.2.1 Completion Callback Types

/*
* Mipv6 HA completion callback types
*/
typedef enum {

NPF_MIPV6HA_BC_ENTRY_ADD =1,
NPF_MIPV6HA_BC_ENTRY_DELETE =2,
NPF_MIPV6HA_BC_FLUSH =3,
NPF_MIPV6HA_BC_ENTRY_ATTR_GET =4,
NPF_MIPV6HA_BC_ENTRY_STATS_GET =5,
NPF_MIPV6HA_PROXYND_ADDR_ADD =6,
NPF_MIPV6HA_PROXYND_ADDR_DELETE =7,
NPF_MIPV6HA_PROXYND_FLUSH =8,
NPF_MIPV6HA_PROXYND_ADDR_STATE_GET =9,
NPF_MIPV6HA_BC_TABLE_SPACE_GET =10,
NPF_MIPV6HA_BC_GET_ALL =11,
NPF_MIPV6HA_PROXYND_TABLE_SPACE_GET =12,
NPF_MIPV6HA_PROXYND_GET_ALL =13,
NPF_MIPv6HA_RATE_LIMIT_EVENTS =14

} NPF_MIPv6HA_CallbackType_t;

4.2.2 Completion Callback Data Structure
Each completion callback provides the NPF_MIPv6HA_CallbackData_t structure, whose
members will have particular values depending on the invoking function, whether or not a single
operation was requested and whether the operations were successful or not.
/*
* MIPv6HA Completion Callback Data
*/
typedef struct {
 NPF_MIPv6HA_CallbackType_t type;
 NPF_boolean_t allOK;
 NPF_uint32_t numResp;
 NPF_MIPv6HA_AsyncResponse_t *resp;
} NPF_MIPv6HA_CallbackData_t;

Comments:

• type – Refers to the function invocation that led to the response.

• allOK – This field and the numResp field provide a flexible means of providing information
regarding the number of responses in this callback and their status. The specific details for these

 DBIS Task Group Page 17 of 67

 Network Processing Forum Software Working Group

fields are provided below.

• numResp – This field and the allOK field provide a flexible means of providing information
regarding the number of responses in this callback and their status. The specific details for these
fields are provided below

• resp – A pointer to an array of response elements or the NULL pointer. Each array element
contains a return code, indicating the completion status of the request element, and possibly may
contain other information specific to the type of request.

Depending on the number of request invoked by the application the above field have
different meaning. The specific details are the following:

Single operation request:

• If allOK = TRUE, then numResp = 0 and the “resp” pointer is NULL. This indicates the
operation completed successfully and there is no other additional response data to return.

• If allOK = FALSE, then numResp = 1 and the “resp” pointer points to a response
structure. If the returnCode field indicates NPF_NO_ERROR, the operation completed
successfully and there is additional response data in the structure. Otherwise, the
operation failed and the reason is indicated by the returnCode.

 Multiple operations request:
• If all operations completed successfully at the same time and there is no additional

response data to provide, then allOK = TRUE, numResp = 0 and the “resp” pointer is
NULL.

• If all operations completed successfully at the same time, but there is additional response
data to provide, then allOK = FALSE, numResp indicates the total number of requested
operations and the “resp” pointer points to an array of response structures. The
returnCode field will indicate NPF_NO_ERROR.

• If some operations completed succesfully, but not all, then:

o allOK = FALSE, numResp = the number of request operations completed.

o The “resp” pointer will point to an array of response structures, each one containing
one element for each completed request. For operations that completed successfully,
the returnCode field will indicate NPF_NO_ERROR and additional response data
may be present, depending on the type of function invocation. For operations that
failed, the reason is indicated by the returnCode field, again additional response data
may be present, depending on the type of function invocation.

Callback function invocations are repeated in this fashion until all requests are complete.
Responses are not repeated for request elements already indicated as complete in earlier
callback function invocations.

4.2.3 Asynchronous Response Data Structure

One or more of the following structures may be provided to the callback function in the response
array within the NPF_MIPv6HA_callbackData_t structure.

typedef struct {
 NPF_MIPv6HA_errorType_t errorCode;
 union{

 DBIS Task Group Page 18 of 67

 Network Processing Forum Software Working Group

 NPF_IfHandle_t ifHandle;
 NPF_uint32_t unused;
 } u1;
 union {
 NPF_MIPv6HA_SubtunnelIdentifiers_t subtunnelIdentifiers;
 NPF_MIPv6HA_BC_Entry_t *BCentry;
 NPF_MIPv6HA_BC_EntryStats_t *BCentrystats;
 NPF_IPv6Address_t proxyNDAddress;
 NPF_MIPv6HA_ProxyND_Entry_t proxyNDEntry;
 NPF_MIPv6HA_SubtunnelIdentifiersArray_t *subtunnelIdentifiers;
 NPF_Ipv6AddressArray_t *Ipv6Address;
 NPF_uint32_t entryspaceRemaining;
 NPF_MIPv6HA_Event_t eventType
 NPF_uint32_t unused;
 } u2;
} NPF_MIPv6HA_AsyncResponse_t;

Comments:

• The error code indicates an error or the success of a particular request operation.
• Embedded within the u1 structure, the asyncResponse structure contains the interface

handle, if any, given in the function that invoked the response. The following table shows
the usage of this structure and the meaning of the NPF_ifHandle_t when used for the
various callbacks.

Completion Callback Type Code u1 and IfHandle meaning in

NPF_MIPv6HA_AsyncResponse_t
NPF_MIPV6HA_BC_FLUSH, IfHandle of MIPv6HA tunnel interface
NPF_MIPV6HA_BC_ENTRY_ADD, IfHandle of MIPv6HA tunnel interface
NPF_MIPV6HA_BC_ENTRY_DELETE IfHandle of MIPv6HA tunnel interface
NPF_MIPV6HA_BC_ENTRY_ATTR_GET IfHandle of MIPv6HA tunnel interface
NPF_MIPV6HA_BC_ENTRY_STATS_GET IfHandle of MIPv6HA tunnel interface
NPF_MIPV6HA_PROXYND_FLUSH IfHandle of home link interface
NPF_MIPV6HA_PROXYND_ADDR_ADD IfHandle of home link interface
NPF_MIPV6HA_PROXYND_ADDR_DELETE IfHandle of home link interface
NPF_MIPV6HA_PROXYND_ADDR_STATE_GET IfHandle of home link interface
NPF_MIPV6HA_BC_TABLE_SPACE_GET IfHandle of MIPv6HA tunnel interface
NPF_MIPV6HA_BC_GET_ALL IfHandle of MIPv6HA tunnel interface
NPF_MIPV6HA_PROXYND_TABLE_SPACE_GET IfHandle of home link interface
NPF_MIPV6HA_PROXYND_GET_ALL IIfHandle of home link interface
NPF_MIPv6HA_RATE_LIMIT_EVENTS unused

• Embedded within the u2 structure, the asyncResponse structure contains potential
information requested by the operation.

The following table summarizes the u2 information returned in the completion callback
data structure by each function call in the MIPv6 HA SAPI.

Function Name Completion Callback Type Code Structure Returned in u2 of

 DBIS Task Group Page 19 of 67

 Network Processing Forum Software Working Group

NPF_MIPv6HA_AsyncEsponse_t
NPF_Mipv6HA_BC_Flush NPF_MIPV6HA_BC_FLUSH, unused
NPF_Mipv6HA_BC_EntryAdd NPF_MIPV6HA_BC_ENTRY_ADD NPF_MIPv6HA_SubtunnelIdentif

iers_t
NPF_Mipv6HA_BC_EntryDelete

NPF_MIPV6HA_BC_ENTRY_DELETE NPF_MIPv6HA_SubtunnelIdentif
iers_t

NPF_Mipv6HA_BC_EntryAttrGet

NPF_MIPV6HA_BC_ENTRY_ATTR_GET *NPF_MIPv6HA_BC_Entry_t

NPF_Mipv6HA_BC_EntryStatsGe
t

NPF_MIPV6HA_BC_ENTRY_STATS_GE
T

*NPF_MIPv6HA_BC_EntryStats_t

NPF_Mipv6HA_ProxyND_Flush NPF_MIPV6HA_PROXYND_FLUSH Unused
NPF_Mipv6HA_ProxyND_Address
Add

NPF_MIPV6HA_PROXYND_ADDR_ADD NPF_IPv6Address_t

NPF_Mipv6HA_ProxyND_Address
Delete

NPF_MIPV6HA_PROXYND_ADDR_DELE
TE

NPF_IPv6Address_t

NPF_Mipv6HA_ProxyND_AddrSta
teGet

NPF_MIPV6HA_PROXYND_ADDR_STAT
E_GET

NPF_MIPv6HA_ProxyND_Entry_t

NPF_Mipv6HA_BC_TableSpaceGe
t

NPF_MIPV6HA_BC_TABLE_SPACE_GE
T

uint32

NPF_Mipv6HA_BC_GetAll

NPF_MIPV6HA_BC_GET_ALL *NPF_MIPv6HA_SubtunnelIdenti
fiersArray_t

NPF_Mipv6HA_ProxyND_TableSp
aceGet

NPF_MIPV6HA_PROXYND_TABLE_SPA
CE_GET

uint32

NPF_Mipv6HA_ProxyND_GetAll NPF_MIPV6HA_PROXYND_GET_ALL *NPF_Ipv6AddressArray_t
NPF_MIPv6HA_RateLimitEvents NPF_MIPv6HA_RATE_LIMIT_EVENTS NPF_MIPv6HA_Event_t

4.3 Data Structures for Event Notifications

4.3.1 Mipv6HA Event Type: NPF_MIPv6HA_Event_t
/*
* MIPv6 HA Event Type
*/
typedef enum MIPv6 HA Event {

NPF_MIPv6HA_PROXYND_DAD =1,
NPF_MIPv6HA_BINDING_LIFETIME_EXPIRED =2,
NPF_MIPv6HA_BC_ENTRY_MISS =3,
NPF_MIPv6HA_SUBTUNNEL_ENDPOINT_AUTH_FAILED =4

} NPF_MIPv6HA_Event_t;

4.3.2 Event Notification Structures:
/*
* MIPv6 HA Event Data Structure
*/
typedef struct NPF_MIPv6HA_EventData {

NPF_MIPv6HA_Event_t eventType;
union {
NPF_MIPv6HA_ProxyND_DAD_t proxyND_DAD;
NPF_MIPv6HA_BindingLifetimeExpired_t bindingLftExp;
NPF_MIPv6HA_BC_EntryMiss_t BC_entryMiss;
NPF_MIPv6HA_SubtunnelEndpointAuthFailed_t subtnlEndpAuthFail;
} u;

} NPF_MIPv6HA_EventData_t;

 DBIS Task Group Page 20 of 67

 Network Processing Forum Software Working Group

/*
* MIPv6 HA Event Array
*/
typedef struct NPF_MIPv6HA_EventArray {

NPF_uint16_t n_data;
NPF_MIPv6HA_EventData_t *eventData;

} NPF_MIPv6HA_EventArray_t;

4.3.2.1 MIPv6HA Proxy ND DAD event: NPF_MIPv6HA_ProxyND_DAD_t

typedef struct {
 NPF_IfHandle_t homelinkInterfaceHandle;
 NPF_IPv6Address_t ucAddrs;
 NPF_IPv6AddrState_t ucAddrsState;
} NPF_ MIPv6HA_ProxyND_DAD_t

Comments:

• This event is generated whenever DAD concludes for an address added to the MIPv6HA
NP Proxy structures on a home link interface. The address state included in the event data
structure indicates whether DAD was successful or not.

4.3.2.2 MIPv6HA Binding lifetime expired Event:
NPF_MIPv6HA_BindingLifetimeExpired_t

typdedef struct {

NPF_IfHandle_t Mipv6HA_tunnelInterfaceHandle;
NPF_MIPv6HA_subtunnelHandle_t subtunnelHandle;
NPF_IPv6Address_t HoA;

} NPF_MIPv6HA_BindingLifetimeExpired_t

Comments:

• The event is generated when a BC entry has been deleted by the implementation due to
lifetime expiration.

4.3.2.3 MIPv6HA no BC Entry found: NPF_MIPv6HA_BC_EntryMiss_t

typedef struct {
 NPF_Ipv6Address_t IP destination address of packet;
} NPF_MIPv6HA_BC_EntryMiss_t

Comments:

• This event is generated when a packet has arrived for encapsulation at the tunnel module
implementation for which no corresponding subtunnel can be located, i.e., destination
address is not among HoA addresses in binding cache entries.

 DBIS Task Group Page 21 of 67

 Network Processing Forum Software Working Group

4.3.2.4 MIPv6HA endpoint authentication check failed:
NPF_MIPv6HA_SubtunnelEndpointAuthFailed_t

typedef struct {
 NPF_ifHandle_t Mipv6HA_tunnelInterfaceHandle;
 NPF_MIPv6HA_SubtunnelHandle_t subtunnelHandle;
 NPF_Ipv6Address_t HoA;
 NPF_Ipv6Address_t IP source address of inner packet;
 NPF_Ipv6Address_t IP destination address of inner packet;
 NPF_uint8_t repetition count;
} NPF_MIPv6HA_SubtunnelEndpointAuthFailed_t

Comments:

• This event is generated when an incoming encapsulated packet fails the (HoA, CoA)
source address check. The subtunnelHandle is the handle of the binding cache entry
pointed out by the address (the CoA) in the IPv6 source address of the outer IPv6 header.

• The repetition count is used when rate limitation is in effect; it provides the number of

packets that would have triggered the same event on the same subtunnelHandle in case
rate limitation were not in effect. When the repetition count is greater than one, IP
address fields become ambiguous since they may vary between the offending packets; the
rule that implementations should adhere to is to copy these fields from the last of the
offending packets currently received.

4.3.3 MIPv6HA Event Mask : NPF_MIPv6HA_EventMask_t
/*
* MIPv6 HA event bitmask used in the event registration call.
*/
typedef NPF_uint32_t NPF_MIPv6HA_EventMask_t;

/*
* The following values can be set for the MIPv6HAEventMask
*/

#define NPF_IPSEC_EVENT_ALL_DISABLE (0) /* disable all */
#define NPF_MIPv6HA_PROXYND_DAD_CONCLUDED (1 << 0)
#define NPF_MIPv6HA_BINDING_LIFETIME_EXPIRED (1 << 1)
#define NPF_MIPv6HA_BC_ENTRY_MISS (1 << 2)
#define NPF_MIPv6HA_SUBTUNNEL_ENDPOINT_AUTH_FAILED (1 << 3)
#define NPF_MIPv6HA_EVENT_ALL_ENABLE 0xFFFFFFFF

4.3.4 Rate Limiting Events: NPF_MIPv6HA_EventLimit_t
/*
* MIPv6 HA Rate Limiting Events
*/
typedef enum {

NPF_MIPv6HA_EVENT_LIMIT_TIME=1, /* Time base limiting */
NPF_MIPv6HA_EVENT_LIMIT_COUNT=2 /* Counter base limiting */

} NPF_MIPv6HA_EventLimitType_t;

typedef struct {
 NPF_MIPv6HA_Event_t eventid; /* Event HANDLE */
 NPF_MIPv6HA_EventLimitType_t limitType; /* Limit type */

 DBIS Task Group Page 22 of 67

 Network Processing Forum Software Working Group

 union{
 NPF_uint32_t numPerSec; /* Event frequency in time */

NPF_uint32_t nCount; /* Generate 1 event for */
 /* every nCount encounters */

 }u;
} NPF_MIPv6HA_EventLimit_t;

Comments:

• NPF _MIPv6HA_SUBTUNNEL_ENDPOINT_AUTH_FAILED event type.

4.4 Error Codes
/*
* Asynchronous error codes (returned in function callbacks)
*/

/*
* MIPv6HA reserved error codes in relation to other NPF APIs
* Note** The maximum range is 100
*/
#define NPF_MIPv6HA_BASE_ERR XXX /* Base value of XXX wrt other NPF codes */

/* Optional feature not supported */
#define NPF_MIPv6HA_E_OPTIONAL_FEATURE_NOT_SUPPORTED \
 ((NPF_MIPv6HA_ErrorType_t) NPF_MIPv6HA_BASE_ERR + 1)

/* System was unable to allocate sufficient memory to complete operation */
#define NPF_MIPv6HA_E_NOMEMORY ((NPF_MIPv6HA_ErrorType_t)
NPF_MIPv6HA_BASE_ERR+2)

/* The Interface handle provided was not recognized as being valid */
#define NPF_MIPv6HA_E_INVALID_IF_HANDLE \
 ((NPF_MIPv6HA_ErrorType_t) NPF_MIPv6HA_BASE_ERR + 3)

/* Ipv6 ND Proxy Address not found*/
#define NPF_MIPv6HA_E_PROXYND_ADDR_UNKNOWN\
 ((NPF_MIPv6HA_ErrorType_t) NPF_MIPv6HA_BASE_ERR + 4)

/* Invalid parameter */
#define NPF_MIPv6HA_E_INVALID_PARAM\
 ((NPF_MIPv6HA_ErrorType_t) NPF_MIPv6HA_BASE_ERR + 5)

/* Duplicate HoA*/
#define NPF_MIPv6HA_E_DUPLICATE_HOA \
 ((NPF_MIPv6HA_ErrorType_t) NPF_MIPv6HA_BASE_ERR + 6)

/* Invalid or unknown tunnel handle – */
#define NPF_MIPv6HA_E_INVALID_SUBTUNNEL_HANDLE \
 ((NPF_MIPv6HA_ErrorType_t) NPF_MIPv6HA_BASE_ERR + 7)

/* Duplicate event id */
#define NPF_MIPv6HA_E_DUPLICATE_EVENT_ID \
 ((NPF_MIPv6HA_ErrorType_t) NPF_MIPv6HA_BASE_ERR + 8)

/* Invalid or unknown event ID – */

 DBIS Task Group Page 23 of 67

 Network Processing Forum Software Working Group

#define NPF_MIPv6HA_E_INVALID_EVENT_ID \
 ((NPF_MIPv6HA_ErrorType_t) NPF_MIPv6HA_BASE_ERR + 9)

 DBIS Task Group Page 24 of 67

 Network Processing Forum Software Working Group

5. Functions

5.1 Completion Callbacks and Error Returns
Each of the functions defined in the MIPv6HA API can return an immediate error and most
makes asynchronous callbacks.

Error codes eligible for immediate return are those defined in the NPF Software Conventions
document ([1]) plus for some functions additional MIPv6 HA SAPI specific return codes. The
usage of MIPv6 HA specific synchronous return codes for each API function is defined with
each function description. The MIPv6 HA error codes that may be returned synchronously for
certain functions are the following:

• NPF_MIPv6HA_E_NOMEMORY – The system is unable to allocate sufficient memory to
complete this operation.

• NPF_MIPv6HA_E_OPTIONAL_FEATURE_NOT_SUPPORTED: An attempt was made to leverage
an optional feature within the API, which is not supported by this implementation.

• NPF_MIPv6HA_E_DUPLICATE_HOA: Duplicate HoA addresses when attempting to create
Binding Cache entries.

All other error codes of Section 4.4 must be returned in an asynchronous callback response. The
usage of those is defined with each function description.

5.2 Completion Callback

5.2.1 Completion Callback Function
typedef void (*NPF_MIPv6HA_CallBackFunc_t)(

NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_MIPv6HA_CallbackData_t MIPv6HA_CallbackData);

Description

The application registers this asynchronous response handling routine to the API
implementation. The callback function is intended to be implemented by the application,
and be registered to the NPF MIPv6HA Service API implementation through
NPF_MIPv6HA_Register() function.

Input Parameters

• userContext
The context item that was supplied by the application when the completion callback
function was registered.

• correlator
The correlator item that was supplied by the application when the API function call was
made. The correlator is used by the application mainly to distinguish between multiple
invocations of the same function.

• MIPv6HA_CallbackData

 DBIS Task Group Page 25 of 67

 Network Processing Forum Software Working Group

Pointer to a structure containing an array of response information related to the API
function call. Contains information that are common among all functions, as well as
information that are specific to a particular function. See NPF_MIPv6HA_callbackData_t
definition for details.

Output Parameters

None.

Return Value

None.

5.2.2 Completion Callback Registration Function

NPF_error_t NPF_MIPv6HA_Register(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_MIPv6HA_CallbackFunc_t MIPv6HACallbackFunc,
 NPF_OUT NPF_callbackHandle_t *MIPv6HA_CallbackHandle);

Description
This function is used by an application to register its completion callback function for receiving
asynchronous responses related to API function calls. Application may register multiple callback
functions using this function. The callback function is identified by the pair of userContext and
MIPv6HA_CallbackFunc, and for each individual pair, a unique MIPv6HA_callbackid_t will be
assigned for future reference. Since the callback function is identified by both userContext and
MIPv6HA_CallbackFunc, duplicate registration of same callback function with different
userContext is allowed. Also, same userContext can be shared among different callback
functions. Duplicate registration of the same userContext and MIPv6HA_CallbackFunc pair has
no effect, and will output a handle that is already assigned to the pair, and will return
NPF_E_CALLBACK_ALREADY_REGISTERED.

Note : NPF_MIPv6HA_Register() is a synchronous function and has no completion
callback associated with it.

In Parameters

• userContext
A context item for uniquely identifying the context of the application registering the
completion callback function. The exact value will be provided back to the registered
completion callback function as its 1st parameter when it is called. Application can assign
any value to the userContext and the value is completely opaque to the NPF MIPv6HA
Service API implementation.

• MIPv6HA_CallbackFunc_t
The pointer to the completion callback function to be registered.

Out Parameters

• NPF_callbackHandle_t

 DBIS Task Group Page 26 of 67

 Network Processing Forum Software Working Group

A unique identifier assigned for the registered userContext and MIPv6HA_CallbackFunc
pair. This handle will be used by the application to specify which callback function to be
called when invoking asynchronous NPF MIPv6HA Service API functions. It will also be
used when de-registering the userContext and MIPv6HA_CallbackFunc pair.

Return Values

• NPF_NO_ERROR: The registration completed successfully.
• NPF_E_BAD_CALLBACK_FUNCTION: MIPv6HA_CallbackFunc is NULL.
• NPF_E_ALREADY_REGISTERED: No new registration was made since the

userContext and MIPv6HA_CallbackFunc pair was already registered.
Note: Whether this should be treated as an error or not is dependent on the application.

5.2.3 Completion Callback Deregistration

NPF_error_t NPF_MIPv6HA_Deregister(
NPF_IN NPF__callbackHandle_t MIPv6HA_CallbackHandle);

Description

This function is used by an application to de-register a pair of user context and callback
function.
Note: If there are any outstanding calls related to the de-registered callback function, the
callback function may be called for those outstanding calls even after de-registration.
Note: NPF_MIPv6HA_EventRegister() is a synchronous function and has no completion
callback associated with it.

In Parameters

• NPF_callbackHandle_t
The unique identifier representing the pair of user context and callback function to be de-
registered.

Output Parameters
None.

Return Values

• NPF_NO_ERROR: The de-registration completed successfully.
• NPF_E_BAD_CALLBACK_HANDLE: The API implementation does not recognize the

callback handle. There is no effect to the registered callback functions.

 DBIS Task Group Page 27 of 67

 Network Processing Forum Software Working Group

5.3 Event Notification

5.3.1 Event Notification Signature

typedef void (*NPF_MIPv6HA_EventCallFunc_t)(
NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_MIPv6HA_EventArray_t eventArray);

Description
This handler function is for the application to register an event handling routine to the API
implementation. One or more events can be notified to the application through a single
invocation of this event handler function. Information on each event is represented in an array in
the eventArray structure so that the application can traverse through the array and process each
of the events. This event handler function is intended to be implemented by the application, and
be registered to the API implementation through NPF_MIPv6HA_EventRegister() function.

Note: This function may be called any time after NPF_MIPv6HA_EventRegister() is called for
it.

Input Parameters

• userContext: The context item that was supplied by the application when the event
handler function was registered.

• eventArray: Data structure that contains an array of event information. See
NPF_MIPv6HA_EventArray_t definition for details.

Output Parameters
None.

Return Codes
None.

5.3.2 Event Notification Registration

NPF_error_t NPF_MIPv6HA_EventRegister(
NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_MIPv6HA_EventCallFunc_t eventCallFunc,
NPF_IN NPF_MIPv6HA_EventMask eventMask,
NPF_OUT NPF_callHandle_t *eventCallHandle);

Description
This function is used by an application to register its event handling routine for receiving
notifications of MIPv6HA SAPI events. Applications MAY register multiple event handling
routines using this function. The event handling routine is identified by the pair of userContext

 DBIS Task Group Page 28 of 67

 Network Processing Forum Software Working Group

and eventCallFunc, and for each individual pair, a unique eventCallHandle will be assigned for
future reference.

Since the event handling routine is identified by both userContext and eventCallFunc, duplicate
registration of the same event handling routine with a different userContext is allowed. Also, the
same userContext can be shared among different event handling routines. Duplicate registration
of the same userContext and eventCallFunc pair has no effect, and will output a handle that is
already assigned to the pair, and will return NPF_E_CALLBACK_ALREADY_REGISTERED.
This function also enables notifications for the events selected by the bits that are set in the
eventMask parameter. A mask with all bits set selects all events of this SAPI. If the application
wishes to change the selection of events, it may call the event registration function again with the
same userContext and eventCallFunc, but with a different event selection mask. The events
enabled are those whose bits were set in the most recent registration function call for a particular
userContext and eventCallFunc pair.

Notes: Besides registering a handler function, this call enables events. The handler function
could be called at any time following the invocation of NPF_MIPv6HA_EventRegister().
NPF_MIPv6HA_EventRegister() is a synchronous function and has no completion callback
associated with it.

Input Parameters

• userContext: A context item for uniquely identifying the context of the application
registering the event handler function. The exact value will be provided back to the
registered event handler function as its 1st parameter when it is called. Application can
assign any value to the userContext and the value is completely opaque to the API
implementation.

• eventCallFunc: Pointer to the event handler function to be registered.
• eventMask: a bitmask defining the events to enable for this callback

Output Parameters

• eventCallHandle: A unique identifier assigned for the registered userContext and
eventCallFunc pair. This handle will be used by the application de- registering the
userContext and eventCallFunc pair.

Return Codes

• NPF_NO_ERROR: The registration completed successfully.
• NPF_E_BAD_CALLBACK_FUNCTION: eventCallFunc is NULL or not recognized.
• NPF_E_ALREADY_REGISTERED: No new registration was made since the userContext and

eventCallFunc pair was already registered.
• NPF_MIPv6HA_E_OPTIONAL_FEATURE_NOT_SUPPORTED: An attempt was made to leverage

an optional feature within the API, which is not supported by this implementation (some
events are optional).

 DBIS Task Group Page 29 of 67

 Network Processing Forum Software Working Group

5.3.3 Event Notification Deregistration

NPF_error_t NPF_MIPv6HA_EventDeregister(
 NPF_IN NPF_callHandle_t);

Description
This function is used by an application to de-register a pair of user context and event handler
function.

Input Parameters

• eventCallHandle: The unique identifier representing the pair of user context and event
handler function to be de-registered.

Output Parameters
None.

Return Codes

• NPF_NO_ERROR: The de-registration completed successfully.
• NPF_E_BAD_CALLBACK_HANDLE: The API implementation does not recognize the event

handler handle. There is no effect to the registered event handler functions.

5.3.4 MIPv6HA Control Event Frequency

NPF_error_t NPF_MIPv6HA_RateLimitEvents (

NPF_IN NPF_callbackhandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_uint32_t countEventData,
NPF_IN NPF_MIPv6HA_EventLimit_t *eventLimitArray);

Description
This function allows control over the number of events generated for each event type. Rate
limiting may be set based on time or the accumulation of multiple events of the same type into a
single event to the client application. Currently this function is only supported for the
NPF_MIPv6HA_subtunnelEndpointAuthFailed_t event type. This is an optional function.

Input Parameters

• cbHandle: the registered callback handle.
• cbCorrelator: the application’s context for this call.
• errorReporting: the desired level of feedback.
• countEventData: the number of events being configured
• eventLimitArray: rate limiting data associated with each event

Output Parameters
None.

 DBIS Task Group Page 30 of 67

 Network Processing Forum Software Working Group

Synchronous Return Codes

• NPF_NO_ERROR: The registration completed successfully.
• NPF_E_BAD_CALLBACK_HANDLE: callback handle is NULL or not recognized.
• NPF_E_FUNCTION_NOT_SUPPORTED: The function is not supported by the implementation.
• NPF_MIPv6HA_E_DUPLICATE_EVENT_ID – The event ID was duplicated in the event array

Asynchronous response
A single callback of type NPF_MIPv6HA_RATE_LIMIT_EVENT is generated in response to
this function call. The following status codes may be returned.

• NPF_NO_ERROR – The operation was successful.
• NPF_MIPv6HA_E_NOMEMORY – The system was unable to allocate sufficient memory to

complete this operation.
• NPF_MIPv6HA_E_INVALID_EVENT_ID – The event ID specified was not recognized as

being valid.
• NPF_MIPv6HA_E_DUPLICATE_EVENT_ID – The event ID was duplicated in the event array

 DBIS Task Group Page 31 of 67

 Network Processing Forum Software Working Group

5.4 MIPv6 HA Service API

5.4.1 NPF_Mipv6HA_BC_EntryAdd

 NPF_error_t NPF_ Mipv6HA_BC_Entry_Add (
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_ifHandle_t Mipv6HA_tunnelInterfaceHandle,
NPF_IN NPF_uint32_t n_entries,
NPF_IN NPF_MIPv6HA_BC_Entry_t *BCentryarray);

Description
This function allows for the addition of a single or multiple BC entries to one MIPv6HA tunnel
indicated by the NPF_ifHandle_t interface handle. The addition of a BC entry with an already
existing HoA will result in a replacement of the BC entry parameters associated with that BC
entry.

Input Parameters

• cbhandle: the registered callback handle.
• cbCorrelator: the application’s context for this call.
• errorReporting: the desired level of feedback.
• Mipv6HA_tunnelInterfaceHandle: Ifhandle of MIPv6HA tunnel interface
• n_entries: the number of BC entries being configured
• BCentryarray: array of BC entries

Synchronous Return Codes

• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The operation could not be completed due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_MIPv6HA_E_NOMEMORY – The system is unable to allocate sufficient memory to

complete this operation.
• NPF_MIPv6HA_E_DUPLICATE_HOA - The HoA was duplicated in the BCentryarray.

Asynchronous response
A callback of type NPF_MIPV6HA_BC_ENTRY_ADD is generated in response to this function
call. A total of n_entries asynchronous responses (NPF_MIPv6HA_AsyncResponse_t) will be
passed to the callback function, in one or more invocations. Each response contains the interface
handle of the MIPv6HA tunnel interface, the subtunnelhandle and HoA of the BCentry and the
associated status code. The HoA is returned in order to allow for mapping of the subtunnelhandle
to the BC entry created by the application. The following status codes may be returned.

• NPF_NO_ERROR – The operation was successful.

 DBIS Task Group Page 32 of 67

 Network Processing Forum Software Working Group

• NPF_E_UNKNOWN – The operation could not be completed. Reason unspecified.
• NPF_MIPv6_E_NOMEMORY – The system was unable to allocate sufficient memory to

complete this operation.
• NPF_MIPv6HA_E_INVALID_IF_HANDLE - Handle is null, invalid or is not a MIPv6HA

tunnel interface.
• NPF_MIPv6HA_E_INVALID_PARAM – Invalid parameters given in BC entry structure (e.g.

invalid CoA).
• NPF_MIPv6HA_E_NOMEMORY – The system is unable to allocate sufficient memory to

complete this operation.
• NPF_MIPv6HA_E_DUPLICATE_HOA - The HoA was duplicated in the BCentryarray.
• NPF_MIPv6HA_E_OPTIONAL_FEATURE_NOT_SUPPORTED: An attempt was made to leverage

the support of binding cache lifetime and the implementation does not support this
function.

5.4.2 NPF_Mipv6HA_BC_EntryDelete
NPF_error_t NPF_ Mipv6HA_BC_Entry_Delete (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_ifHandle_t Mipv6HA_tunnelInterfaceHandle,
NPF_IN NPF_uint32_t n_entries,
NPF_IN NPF_MIPv6HA_SubtunnelHandle_t *subtunnelHandleArray);

Description
This function allows for the deletion of a single or multiple BC entries on one MIPv6HA tunnel
identified by the NPF_ifHandle_t interface handle.

Input Parameters

• cbHandle: the registered callback handle.
• cbCorrelator: the application’s context for this call.
• errorReporting: the desired level of feedback.
• Mipv6HA_tunnelInterfaceHandle: Ifhandle of MIPv6HA tunnel interface
• n_entries: the number of BC entries being deleted
• *subtunnelHandleArray: array of subtunnel handles to be deleted

Synchronous Return Codes

• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The operation could not be completed due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

 DBIS Task Group Page 33 of 67

 Network Processing Forum Software Working Group

Asynchronous response
A callback of type NPF_MIPV6HA_BC_ENTRY_DELETE is generated in response to this
function call. A total of n_entries asynchronous responses (NPF_MIPv6HA_AsyncResponse_t)
will be passed to the callback function, in one or more invocations. Each response contains the
interface handle of the MIPv6HA tunnel interface, the subtunnelidentifiers of the BCentry and
the associated status code. The following status codes may be returned.

• NPF_NO_ERROR – The operation was successful.
• NPF_E_UNKNOWN – The operation could not be completed. Reason unspecified.
• NPF_MIPv6HA_E_INVALID_SUBTUNNEL_HANDLE – Invalid or unknown subtunnelhandle
• NPF_MIPv6HA_E_INVALID_IF_HANDLE – Interface handle is null, invalid or is not a

MIPv6HA tunnel interface.

5.4.3 NPF_Mipv6HA_BC_Flush
NPF_error_t NPF_ Mipv6HA_BC_Flush (

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_ifHandle_t Mipv6HA_tunnelInterfaceHandle);

Description
This function allows for the deletion of all BC entries associated with a MIPv6HA tunnel
interface indicated by the NPF_ifHandle_t interface handle.

Input Parameters

• cbHandle: the registered callback handle.
• cbCorrelator: the application’s context for this call.
• errorReporting: the desired level of feedback.
• Mipv6HA_tunnelInterfaceHandle: Ifhandle of MIPv6HA tunnel interface

Synchronous Return Codes
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The operation could not be completed due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

Asynchronous response
A callback of type NPF_MIPV6HA_BC_FLUSH is generated in response to this function call. A
single asynchronous response, NPF_MIPv6HA_AsyncResponse_t, will be passed to the callback
function containing the status code and the interface handle of the MIPv6HA tunnel interface.
The following status codes may be returned.

• NPF_NO_ERROR – The operation was successful.
• NPF_E_UNKNOWN – The operation could not be completed. Reason unspecified.

 DBIS Task Group Page 34 of 67

 Network Processing Forum Software Working Group

• NPF_MIPV6HA_E_INVALID_IF_HANDLE: Ifhandle is null or invalid, or is not a Mipv6HA tunnel
interface.

5.4.4 NPF_Mipv6HA_BC_EntryAttrGet

NPF_error_t NPF_ Mipv6HA_BC_EntryAttrGet (
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_ifHandle_t Mipv6HA_tunnelInterfaceHandle,
NPF_IN NPF_uint32_t n_entries,
NPF_IN NPF_MIPv6HA_SubtunnelHandle_t *subtunnelHandleArray);

Description
This function allows for the retrieval of the attributes of a single or multiple BC entries on one
MIPv6HA tunnel identified by the NPF_ifHandle_t interface handle. This is an optional
function.

Input Parameters

• cbHandle: the registered callback handle.
• cbCorrelator: the application’s context for this call.
• errorReporting: the desired level of feedback.
• Mipv6HA_tunnelInterfaceHandle: Ifhandle of MIPv6HA tunnel interface
• n_entries: the number of BC entries queried
• *subtunnelHandleArray: array of subtunnel handles to be queried

Synchronous Return Codes

• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The operation could not be completed due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_E_FUNCTION_NOT_SUPPORTED: The function is not supported by the implementation.

Asynchronous response
A callback of type NPF_MIPV6HA_BC_ENTRY_ATTR_GET is generated in response to this
function call. A total of n_entries asynchronous responses (NPF_MIPv6HA_AsyncResponse_t)
will be passed to the callback function, in one or more invocations. Each response contains the
interface handle of the MIPv6HA tunnel interface and the associated status code. If the error
code indicates success, the union in the callback response structure contains a pointer to the
NPF_MIPv6HA_BC_Entry_t structure for the BC entry.

The following status codes may be returned.

• NPF_NO_ERROR – The operation was successful.
• NPF_E_UNKNOWN – The operation could not be completed. Reason unspecified.
• NPF_MIPv6HA_E_INVALID_SUBTUNNEL_HANDLE – Invalid or unknown subtunnelHandle

 DBIS Task Group Page 35 of 67

 Network Processing Forum Software Working Group

• NPF_MIPV6HA_E_INVALID_IF_HANDLE: Ifhandle is null or invalid, or is not a Mipv6HA tunnel
interface.

5.4.5 NPF_Mipv6HA_BC_EntryStatsGet

NPF_error_t NPF_ Mipv6HA_BC_EntryStatsGet (
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_ifHandle_t Mipv6HA_tunnelInterfaceHandle,
NPF_IN NPF_uint32_t n_entries,
NPF_IN NPF_MIPv6HA_SubtunnelHandle_t *subtunnelHandleArray);

Description
This function allows for the retrieval of the packet statistics of a single or multiple BC entries on
one MIPv6HA tunnel identified by the NPF_ifHandle_t interface handle.

Input Parameters

• cbHandle: the registered callback handle.
• cbCorrelator: the application’s context for this call.
• errorReporting: the desired level of feedback.
• Mipv6HA_tunnelInterfaceHandle: Ifhandle of MIPv6HA tunnel interface
• n_entries: the number of BC entries queried
• *subtunnelHandleArray: array of subtunnel handles to be queried

Synchronous Return Codes

• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The operation could not be completed due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

Asynchronous response
A callback of type NPF_MIPV6HA_BC_ENTRY_STATS_GET is generated in response to this
function call. A total of n_entries asynchronous responses (NPF_MIPv6HA_AsyncResponse_t)
will be passed to the callback function, in one or more invocations. Each response contains the
interface handle of the MIPv6HA tunnel interface and the associated status code. If the error
code indicates success, the union in the callback response structure contains a pointer to the
NPF_MIPv6HA_BC_Entry_Stats_t structure for the BC entry.

The following status codes may be returned.

• NPF_NO_ERROR – The operation was successful.
• NPF_E_UNKNOWN – The operation could not be completed. Reason unspecified.
• NPF_MIPv6HA_E_INVALID_SUBTUNNEL_HANDLE – Invalid or unknown tunnelhandle
• NPF_MIPV6HA_E_INVALID_IF_HANDLE: Ifhandle is null or invalid, or is not a Mipv6HA tunnel

interface.

 DBIS Task Group Page 36 of 67

 Network Processing Forum Software Working Group

5.4.6 NPF_Mipv6HA_ProxyND_AddressAdd

NPF_error_t NPF_ Mipv6HA_ProxyND_AddressAdd (
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_ifHandle_t homelinkInterfaceHandle,
NPF_IN NPF_uint32_t n_addresses,

 NPF_IN NPF_Ipv6Address_t *Ipv6AddressArray);

Description
This function allows for the addition of a single or multiple addresses to the MIPv6HA ND
Proxy function on a home link interface indicated by the NPF_ifHandle_t interface handle. The
addition of an already existing address will result in a reset of the ProxyND functions performed
on the address. In particular the status of the address will be set to PROBE and DAD will be
initiated anew. This is an optional function.

Input Parameters

• cbHandle: the registered callback handle.
• cbCorrelator: the application’s context for this call.
• errorReporting: the desired level of feedback.
• homelinkInterfaceHandle: Ifhandle of home link interface
• n_adresses: the number of addresses being configured
• Ipv6AddressArray: array of addresses entries

Synchronous Return Codes

• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The operation could not be completed due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_MIPv6HA_E_NOMEMORY – The system was unable to allocate sufficient memory to

complete this operation.
• NPF_E_FUNCTION_NOT_SUPPORTED: The function is not supported by the implementation.

Asynchronous response
A callback of type NPF_MIPV6HA_ProxyND_ADDR_ADD is generated in response to this
function call. A total of n_entries asynchronous responses (NPF_MIPv6HA_AsyncResponse_t)
will be passed to the callback function, in one or more invocations. Each response contains the
interface handle of the home link interface, the ipv6address and the associated status code. The
following status codes may be returned.

• NPF_NO_ERROR – The operation was successful.
• NPF_E_UNKNOWN – The operation could not be completed. Reason unspecified.
• NPF_MIPv6_E_NOMEMORY – The system was unable to allocate sufficient memory to

complete this operation.

 DBIS Task Group Page 37 of 67

 Network Processing Forum Software Working Group

• NPF_MIPv6HA_E_INVALID_PARAM – Invalid IPv6 address parameters
• NPF_MIPV6HA_E_INVALID_IF_HANDLE: Ifhandle is null or invalid

5.4.7 NPF_Mipv6HA_ProxyND_AddressDelete

NPF_error_t NPF_ Mipv6HA_ProxyND_AddressDelete (
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_ifHandle_t homelinkInterfaceHandle,
NPF_IN NPF_uint32_t n_addresses,

 NPF_IN NPF_Ipv6Address_t *Ipv6AddressArray);

Description
This function allows for the deletion of a single or multiple addresses from the MIPv6HA ND
Proxy function on a home link interface indicated by the NPF_ifHandle_t interface handle.
This is an optional function.

Input Parameters

• cbHandle: the registered callback handle.
• cbCorrelator: the application’s context for this call.
• errorReporting: the desired level of feedback.
• homelinkInterfaceHandle: Ifhandle of home link interface
• n_adresses: the number of addresses being deleted
• Ipv6AddressArray: array of addresses entries

Synchronous Return Codes

• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The operation could not be completed due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_E_FUNCTION_NOT_SUPPORTED: The function is not supported by the implementation.

Asynchronous response
A callback of type NPF_MIPV6HA_BC_ProxyND_ADDR_DELETE is generated in response
to this function call. A total of n_entries asynchronous responses
(NPF_MIPv6HA_AsyncResponse_t) will be passed to the callback function, in one or more
invocations. Each response contains the interface handle of the home link interface, the
ipv6address and the associated status code. The following status codes may be returned.

• NPF_NO_ERROR – The operation was successful.
• NPF_E_UNKNOWN – The operation could not be completed. Reason unspecified.
• NPF_MIPv6HA_E_PROXYND_ADDR_UNKNOWN – Address not known

 DBIS Task Group Page 38 of 67

 Network Processing Forum Software Working Group

• NPF_MIPV6HA_E_INVALID_IF_HANDLE: Ifhandle is null or invalid

5.4.8 NPF_Mipv6HA_ProxyND_Flush

NPF_error_t NPF_ Mipv6HA_ProxyND_Flush(

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_ifhandle_t homelinkInterfaceHandle);

Description
This function allows for the deletion of all addresses from the MIPv6HA ND Proxy function on a
home link interface indicated by the NPF_ifHandle_t interface handle. This is an optional
function.

Input Parameters

• cbHandle: the registered callback handle.
• cbCorrelator: the application’s context for this call.
• errorReporting: the desired level of feedback.
• homelinkInterfaceHandle: Ifhandle of home link interface

Synchronous Return Codes
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The operation could not be completed due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_E_FUNCTION_NOT_SUPPORTED: The function is not supported by the implementation.

Asynchronous response
A callback of type NPF_MIPV6HA_BC_PROXYND_FLUSH is generated in response to this
function call. A single asynchronous response (NPF_MIPv6HA_AsyncResponse_t) will be
passed to the callback function. The response contains the interface handle of the home link
interface and the associated status code. The following status codes may be returned.

• NPF_NO_ERROR – The operation was successful.
• NPF_E_UNKNOWN – The operation could not be completed. Reason unspecified.
• NPF_MIPV6HA_E_INVALID_IF_HANDLE: Ifhandle is null or invalid

5.4.9 NPF_Mipv6HA_ProxyND_AddrStateGet
NPF_error_t NPF_ Mipv6HA_ProxyND_AddrStateGet(

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_ifHandle_t homelinkInterfaceHandle,
NPF_IN NPF_uint32_t n_addresses,

 NPF_IN NPF_Ipv6Address_t *Ipv6AddressArray);

 DBIS Task Group Page 39 of 67

 Network Processing Forum Software Working Group

Description
This function allows for the retrieval of the address state of a single or multiple addresses from
the MIPv6HA ND Proxy function on a home link interface indicated by the NPF_ifHandle_t
interface handle. This is an optional function.

Input Parameters

• cbHandle: the registered callback handle.
• cbCorrelator: the application’s context for this call.
• errorReporting: the desired level of feedback.
• homelinkInterfaceHandle: Ifhandle of home link interface
• n_adresses: the number of addresses being queried
• Ipv6AddressArray: array of addresses entries

Synchronous Return Codes

• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The operation could not be completed due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_E_FUNCTION_NOT_SUPPORTED: The function is not supported by the implementation.

Asynchronous response
A callback of type NPF_MIPV6HA_PROXYND_ADDR_STATE_GET is generated in response
to this function call. A total of n_entries asynchronous responses
(NPF_MIPv6HA_AsyncResponse_t) will be passed to the callback function, in one or more
invocations. Each response contains the interface handle of the home link interface, the ProxyND
entry, NPF_MIPv6HA_proxyND_entry_t, and the associated status code. The following status
codes may be returned.

• NPF_NO_ERROR – The operation was successful.
• NPF_E_UNKNOWN – The operation could not be completed. Reason unspecified.
• NPF_MIPv6HA_E_PROXYND_ADDR_UNKNOWN – Address not known

• NPF_MIPV6HA_E_INVALID_IF_HANDLE: Ifhandle is null or invalid

5.4.10 NPF_Mipv6HA_BC_TableSpaceGet
NPF_error_t NPF_Mipv6HA_BC_TableSpaceGet(

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_ifhandle_t Mipv6HA_tunnelInterfaceHandle);

 DBIS Task Group Page 40 of 67

 Network Processing Forum Software Working Group

Description
This function allows the application to retrieve an estimate of the remaining space available for
BC entries on a MIPv6HA tunnel interface indicated by the NPF_ifHandle_t interface handle.
The remaining space is estimated in terms of estimated number of entries. This is an optional
function.

Input Parameters

• cbHandle: the registered callback handle.
• cbCorrelator: the application’s context for this call.
• errorReporting: the desired level of feedback.
• Mipv6HA_tunnelInterfaceHandle: Ifhandle of Mipv6HA tunnel interface

Synchronous Return Codes

• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The operation could not be completed due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_E_FUNCTION_NOT_SUPPORTED: The function is not supported by the implementation.

Asynchronous response
A callback of type NPF_MIPV6HA_BC_TABLE_SPACE_GET is generated in response to this function
call. A single asynchronous response (NPF_MIPv6HA_AsyncResponse_t) will be passed to the
callback function containing the status code, the interface handle and if successful the estimated
number of how many BC entries that can yet be added to the MIPv6HA tunnel interface. The
following status codes may be returned.

• NPF_NO_ERROR – The operation was successful.
• NPF_E_UNKNOWN – The operation could not be completed. Reason

unspecified

• NPF_MIPV6HA_E_INVALID_IF_HANDLE: Ifhandle is null or invalid

5.4.11 NPF_Mipv6HA_BC_GetAll

NPF_error_t NPF_ Mipv6HA_BC_GetAll(
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_ifhandle_t Mipv6HA_tunnelInterfaceHandle);

Description
This function allows for the retrieval of all tunnel identifiers from the BC structure set on a
MIPv6HA tunnel interface indicated by the NPF_ifHandle_t interface handle. This is an
optional function.

 DBIS Task Group Page 41 of 67

 Network Processing Forum Software Working Group

Input Parameters
• cbHandle: the registered callback handle.
• cbCorrelator: the application’s context for this call.
• errorReporting: the desired level of feedback.
• Mipv6HA_tunnelInterfaceHandle: Ifhandle of Mipv6HA tunnel interface

Synchronous Return Codes

• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The operation could not be completed due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_E_FUNCTION_NOT_SUPPORTED: The function is not supported by the implementation.

Asynchronous response
A callback of type NPF_MIPV6HA_BC_GET_ALL is generated in response to this function call. A
single asynchronous response (NPF_MIPv6HA_AsyncResponse_t) will be passed to the
callback function containing the status code, the interface handle and if successful a pointer to
the NPF_MIPv6HA_tunnelHandle_array_t detailing the subtunnelidentifiers of the BC entries
associated with the interface. The following status codes may be returned.

• NPF_NO_ERROR – The operation was successful.
• NPF_E_UNKNOWN – The operation could not be completed. Reason unspecified
• NPF_MIPV6HA_E_INVALID_IF_HANDLE: Ifhandle is null or invalid

5.4.12 NPF_Mipv6HA_ProxyND_TableSpaceGet
NPF_error_t NPF_Mipv6HA_ProxyND_TableSpaceGet(

NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_ifhandle_t homelinkInterfaceHandle);

Description
This function allows the application to retrieve an estimate of the remaining space available for
ND proxy address entries on a home link interface indicated by the NPF_ifHandle_t interface
handle. The remaining space is estimated in terms of estimated number of address entries. This
is an optional function.

Input Parameters

• cbHandle: the registered callback handle.
• cbCorrelator: the application’s context for this call.
• errorReporting: the desired level of feedback.
• HomelinkInterfaceHandle: Ifhandle of home link interface

 DBIS Task Group Page 42 of 67

 Network Processing Forum Software Working Group

Synchronous Return Codes
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The operation could not be completed due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_E_FUNCTION_NOT_SUPPORTED: The function is not supported by the implementation.

Asynchronous response
A callback of type NPF_MIPV6HA_NDPROXY_TABLE_SPACE_GET is generated in response to this
function call. A single asynchronous response (NPF_MIPv6HA_AsyncResponse_t) will be
passed to the callback function containing the status code, the interface handle and if successful
the estimated number of how many address entries that can yet be added to the ND proxy
function on the home link interface. The following status codes may be returned.

• NPF_NO_ERROR – The operation was successful.
• NPF_E_UNKNOWN – The operation could not be completed. Reason

unspecified

• NPF_MIPV6HA_E_INVALID_IF_HANDLE: Ifhandle is null or invalid

5.4.13 NPF_Mipv6HA_ProxyND_GetAll

NPF_error_t NPF_ Mipv6HA_ProxyND_GetAll(
NPF_IN NPF_callbackHandle_t cbHandle,
NPF_IN NPF_correlator_t cbCorrelator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_ifhandle_t homelinkInterfaceHandle);

Description
This function allows for the retrieval of all addresses from the MIPv6HA ND Proxy function on
a home link interface indicated by the NPF_ifHandle_t interface handle. This is an optional
function.

Input Parameters

• cbHandle: the registered callback handle.
• cbCorrelator: the application’s context for this call.
• errorReporting: the desired level of feedback.
• homelinkInterfaceHandle: Ifhandle of home link interface

Synchronous Return Codes

• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The operation could not be completed due to problems encountered

when handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_E_FUNCTION_NOT_SUPPORTED: The function is not supported by the implementation.

 DBIS Task Group Page 43 of 67

 Network Processing Forum Software Working Group

Asynchronous response
A callback of type NPF_MIPV6HA_PROXYND_GET_ALL is generated in response to this function
call. A single asynchronous response (NPF_MIPv6HA_AsyncResponse_t) will be passed to the
callback function containing the status code, the interface handle and if successful a pointer to
the NPF_Ipv6AddressArray_t detailing the addresses set in the Proxy ND structure of the
interface. The following status codes may be returned.

• NPF_NO_ERROR – The operation was successful.
• NPF_E_UNKNOWN – The operation could not be completed. Reason unspecified
• NPF_MIPV6HA_E_INVALID_IF_HANDLE: Ifhandle is null or invalid

5.5 Order of Operations
Creation of the respective home link and MIPv6 HA tunnel interfaces (via Interface Management
API) must precede the respective ND Proxy and BC function calls of the Mipv6 HA Service
API. Similarly deletion (flushing) of ND proxy and BC entry structures must preceded deletion
of the home link and the MIPv6 HA tunnel interface.

It should be noted that the DAD validation process can only complete when the home link
interface is in operational status on.

 DBIS Task Group Page 44 of 67

 Network Processing Forum Software Working Group

6. References

[1] NPF Software Implementation Agreement - Software API Conventions (Revision 2, September 2003)
[2] IPv6 Unicast Forwarding Service API Implementation Agreement (Revision 2, June 2004)
[3] IP Security Service API (August 2004)
[4] Interface Management API (under revision)
[5] Mobility Support in IPv6, RFC 3775
[6] Using IPsec to Protect Mobile IPv6 Signaling Between Mobile Nodes and Home Agents, RFC 3776

 DBIS Task Group Page 45 of 67

 Network Processing Forum Software Working Group

7. API Capabilities

Function Name Function Required
NPF_Mipv6HA_BC_Flush Yes
NPF_Mipv6HA_BC_EntryAdd Yes
NPF_Mipv6HA_BC_EntryDelete Yes
NPF_Mipv6HA_BC_EntryAttrGet Optional
NPF_Mipv6HA_BC_EntryStatsGet Yes
NPF_Mipv6HA_ProxyND_Flush Optional
NPF_Mipv6HA_ProxyND_AddressAdd Optional
NPF_Mipv6HA_ProxyND_AddressDelete Optional
NPF_Mipv6HA_ProxyND_AddrStateGet Optional
NPF_Mipv6HA_BC_TableSpaceGet Optional
NPF_Mipv6HA_BC_GetAll Optional
NPF_Mipv6HA_ProxyND_GetAll Optional
NPF_Mipv6HA_ProxyND_TableSpaceGet Optional
NPF_MIPv6HA_RateLimitEvents Optional

Event Name Event Required
NPF_MIPv6HA_PROXYND_DAD_ Optional
NPF_MIPv6HA_BINDING_LIFETIME_EXPIRED Optional
NPF_MIPv6HA_BC_ENTRY_MISS Yes
NPF_MIPv6HA_SUBTUNNEL_ENDPOINT_AUTH_FAILED Yes

 DBIS Task Group Page 46 of 67

 Network Processing Forum Software Working Group

APPENDIX A. NPF_MIPV6.H
/*
 * This header file defines typedefs, constants, and functions
 * for the MIPv6 SAPI
 */

#ifndef __NPF_MIPv6_0_H__
#define __NPF_MIPv6_0_H__

#ifdef __cplusplus
extern "C" {
#endif

#include "npf.h"

/*
 * NPF MIPv6 Error type
 */
typedef NPF_uint32_t NPF_MIPv6HA_ErrorType_t;

/*
 * Tunnel handle. A unique identifier selected by the implementation
 */
typedef NPF_uint32_t NPF_MIPv6HA_SubtunnelHandle_t;

/*
 * Tunnel Identifiers
 *
 */
typedef struct {
 NPF_MIPv6HA_SubtunnelHandle_t subtunnelhandle;
 NPF_IPv6Address_t HoA;
} NPF_MIPv6HA_SubtunnelIdentifiers_t;

/*
 * Tunnel Identifiers Array
 */
typedef struct {
 NPF_uint32_t nCount;
 NPF_MIPv6HA_SubtunnelIdentifiers_t *subtunnelidentifiersarray;
} NPF_MIPv6HA_SubtunnelIdentifiersArray_t;

/*

 DBIS Task Group Page 47 of 67

 Network Processing Forum Software Working Group

 * BC entry Lifetime Mode
 */
typedef enum {
 NPF_MIPv6HA_LIFETIME_ON =1, /* Lifetime (secs) monitoring on */
 NPF_MIPv6HA_LIFETIME_OFF =2 /* Lifetime (secs) monitoring off */
} NPF_MIPv6HA_LifetimeMode_t;

/*
 * MIPv6HA Binding Cache Entry
 */
typedef struct {
 NPF_MIPv6HA_SubtunnelHandle_t subtunnelhandle;
 NPF_IPv6Address_t HoA;
 NPF_IPv6Address_t CoA;
 NPF_uint16_t PMTU;
 NPF_MIPv6HA_LifetimeMode_t lifetimemode;
 NPF_uint32_t bindinglifetime;
 NPF_uint32_t remainingbindinglifetime;
} NPF_MIPv6HA_BC_Entry_t;

/*
 * BC Entry Packet Statistics
 */
typedef struct {
 NPF_MIPv6HA_SubtunnelHandle_t subtunnelhandle;
 NPF_IPv6Address_t HoA;
 NPF_uint64_t mipv6NodeHCInOctets;
 NPF_uint64_t mipv6NodeHCInPkts;
 NPF_uint64_t mipv6NodeHCOutOctets;
 NPF_uint64_t mipv6NodeHCOutPkts;
 NPF_uint64_t dropRxOctets;
 NPF_uint64_t dropRxPkts;
 NPF_uint64_t dropTxOctets;
 NPF_uint64_t dropTxPkts;
} NPF_MIPv6HA_BC_EntryStats_t;

/*
 * MIPv6HA Proxy ND address entry
 */
typedef struct {
 NPF_IPv6Address_t Addrs;
 NPF_IPv6AddrState_t AddrsState;
} NPF_MIPv6HA_ProxyND_Entry_t;

/*

 DBIS Task Group Page 48 of 67

 Network Processing Forum Software Working Group

 * IPv6 address array
 */
typedef struct {
 NPF_uint32_t nCount;
 NPF_IPv6Address_t *Ipv6AddressArray;
} NPF_IPv6AddressArray_t;

/*
 * Mipv6 HA completion callback types
 */
typedef enum {
 NPF_MIPV6HA_BC_ENTRY_ADD =1,
 NPF_MIPV6HA_BC_ENTRY_DELETE =2,
 NPF_MIPV6HA_BC_FLUSH =3,
 NPF_MIPV6HA_BC_ENTRY_ATTR_GET =4,
 NPF_MIPV6HA_BC_ENTRY_STATS_GET =5,
 NPF_MIPV6HA_PROXYND_ADDR_ADD =6,
 NPF_MIPV6HA_PROXYND_ADDR_DELETE =7,
 NPF_MIPV6HA_PROXYND_FLUSH =8,
 NPF_MIPV6HA_PROXYND_ADDR_STATE_GET =9,
 NPF_MIPV6HA_BC_TABLE_SPACE_GET = 10,
 NPF_MIPV6HA_BC_GET_ALL =11,
 NPF_MIPV6HA_PROXYND_TABLE_SPACE_GET =12,
 NPF_MIPV6HA_PROXYND_GET_ALL =13,
 NPF_MIPv6HA_RATE_LIMIT_EVENTS =14
} NPF_MIPv6HA_CallbackType_t;

/*
 * MIPv6 HA Event Type
 */
typedef enum {
 NPF_MIPv6HA_PROXYND_DAD = 1,
 NPF_MIPv6HA_BINDING_LIFETIME_EXPIRED = 2,
 NPF_MIPv6HA_BC_ENTRY_MISS = 3,
 NPF_MIPv6HA_TUNNEL_ENDPOINT_AUTH_FAILED = 4
} NPF_MIPv6HA_Event_t;

typedef struct {
 NPF_MIPv6HA_ErrorType_t errorCode;
 union{
 NPF_IfHandle_t ifhandle;
 NPF_uint32_t unused;
 } u1;
 union {
 NPF_MIPv6HA_SubtunnelIdentifiers_t subtunnelIdentifiers;
 NPF_MIPv6HA_BC_Entry_t BCentry;
 NPF_MIPv6HA_BC_EntryStats_t BCentrystats;

 DBIS Task Group Page 49 of 67

 Network Processing Forum Software Working Group

 NPF_IPv6Address_t proxyND_Address;
 NPF_MIPv6HA_ProxyND_Entry_t proxyND_Entry;
 NPF_MIPv6HA_SubtunnelIdentifiersArray_t *subtunnelIdentifiersArray;
 NPF_IPv6AddressArray_t *Ipv6Address;
 NPF_uint32_t entryspaceremaining;
 NPF_MIPv6HA_Event_t eventtype;
 NPF_uint32_t unused;
 } u2;
} NPF_MIPv6HA_AsyncResponse_t;

/*
 * MIPv6HA Completion Callback Data
 */
typedef struct {
 NPF_MIPv6HA_CallbackType_t type;
 NPF_boolean_t allOK;
 NPF_uint32_t numResp;
 NPF_MIPv6HA_AsyncResponse_t *resp;
} NPF_MIPv6HA_CallbackData_t;

typedef struct {
 NPF_IfHandle_t homelinkInterfaceHandle;
 NPF_IPv6Address_t ucAddrs;
 NPF_IPv6AddrState_t ucAddrsState;
} NPF_MIPv6HA_ProxyND_DAD_t;

typedef struct {
 NPF_IfHandle_t Mipv6HAinterfacehandle;
 NPF_MIPv6HA_SubtunnelHandle_t subtunnelHandle;
 NPF_IPv6Address_t HoA;
} NPF_MIPv6HA_BindingLifetimeExpired_t;

typedef struct {
 NPF_IPv6Address_t packetAddr;
} NPF_MIPv6HA_BC_EntryMiss_t;

typedef struct {
 NPF_IfHandle_t Mipv6HA_tunnelInterfaceHandle;
 NPF_MIPv6HA_SubtunnelHandle_t subtunnelhandle;
 NPF_IPv6Address_t HoA;
 NPF_IPv6Address_t packetSrcAddr;
 NPF_IPv6Address_t packetDstAddr;
 NPF_uint8_t repCount;
} NPF_MIPv6HA_SubtunnelEndpointAuthFailed_t;

/*
 * MIPv6 HA Event Data Structure

 DBIS Task Group Page 50 of 67

 Network Processing Forum Software Working Group

 */
typedef struct NPF_MIPv6HA_EventData {
 NPF_MIPv6HA_Event_t eventType;
 union {
 NPF_MIPv6HA_ProxyND_DAD_t proxyND_DAD;
 NPF_MIPv6HA_BindingLifetimeExpired_t bindingLftExp;
 NPF_MIPv6HA_BC_EntryMiss_t BC_entryMiss;
 NPF_MIPv6HA_SubtunnelEndpointAuthFailed_t subtnlEndpAuthFail;
 } u;
} NPF_MIPv6HA_EventData_t;

/*
 * MIPv6 HA Event Array
 */
typedef struct NPF_MIPv6HA_EventArray {
 NPF_uint16_t n_data;
 NPF_MIPv6HA_EventData_t *eventdata;
} NPF_MIPv6HA_EventArray_t;

/*
 * MIPv6 HA event bitmask used in the event registration call
 */
typedef NPF_uint32_t NPF_MIPv6HA_EventMask_t;

/*
 * The following values can be set for the MIPv6HAEventMask
 */

#define NPF_IPSEC_EVENT_ALL_DISABLE (0) /* disable all */
#defineNPF_MIPv6HA_PROXYND_DAD_CONCLUDED (1 << 0)
#defineNPF_MIPv6HA_BINDING_LIFETIME_EXPIRED (1 << 1)
#defineNPF_MIPv6HA_BC_ENTRY_MISS (1 << 2)
#defineNPF_MIPv6HA_SUBTUNNEL_ENDPOINT_AUTH_FAILED (1 << 3)

#define NPF_MIPv6HA_EVENT_ALL_ENABLE 0xFFFFFFFF

/*
 * MIPv6 HA Rate Limiting Events
 */
typedef enum {
 NPF_MIPv6HA_EVENT_LIMIT_TIME=1, /* Time base limiting */
 NPF_MIPv6HA_EVENT_LIMIT_COUNT=2 /* Counter base limiting */
} NPF_MIPv6HA_EventLimitType_t;

typedef struct {
 NPF_MIPv6HA_Event_t eventid; /* Event HANDLE */

 DBIS Task Group Page 51 of 67

 Network Processing Forum Software Working Group

 NPF_MIPv6HA_EventLimitType_t limitType; /* Limit type */
 union
 {
 NPF_uint32_t numPerSec; /* Event frequency in time */
 NPF_uint32_t nCount; /* Generate 1 event for */
 /* every nCount encounters */
 }u;
} NPF_MIPv6HA_EventLimit_t;

/*
 * Asynchronous error codes (returned in function callbacks)
 */

/*
 * MIPv6HA reserved error codes in relation to other NPF APIs
 * Note** The maximum range is 100
 */
#define NPF_MIPv6HA_BASE_ERR XXX /* Base value of XXX wrt other NPF codes */

/* Optional feature not supported */
#define NPF_MIPv6HA_E_OPTIONAL_FEATURE_NOT_SUPPORTED \
 ((NPF_MIPv6HA_ErrorType_t) NPF_MIPv6HA_BASE_ERR + 1)

/* System was unable to allocate sufficient memory to complete operation */
#define NPF_MIPv6HA_E_NOMEMORY ((NPF_MIPv6HA_ErrorType_t)
NPF_MIPv6HA_BASE_ERR+2)

/* The Interface handle provided was not recognized as being valid */
#define NPF_MIPv6HA_E_INVALID_IF_HANDLE \
 ((NPF_MIPv6HA_ErrorType_t) NPF_MIPv6HA_BASE_ERR + 3)

/* Ipv6 ND Proxy Address not found*/
#define NPF_MIPv6HA_E_PROXYND_ADDR_UNKNOWN\
 ((NPF_MIPv6HA_ErrorType_t) NPF_MIPv6HA_BASE_ERR + 4)

/* Invalid parameter */
#define NPF_MIPv6HA_E_INVALID_PARAM\
 ((NPF_MIPv6HA_ErrorType_t) NPF_MIPv6HA_BASE_ERR + 5)

/* Duplicate HoA*/
#define NPF_MIPv6HA_E_DUPLICATE_HOA \
 ((NPF_MIPv6HA_ErrorType_t) NPF_MIPv6HA_BASE_ERR + 6)

/* Invalid or unknown tunnel handle - */
#define NPF_MIPv6HA_E_INVALID_SUBTUNNEL_HANDLE \
 ((NPF_MIPv6HA_ErrorType_t) NPF_MIPv6HA_BASE_ERR + 7)

 DBIS Task Group Page 52 of 67

 Network Processing Forum Software Working Group

/* Duplicate event id */
#define NPF_MIPv6HA_E_DUPLICATE_EVENT_ID \
 ((NPF_MIPv6HA_ErrorType_t) NPF_MIPv6HA_BASE_ERR + 8)

/* Invalid or unknown event ID - */
#define NPF_MIPv6HA_E_INVALID_EVENT_ID \
 ((NPF_MIPv6HA_ErrorType_t) NPF_MIPv6HA_BASE_ERR + 9)

typedef void (*NPF_MIPv6HA_CallbackFunc_t)(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_MIPv6HA_CallbackData_t MIPv6HACallbackData);

/* Callback registration */
NPF_error_t NPF_MIPv6HA_Register(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_MIPv6HA_CallbackFunc_t MIPv6HACallbackFunc,
 NPF_OUT NPF_callbackHandle_t *MIPv6HA_CallbackHandle);

NPF_error_t NPF_MIPv6HA_Deregister(
 NPF_IN NPF_callbackHandle_t MIPv6HACallbackHandle);

typedef void (*NPF_MIPv6HA_EventCallFunc_t)(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_MIPv6HA_EventArray_t eventArray);

NPF_error_t NPF_MIPv6HA_EventRegister(
 NPF_IN NPF_userContext_t usercontext,
 NPF_IN NPF_MIPv6HA_EventCallFunc_t eventCallFunc,
 NPF_IN NPF_MIPv6HA_EventMask_t eventmask,
 NPF_OUT NPF_callbackHandle_t *eventCallHandle);

NPF_error_t NPF_MIPv6HA_EventDeregister(
 NPF_IN NPF_callbackHandle_t cbHandle);

NPF_error_t NPF_MIPv6HA_RateLimitEvents (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_uint32_t countEventData,
 NPF_IN NPF_MIPv6HA_EventLimit_t *eventLimitArray);

NPF_error_t NPF_MIPv6HA_BC_Entry_Add (
 NPF_IN NPF_callbackHandle_t cbHandle,

 DBIS Task Group Page 53 of 67

 Network Processing Forum Software Working Group

 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IfHandle_t Mipv6HA_tunnelInterfaceHandle,
 NPF_IN NPF_uint32_t n_entries,
 NPF_IN NPF_MIPv6HA_BC_Entry_t *BCentryarray);

NPF_error_t NPF_MIPv6HA_BC_Entry_Delete (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IfHandle_t
Mipv6HA_tunnelInterfaceHandle,
 NPF_IN NPF_uint32_t n_entries,
 NPF_IN NPF_MIPv6HA_SubtunnelHandle_t *subtunnelHandleArray);

NPF_error_t NPF_MIPv6HA_BC_Flush (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IfHandle_t Mipv6HA_tunnelInterfaceHandle);

NPF_error_t NPF_MIPv6HA_BC_EntryAttrGet (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IfHandle_t Mipv6HA_tunnelInterfaceHandle,
 NPF_IN NPF_uint32_t n_entries,
 NPF_IN NPF_MIPv6HA_SubtunnelHandle_t *subtunnelHandleArray);

NPF_error_t NPF_MIPv6HA_BC_EntryStatsGet (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IfHandle_t Mipv6HA_tunnelInterfaceHandle,
 NPF_IN NPF_uint32_t n_entries,
 NPF_IN NPF_MIPv6HA_SubtunnelHandle_t *subtunnelHandleArray);

NPF_error_t NPF_MIPv6HA_ProxyND_AddressAdd (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IfHandle_t homelinkInterfaceHandle,
 NPF_IN NPF_uint32_t n_addresses,

 DBIS Task Group Page 54 of 67

 Network Processing Forum Software Working Group

 NPF_IN NPF_IPv6Address_t *Ipv6AddressArray);

NPF_error_t NPF_MIPv6HA_ProxyND_AddressDelete (
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IfHandle_t homelinkInterfaceHandle,
 NPF_IN NPF_uint32_t n_addresses,
 NPF_IN NPF_IPv6Address_t *Ipv6AddressArray);

NPF_error_t NPF_MIPv6HA_ProxyND_Flush(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IfHandle_t homelinkInterfaceHandle);

NPF_error_t NPF_MIPv6HA_ProxyND_AddrStateGet(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IfHandle_t homelinkInterfaceHandle,
 NPF_IN NPF_uint32_t n_addresses,
 NPF_IN NPF_IPv6Address_t *Ipv6AddressArray);

NPF_error_t NPF_MIPv6HA_BC_TableSpaceGet(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IfHandle_t Mipv6HA_tunnelInterfaceHandle;

NPF_error_t NPF_MIPv6HA_BC_GetAll(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IfHandle_t Mipv6HA_tunnelInterfaceHandle);

NPF_error_t NPF_MIPv6HA_ProxyND_TableSpaceGet(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IfHandle_t homelinkInterfaceHandle);

 DBIS Task Group Page 55 of 67

 Network Processing Forum Software Working Group

NPF_error_t NPF_MIPv6HA_ProxyND_GetAll(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t cbCorrelator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_IfHandle_t homelinkInterfaceHandle);

#ifdef __cplusplus
}
#endif

#endif

 DBIS Task Group Page 56 of 67

 Network Processing Forum Software Working Group

APPENDIX B. NPF MIPV6 HA FRAMEWORK
The MIPv6 HA Service API is designed in accordance with how the MIPv6 HA node function is
envisaged split in control and forwarding path functions as well as in accordance with how the
management of the various forwarding path functions of a MIPv6 HA node are envisaged best
distributed over the suite of Service APIs of the NP Forum. This Appendix serves to give an
overview of these aspects.

Figure 1 is referred to for illustration. As in the rest of this document the specific MIPv6 HA
processing entity (possibly multiple entities) in the Control Plane will here be referred to as the
MIPv6 HA Service Layer Module.

B.1 MIPv6 HA Functional Split

B.1.1 Control Plane Functions
It is assumed that all functions associated with the processing of MIPv6 signaling messages
reside in the Control Plane. This in particular means that the following data structures related to
HA and MN Mobile IPv6 protocol signaling are assumed maintained and validated by the MIPv6
HA Service Layer module:

• Binding Cache
• HA lists
• Mobile Prefix Lists

The Binding Cache contains CoA and HoA address binding information3 for the MNs currently
served by the MIPv6 HA. Binding cache entries are created, modified and deleted on the basis of
MIPv6 signaling messages interchanged in between the MIPv6 HA and mobile nodes.

HA and Mobile Prefix list are further discussed in Section B.2.3.

B.1.2 Forwarding Plane Functions
MIPv6 HA forwarding functions are assumed realized in the forwarding data layer of the node.
Here by MIPv6 HA forwarding functions we refer to functions associated with payload traffic
transiting the node. In particular it is assumed that the following functions are performed within
the forwarding plane:

• Redirect of packets destined for MNs
• Reverse decapsulation and forward encapsulation of traffic from/to MNs
• IP interface processing functions

3 In addition to the HoA and CoA binding information, each Binding Cache entry contains
service attributes and status information including link-local address compatibility on/off, Key
Management Mobility Capability on/off, sequence number of last BU received and lifetime of
binding.

 DBIS Task Group Page 57 of 67

 Network Processing Forum Software Working Group

• IPSec decapsulation and encapsulation of traffic from/to MNs

Further it is considered a MUST that the API framework should support off load of the following
functions to the forwarding data layer:

• MIPv6 HA ND proxy functions for MN packet intercept
• Transmittal of IPv6 Router Advertisements with the MIPv6 HA specific attributes and

options

The overall functionality of these functions and their modeling over the Service API and the IM
API boundary is described in Section B.3.

B.1.3 Receive and Transmit of MIPv6 HA signaling messages
A MIPv6 HA functions as a Mobile IPv6 Corresponding Node when transmitting and receiving
Mobile IPv6 signaling messages. In order to insert the appropriate Router Headers in such
packets, the Binding Cache must be consulted prior to the Forwarding Table on the transmit side
and conversely, the Binding Cache Information is required to ensure correct processing of Home
Address Destination options on the receive side. The Mobile IPv6 SAPI does not address this
usage of the Binding Cache as these receive and transmit functions are assumed to recede in the
forwarding plane.

B.2 MIPv6 HA Service Layer and Forwarding Plane Packet Transfer

B.2.1 MIPv6 signaling messages
The data part of Mobile IPv6 signaling messages interchanged in between Home Agents and
Mobile Nodes are carried in the data part of ICMP messages or in the Mobility Header (MH)
protocol fields of an IPv6 packet. In order to process Mobile IPv6 signaling messages correctly,
the Mobile IPv6 Home Agent Service Layer module need not only access to the data part but
also to the contents of various fields of the IPv6 header, more specifically to the contents of the
IP source address and the (when present) Home Address Destination Option extension header
field. Consequently it is vital that this information is conveyed to the MIPv6 HA Service Layer
module together with the data parts.

Conversely when sending signaling messages as part of the Mobile IPv6 signaling protocol
operation, the MIPv6 HA Service Layer module must specify part of the IP header format, such
as in particular the addresses that should be placed in the destination address field and (for
certain messages) in the Routing Header of type 2 Destination Option extension header field.

No assumptions are made on how exactly this is achieved as well as no specific API functions
are assumed provided in this respect. It should be noted, however, that this may be achieved by
using an advanced MIPv6 socket [7] (extension of raw IP socket) on top of an IP stack
packetization process which in turn uses the PH API for transfer of packets to and from the
forwarding plane.

 DBIS Task Group Page 58 of 67

 Network Processing Forum Software Working Group

B.2.2 IP Security Processing
IP Security processing is an integral part of Mobile IPv6. The Mobile IPv6 base specification [5]
currently mandate certain signaling messages in between Mobile IPv6 Home Agent and Mobile
Nodes to be protected by IP Security Transport mode, although it is acknowledged that
alternative protection mechanism not based on IP Security may appear in the future.
It is assumed that the IP Security encryption and decryption processes for originating and
terminating traffic generally will be instantiated in the data plane of an NP device. Consequently
only clear text packets (and for inbound packets only IP security wise checked packets) are
assumed passed in between the PH API and the forwarding plane. It should be emphasized,
however, that this assumption has no significance for the NPF APIs as such, simply it have
implications for the realization of the forwarding plane and the MIPv6 HA Service Layer
module’s usage of the PH API.

B.2.3 ICMP RA messages
HA list and Mobile Prefix list information must be sent unsolicited or solicited to mobile nodes
at various occasions. The MIPv6 HA function collects the appropriate information maintained in
these lists from RAs broadcasted on links on which the MIPv6 HA function is provided.

It is assumed that the functions associated with the collection and maintaining of these list are
implemented in their completeness by the MIPv6 HA Service Layer module.

The NPF API framework does not provide any particular support for the retrieval of this
information via API function calls apart from the basic packet transfer functionality provided by
the PH API. Consequently it is assumed that for the purpose of these functions then the PH API
is set up to transfer the RA messages to the Control Plane – to the MIPv6 HA Service Layer
directly or, e.g. depending on the implementation, to an ICMP specific module which mediates
the required information to the MIPv6 HA Service Layer module. Note that the RA messages
may at the same time also be subject to non-MIPv6 processing in the forwarding plane or control
plane, e.g., RA monitoring.

B.3 IM API and Service API Boundary Mapping
The following design prerequisites govern the distribution of the management of the various
MIPv6 HA forwarding functions over the Service APIs and the Interface management API of the
NP Forum, the split of functionality in between the IM API and the MIPv6 HA Service API in
particular:

• Generic functions are handled via their generic APIs, this include generic interface
functions, IP forwarding functions and IP Security functions.

• MIPv6 HA forwarding path functions, attributes and data structures that do not
unequivocally belong within the scope of the IPv6 Unicast Forwarding Service API, the
Interface Management API and the IP Security Service API are managed via the Mobile
IPv6 Home Agent Service API.

• Data structures related to the Mobile IPv6 Home Agent operation on link local/interface
level which are dynamic in nature, that is, which reflect run-time behavior are managed
and instantiated by the MIPv6 HA Service Layer module by means of function calls

 DBIS Task Group Page 59 of 67

 Network Processing Forum Software Working Group

within the Mobile IPv6 Home Agent SAPI. This include, e.g., data structures governing
MIPv6 HA ND proxy functions that must be instantiation on an interface due to the
receipt of a valid Binding Updates.

• Data structures related to the Mobile IPv6 Home Agent function on an interface which
are static in nature, that is, which are associated with the enabling/disabling and general
configuration of the Mobile IPv6 Home Agent function on an interface, is managed and
instantiated by means of the IM API.

B.3.1 IM API Modeling

B.3.1.1 Home Link Interface Modeling
An IPv6 interface on which the MIPv6 HA function is provided (here also denoted MIPv6 HA
home link interface) is modeled as any other standard IPv6 interface. A MIPv6 HA home link
interface must be configured with a global MIPv6 HA address as well as with the MIPv6 HA
anycast addresses corresponding to the network prefixes for which the Home Agent function is
provided. These addresses are configured in the normal manner.

The fact that a particular IPv6 interface (and IPv6 address respectively) is used as MIPv6 HA
home link interface (and MIPv6 HA address respectively) will not be apparent from the interface
type (address type respectively). A MIPv6 HA home link interface is identifiable only via is
binding as the parent of a MIPv6 HA tunnel interface (see below) and an address of an IPv6
interface is identifiable only as a MIPv6 HA address via it usage as anchor source address in an
MIPv6 HA tunnel interface as well as via its announcement as MIPv6 HA address in RAs (see
below).

B.3.1.2 Home Agent Router Advertisements
The RAs sent from an IPv6 router serving as a MIPv6 Home Agent convey information relevant
for the general IPv6 router functionality as well as particular information relevant for the Mobile
IPv6 Home Agent functionality. The latter include the Global MIPv6 HA address and MIPv6
Home Agent preference.

The Mobile IPv6 HA specific attributes are envisaged specified via extensions to the RA
function calls of the IM API.

B.3.1.3 MIPv6 Home Agent Tunnel Interface Modeling
The conceptual sub-tunnels in between the MIPv6 HA of a particular MIPv6 HA address and
any of the MNs that it is serving (MNs currently away from home) is in the IM API represented
by one common, enveloping MIPv6 HA IPv6-in-IPv6 tunnel interface. The tunnel interface is
bound as a child to a MIPv6 Home Link interface and anchored with source address on the
MIPv6 HA address of the MIPv6 Home Link interface.

The MIPv6 HA tunnel interface is a particular kind of an IPv6-in-IPv6 tunnel interface in that
only the local source address (MIPv6 HA address) is specified via the IM API whereas the
multiple remote sub-tunnel endpoints (the CoA of the respective MNs) are specified via the
MIPv6 HA Service API. Packet processing on a MIPv6 HA tunnel interface must comply with

 DBIS Task Group Page 60 of 67

 Network Processing Forum Software Working Group

the validation rules specified in [5]. These rules rely on the sub-tunnel information specified via
the MIPv6 HA SAPI (the CoA and HoA bindings).

A Router will have a MIPv6 HA tunnel interface for every home link interface and MIPv6 HA
address on and with which it is serving as MIPv6 HA.

The explicit modeling of the MIPv6 HA tunnel interface in the IM API serves a number of
purposes:

1. In compliance with the existing IPv6 Unicast Forwarding SAPI ([2]), the MIPv6 HA
tunnel interface can be used as egress interface in per MN host route entries in the FIB
(more on this below)

2. In compliance with the existing IP Security SAPI ([3]), the MIPv6 HA tunnel interface
can be used as interface anchor for IP Security Policies that should be in effect on the
tunnel link in between the HA and a MN only. For more details see Section B.3.3.

3. The modeling of the MIPv6 HA tunnel interface as a child ip-in-ip tunnel interface of the
Home Link interface is consistent with standard interface processing and demultiplexing
procedures for incoming packets.

4. (Secondary) the modeling in the IM API allow for the set up of a particular FIB to be
used for reverse decapsulated packets using the standard procedures in this respect.

MIPv6 HA tunnel interface common attributes and statistics such as MIPv6 HA address, MTU
mode and packet counts are set and managed via the IM API, whereas per BC binding Cache/per
MIPv6 HA MN conceptual sub-tunnel specific attributes and statistics such as, e.g., outer
destination address per MN (MN CoA address), PMTU to each MN destination and packet
statistics per MN destination are set up and managed via the MIPv6 HA SAPI. This reflects the
split in between the static and the dynamic nature of these.

The MIPv6 HA functionality relies on the MIPv6 HA tunnel interface being in operational mode
on. In case the operator manually deletes the tunnel interface, care must be taken first to delete
the associated BC entries.

B.3.2 Service API Boundary Modeling

B.3.2.1 MIPv6 HA Proxy ND for mobile nodes
In order to intercept packets for the MN otherwise destined to the Home link, a Mobile IPv6 HA
must perform IPv6 ND proxying for all the MNs that it is serving.

DAD is an integral part of the NP Proxy function. Only after successful instantiation of the ND
proxy for the MN Home Address (that is successful DAD on MN Home Address) can a Binding
Update from the MN be accepted. Depending on the L-bit set in the initiating BU, ND Proxy
(and DAD) should be performed on both the global MN address and the associated canonical
link-local address or on the global MN address only.

The MIPv6 HA ND proxy functions require dynamic and real time updating of the set of MN
addresses for which ND Proxy should be performed. The MIPv6 HA ND Proxy function
operates locally on the MIPv6 HA Home Link interface. Due to dynamic considerations,
however, the MIPv6 HA Proxy ND function itself is managed via the MIPv6 Service API. This

 DBIS Task Group Page 61 of 67

 Network Processing Forum Software Working Group

also because the only known use case for Proxy ND is the Mobile IPv6 Home Agent
functionality.
Binding Cache and MIPv6 HA tunnel handling
The Binding Cache is assumed maintained by the MIPv6 HA Service Layer module and only the
Binding Cache attributes which are required for packets processing or which may demand
particular hardware support are assumed to propagate down to the forwarding plane. Of the latter
only lifetime is considered.

The Binding Cache entries of the forwarding plane are managed and instantiated by the MIPv6
HA Service Layer module using the MIPv6 HA Service API.

The Binding Cache maintained pr MIPv6 HA address in the Service Layer in the forwarding
plane maps down to a conceptual Binding Cache table per MIPv6 HA tunnel interface in which
each Binding Cache entry represent the conceptual sub-tunnel link in between the MIPv6 HA
and the particular MN.

Each Binding Cache entry/ each conceptual MIPv6HA MN sub-tunnel is allocated, and
identified by, a 32-bit handle by the implementation. The usage of this handle over the Service
API allow for more optimal implementations. Further, future revisions of the IPv6 Unicast
Forwarding Service API could allow for the usage of this sub-tunnel handle as next hop
reference.

B.3.2.2 Redirect function modeling
Packets destined for MN currently served by the MIPv6 HA should not be send out on the Home
link network but must instead be directed to encapsulation by the appropriate MIPv6 HA tunnel
interface implementation. This regardless of whether the packets are intercepted using Proxy ND
on the Home link network or whether they have arrived at the MIPv6 HA router on a different
link.

The tunnel redirect function may be implementing in different ways, e.g.:

• It may be realized as part of the ingress FIB look up by installing per MN address host
route entries in the FIB each pointing towards the appropriate MIPv6 HA tunnel interface
as the egress interface (this type of next hop entries are supported in [2]).

• It may be realized using egress filters on the Home link interface, thus redirected all the
relevant packets to the MIPv6 HA tunnel interface(s).

In the first case, host route entries can be installed into the FIB in (again) different ways:

• The host route entries (MN address and MIPv6 HA tunnel handle) may be
created/deleted via the Unicast forwarding SAPI and by the Unicast Forwarding SL
module. This prompted by a request from the MIPv6 HA SL module.

• The host route entries may also be installed within the respective FIBs by the forwarding
control layer transparently to the Unicast Forwarding SL module. This prompted by

 DBIS Task Group Page 62 of 67

 Network Processing Forum Software Working Group

actions taken by the MIPv6 HA SL module via the MIPv6 HA SAPI, e.g. the installment
of new binding cache entries.4

Of the above, the model assumed is that the intercept function is realized using per MN host
route entries in the FIB and that these are installed in the forwarding plane FIBs by the Unicast
Forwarding SL module via the Unicast forwarding SAPI.

No explicit assumptions on how the appropriate information is conveyed to the Unicast
Forwarding SL module by the MIPv6 HA SL module are made. It could be done by use of an
intra-service layer API in between the two modules but this is left to the choice of the providers
of the SL modules.

It should be noted that the installment a new per MN host route entry would need to be done not
every time a MN changes location (CoA change) but only every time the MN either starts or
ceases to be served by the MIPv6 HA.

Possibly the IPv6 Unicast Forwarding SAPI may be extended to support next hop types
containing not simply the MIPv6HA tunnel interface handle, but instead the more specialized
MIPv6 HA MN sub-tunnel handle provided by the MIPv6 HA SAPI implementation. Whether
the usage of the latter is advantageous will depend on the exact implementation of the
forwarding path.

In any case, that is, whether using per sub-tunnel handle next hops or per MIPv6 HA tunnel
interface next hop are used, the MIPv6 HA tunnel module to which the packets are redirected
must perform the encapsulation process. In case the enveloping MIPv6 HA tunnel interface is
referenced as next hop, an additional look-up to retrieve the appropriate sub-tunnel (and the
appropriate CoA) must be performed by the tunnel module. In case the individual sub-tunnel
handles are referenced in the next hop structure of the forwarding table look up, the CoA may be
indicated already in the next hop structure. The latter however require the FIB to be updated
every time the MN changes its location and not only when it either starts or ceases to be served
by the MIPv6 HA.

4 The model is somewhat doubtful since the forwarding control layer may not possess the
required information vis-à-vis virtual router boundaries and VPN boundaries to ensure that the
entries are installed in the correct set of FIBs.

 DBIS Task Group Page 63 of 67

 Network Processing Forum Software Working Group

FIB Packet
redirect

Forwarding Plane

Binding Cache

MIPv6 HA
SAPI

IPv6 Forw
SL Appl.

MIPv6 HA
SL Appl.

IPv6 Forw
SAPI

SAPI

Control
Plane

Figure 2 Redirect function modeling

B.3.3 Interaction with the IP Security API framework
Secure communication on the MIPv6 HA=MN tunnel path rely on tunnel IP Security SAs.

The associated IP Security tunnel SAs are anchored on the addresses of the Home Agent and the
Home Addresses of the MN but the destination address of the outer header, that is, the present
CoA of the MN, must be changed whenever a new BU (new CoA) for the MN in question is
received (the latter without necessarily demanding renegotiation of the SA).
The associated security policy does not refer to the outer destination header and need not be
changed while the MN moves around (CoA changes) however the policy should only be in effect
for MNs with valid binding cache.

It is envisaged that the enabling and disabling of the required security policies as well as the
dynamic updating of the involved SAs could be achieved by communication in between the
MIPv6 HA SL module and the IP Security SL module (indeed this is the operation suggested by
the IETF MIPv6 specifications, [5] and [6]). That is, prompted by the accept of a new BU the
MIPv6 HA SL module shall request the IP Security SL module to take the appropriate actions
via the IP Security SAPI.

No assumptions are made on how intra service layer communication is achieved not or which
parties such communication may involve. Simply it is assumed that IP Security Policies and
Security Associations required by the MIPv6 HA function are installed via the IP Security SAPI
and managed by the client of the API, i.e., the IP Security SAPI SL module.

In the current IP Security SAPI framework Security Policies are bound to interfaces (via the SPD
binding to interfaces).

 DBIS Task Group Page 64 of 67

 Network Processing Forum Software Working Group

The MIPv6 HA function relies on a peculiar interaction with IP Security in that it suggests
certain IP Security Policies (ESP tunnel mode) to be set up on the individual tunnel interfaces,
see [6], and prescribes this to result in that packets, which are captured by those IP Security
Policies and which otherwise would have been sent unencrypted but encapsulated to the CoAs of
the MNs, must escape the tunnel interface encapsulation and instead be sent according to the
prescription of the IP Security Policies alone.

It is assumed that an implementation of the IP Security SAPI supporting the MIPv6 HA
framework will support the setup of policies on MIPv6 HA tunnel interfaces in compliance with
the above-required behavior. In this context the MIPv6 HA tunnel interfaces is referred to in the
IP Security SAPI as a standard IPv6 interface.

In addition to IP Security tunnel mode required on the MIPv6HA=MN path, the MIPv6 HA also
rely on the use of IP Security transport for direct communication in between the MN and the HA.
The transport Security Policies and Security Associations are only related to the HoA of the
MNs, not the CoA, and will thus not be directly affected by the moving around of the MNs. The
transport security associations and policies are assumed set up via the IP Security SAPI in the
standard manner.

Remark
The IP Security Architecture of the IETF is currently undergoing revision. In particular one is
moving away from interface specific Security Policies. In an environment without interface
specific Security Policies, the interaction with MIPv6 HA tunneling may be achieved using
global security policies that filter on the MH protocol type value. Given that the IP Security
SAPI of the NPF is enhanced to support policy selection on MH type values (or that the
implementation support selection on MH type value by means of the existing SAPI calls of the
IP Security SAPI5) the interaction with IP Security may be achieved with global policies which
MH type specific selectors and without the setup of Security Policies anchored on the MIPv6 HA
tunnel interface.

Further, the IETF is working on modifying IKE (IKEv2) so that IKE may be used to
renegotiate/update IP Security SAs when the Mobile Nodes moves around. Potentially
eliminating the need for interaction in between the MIPv6 HA function and the IP Security
Control function for this purpose.

5 An MH type selector could be specified via the existing NPF Security SAPI using the following semantics: In a
NPF-IPSecSeclector with IP Transport Protocol the MH Protocol, the IP source port denotes the MH type whereas
the IP destination port should be ignored.

 DBIS Task Group Page 65 of 67

 Network Processing Forum Software Working Group

APPENDIX C. ACKNOWLEDGEMENTS

Working Group Chair:

Alex Conta, Transwitch, aconta@txc.com

Task Group Chair:

 Karen Nielsen, Ericsson, karen.e.nielsen@ericsson.com

The following individuals are acknowledged for their participation to the IPv6 Task Groups
teleconferences, plenary meetings, mailing list, and/or for their NPF contributions used for the
development of this Implementation Agreement. This list may not be all-inclusive since only
names supplied by member companies for inclusion here will be listed. The NPF wishes to
thank all active participants to this Implementation Agreement, whether listed here or not.

The list is in alphabetical order of last names:

Alex Conta, Transwitch

Suresh Krishnan, Ericsson

Karen E. Nielsen, Ericsson

Erik B. Pedersen, Ericsson

John Renwick, Agere Systems

Chirayu Shah, Ericsson

 DBIS Task Group Page 66 of 67

 Network Processing Forum Software Working Group

 DBIS Task Group Page 67 of 67

APPENDIX D. LIST OF COMPANIES BELONGING TO NPF DURING
APPROVAL PROCESS

Agere Systems Infineon Technologies AG U4EA Group

Altera Intel Xelerated

AMCC IP Fabrics Xilinx

Analog Devices IP Infusion

Avici Systems Kawasaki LSI

Cypress Semiconductor Motorola

Enigma Semiconductor NetLogic

Ericsson Nokia

Erlang Technologies Nortel Networks

ETRI NTT Electronics

EZ Chip PMC Sierra

Flextronics Seaway Networks

HCL Technologies Sensory Networks

Hifn Sun Microsystems

IBM Teja Technologies

IDT TranSwitch

	Revision History
	Introduction
	NPF MIPv6 HA Framework
	Control Plane Functions
	Forwarding Plane Functions

	Assumptions and prerequisites
	Dependencies
	Scope
	Miscellaneous

	API usage Model
	MIPv6 HA - MN tunnel handling functions
	MIPv6 HA ND proxy function

	Data Types
	MIPv6 SAPI Data Types
	MIPv6HA subtunnel handle: NPF_MIPv6HA_SubtunnelHandle_t
	MIPv6HA subtunnel identifiers: NPF_MIPv6HA_SubtunnelIdentifiers_t
	MIPv6HA subtunnel identifiers Array : NPF_MIPv6HA_SubtunnelIdentifiersArray_t
	MIPv6HA Binding Cache Entry: NPF_MIPv6HA_BC_Entry_t
	MIPv6HA MN Statistics: NPF_MIPv6HA_BC_EntryStats_t
	MIPv6HA Proxy ND Address entry: NPF_MIPv6HA_ProxyND_Entry_t
	IPv6 address Array: NPF_IPv6AddressArray_t

	Data Structures for Completion Callbacks
	Completion Callback Types
	Completion Callback Data Structure
	Asynchronous Response Data Structure

	Data Structures for Event Notifications
	Mipv6HA Event Type: NPF_MIPv6HA_Event_t
	Event Notification Structures:
	MIPv6HA Proxy ND DAD event: NPF_MIPv6HA_ProxyND_DAD_t
	MIPv6HA Binding lifetime expired Event: NPF_MIPv6HA_BindingLifetimeExpired_t
	MIPv6HA no BC Entry found: NPF_MIPv6HA_BC_EntryMiss_t
	MIPv6HA endpoint authentication check failed: NPF_MIPv6HA_SubtunnelEndpointAuthFailed_t

	MIPv6HA Event Mask : NPF_MIPv6HA_EventMask_t
	Rate Limiting Events: NPF_MIPv6HA_EventLimit_t

	Error Codes

	Functions
	Completion Callbacks and Error Returns
	Completion Callback
	Completion Callback Function
	Completion Callback Registration Function
	Completion Callback Deregistration

	Event Notification
	Event Notification Signature
	Event Notification Registration
	Event Notification Deregistration
	MIPv6HA Control Event Frequency

	MIPv6 HA Service API
	NPF_Mipv6HA_BC_EntryAdd
	NPF_Mipv6HA_BC_EntryDelete
	NPF_Mipv6HA_BC_Flush
	NPF_Mipv6HA_BC_EntryAttrGet
	NPF_Mipv6HA_BC_EntryStatsGet
	NPF_Mipv6HA_ProxyND_AddressAdd
	NPF_Mipv6HA_ProxyND_AddressDelete
	NPF_Mipv6HA_ProxyND_Flush
	NPF_Mipv6HA_ProxyND_AddrStateGet
	NPF_Mipv6HA_BC_TableSpaceGet
	NPF_Mipv6HA_BC_GetAll
	NPF_Mipv6HA_ProxyND_TableSpaceGet
	NPF_Mipv6HA_ProxyND_GetAll

	Order of Operations

	References
	API Capabilities

