
Network Processing Forum Software Working Group

Next Hop LFB and Functional API
Implementation Agreement

April 6, 2005
Revision 1.0

Editor:
Reda Haddad, Ericsson { Reda.Haddad@Ericsson.com }

Copyright © 2005 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THIS DOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", “MAY", and "OPTIONAL" in the remainder of this
document are to be interpreted as described in the NPF Software API Conventions
Implementation Agreement revision 1.0.

For additional information contact:

The Network Processing Forum, 39355 California Street,
Suite 307, Fremont, CA 94538

+1 510 608-5990 phone info@npforum.org

 FAPI Task Group Page 1 of 66

mailto:Reda.Haddad@Ericsson.com
mailto:info@npforum.org

Network Processing Forum Software Working Group

Table of Contents
1 Revision History ... 2
2 Introduction... 4

2.1 Acronyms / Definitions... 4
2.2 Assumptions.. 4
2.3 Scope... 4
2.4 External Requirements and Dependencies.. 5

3 LFB Detailed Description ... 6
3.1 LFB Input Ports... 7
3.2 LFB Output Ports.. 8
3.3 Relationship with other LFBs ... 9

4 Data Types .. 12
4.1 Common LFB Data Types .. 13
4.2 Data Structures for Completion Callbacks ... 19
4.3 Data Structures for Event Notifications.. 21
4.4 Error Codes ... 23

5 Functional APIs (FAPIs)... 25
5.1 Required Functional APIs... 25
5.2 Optional Functional APIs ... 47

6 References... 56
Appendix A Header file information... 57
Appendix B Functionality not supported in IPv4 SAPI Rev1.0 ... 64
Appendix C Acknowledgements... 65
Appendix D List of companies belonging to NPF during approval process 66

Table of Figures
Figure 1 Generic LFB Diagram .. 7
Figure 2 Relationship with other LFBs... 10
Figure 3 NH LFB with RPF input connected ... 10
Figure 4 NH LFB with RPF input connected ... 11
Figure 5 One table approach ... 12
Figure 6 Two table approach .. 13

1 Revision History

V00 01/20/2004 Baseline text for Next Hop LFB/API
V01 01/27.2004 Changed the sources to “Reda Haddad” and added a comment to handle

exceptions (default handling)
Update to latest template doc (2003.407.05)
Clearly stated that TTL check is optional
Added an exception for TTL = 0
Added TTL as metadata
Added figure to show RPF usage

 FAPI Task Group Page 2 of 66

http://www.npforum.org/

Network Processing Forum Software Working Group

Added Appendix to show missing functionality in IPv4 SAPI
V02 09/28/2004 Added comments resolutions
V03 09/28/2004 Updated table of contents
V04 10/25/2004 Incorporate more comments resolutions
V05 10/28/2004 Change the LFB query to return the conservative estimate of the maximum

number of tables and entries instead of the min (as requested by the original
ballot comment submitter)

V06 10/29/2004 Added a caution on he usage of MTU in the Next Hop LFB.
V07 04/03/2005 Incorporate comments resolutions
V08 04/05/2005 Add ingress vif id to exc metadata, and remove the MTU scalability paragraph.
V09 04/05/2005 Make the ingress vif id more explicit in the exc metadata
V10 04/05/2005 Fit to LFB template and add ack section

Change the dscp and weight policies sections.
Reword section 1.4
Remove metadata types from section 2

V11 4/6/2005 Replaced title page, repositioned Revision History, added list of participating
companies.

 FAPI Task Group Page 3 of 66

Network Processing Forum Software Working Group

2 Introduction
Depending on the Forwarding plane NP architecture, a Forwarding Information Base (FIB) may
be modeled in several ways. One mode, the unified table model, uses a single table for
structuring and managing IPv4 unicast forwarding information. A second mode, the discrete
table model, uses separate Prefix and Next Hop tables for structuring and managing IPv4 unicast
forwarding information [IPV4SAPI].
This LFB relates to the discrete table model, specifically for the management of the Next Hop
tables. It is responsible for selecting a Next Hop from a possible set of Next Hops associated
with a prefix according to a preset policy (for example load balancing, MPLS LLSPs, …). It is
also responsible for checking if the egress interface MTU allows the current packet to be
forwarded without fragmentation (might trigger an ICMP packet if the DF bit is set and the MTU
is too small). It also optionally maintains the TTL value associated with the Next Hop entry, in
the case where TTL check is enabled.
The FAPI Logical Function Block APIs are used to configure LFB resources and associate
resources between LFBs. This contribution describes the Next Hop LFB and its associated APIs.

2.1 Acronyms / Definitions
The following are acronyms used in this document.

API Application Programming Interface
DF Don’t Fragment
FAPI Functional API
FIB Forwarding Information Base
ICMP Internet Control Message Protocol
LFB Logical Function Block
LLSP Label-Only-Inferred-PSC Label Switched Path
MPLS Multi-Protocol Label Switching
MTU Maximum Transfer Unit
RPF Reverse Path Forwarding
TTL Time To Live

2.2 Assumptions
There will be a separate Prefix LFB defined [IPV4FAPI] which will generate some of the
metadata needed by the Next Hop LFB defined in this document.

2.3 Scope
This contribution concentrates on the details of the Next Hop LFB and APIs. It is intended to be
used along with the Prefix LFB as part of the discrete model. A separate contribution will handle
any details of the unified model LFB.

 FAPI Task Group Page 4 of 66

Network Processing Forum Software Working Group

2.4 External Requirements and Dependencies
This API depends on the Software API Conventions [SWAPICON] and on the FAPI Topology
Discovery API [FAPITOPO]. This API was designed in view of the requirements set by the
ForCES WG [FORCESREQ] in the IETF.

 FAPI Task Group Page 5 of 66

Network Processing Forum Software Working Group

3 LFB Detailed Description
 [RFC1812] describes the steps involved in forwarding an IPv4 packet. Briefly, the router
receives the IP packet from the link layer, validates the IP header, processes any IP options
tagged with the IPv4 header, and examines the destination IP address to determine how it should
continue to process the IP datagram. The last step may result in the packet being queued for local
delivery, for forwarding, or for forwarding with a copy of the packet being queued for local
delivery. This last step can be broken into two functionalities, lookup and forwarding. The
lookup step is basically performing the prefix search usually on the destination IP address in the
packet and is covered in the Prefix LFB/FAPI document. The forwarding step selects the next
hop where the packet needs to be forwarded from a set of one or more next hop structures
associated with the matched prefix,. This LFB class, shown in Figure 1, manages the Next Hop
tables along with the Next Hop entities such as Next Hop Selector and Next Hop structures
defined in this document.

The content of the selected Next Hop structure depends on the type of Next Hop. For example,
an IPv4 next hop structure contains an IPv4 address and a reference to an egress interface used to
forward the packet. A Next Hop structure also determines whether a packet needs to be
forwarded to a locally attached host or a directly connected next hop router, or identifies that the
packet has reached its destination.
[RFC2991] and [RFC2992] identify the need for load balancing or equal cost multipath along
with ways to implement them. MPLS LLSPs [RFC3270] require the need for associating
different DSCP values with different Next Hops. All of the above are supported by a Next Hop
Selector grouping a set of Next Hops with an associated policy to select one Next Hop from the
set. The Selector structure allows for fast BGP reroute as shown in this document. This
document defines the usage and the management of the Next Hop Selector structures.

In addition to managing next hops, this LFB optionally performs Reverse Path Forwarding (RPF)
check. RPF is used for unicast traffic as a mechanism to block source address spoofing
[RFC2827]. When receiving a packet on the RPF ingress port (the port that performs the RPF
functionality), this LFB checks whether at least one of the outgoing interfaces specified in the
matched next hop entity, identified from the next hop entity id passed from the prefix LFB (the
lookup being done on the source IP address), matches the incoming interface (RPF checking
does not work well when asymmetric routing is allowed – it is usually performed at the edge of
the network). If the packet’s RPF check passes, the packet is then forwarded on the RPF egress
LFB port which may loop back into the Next Hop LFB (the existence of intermediate LFBs
before looping back is also possible) for normal next hop lookup based on the packet’s
destination address (Figure 3 illustrates the RPF description).
If the packet’s RPF check fails, an exception is triggered and the packet is forwarded on the
configured egress LFB port. Since RPF is optional, the ingress RPF port, if available as detected
by topology scan, can be left unconnected if this functionality is to be skipped.

[RFC1812] mentions that a router cannot check and decrement the TTL before checking whether
the packet should be delivered to the router itself. In general, the earliest stage of detecting
whether a packet needs to be forwarded or terminated is the Next Hop LFB. This LFB optionally
performs TTL decrement and TTL check, and issues an exception if the TTL reaches 0.

 FAPI Task Group Page 6 of 66

Network Processing Forum Software Working Group

Finally, this LFB performs egress interface MTU checks. If the packet’s length is larger than the
associated next hop MTU, this LFB further checks the packet’s DF bit. If the bit is set, a ‘packet
too big’ exception is generated. Otherwise, if the bit is not set, a ‘fragmentation required’
exception is generated.

Figure 1 Generic LFB Diagram

The block type code for the Next hop LFB is:

#define NPF_IPv4_NEXTHOP_LFB 11

3.1 LFB Input Ports
This LFB has two input ports labeled ‘in’ and ‘rpfi’:

- The ‘in’ input port, numerically labeled port 1, is the normal packet input and expects any
frame type (e.g. IPv4, IPv6, MPLS, etc.). Metadata, received along with packets on this
port, will be used to determine the next hop selector/entry, and the embedded TTL and
MTU values needed for the TTL and MTU checks, respectively. Packets with matched
non-MPLS next hops will be forwarded to the output port ‘out’. Packets with matched
MPLS next hops will be forwarded to the output port ‘mpls’, Packets with length larger
than the embedded next hop entry’s MTU will be forwarded to the output port ‘frag’.
Any exceptions (drop, icmp, etc.) will be forwarded to the output port ‘exc’.

- The ‘rpfi’ input port, numerically labeled port 2, is the RPF packet input and expects any

frame type (e.g., IPv4, IPv6, MPLS, etc.). Metadata, received along with packets on this
port, will be used to determine whether this packet fails the RPF check. If a packet fails

 IPv4
NH Select

IPv4 NH

???

in

LFB Instance

Unique LFB
Output port Class name
and output name

Input port
and input name out:

LFB instance name

rpfi
exc:

rpfo:

frag:

mpls:

Unique LFB instance Id

 FAPI Task Group Page 7 of 66

Network Processing Forum Software Working Group

the RPF check, an exception will be generated on output port ‘exc’. Otherwise, the packet
is forwarded to output port ‘rpfo’.

3.1.1 Metadata Required
The ‘in’ port requires the following metadata:

- Next Hop Table Id (as defined in section 4.1.21)
- Next Hop Entity Id (as defined in section 4.1.13)

The ‘rpfi’ port requires the following metadata:

- ingress vif id. Note that it is assumed that ingress and egress VIF IDs are identical for
the same network interface.

- Next Hop Table Id (as defined in section 4.1.21)
- Next Hop EntityId (as defined in section 4.1.13)

Note: the rpfi input next hop ids are derived based on the source ip address.

3.1.2 Optional Metadata
The ‘in’ port optionally receives:
 - The derived_DSCP: (an upstream derived DSCP value when the DSCP is not present in
the packet’s header e.g. for MPLS encapsulated packets).

3.2 LFB Output Ports
This LFB has five output ports labeled ‘out’, ‘mpls’, ‘exc’, ‘rpfo’ and ‘frag’. The metadata
produced on each port is described in next subsection.

- The ‘out’ output port, numerically labeled port 1, is the normal packet output. The frame
type associated with this port is the same as the frame type received on the ‘in’ input port.

- The ‘mpls’ output port, numerically labeled port 2, is the MPLS packet output. If a next

hop identifies that the packet is to be forwarded as an MPLS packet, this port is used to
insert the packet in the MPLS LFBs forwarding path versus the normal packet LFBs
forwarding path. The frame type associated with this port is the same as the frame type
received on the ‘in’ input port (can be IPv4, IPv6, MPLS).

- The ‘exc’ output port, numerically labeled port 3, is the exception packet output. Packets

are forwarded on this port when an exception occurs, for example when the next hop id is
not valid or when a packet needs to be dropped or when an icmp packet needs to be
generated or when a packet is to be forwarded to CP for further processing or local
termination. The frame type associated with this port is the same as the frame type
received on the ‘in’ input port (or on the ‘rpfi’ input port in the case when the packet is
received originally on the ‘rpfi’ input port).

- The ‘rpfo’ output port, numerically labeled port 4, is the RPF packet output. Packets

received on the ‘rpfi’ input port will be forwarded on this output port. The frame type
associated with this port is the same as the frame type received on the ‘in’ input port.

 FAPI Task Group Page 8 of 66

Network Processing Forum Software Working Group

- The ‘frag’ output port, numerically labeled port 5, is the “fragmentation needed” packet
output. A packet is forwarded on this output port when the packet, originally received on
the ‘in’ input port, fails the MTU check (assuming the check is enabled) and needs to be
fragmented before being forwarded on the normal LFB processing path. The frame type
associated with this port is the same as the frame type received on the ‘in’ input port
(note that some frames are not allowed to be fragmented, for which case an exception
will be triggered instead).

3.2.1 Metadata Produced
The ‘out’ port emits the following metadata:

- egress vif id
- IPv4 Address or IPv6 Address (depending whether the next hop is IPv4 or IPv6).

Note depending on whether the next hop is BASIC or DIRECT (see section 4.1.6)
this address is derived either from the next hop entry or the packet’s destination
address.

- The TTL value

The ‘mpls’ port emits the following metadata:

- egress vif id
- NHLFE Entry id (note: this type should be defined in the NHLFE LFB)
- The TTL value

The ‘exc’ port emits the following metadata:

- egress vif id IF available
- ingress vif id (passed through with the packet)
- Next Hop Exception (exception code, as defined in section 4.1.25)

The ‘rpfo’ port emits no metadata.

The ‘frag’ port emits the following metadata:

- egress vif id
- IPv4 Address (IPv4 next hop address, IPv6 does not allow fragmentation). Note

depending on whether the next hop is BASIC or DIRECT (see section 4.1.6) this
address is derived either from the next hop entry or the packet’s destination address.

- The TTL value
- The egress MTU value

3.3 Relationship with other LFBs
The IPv4 Prefix and Next Hop LFBs work in conjunction with other LFBs such as Egress VIF
and Packet Handler LFBs as shown in Figure 2, in order to properly forward the packet. The
figure does not force or dictate an implementation but rather gives an example of where the Next
Hop LFB may be situated.
The IPv4 Prefix LFB performs the prefix lookup on the packet’s destination address and passes
the Next Hop Id and the next hop table id metadatas to the Next Hop LFB. The Packet Handler

 FAPI Task Group Page 9 of 66

Network Processing Forum Software Working Group

LFB handles the delivery of local or exception packets to the local/remote protocol stacks. The
Egress VIF LFB carries information about the Egress Virtual Interface and its characteristics.

Figure 2 Relationship with other LFBs

Figure 2 shows the usage of the Next Hop LFB with the RPF input disconnected or not used.
Figure 3 shows an example of how the RPF input can be connected to make use of the RPF
functionality offered by this LFB.

IPv4 Prefix
LFB

Next Hop
LFB

Egres
LF

Packet Handler/
Redirector LFB

RPFoutRPFin RPFoutRPFin

P

Pkt +nhid
+nhtid

t
Pkt +
evifid

Figure 3 NH LFB with RPF input connected

Figure 4 shows an example of how the MPLS output port can be connected to an N
for the case of an MPLS FTN.

 FAPI Task Group
To C
s Vif
B

2

HLFE LF

Page 1
To L
Exceptions
Local pkts
 IPv4 pk
B

0 of 66

Network Processing Forum Software Working Group

Next Hop
LFB

IPv4 Prefix
LFB

NHLFE
LFB

Packet Handler/
Redirector LFB P

Pkt +nhid
+nhtid

RPFin
S

t
2

Figure 4 NH LFB with RPF

 FAPI Task Gro

MPL
Pkt +
nhlfeid

 input connected

up
To C
Page 1
To L
Exceptions
Local pkts
 IPv4 pk
1 of 66

Network Processing Forum Software Working Group

4 Data Types
This section describes the Next Hop FAPI data structures definitions. A Next Hop Selector
Structure, which possibly holds a number of Next Hop handles, is presented to handle load
balancing, and MPLS cases. Both a Next Hop and a Next Hop Selector are located by a prefix
entry in a Prefix table (within the prefix LFB). Figure 5 depicts a one table approach where both
Next Hop Selector and Next Hop structures are embedded in the same table.

Figure 5 One table approach

Figure 6 depicts a two table approach where Next Hop Selectors are in one table and the Next
Hop Structures are in another.

 FAPI Task Group Page 12 of 66

Network Processing Forum Software Working Group

Figure 6 Two table approach

Both approaches are supported by the same API which takes a union of the two structures and
differentiate between the two through an Entity type field.

Note that referring to an NPF_F_NHSelector_t from an NPF_F_NHSelector_t to form recursions
is optional and not disallowed in this document. Implementations not allowing such recursions
would return an error specifying that recursions are not supported.

4.1 Common LFB Data Types

4.1.1 Next Hop type
This enumerated type data structure is used to indicate whether a Next Hop is an IPv4, IPv6, or
other type of next hop.

typedef enum {
 NPF_F_NHTYPE_RESERVED = 0,
 NPF_F_NHTYPE_IPV4 = 1,
 NPF_F_NHTYPE_IPV6 = 2,
 NPF_F_NHTYPE_NHLFE = 3
} NPF_F_NHType_t;

4.1.2 IPv4 Next Hop
An IPv4 Next hop contains an IPv4 address of type NPF_IPv4Address_t (refer to section 4.1.7).

4.1.3 IPv6 Next Hop
An IPv6 Next hop contains an IPv6 address of type NPF_IPv6Address_t (refer to section 4.1.7).

 FAPI Task Group Page 13 of 66

Network Processing Forum Software Working Group

4.1.4 MPLS Next Hop
An MPLS Next hop data structure depicts an NHLFE and is defined as follows:

/*
 * Need to use the NHLFE entry id from NHLFE LFB (typedef)
 */

typedef NPF_uint32_t NPF_F_NHLFE_Entryid_t; /* This type should be
*defined in the NHLFE LFB

 */

4.1.5 Next Hop Flags
The following typedef describes the flags used in the Next Hop Structure.

typedef NPF_uint32_t NPF_F_NHFlags_t;

#define NPF_F_NHFLAGS_STATS_ON 0x1; /*enables stats on the next hop*/
#define NPF_F_NHFLAGS_COPYTOCP 0x2; /*delivers a copy to CP*/

The NPF_F_NHFLAGS_COPYTOCP flag is used to deliver a copy of the packet to CP. This
functionality can be used, as an example, for legal intercept.

4.1.6 Next Hop Options
The following enumeration describes the options used in the Next Hop Structure.

typedef enum {
 NPF_F_NHOPTION_BASIC = 0, /*use IP address in Next Hop struct*/
 NPF_F_NHOPTION_DIRECT = 1, /*use dest. IP in pkt*/
 NPF_F_NHOPTION_DROP = 2, /*Black hole*/
 NPF_F_NHOPTION_TOCP = 3 /*Send to CP*/
} NPF_F_NHOption_t;

In order to forward the packet, this LFB can use the IP address specified in the Next Hop
Structure (NPF_F_NHOPTION_BASIC – forward to next hop) or use the IP address specified in
the IP destination field of the packet’s header (NPF_F_NHOPTION_DIRECT – forward to
locally attached host).

Note that options to drop or to send to CP will force the packet to be forwarded on the exception
output port.

4.1.7 Next Hop Structure
A Next hop data structure is defined as follows:

typedef struct {
 NPF_F_NHOption_t option;
 NPF_F_NHFlags_t flags;
 NPF_uint32_t egressMTU;
 NPF_uint32_t egressVif; /*egress vif id*/
 NPF_uint8_t TTL;
 NPF_F_NHType_t type;
 union {

 FAPI Task Group Page 14 of 66

Network Processing Forum Software Working Group

 NPF_IPv4Address_t IPv4NextHop;
 NPF_IPv6Address_t IPv6NextHop;
 NPF_F_NHLFE_Entryid_t NHLFENextHop;
 } u;
} NPF_F_NHNextHop_t;

4.1.8 Next Hop Statistics Structure
A Next hop statistics structure is defined as follows:

typedef struct {
 NPF_uint64_t packetCount;
 NPF_uint64_t byteCount;
} NPF_F_NHStatistics_t;

Note that the statistics query functionality can help in verifying the load balancing schema and in
debugging forwarding errors.

4.1.9 Next Hop Selector policy type
This enumerated type data structure is used to indicate whether the Next Hop Selector policy is
based on weights, dscp values or other.

typedef enum {
 NPF_F_NHSELECTORTYPE_NONE = 0,
 NPF_F_NHSELECTORTYPE_WEIGHT = 1, /*Based on weight*/
 NPF_F_NHSELECTORTYPE_DSCP = 2, /*Based on DSCP*/
 NPF_F_NHSELECTORTYPE_ROUNDROBIN = 3 /*Round Robin per packet*/
} NPF_F_NHSelectorType_t;

4.1.10 Next Hop Selector weight policy
A Next Hop selector weight policy (selector type NPF_F_NHSELECTORTYPE_WEIGHT)
uses an integer value to assign the weight per next hop, refer to section 4.1.14.

The Next Hop selection algorithm takes the weights associated with each Next Hop and
distributes the load proportionally to the weights assigned (a Next hop with weight 2 should have
double the traffic (i.e. the number of flows) than a next hop with weight 1, relatively to the Next
Hops grouped in the Selector structure). This selector type insures that packets belonging to the
same flow (e.g. source ip, destination ip, source port, destination port) MUST flow through the
same next hop in order to preserve packet ordering within each flow. The algorithm to support
this type is hardware dependent and is beyond the scope of this document. For further reference,
[RFC2991] and [RFC2992] define ways and issues on handling multipath next hop selection.

4.1.11 Next Hop Selector DSCP policy
A Next Hop selector DSCP policy (selector type NPF_F_NHSELECTORTYPE_DSCP) uses an
8 bit field to specify the dscp code point that is associated with this next hop, refer to section
4.1.14.
The Next hop selection should be based on the incoming packet’s DSCP value (or a derived
equivalent DSCP value represented in the incoming metadata (optional metadata) if the DSCP is

 FAPI Task Group Page 15 of 66

Network Processing Forum Software Working Group

not present in the packet’s header e.g. MPLS encapsulated packet). For example, if the DSCP
associated with the Next Hop structure through the above policy is 6, then all packets with DSCP
6 should be forwarded to the associated next hop. An LLSP (LSP ingress node) is an example of
such policy.

4.1.12 Next Hop Selector Round Robin policy
A Next Hop selector Round Robin policy (selector type
NPF_F_NHSELECTORTYPE_ROUNDROBIN) has the weight variable associated with it. A
selector of this type will select in a weighted round robin fashion a next hop, out of the
associated next hops, for each packet passing through it. This selector type does not enforce
packet ordering within each flow (in fact, packets within each flow are expected to be reordered
if this selector type is used, and it is up to the user to deal with any packet reordering problems).
For example, if the selector has three next hops {A, B, C} with weights {3, 2, 1} respectively,
the selector would forward packets into next hops in the following manner: A, B, C, A, B, A, A,
B, C, A, B, A, etc.
Note for all weights equal to 1, the selector forwards packets in a simple round robin fashion: A,
B, C, A, B, C, etc.

4.1.13 Next Hop Entity Id
The following typedef defines the Next Hop Entity Id:

typedef NPF_uint32_t NPF_F_NHEntityId_t;

Note that the Entity Id is specified by the application and can be reused in different Next Hop
tables; The Entity Id should be unique within a Next Hop table.

4.1.14 Next Hop Selector entry
A Next Hop Selector entry data structure is defined as follows:

typedef struct {
 NPF_F_NHEntityId_t nextHopId;
 union {
 NPF_uint32_t weightPolicy;
 NPF_uint8_t DSCPPolicy;
 } u;
} NPF_F_NHSelectorEntry_t;

Note: The nextHopId field in the NPF_F_NHSelectorEntry_t can refer to an
NPF_F_NHNextHop_t structure or an NPF_F_NHSelector_t entry since recursions are allowed
although they might be not supported in some implementations (an error specifying so is
returned in the appropriate function call).
The weighPolicy or the DSCPPolicy fields, in the above structure, define the weight or the dscp
associated with this next hop, as mentioned in sections 4.1.10 and 4.1.11, respectively.

4.1.15 Next Hop Selector
A Next hop Selector entry data structure is defined as follows:

 FAPI Task Group Page 16 of 66

Network Processing Forum Software Working Group

typedef struct {
 NPF_F_NHSelectorType_t type;
 NPF_uint32_t numEntries;
 NPF_F_NHSelectorEntry_t *nhSelectorEntriesArray;
 NPF_F_NHEntityId_t defaultNextHopEntityId;
} NPF_F_NHSelector_t;

All entries that are not covered by the specified nhSelectorEntriesArray will be forwarded to the
Next Hop specified by defaultNextHopEntityId. For example, if a DSCP selector type is used,
and the DSCP value is not matched in any entry, the defaultNextHopEntityId is selected as the
next hop.

4.1.16 Next Hop Entity type
This enumerated type data structure is used to indicate whether the Next Hop Entity is a Next
Hop Selector or a Next Hop.

typedef enum {
 NPF_F_NHENTITY_NONE = 0,
 NPF_F_NHENTITY_NHSELECTOR = 1,
 NPF_F_NHENTITY_NEXTHOP = 2
} NPF_F_NHEntityType_t;

4.1.17 Next Hop Entity
A Next Hop Entity data structure is defined as follows:

typedef struct {
 NPF_F_NHEntityType_t type;
 union {
 NPF_F_NHNextHop_t nextHop;
 NPF_F_NHSelector_t nhSelector;
 } u;
} NPF_F_NHEntity_t;

4.1.18 Next Hop Entity with Id
The following structure combines a Next Hop Entity with a Next Hop Entity Id

typedef struct {
 NPF_F_NHEntityId_t nhEntityId;
 NPF_F_NHEntity_t nhEntity;
} NPF_F_NHEntityWithId_t;

4.1.19 Next Hop Entity Query Response
A Next Hop Entity Query Response data structure is defined as follows:

typedef struct {
 NPF_F_NHEntityId_t nhEntityId;
 NPF_F_NHEntity_t nhEntity;
} NPF_F_NHEntityQueryResp_t;

 FAPI Task Group Page 17 of 66

Network Processing Forum Software Working Group

4.1.20 Next Hop Table Handle
A Next hop table is uniquely identified by a table handle which is defined as follows:

typedef NPF_uint32_t NPF_F_NHTableHandle_t;

4.1.21 Next Hop Table Id
A Next hop table is uniquely identified by a table id which is defined as follows:

typedef NPF_uint32_t NPF_F_NHTableId_t;

Note: The table Id is provided from the FAPI client, whereas the Table handle is provided by the
FAPI implementation.

4.1.22 Next Hop Table Handle Id
A Next Hop Table Handle Id data structure is defined as follows:

typedef struct {
 NPF_F_NHTableId_t nhTableId;
 NPF_F_NHTableHandle_t tableHandle;
} NPF_F_NHTableHandleId_t;

4.1.23 Next Hop Tables Handles Query Response
A Next Hop Tables Handles Query Response data structure is defined as follows:

typedef struct {
 NPF_uint32_t numEntries;
 NPF_F_NHTableHandleId_t *nhTableHandleIdEntries;
} NPF_F_NHTablesHandlesQueryResp_t;

4.1.24 Next Hop LFB Query Response
A Next Hop LFB Query Response data structure is defined as follows:

typedef struct {
 NPF_uint32_t maxNumTables;
 NPF_uint32_t maxTableSize;
} NPF_F_NHLFBQueryResp_t;

4.1.25 Exception Handling
An exception is an occurrence of an event that triggers forwarding the packet beyond its normal
processing path. The following enumeration specifies the various exceptions:

typedef enum {
 NPF_F_NH_EXCEPTION_RESERVED = 0,
 NPF_F_NH_EXCEPTION_ICMP = 1,
 NPF_F_NH_EXCEPTION_RPF_FAILED = 2,
 NPF_F_NH_EXCEPTION_TTL_ZERO = 3,
 NPF_F_NH_EXCEPTION_DROP = 4,

 FAPI Task Group Page 18 of 66

Network Processing Forum Software Working Group

 NPF_F_NH_EXCEPTION_SENDTOCP = 5
} NPF_F_NHException_t;

4.2 Data Structures for Completion Callbacks
This section describes the completion callback data structures.

4.2.1 Asynchronous Response
This structure type definition holds asynchronous response/return information provided by a
Next Hop API callback function response.

typedef struct {
 NPF_F_NHReturnCode_t returnCode;
 union {
 NPF_F_NHTableHandle_t tableHandle;
 NPF_uint32_t tableSpaceRemaining;
 NPF_F_NHEntityId_t nhEntityId;
 NPF_F_NHEntityQueryResp_t nhEntityQueryResp;
 NPF_F_NHStatistics_t nhStatistics;
 NPF_F_NHTablesHandlesQueryResp_t nhTablesHandlesIds;
 NPF_F_NHLFBQueryResp_t nhLFBInfo;
 }u;
} NPF_F_NHAsyncResponse_t;

4.2.2 Callback Type
This enumerated type definition specifies the callback types.

typedef enum {
 NPF_F_NH_RESERVED = 0,
 NPF_F_NH_TABLE_HANDLE_CREATE = 1,
 NPF_F_NH_TABLE_FLUSH = 2,
 NPF_F_NH_TABLE_HANDLE_DELETE = 3,
 NPF_F_NH_TABLE_ATTRIBUTE_QUERY = 4,
 NPF_F_NH_ENTITY_ADD = 5,
 NPF_F_NH_ENTITY_DELETE = 6,
 NPF_F_NH_ENTITY_MODIFY = 7,
 NPF_F_NH_ENTITY_FLAGS_MODIFY = 8,
 NPF_F_NH_ENTITY_OPTION_MODIFY = 9,
 NPF_F_NH_ENTITY_EGRESSMTU_MODIFY = 10,
 NPF_F_NH_ENTITY_TTL_MODIFY = 11,
 NPF_F_NH_ENTITY_IPV4ADDR_MODIFY = 12,
 NPF_F_NH_ENTITY_IPV6ADDR_MODIFY = 13,
 NPF_F_NH_ENTITY_QUERY = 14,
 NPF_F_NH_STATISTICS_QUERY = 15,
 NPF_F_NH_STATISTICS_RESET = 16,
 NPF_F_NH_TABLESHANDLES_QUERY = 17,
 NPF_F_NH_LFB_QUERY = 18
} NPF_F_NHCallbackType_t;

4.2.3 Callback Data
This structure type definition holds the callback data information.

 FAPI Task Group Page 19 of 66

Network Processing Forum Software Working Group

typedef struct {
 NPF_F_NHCallbackType_t type;
 NPF_boolean_t allOk;
 NPF_uint32_t numResp;
 NPF_F_NHAsyncResponse_t *resp;
} NPF_F_NHCallbackData_t;

In the above structure, if all of the elements in the request issued by the original function call
complete successfully and there is no additional response data to return, the callback will return
an allOk value of NPF_TRUE, a numResp value of zero, and the array pointer will be null.
If not all of the responses are complete or if not all of the responses were successful or if there is
additional response data to return, allOk will be NPF_FALSE, the numResp field will be greater
than zero and the pointer to the resp array will be non-null. Failing elements will be determined
by examining the return code in each array element.

The following table maps the type field to the union field used in the
NPF_F_NHAsyncResponse_t structure. It also shows for each function call, the callback type
returned.

 FAPI Task Group Page 20 of 66

Network Processing Forum Software Working Group

Function Callback Type Callback Data

NPF_F_NHTableHandleCreate NPF_F_NH_TABLE_HANDLE_CREATE tableHandle
NPF_F_NHTableFlush NPF_F_NH_TABLE_FLUSH tableHandle
NPF_F_NHTableHandleDelete NPF_F_NH_TABLE_HANDLE_DELETE tableHandle
NPF_F_NHTableAttributeQuery NPF_F_NH_TABLE_ATTRIBUTE_QUERY tableSpaceRemaining
NPF_F_NHEntityAdd NPF_F_NH_ENTITY_ADD nhEntityId
NPF_F_NHEntityDelete NPF_F_NH_ENTITY_DELETE nhEntityId
NPF_F_NHEntityModify NPF_F_NH_ENTITY_MODIFY nhEntityId
NPF_F_NHEntityFlagsModify NPF_F_NH_ FLAGS_MODIFY nhEntityId
NPF_F_NHEntityOptionModify NPF_F_NH_OPTION_MODIFY nhEntityId
NPF_F_NHEntityEgressMTUModify NPF_F_NH_ EGRESSMTU_MODIFY nhEntityId
NPF_F_NHEntityTTLModify NPF_F_NH_TTL_MODIFY nhEntityId
NPF_F_NHEntityIPv4AddressModify NPF_F_NH_ IPV4ADDR_MODIFY nhEntityId
NPF_F_NHEntityIPv6AddressModify NPF_F_NH_IPV6ADDR_MODIFY nhEntityId
NPF_F_NHEntityQuery NPF_F_NH_ENTITY_QUERY nhEntityQueryResp
NPF_F_NHStatisticsQuery NPF_F_NH_STATISTICS_QUERY nhStatistics
NPF_F_NHStatisticsReset NPF_F_NH_STATISTICS_RESET nhEntityId
NPF_F_NHTablesHandleQuery NPF_F_NH_TABLESHANDLES_QUERY nhTablesHandlesIds
NPF_F_NHLFBQuery NPF_F_NH_LFB_QUERY nhLFBInfo

Table 1 NPF_F_NHCallbackType_t type mapping to NPF_F_NHAsyncResponse_t union type

4.3 Data Structures for Event Notifications
The following sections detail the information related to the Next Hop LFB events. When an
event routine is invoked, one of the parameters will be a structure holding information about the
occurred event.

4.3.1 Event Notification Types
The following enumeration indicates the type of the occurred event.

typedef enum {
 NPF_F_NH_TABLE_MISS_EVENT = 1,
 NPF_F_NH_ENTITY_MISS_EVENT = 2
} NPF_F_NHEvent_t;

The table miss event is triggered when the forwarding plane is unable to find a Next Hop table
for a specific packet forwarded from the Prefix LFB. This event is optional.

The entity miss event is triggered when the forwarding plane is unable to find a Next Hop Entity
within a Next Hop Table for a specific packet forwarded from the Prefix LFB. This event is
optional.

4.3.2 Next Hop Table Miss Event
A Next Hop LFB Table Miss Event is defined as follows

 FAPI Task Group Page 21 of 66

Network Processing Forum Software Working Group

typedef struct {
 NPF_F_NHTableId_t tableId; /*Metadata received on input port*/
} NPF_F_NHTableMiss_Event_t;

4.3.3 Next Hop Entity Miss Event
A Next Hop LFB Entity Miss Event is defined as follows

typedef struct {
 NPF_F_NHTableId_t tableId; /*Metadata received on input port*/
 NPF_F_NHEntityId_t nhEntityId; /*Metadata received on input port*/
} NPF_F_NHEntityMiss_Event_t;

4.3.4 Event Notification Structures
This section describes the various events which MAY be supported.
It is important to note that if an implementation does not support any of these events, the
implementation still needs to provide the event register and deregister functions to enable
interoperability.
It is important to note also that care should be taken when generating events so that they don’t
overload the control plane. Rate limiting events is good practice in general, but is beyond the
scope of this document.
The following structure defines all the possible event definitions for the Next Hop LFB. An
event type field indicates which member of the union is relevant in the structure. The packetSize
infers the size of the packet buffer that holds at least the IP packet header that caused the event.

typedef struct {
 NPF_F_NHEvent_t type;
 union {
 NPF_F_NHTableMiss_Event_t tableMiss;
 NPF_F_NHEntityMiss_Event_t entityMiss;
 } u;

 /* Associated with an event is the IP packet
 */
 NPF_uint32_t packetSize;
 NPF_uint8_t *packetBuffer;
} NPF_F_NHEventInfo_t;

The following structure represents the events provided when the event notification routine is
invoked:

typedef struct {
 NPF_uint32_t numEvents;
 NPF_F_NHEventInfo_t *eventArray;
} NPF_F_NHEventArray_t;

 FAPI Task Group Page 22 of 66

Network Processing Forum Software Working Group

The following define bit masks used in the event registration function to allow the application to
register for certain combination (all, some or none) of events.

/*
 * Definitions for Next Hop Events to be used in event mask
 */
#define NPF_F_NH_EVMASK_TABLE_MISS (1<<1)
#define NPF_F_NH_EVMASK_ENTITY_MISS (1<<2)

4.4 Error Codes
4.4.1 Common NPF Error Codes

 NPF_NO_ERROR -- This value MUST be returned when a function was
successfully invoked. This value is also used in completion callbacks where it MUST be
the only value used to signify success.

 NPF_E_UNKNOWN -- An unknown error occurred in the implementation such that
there is no error code defined that is more appropriate or informative.

 NPF_E_BAD_CALLBACK_HANDLE -- A function was invoked with a callback
handle that did not correspond to a valid NPF callback handle as returned by a
registration function, or a callback handle was registered with a registration function
belonging to a different API than the function call where the handle was passed in.

 NPF_E_BAD_CALLBACK_FUNCTION -- A callback registration was invoked
with a function pointer parameter that was invalid.

 NPF_E_CALLBACK_ALREADY_REGISTERED -- A callback or event
registration was invoked with a pair composed of a function pointer and a user context
which was previously used for an identical registration.

 NPF_E_FUNCTION_NOT_SUPPORTED -- This error value MUST be returned
when an optional function call is not implemented by an implementation. This error
value MUST NOT be returned by any required function call. This error value MUST
be returned as the function return value (i.e. synchronously).

 NPF_E_RESOURCE_EXISTS -- A duplicate request to create a resource was
detected. No new resource was created.

 NPF_E_RESOURCE_NONEXISTENT -- A duplicate request to destroy or free a
resource was detected. The resource was previously destroyed or never existed.

4.4.2 LFB Specific Error Codes
The following type definition holds the error code returned in function callbacks.

typedef NPF_uint32_t NPF_F_NHReturnCode_t;

The following are error codes returned from an invocation of a function or in function callbacks:

#define NPF_F_NH_E_INSUFFICIENT_STORAGE (NPF_F_NH_BASE_ERR+1)
#define NPF_F_NH_E_INVALID_ID (NPF_F_NH_BASE_ERR+2)
#define NPF_F_NH_E_BAD_FE_HANDLE (NPF_F_NH_BASE_ERR+3)

 FAPI Task Group Page 23 of 66

Network Processing Forum Software Working Group

#define NPF_F_NH_E_BAD_LFB_HANDLE (NPF_F_NH_BASE_ERR+4)
#define NPF_F_NH_E_BAD_TABLE_HANDLE (NPF_F_NH_BASE_ERR+5)
#define NPF_F_NH_E_NOT_AVAILABLE (NPF_F_NH_BASE_ERR+6)
#define NPF_F_NH_E_ID_DOES_NOT_APPLY (NPF_F_NH_BASE_ERR+7)
#define NPF_F_NH_E_BAD_EXCEPTION (NPF_F_NH_BASE_ERR+8)
#define NPF_F_NH_E_RECURSION_NOT_SUPORTED (NPF_F_NH_BASE_ERR+9)

 FAPI Task Group Page 24 of 66

Network Processing Forum Software Working Group

5 Functional APIs (FAPIs)

5.1 Required Functional APIs
5.1.1 Completion Callback Function

Syntax
typedef void (*NPF_F_NHCallBackFunc_t)(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_F_NHCallbackData_t nhCallbackData);

Description
This callback function is used by the application to register an asynchronous response handling
routine with the NPF FAPI Next Hop API implementation. This callback function is intended to
be implemented by the application, and registered with the NPF FAPI Next Hop API
implementation through NPF_F_NHRegister() function.

Input Parameters
• userContext – The context item that was supplied by the application when the completion

callback function was registered.
• correlator – The correlator item that was supplied by the application when the FAPI Next

Hop API function call was made. The correlator is used by the application mainly to
distinguish between multiple invocations of the same function.

• nhCallbackData – Response information related to the FAPI Next Hop API function call.
Contains information that are common among all functions, as well as information that
are specific to a particular function. See NPF_F_NHCallbackData_t definition, section
4.2.3, for details.

Output Parameters
None.

Return Value
None.

Asynchronous Response
Not Applicable.

Notes
None.

 FAPI Task Group Page 25 of 66

Network Processing Forum Software Working Group

5.1.2 Completion Callback Registration Function

Syntax
NPF_error_t NPF_F_NHRegister(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_F_NHCallBackFunc_t nhCallbackFunc,
 NPF_OUT NPF_callbackHandle_t *nhCallbackHandle);

Description
This function is used by an application to register its completion callback function for receiving
asynchronous responses related to NPF FAPI NH API function calls. The application may
register multiple callback functions using this function. The callback function is identified by the
pair of userContext and nhCallbackFunc, and for each individual pair, a unique
nhCallbackHandle will be assigned for future reference. Since the callback function is identified
by both userContext and nhCallbackFunc, duplicate registration of same callback function with
different userContext is allowed. Also, same userContext can be shared among different callback
functions. Duplicate registration of the same userContext and nhCallbackFunc pair has no effect,
and will output a handle that is already assigned to the pair, and will return
NPF_E_CALLBACK_ALREADY_REGISTERED.

Note : NPF_F_NHRegister() is a synchronous function and has no completion callback
associated with it.

Input Parameters
• userContext – A context item used for uniquely identifying the context of the application

registering the completion callback function. The exact value will be provided back to the
registered completion callback function as its 1st parameter when it is called. Application
can assign any value to the userContext and the value is completely opaque to the NPF
FAPI NH API implementation.

• nhCallbackFunc – The pointer to the completion callback function to be registered.

Output Parameters
• nhCallbackHandle – A unique identifier assigned for the registered userContext and

nhCallbackFunc pair. This handle will be used by the application to specify which
callback function to be called when invoking asynchronous NPF FAPI NH API
functions. It will also be used when de-registering the userContext and nhCallbackFunc
pair.

Return Values
• NPF_NO_ERROR – The registration completed successfully.
• NPF_E_BAD_CALLBACK_FUNCTION – nhCallbackFunc is NULL.
• NPF_E_CALLBACK_ALREADY_REGISTERED – No new registration was made

since the userContext and nhCallbackFunc pair was already registered.
Note: Whether this should be treated as an error or not is dependent on the application.

 FAPI Task Group Page 26 of 66

Network Processing Forum Software Working Group

Asynchronous Response
Not Applicable.

Notes
None.

5.1.3 Completion Callback Deregistration

Syntax
NPF_error_t NPF_F_NHDeregister(
 NPF_IN NPF_callbackHandle_t nhCallbackHandle);

Description
This function is used by an application to de-register a pair of user context and callback function.
Note: If there are any outstanding calls related to the de-registered callback function, the callback
function may be called for those outstanding calls even after de-registration.
Note: NPF_F_NHDeregister() is a synchronous function and has no completion callback
associated with it.

Input Parameters
• nhCallbackHandle – The unique identifier representing the pair of user context and

callback function to be de-registered.

Output Parameters
None.

Return Values
• NPF_ NO_ERROR – The de-registration completed successfully.
• NPF_ E_BAD_CALLBACK_HANDLE – The API implementation does not recognize

the callback handle. There is no effect to the registered callback functions.

Asynchronous Response
Not Applicable.

Notes
None.

5.1.4 Event Callback Function

Syntax
typedef void (*NPF_F_NHEventCallFunc_t) (
 NPF_IN NPF_userContext_t userContext,

 FAPI Task Group Page 27 of 66

Network Processing Forum Software Working Group

 NPF_OUT NPF_F_NHEventArray_t data);

Description
This function is a registered event notification routine for handling Next Hop LFB Events.

Input Parameters
• userContext – A context item used for uniquely identifying the context of the application

registering the completion callback function. The exact value will be provided back to the
registered completion callback function as its 1st parameter when it is called. Application
can assign any value to the userContext and the value is completely opaque to the NPF
FAPI NH API implementation.

• data – A structure containing an array of event info structures and a count to indicate how
many events are present.

Output Parameters
None.

Return Values
None.

Asynchronous Response
Not Applicable.

Notes
None.

5.1.5 Event Registration Function

Syntax
NPF_error_t NPF_F_NHEventRegister(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_F_NHEventCallFunc_t nhEventCallFunc,
 NPF_IN NPF_eventMask_t eventMask,
 NPF_OUT NPF_callbackHandle_t *nhEventCallHandle);

Description
This function is used by an application to register its event handling routine for receiving
notifications of Next Hop LFB Events. The application may register multiple event handling
routines using this function. The event handling routine is identified by the pair of userContext
and nhEventCallFunc, and for each individual pair, a unique nhEventCallHandle will be assigned
for future reference. Since the event handling routine is identified by both userContext and
nhEventCallFunc, duplicate registration of same event handling routine with different
userContext is allowed. Also, same userContext can be shared among different event handling

 FAPI Task Group Page 28 of 66

Network Processing Forum Software Working Group

routines. Duplicate registration of the same userContext and nhEventCallFunc pair has no effect,
and will output a handle that is already assigned to the pair, and will return
NPF_E_CALLBACK_ALREADY_REGISTERED.

Note : NPF_F_NHEventRegister () is a synchronous function and has no completion callback
associated with it.

Input Parameters
• userContext – A context item used for uniquely identifying the context of the application

registering the completion callback function. The exact value will be provided back to the
registered completion callback function as its 1st parameter when it is called. Application
can assign any value to the userContext and the value is completely opaque to the NPF
FAPI NH API implementation.

• eventMask – This is a bit mask of the Next Hop events. It allows the application to
register for those selected events.

• nhEventCallFunc – The pointer to the event handling routine to be registered.

Output Parameters
• nhEventCallHandle – A unique identifier assigned for the registered userContext and

nhEventCallFunc pair. This handle will be used by the application to specify which event
handling routine to be called when invoking asynchronous NPF FAPI NH API functions.
It will also be used when de-registering the userContext and nhEventCallFunc pair.

Return Values
• NPF_NO_ERROR – The registration completed successfully.
• NPF_E_BAD_CALLBACK_FUNCTION – nhEventCallFunc is NULL.
• NPF_E_CALLBACK_ALREADY_REGISTERED – No new registration was made

since the userContext and nhEventCallFunc pair was already registered.
Note: Whether this should be treated as an error or not is dependent on the application.

Asynchronous Response
Not Applicable.

Notes
None.

5.1.6 Event Deregistration Function

Syntax
NPF_error_t NPF_F_NHEventDeregister(
 NPF_IN NPF_callbackHandle_t eventCallHandle);

 FAPI Task Group Page 29 of 66

Network Processing Forum Software Working Group

Description
This function is used by an application to de-register a pair of user context and event Handler.
Note: If there are any outstanding calls related to the de-registered callback function, the callback
function may be called for those outstanding calls even after de-registration.
Note: NPF_F_NHEventDeregister() is a synchronous function and has no completion callback
associated with it.

Input Parameters
• eventCallHandle – The unique identifier representing the pair of user context and event

Handler to be de-registered.

Output Parameters
None.

Return Values
• NPF_NO_ERROR – The de-registration completed successfully.
• NPF_E_BAD_CALLBACK_HANDLE – The API implementation does not recognize

the event callback handle. There is no effect to the registered event Handler.

Asynchronous Response
Not Applicable.

Notes
None.

5.1.7 Next Hop Table Handle Create

Syntax
NPF_error_t NPF_F_NHTableHandleCreate (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableId_t nhTableId);

Description
This function creates a handle for a Next Hop Table with user specified Id. If the table Id is
already in use, an error is returned stating so.

Input Parameters
• callbackHandle – The unique identifier provided to the application when the completion

callback routine was registered.

 FAPI Task Group Page 30 of 66

Network Processing Forum Software Working Group

• correlator – A unique application invocation value that will be supplied to the
asynchronous completion callback routine.

• errorReporting – An indication of whether the application desires to receive an
asynchronous completion callback for this API function call.

• nhTableId – A Next Hop Table Id generated by the application. Must be nonzero and
different from Ids associated with Next Hop Tables previously created through this API.

• feHandle – The FE Handle returned by topology.
• lfbHandle – The Next Hop LFB Block Handle.

Output Parameters
None

Return Values
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN - The table handle creation did not execute due to unknown

problems.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_E_RESOURCE_EXISTS – The Next Hop Table id specified already exists. No

new handle will be created.

Asynchronous Response
An NPF_F_NHCallbackData_t structure will be returned with
NPF_F_NH_TABLE_HANDLE_CREATE as type, and the table handle will be returned in the
tableHandle field of the embedded NPF_F_NHAsyncResponse_t struct. The returnCode field in
the embedded NPF_F_NHAsyncResponse_t structure will carry one of the following possible
error codes:

• NPF_NO_ERROR – The operation succeeded, and the returned table handle is valid.
• NPF_E_RESOURCE_EXISTS – The Next Hop Table id specified already exists. No

new handle will be created. The returned handle is the current handle associated with the
specified table id.

• NPF_F_NH_E_INSUFFICIENT_STORAGE – The operation failed due to lack of
resources.

• NPF_F_NH_E_BAD_FE_HANDLE – The FE handle is not valid.
• NPF_F_NH_E_BAD_LFB_HANDLE – The LFB handle is not valid.

Notes
None.

5.1.8 Next Hop Table Flush

Syntax
NPF_error_t NPF_F_NHTableFlush (

 FAPI Task Group Page 31 of 66

Network Processing Forum Software Working Group

 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle);

Description
This function removes all Next Hop entities from the Next Hop Table specified by
nhTableHandle.

Input Parameters
• callbackHandle – The unique identifier provided to the application when the completion

callback routine was registered.
• correlator – A unique application invocation value that will be supplied to the

asynchronous completion callback routine.
• errorReporting – An indication of whether the application desires to receive an

asynchronous completion callback for this API function call.
• nhTableHandle – The Next Hop Table Handle designating the table to be flushed.
• feHandle – The FE Handle returned by topology.
• lfbHandle – The Next Hop LFB Block Handle.

Output Parameters
None

Return Values
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN - The table flush operation did not execute due to unknown

problems.
• NPF_F_NH_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

Asynchronous Response
An NPF_F_NHCallbackData_t structure will be returned with NPF_F_NH_TABLE_FLUSH as
type, and the table handle will be returned in the tableHandle field of the embedded
NPF_F_NHAsyncResponse_t struct. The returnCode field in the embedded
NPF_F_NHAsyncResponse_t structure will carry one of the following possible error codes:

• NPF_NO_ERROR – The operation succeeded, the returned table handle is valid, and the
table flushed.

• NPF_F_NH_E_BAD_TABLE_HANDLE – The table handle passed is invalid.
• NPF_E_UNKNOWN – Could not flush the table due to an unknown error.
• NPF_F_NH_E_BAD_FE_HANDLE – The FE handle is not valid.
• NPF_F_NH_E_BAD_LFB_HANDLE – The LFB handle is not valid.

 FAPI Task Group Page 32 of 66

Network Processing Forum Software Working Group

Notes
None.

5.1.9 Next Hop Table Handle Delete

Syntax
NPF_error_t NPF_F_NHTableHandleDelete (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle);

Description
This function removes the Next Hop Table identified by nhTableHandle.

Input Parameters
• callbackHandle – The unique identifier provided to the application when the completion

callback routine was registered.
• correlator – A unique application invocation value that will be supplied to the

asynchronous completion callback routine.
• errorReporting – An indication of whether the application desires to receive an

asynchronous completion callback for this API function call.
• nhTableHandle – The Next Hop Table Handle designating the table to be deleted.
• feHandle – The FE Handle returned by topology.
• lfbHandle – The Next Hop LFB Block Handle.

Output Parameters
None

Return Values
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN - The table delete operation did not execute due to unknown

problems.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

Asynchronous Response
An NPF_F_NHCallbackData_t structure will be returned with
NPF_F_NH_TABLE_HANDLE_DELETE as type, and the table handle will be returned in the
tableHandle field of the embedded NPF_F_NHAsyncResponse_t struct. The returnCode field in

 FAPI Task Group Page 33 of 66

Network Processing Forum Software Working Group

the embedded NPF_F_NHAsyncResponse_t structure will carry one of the following possible
error codes:

• NPF_NO_ERROR – The operation succeeded, the returned table handle is no longer
valid, and the table is deleted.

• NPF_F_NH_E_BAD_TABLE_HANDLE – The table handle passed is invalid.
• NPF_E_UNKNOWN – Could not delete the table due to an unknown error.
• NPF_F_NH_E_BAD_FE_HANDLE – The FE handle is not valid.
• NPF_F_NH_E_BAD_LFB_HANDLE – The LFB handle is not valid.

Notes
None.

5.1.10 Next Hop Entity Add

Syntax
NPF_error_t NPF_F_NHEntityAdd (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_NHEntityWithId_t *nhEntityWithIdArray);

Description
This function creates one or more Next Hop Entities in the specified Next Hop Table and returns
the Ids of the created entities associated with an error code in the callback structure. The
nhEntityWithIdArray is an array of size numEntries holding the Entities and their corresponding
Ids.
If a table entry already exists (the entity id is already in use), then the newly added entry with
same id will replace the old entry.

Input Parameters
• callbackHandle – The unique identifier provided to the application when the completion

callback routine was registered.
• correlator – A unique application invocation value that will be supplied to the

asynchronous completion callback routine.
• errorReporting – An indication of whether the application desires to receive an

asynchronous completion callback for this API function call.
• nhTableHandle – The Next Hop Table Handle designating the table where the entities are

added.
• feHandle – The FE Handle returned by topology.
• lfbHandle – The Next Hop LFB Block Handle.

 FAPI Task Group Page 34 of 66

Network Processing Forum Software Working Group

• numEntries – The number of elements in the nhEntityIdArray and nhEntityArray. Each
of these arrays has the same number of elements and they are positionally related.

• nhEntityWithIdArray – Pointer to an array of Next Hop Entities and Identifiers as
determined by the caller.

Output Parameters
None

Return Values
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The entries were not added due to unknown problems

encountered while handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An NPF_F_NHCallbackData_t
structure will be returned with NPF_F_NH_ENTITY_ADD as type, and the entity id will be
returned in the nhEntityId field of the embedded NPF_F_NHAsyncResponse_t struct. The
returnCode field in the embedded NPF_F_NHAsyncResponse_t structure will carry one of the
following possible error codes:

• NPF_NO_ERROR – The operation succeeded, and the returned Entity Id is valid.
• NPF_F_NH_E_INSUFFICIENT_STORAGE – The operation failed due to lack of

resources.
• NPF_F_NH_E_BAD_TABLE_HANDLE – The table handle passed is invalid.
• NPF_E_UNKNOWN – Could not add entry due to an unknown error.
• NPF_F_NH_E_BAD_FE_HANDLE – The FE handle is not valid.
• NPF_F_NH_E_BAD_LFB_HANDLE – The LFB handle is not valid.
• NPF_F_NH_E_RECURSION_NOT_SUPORTED – Next Hop Selector entries form a

recursion that is not supported.

Notes
None.

5.1.11 Next Hop Entity Delete

Syntax
NPF_error_t NPF_F_NHEntityDelete (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,

 FAPI Task Group Page 35 of 66

Network Processing Forum Software Working Group

 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_NHEntityId_t *nhEntityIdArray);

Description
This function deletes one or more Next Hop Entities in the specified Next Hop Table. The
nhEntityIdArray points to an array of Next Hop Entity Ids of size numEntries.
If a table entry does not exist (the entity id is not in use), the entry id is silently discarded.
If a Next Hop Entry referenced by the Prefix LFB does not exist, the Next Hop LFB MAY
generate an NPF_F_NH_TABLE_MISS_EVENT.

Input Parameters
• callbackHandle – The unique identifier provided to the application when the completion

callback routine was registered.
• correlator – A unique application invocation value that will be supplied to the

asynchronous completion callback routine.
• errorReporting – An indication of whether the application desires to receive an

asynchronous completion callback for this API function call.
• nhTableHandle – The Next Hop Table Handle designating the table where the entities are

to be deleted.
• feHandle – The FE Handle returned by topology.
• lfbHandle – The Next Hop LFB Block Handle.
• numEntries – The number of elements in the nhEntityIdArray.
• nhEntityIdArray – Pointer to an array of Next Hop Identifiers as determined by the caller.

Output Parameters
None

Return Values
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The entries were not deleted due to unknown problems

encountered while handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An NPF_F_NHCallbackData_t
structure will be returned with NPF_F_NH_ENTITY_DELETE as type and the entity id will be
returned in the nhEntityId field of the embedded NPF_F_NHAsyncResponse_t struct. The
returnCode field in the embedded NPF_F_NHAsyncResponse_t structure will carry one of the
following possible error codes:

• NPF_NO_ERROR – The operation succeeded, and the returned Entity Id is valid.
• NPF_F_NH_E_BAD_TABLE_HANDLE – The table handle passed is invalid.
• NPF_E_UNKNOWN – Could not delete entry due to an unknown error.

 FAPI Task Group Page 36 of 66

Network Processing Forum Software Working Group

• NPF_F_NH_E_BAD_FE_HANDLE – The FE handle is not valid.
• NPF_F_NH_E_BAD_LFB_HANDLE – The LFB handle is not valid.

Notes
None.

5.1.12 Next Hop Entity Modify

Syntax
NPF_error_t NPF_F_NHEntityModify (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_NHEntityWithId_t *nhEntityWithIdArray);

Description
This function modifies one or more Next Hop Entities in the specified Next Hop Table and
returns the Ids of the modified entities associated with error codes. The entries in the array would
replace the existing forwarding plane Next Hop Entities specified by the entity id entry in
nhEntityWithIdArray.
If a table entry does not exist (the entity id is not in use), an NPF_F_NH_E_INVALID_ID error
is assigned in the returnCode field of the NPF_F_NHAsyncResponse_t structure.

Input Parameters
• callbackHandle – The unique identifier provided to the application when the completion

callback routine was registered.
• correlator – A unique application invocation value that will be supplied to the

asynchronous completion callback routine.
• errorReporting – An indication of whether the application desires to receive an

asynchronous completion callback for this API function call.
• nhTableHandle – The Next Hop Table Handle designating the table where the entities are

added.
• feHandle – The FE Handle returned by topology.
• lfbHandle – The Next Hop LFB Block Handle.
• numEntries – The number of elements in the nhEntityIdArray and nhEntityArray. Each

of these arrays has the same number of elements and they are positionally related.
• nhEntityWithIdArray – Pointer to an array of Next Hop Entities and Identifiers as

determined by the caller.

Output Parameters
None

 FAPI Task Group Page 37 of 66

Network Processing Forum Software Working Group

Return Values
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The entries were not added due to unknown problems

encountered while handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An NPF_F_NHCallbackData_t
structure will be returned with NPF_F_NH_ENTITY_MODIFY as type and the entity id will be
returned in the nhEntityId field of the embedded NPF_F_NHAsyncResponse_t struct. The
returnCode field in the embedded NPF_F_NHAsyncResponse_t structure will carry one of the
following possible error codes:

• NPF_NO_ERROR – The operation succeeded, and the returned Entity Id is valid.
• NPF_F_NH_E_INSUFFICIENT_STORAGE – The operation failed due to lack of

resources.
• NPF_F_NH_E_BAD_TABLE_HANDLE – The table handle passed is invalid.
• NPF_E_UNKNOWN – Could not add entry due to an unknown error.
• NPF_F_NH_E_BAD_FE_HANDLE – The FE handle is not valid.
• NPF_F_NH_E_BAD_LFB_HANDLE – The LFB handle is not valid.
• NPF_F_NH_E_ID_DOES_NOT_APPLY – Function call doesn’t apply on the passed id.
• NPF_F_NH_E_RECURSION_NOT_SUPORTED – Next Hop Selector entries form a

recursion that is not supported.

Notes
None.

5.1.13 Next Hop Entity Flags Modify

Syntax
NPF_error_t NPF_F_NHEntityFlagsModify (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_F_NHEntityId_t nhEntityId,
 NPF_IN NPF_F_NHFlags_t newFlags);

Description
This function modifies the flags field of the Next Hop Entity specified by the nhEntityId
parameter. The newFlags field would replace the existing forwarding plane Next Hop Entity
flags.

 FAPI Task Group Page 38 of 66

Network Processing Forum Software Working Group

If a table entry does not exist (the entity id is not in use), an NPF_F_NH_E_INVALID_ID error
is assigned in the returnCode field of the NPF_F_NHAsyncResponse_t structure.

Input Parameters
• callbackHandle – The unique identifier provided to the application when the completion

callback routine was registered.
• correlator – A unique application invocation value that will be supplied to the

asynchronous completion callback routine.
• errorReporting – An indication of whether the application desires to receive an

asynchronous completion callback for this API function call.
• nhTableHandle – The Next Hop Table Handle designating the table where the entities are

added.
• feHandle – The FE Handle returned by topology.
• lfbHandle – The Next Hop LFB Block Handle.
• nhEntityId – The Next Hop Entity Id identifying the Next Hop Entity.
• newFlags – The new flags to replace the forwarding plane flags in the identified Next

Hop.

Output Parameters
None

Return Values
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The entries were not modified due to unknown problems

encountered while handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

Asynchronous Response
An NPF_F_NHCallbackData_t structure will be returned with NPF_F_NH_FLAGS_MODIFY
as type, and the entity id will be returned in the nhEntityId field of the embedded
NPF_F_NHAsyncResponse_t struct. The returnCode field in the embedded
NPF_F_NHAsyncResponse_t structure will carry one of the following possible error codes:

• NPF_NO_ERROR – The operation succeeded, and the returned Entity Id is valid.
• NPF_F_NH_E_BAD_TABLE_HANDLE – The table handle passed is invalid.
• NPF_E_UNKNOWN – Could not modify entry due to an unknown error.
• NPF_F_NH_E_BAD_FE_HANDLE – The FE handle is not valid.
• NPF_F_NH_E_BAD_LFB_HANDLE – The LFB handle is not valid.
• NPF_F_NH_E_ID_DOES_NOT_APPLY – Function call doesn’t apply on the passed id.

Notes
None.

 FAPI Task Group Page 39 of 66

Network Processing Forum Software Working Group

5.1.14 Next Hop Entity Option Modify

Syntax
NPF_error_t NPF_F_NHEntityOptionModify (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_F_NHEntityId_t nhEntityId,
 NPF_IN NPF_F_NHOption_t newOption);

Description
This function modifies the option field of the Next Hop Entity specified by the nhEntityId
parameter. The newOption field would replace the existing forwarding plane Next Hop Entity
option.
If a table entry does not exist (the entity id is not in use), an NPF_F_NH_E_INVALID_ID error
is assigned in the returnCode field of the NPF_F_NHAsyncResponse_t structure.

Input Parameters
• callbackHandle – The unique identifier provided to the application when the completion

callback routine was registered.
• correlator – A unique application invocation value that will be supplied to the

asynchronous completion callback routine.
• errorReporting – An indication of whether the application desires to receive an

asynchronous completion callback for this API function call.
• nhTableHandle – The Next Hop Table Handle designating the table where the entities are

added.
• feHandle – The FE Handle returned by topology.
• lfbHandle – The Next Hop LFB Block Handle.
• nhEntityId – The Next Hop Entity Id identifying the Next Hop Entity.
• newOption – The new option to replace the forwarding plane option in the identified

Next Hop.

Output Parameters
None

Return Values
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The entries were not modified due to unknown problems

encountered while handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

 FAPI Task Group Page 40 of 66

Network Processing Forum Software Working Group

Asynchronous Response
An NPF_F_NHCallbackData_t structure will be returned with
NPF_F_NH_ENTITY_OPTION_MODIFY as type, and the entity id will be returned in the
nhEntityId field of the embedded NPF_F_NHAsyncResponse_t struct. The returnCode field in
the embedded NPF_F_NHAsyncResponse_t structure will carry one of the following possible
error codes:

• NPF_NO_ERROR – The operation succeeded, and the returned Entity Id is valid.
• NPF_F_NH_E_BAD_TABLE_HANDLE – The table handle passed is invalid.
• NPF_E_UNKNOWN – Could not modify entry due to an unknown error.
• NPF_F_NH_E_BAD_FE_HANDLE – The FE handle is not valid.
• NPF_F_NH_E_BAD_LFB_HANDLE – The LFB handle is not valid.
• NPF_F_NH_E_ID_DOES_NOT_APPLY – Function call doesn’t apply on the passed id.

Notes
None.

5.1.15 Next Hop Entity egressMTU Modify

Syntax
NPF_error_t NPF_F_NHEntityEgressMTUModify (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_F_NHEntityId_t nhEntityId,
 NPF_IN NPF_uint32_t newEgressMTU);

Description
This function modifies the egressMTU field of the Next Hop Entity specified by the nhEntityId
parameter. The newEgressMTU field would replace the existing forwarding plane Next Hop
Entity egress MTU.
If a table entry does not exist (the entity id is not in use), an NPF_F_NH_E_INVALID_ID error
is assigned in the returnCode field of the NPF_F_NHAsyncResponse_t structure.

Input Parameters
• callbackHandle – The unique identifier provided to the application when the completion

callback routine was registered.
• correlator – A unique application invocation value that will be supplied to the

asynchronous completion callback routine.
• errorReporting – An indication of whether the application desires to receive an

asynchronous completion callback for this API function call.

 FAPI Task Group Page 41 of 66

Network Processing Forum Software Working Group

• nhTableHandle – The Next Hop Table Handle designating the table where the entities are
added.

• feHandle – The FE Handle returned by topology.
• lfbHandle – The Next Hop LFB Block Handle.
• nhEntityId – The Next Hop Entity Id identifying the Next Hop Entity.
• newEgressMTU – The new egress MTU to replace the forwarding plane egress MTU in

the identified Next Hop.

Output Parameters
None

Return Values
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The entries were not modified due to unknown problems

encountered while handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

Asynchronous Response
An NPF_F_NHCallbackData_t structure will be returned with
NPF_F_NH_EGRESSMTU_MODIFY as type, and the entity id will be returned in the
nhEntityId field of the embedded NPF_F_NHAsyncResponse_t struct. The returnCode field in
the embedded NPF_F_NHAsyncResponse_t structure will carry one of the following possible
error codes:

• NPF_NO_ERROR – The operation succeeded, and the returned Entity Id is valid.
• NPF_F_NH_E_BAD_TABLE_HANDLE – The table handle passed is invalid.
• NPF_E_UNKNOWN – Could not modify entry due to an unknown error.
• NPF_F_NH_E_BAD_FE_HANDLE – The FE handle is not valid.
• NPF_F_NH_E_BAD_LFB_HANDLE – The LFB handle is not valid.
• NPF_F_NH_E_ID_DOES_NOT_APPLY – Function call doesn’t apply on the passed id.

Notes
None.

5.1.16 Next Hop Entity TTL Modify

Syntax
NPF_error_t NPF_F_NHEntityTTLModify (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,

 FAPI Task Group Page 42 of 66

Network Processing Forum Software Working Group

 NPF_IN NPF_F_NHEntityId_t nhEntityId,
 NPF_IN NPF_uint8_t newTTL);

Description
This function modifies the TTL field of the Next Hop Entity specified by the nhEntityId
parameter. The newTTL field would replace the existing forwarding plane Next Hop Entity TTL.
If a table entry does not exist (the entity id is not in use), an NPF_F_NH_E_INVALID_ID error
is assigned in the returnCode field of the NPF_F_NHAsyncResponse_t structure.

Input Parameters
• callbackHandle – The unique identifier provided to the application when the completion

callback routine was registered.
• correlator – A unique application invocation value that will be supplied to the

asynchronous completion callback routine.
• errorReporting – An indication of whether the application desires to receive an

asynchronous completion callback for this API function call.
• nhTableHandle – The Next Hop Table Handle designating the table where the entities are

added.
• feHandle – The FE Handle returned by topology.
• lfbHandle – The Next Hop LFB Block Handle.
• nhEntityId – The Next Hop Entity Id identifying the Next Hop Entity.
• newTTL – The new TTL to replace the forwarding plane TTL in the identified Next Hop.

Output Parameters
None

Return Values
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The entries were not modified due to unknown problems

encountered while handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

Asynchronous Response
An NPF_F_NHCallbackData_t structure will be returned with
NPF_F_NH_ENTITY_TTL_MODIFY as type, and the entity id will be returned in the
nhEntityId field of the embedded NPF_F_NHAsyncResponse_t struct. The returnCode field in
the embedded NPF_F_NHAsyncResponse_t structure will carry one of the following possible
error codes:

• NPF_NO_ERROR – The operation succeeded, and the returned Entity Id is valid.
• NPF_F_NH_E_BAD_TABLE_HANDLE – The table handle passed is invalid.
• NPF_E_UNKNOWN – Could not modify entry due to an unknown error.
• NPF_F_NH_E_BAD_FE_HANDLE – The FE handle is not valid.

 FAPI Task Group Page 43 of 66

Network Processing Forum Software Working Group

• NPF_F_NH_E_BAD_LFB_HANDLE – The LFB handle is not valid.
• NPF_F_NH_E_ID_DOES_NOT_APPLY – Function call doesn’t apply on the passed id.

Notes
None.

5.1.17 Next Hop Entity IPv4 Address Modify

Syntax
NPF_error_t NPF_F_NHEntityIPv4AddressModify (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_F_NHEntityId_t nhEntityId,
 NPF_IN NPF_IPv4Address_t newIPv4Address);

Description
This function modifies the IPv4 Next Hop Address field of the Next Hop Entity IPv4NextHop
element of the union specified by the nhEntityId parameter. The newIPv4Address field would
replace the existing forwarding plane Next Hop Entity IPv4 Next Hop Address.
If a table entry does not exist (the entity id is not in use), an NPF_F_NH_E_INVALID_ID error
is assigned in the returnCode field of the NPF_F_NHAsyncResponse_t structure.

Input Parameters
• callbackHandle – The unique identifier provided to the application when the completion

callback routine was registered.
• correlator – A unique application invocation value that will be supplied to the

asynchronous completion callback routine.
• errorReporting – An indication of whether the application desires to receive an

asynchronous completion callback for this API function call.
• nhTableHandle – The Next Hop Table Handle designating the table where the entities are

added.
• feHandle – The FE Handle returned by topology.
• lfbHandle – The Next Hop LFB Block Handle.
• nhEntityId – The Next Hop Entity Id identifying the Next Hop Entity.
• newIPv4Address – The new IPv4 Address to replace the forwarding plane IPv4 Next

Hop Address in the identified Next Hop.

Output Parameters
None

 FAPI Task Group Page 44 of 66

Network Processing Forum Software Working Group

Return Values
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The entries were not modified due to unknown problems

encountered while handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

Asynchronous Response
An NPF_F_NHCallbackData_t structure will be returned with
NPF_F_NH_ENTITY_IPV4ADDR_MODIFY as type, and the entity id will be returned in the
nhEntityId field of the embedded NPF_F_NHAsyncResponse_t struct. The returnCode field in
the embedded NPF_F_NHAsyncResponse_t structure will carry one of the following possible
error codes:

• NPF_NO_ERROR – The operation succeeded, and the returned Entity Id is valid.
• NPF_F_NH_E_BAD_TABLE_HANDLE – The table handle passed is invalid.
• NPF_E_UNKNOWN – Could not modify entry due to an unknown error.
• NPF_F_NH_E_BAD_FE_HANDLE – The FE handle is not valid.
• NPF_F_NH_E_BAD_LFB_HANDLE – The LFB handle is not valid.
• NPF_F_NH_E_ID_DOES_NOT_APPLY – Function call doesn’t apply on the passed id.

Notes
None.

5.1.18 Next Hop Entity IPv6 Address Modify

Syntax
NPF_error_t NPF_F_NHEntityIPv6AddressModify (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_F_NHEntityId_t nhEntityId,
 NPF_IN NPF_IPv6Address_t newIPv6Address);

Description
This function modifies the IPv4 Next Hop Address field of the Next Hop Entity IPv6NextHop
element of the union specified by the nhEntityId parameter. The newIPv6Address field would
replace the existing forwarding plane Next Hop Entity IPv6 Next Hop Address.
If a table entry does not exist (the entity id is not in use), an NPF_F_NH_E_INVALID_ID error
is assigned in the returnCode field of the NPF_F_NHAsyncResponse_t structure.

 FAPI Task Group Page 45 of 66

Network Processing Forum Software Working Group

Input Parameters
• callbackHandle – The unique identifier provided to the application when the completion

callback routine was registered.
• correlator – A unique application invocation value that will be supplied to the

asynchronous completion callback routine.
• errorReporting – An indication of whether the application desires to receive an

asynchronous completion callback for this API function call.
• nhTableHandle – The Next Hop Table Handle designating the table where the entities are

added.
• feHandle – The FE Handle returned by topology.
• lfbHandle – The Next Hop LFB Block Handle.
• nhEntityId – The Next Hop Entity Id identifying the Next Hop Entity.
• newIPv6Address – The new IPv6 Address to replace the forwarding plane IPv6 Next

Hop Address in the identified Next Hop.

Output Parameters
None

Return Values
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The entries were not modified due to unknown problems

encountered while handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.

Asynchronous Response
An NPF_F_NHCallbackData_t structure will be returned with
NPF_F_NH_ENTITY_IPV6ADDR_MODIFY as type, and the entity id will be returned in the
nhEntityId field of the embedded NPF_F_NHAsyncResponse_t struct. The returnCode field in
the embedded NPF_F_NHAsyncResponse_t structure will carry one of the following possible
error codes:

• NPF_NO_ERROR – The operation succeeded, and the returned Entity Id is valid.
• NPF_F_NH_E_BAD_TABLE_HANDLE – The table handle passed is invalid.
• NPF_E_UNKNOWN – Could not modify entry due to an unknown error.
• NPF_F_NH_E_BAD_FE_HANDLE – The FE handle is not valid.
• NPF_F_NH_E_BAD_LFB_HANDLE – The LFB handle is not valid.
• NPF_F_NH_E_ID_DOES_NOT_APPLY – Function call doesn’t apply on the passed id.

Notes
None.

 FAPI Task Group Page 46 of 66

Network Processing Forum Software Working Group

5.2 Optional Functional APIs
5.2.1 Next Hop Table Attribute Query

Syntax
NPF_error_t NPF_F_NHTableAttributeQuery (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle);

Description
This function provides information about the specified Next Hop Table. Currently, the attributes
returned are:

• An estimate of the how many free entries are in this table.

Input Parameters
• callbackHandle – The unique identifier provided to the application when the completion

callback routine was registered.
• correlator – A unique application invocation value that will be supplied to the

asynchronous completion callback routine.
• errorReporting – An indication of whether the application desires to receive an

asynchronous completion callback for this API function call.
• nhTableHandle – The Next Hop table handle to be queried.
• feHandle – The FE Handle returned by topology.
• lfbHandle – The Next Hop LFB Block Handle.

Output Parameters
None

Return Values
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN - The table was not queried due to unknown problems.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_E_FUNCTION_NOT_SUPPORTED – The attribute query capability is not

supported by this implementation.

Asynchronous Response
An NPF_F_NHCallbackData_t structure will be returned with
NPF_F_NH_TABLE_ATTRIBUTE_QUERY as type, and the table space remaining will be
returned in the tableSpaceRemaining field of the embedded NPF_F_NHAsyncResponse_t struct.
The returnCode field in the embedded NPF_F_NHAsyncResponse_t structure will carry one of
the following possible error codes:

 FAPI Task Group Page 47 of 66

Network Processing Forum Software Working Group

• NPF_NO_ERROR – The operation succeeded, and the number of free entries returned in

the tableSpaceRemaining field.
• NPF_F_NH_E_BAD_TABLE_HANDLE – The Table handle is not valid.
• NPF_E_FUNCTION_NOT_SUPPORTED – The attribute query capability is not

supported by this implementation.
• NPF_F_NH_E_BAD_FE_HANDLE – The FE handle is not valid.
• NPF_F_NH_E_BAD_LFB_HANDLE – The LFB handle is not valid.

Notes
The amount of free space returned should be the worst-case conditions value, so that the
application can be assured that at least this many “Add” requests will succeed. In other words,
the implementation SHOULD be conservative in what it returns.

5.2.2 Next Hop Entity Query

Syntax
NPF_error_t NPF_F_NHEntityQuery (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_NHEntityId_t *nhEntityIdArray);

Description
This function queries one or more Next Hop Entities in the specified Next Hop Table. The
nhEntityIdArray points to an array of Next Hop Entity Ids of size numEntries.
If the entries exist, the content of the entries are returned in the completion callback, otherwise
an error of NPF_F_NH_E_INVALID_ID is assigned in the returnCode field of the
NPF_F_NHAsyncResponse_t structure.

Note: if numEntries is 0 (nhEntityIdArray MUST be NULL), this function returns ALL Next
Hop entities within that table.

Input Parameters
• callbackHandle – The unique identifier provided to the application when the completion

callback routine was registered.
• correlator – A unique application invocation value that will be supplied to the

asynchronous completion callback routine.
• errorReporting – An indication of whether the application desires to receive an

asynchronous completion callback for this API function call.

 FAPI Task Group Page 48 of 66

Network Processing Forum Software Working Group

• nhTableHandle – The Next Hop Table Handle designating the table where the entities are
to be queried.

• feHandle – The FE Handle returned by topology.
• lfbHandle – The Next Hop LFB Block Handle.
• numEntries – The number of elements in the nhEntityIdArray.
• nhEntityIdArray – Pointer to an array of Next Hop Identifiers as determined by the caller.

Output Parameters
None

Return Values
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The entries were not queried due to unknown problems

encountered while handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_E_FUNCTION_NOT_SUPPORTED – The entity query capability is not supported

by this implementation.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An NPF_F_NHCallbackData_t
structure will be returned with NPF_F_NH_ENTITY_QUERY as type, and the entity
information will be returned in the nhEntityQueryResp field of the embedded
NPF_F_NHAsyncResponse_t struct. The returnCode field in the embedded
NPF_F_NHAsyncResponse_t structure will carry one of the following possible error codes:

• NPF_NO_ERROR – The operation succeeded, and the returned struct is valid.
• NPF_F_NH_E_INVALID_ID – The entity id is invalid.
• NPF_E_UNKNOWN – Could not delete entry due to an unknown error.
• NPF_F_NH_E_BAD_FE_HANDLE – The FE handle is not valid.
• NPF_F_NH_E_BAD_LFB_HANDLE – The LFB handle is not valid.

Notes
None.

5.2.3 Next Hop Statistics Query

Syntax
NPF_error_t NPF_F_NHStatisticsQuery (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,

 FAPI Task Group Page 49 of 66

Network Processing Forum Software Working Group

 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_NHEntityId_t *nhEntityIdArray);

Description
This function queries one or more Next Hop Entities Statistics in the specified Next Hop Table.
The nhEntityIdArray points to an array of Next Hop Entity Ids of size numEntries.
If the entries statistics do not exist, an NPF_F_NH_E_NOT_AVAILABLE error is assigned in
the returnCode field of the NPF_F_NHAsyncResponse_t structure.

Input Parameters
• callbackHandle – The unique identifier provided to the application when the completion

callback routine was registered.
• correlator – A unique application invocation value that will be supplied to the

asynchronous completion callback routine.
• errorReporting – An indication of whether the application desires to receive an

asynchronous completion callback for this API function call.
• nhTableHandle – The Next Hop Table Handle designating the table where the entities are

to be queried.
• feHandle – The FE Handle returned by topology.
• lfbHandle – The Next Hop LFB Block Handle.
• numEntries – The number of elements in the nhEntityIdArray.
• nhEntityIdArray – Pointer to an array of Next Hop Identifiers as determined by the caller.

Output Parameters
None

Return Values
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The entries were not queried due to unknown problems

encountered while handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_E_FUNCTION_NOT_SUPPORTED – The statistics query capability is not

supported by this implementation.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An NPF_F_NHCallbackData_t
structure will be returned with NPF_F_NH_STATISTICS_QUERY as type, and the statistics
will be returned in the nhStatistics field of the embedded NPF_F_NHAsyncResponse_t struct.
The returnCode field in the embedded NPF_F_NHAsyncResponse_t structure will carry one of
the following possible error codes:

• NPF_NO_ERROR – The operation succeeded, and the returned struct is valid.

 FAPI Task Group Page 50 of 66

Network Processing Forum Software Working Group

• NPF_F_NH_E_INVALID_ID – The entity id is invalid.
• NPF_E_UNKNOWN – Could not delete entry due to an unknown error.
• NPF_F_NH_E_BAD_FE_HANDLE – The FE handle is not valid.
• NPF_F_NH_E_BAD_LFB_HANDLE – The LFB handle is not valid.
• NPF_F_NH_E_NOT_AVAILABLE – The stats for the queried entry are not available.

Notes
None.

5.2.4 Next Hop Statistics Reset

Syntax
NPF_error_t NPF_F_NHStatisticsReset (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_NHEntityId_t *nhEntityIdArray);

Description
This function resets one or more Next Hop Entities Statistics in the specified Next Hop Table.
The nhEntityIdArray points to an array of Next Hop Entity Ids of size numEntries.
If the entries statistics do not exist, an NPF_F_NH_E_NOT_AVAILABLE error is assigned in
the returnCode field of the NPF_F_NHAsyncResponse_t structure.

Input Parameters
• callbackHandle – The unique identifier provided to the application when the completion

callback routine was registered.
• correlator – A unique application invocation value that will be supplied to the

asynchronous completion callback routine.
• errorReporting – An indication of whether the application desires to receive an

asynchronous completion callback for this API function call.
• nhTableHandle – The Next Hop Table Handle designating the table where the entities are

to be queried.
• feHandle – The FE Handle returned by topology.
• lfbHandle – The Next Hop LFB Block Handle.
• numEntries – The number of elements in the nhEntityIdArray.
• nhEntityIdArray – Pointer to an array of Next Hop Identifiers as determined by the caller.

Output Parameters
None

 FAPI Task Group Page 51 of 66

Network Processing Forum Software Working Group

Return Values
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The entries were not reset due to unknown problems encountered

while handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_E_FUNCTION_NOT_SUPPORTED – The statistics reset capability is not

supported by this implementation.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An NPF_F_NHCallbackData_t
structure will be returned with NPF_F_NH_STATISTICS_RESET as type, and the Next hop Id
will be returned in the nhEntityId field of the embedded NPF_F_NHAsyncResponse_t struct.
The returnCode field in the embedded NPF_F_NHAsyncResponse_t structure will carry one of
the following possible error codes:

• NPF_NO_ERROR – The operation succeeded, and the returned struct is valid.
• NPF_F_NH_E_INVALID_ID – The entity id is invalid.
• NPF_E_UNKNOWN – Could not reset entry due to an unknown error.
• NPF_F_NH_E_BAD_FE_HANDLE – The FE handle is not valid.
• NPF_F_NH_E_BAD_LFB_HANDLE – The LFB handle is not valid.
• NPF_F_NH_E_NOT_AVAILABLE – The stats for the NH entries are not available.

Notes
None.

5.2.5 Next Hop Tables Handles Query

Syntax
NPF_error_t NPF_F_NHTablesHandleQuery (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle);

Description
This function returns All Next Hop table handles and their respective Ids within the specified FE
and LFB.
If no Next Hop table exists an NPF_F_NH_E_NOT_AVAILABLE error is assigned in the
returnCode field of the NPF_F_NHAsyncResponse_t structure.

 FAPI Task Group Page 52 of 66

Network Processing Forum Software Working Group

Input Parameters
• callbackHandle – The unique identifier provided to the application when the completion

callback routine was registered.
• correlator – A unique application invocation value that will be supplied to the

asynchronous completion callback routine.
• errorReporting – An indication of whether the application desires to receive an

asynchronous completion callback for this API function call.
• feHandle – The FE Handle returned by topology.
• lfbHandle – The Next Hop LFB Block Handle.

Output Parameters
None

Return Values
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The entries were not queried due to unknown problems

encountered while handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_E_FUNCTION_NOT_SUPPORTED – The tables handles query capability is not

supported by this implementation.

Asynchronous Response
There may be multiple asynchronous callbacks to this request. An NPF_F_NHCallbackData_t
structure will be returned with NPF_F_NH_TABLESHANDLES_QUERY as type, and the
handles will be returned in the nhTablesHandles field of the embedded
NPF_F_NHAsyncResponse_t struct. The returnCode field in the embedded
NPF_F_NHAsyncResponse_t structure will carry one of the following possible error codes:

• NPF_NO_ERROR – The operation succeeded, and the returned struct is valid.
• NPF_E_UNKNOWN – Could not query tables due to an unknown error.
• NPF_F_NH_E_BAD_FE_HANDLE – The FE handle is not valid.
• NPF_F_NH_E_BAD_LFB_HANDLE – The LFB handle is not valid.

Notes
None.

5.2.6 Next Hop LFB Query

Syntax
NPF_error_t NPF_F_NHLFBQuery (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,

 FAPI Task Group Page 53 of 66

Network Processing Forum Software Working Group

 NPF_IN NPF_BlockId_t lfbHandle);

Description
This function returns the conservative estimate of the maximum number of Next Hop tables that
could be created in this LFB, along with the conservative estimate of the maximum size (in
number of entries) of a table.

Input Parameters
• callbackHandle – The unique identifier provided to the application when the completion

callback routine was registered.
• correlator – A unique application invocation value that will be supplied to the

asynchronous completion callback routine.
• errorReporting – An indication of whether the application desires to receive an

asynchronous completion callback for this API function call.
• feHandle – The FE Handle returned by topology.
• lfbHandle – The Next Hop LFB Block Handle.

Output Parameters
None

Return Values
• NPF_NO_ERROR – The operation is in progress.
• NPF_E_UNKNOWN – The entries were not queried due to unknown problems

encountered while handling the input parameters.
• NPF_E_BAD_CALLBACK_HANDLE – The callback handle is not valid.
• NPF_E_FUNCTION_NOT_SUPPORTED – The LFB query capability is not supported

by this implementation.

Asynchronous Response
There could be only one asynchronous callback to this request. An NPF_F_NHCallbackData_t
structure will be returned with NPF_F_NH_LFB_QUERY as type, and the number of tables will
be returned in the nhLFBInfo field of the embedded NPF_F_NHAsyncResponse_t struct. The
returnCode field in the embedded NPF_F_NHAsyncResponse_t structure will carry one of the
following possible error codes:

• NPF_NO_ERROR – The operation succeeded, and the returned struct is valid.
• NPF_E_UNKNOWN – Could not query the LFB due to an unknown error.
• NPF_F_NH_E_BAD_FE_HANDLE – The FE handle is not valid.
• NPF_F_NH_E_BAD_LFB_HANDLE – The LFB handle is not valid.

Notes
None.

 FAPI Task Group Page 54 of 66

Network Processing Forum Software Working Group

 FAPI Task Group Page 55 of 66

Network Processing Forum Software Working Group

6 References
[FORCESREQ] ”Requirements for Separation of IP Control and Forwarding”, H. Khosravi, T. Anderson et

al, July 2002. (http://www.ietf.org/internet-drafts/draft-ietf-forces-requirements-06.txt)
[FAPITOPO] ”Topology Manager Functional API”, Implementation Agreement, Network Processing

Forum SWAPI Functional API TG, December 2004.
[IPV4SAPI] “IPv4 Unicast Forwarding Service API” - Implementation Agreement Revision 2.0-

Network Processing Forum SWAPI Foundations TG, June 2004
[IPV4FAPI] “IPv4 Prefix LFB and Functional API” – Implementation Agreement – Network Processing

Forum, February 2005
[RFC1812] “Requirements for IP Version 4 Routers” – RFC 1812
[RFC2827] “Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source

Address Spoofing” – RFC 2827
[RFC2991] “Multipath issues in unicast and multicast next-hop selection” – RFC 2991
[RFC2992] “Analysis of equal cost multi path algorithm” – RFC 2992
[RFC3270] “Multi-Protocol Label Switching (MPLS) Support of Differentiated Services” – RFC 3270
[SWAPICON] “Software API Conventions”, - Implementation Agreement - Network Processing Forum

SWAPI Foundations TG, 2003

 FAPI Task Group Page 56 of 66

Network Processing Forum Software Working Group

APPENDIX A HEADER FILE INFORMATION
typedef enum {
 NPF_F_NHTYPE_RESERVED = 0,
 NPF_F_NHTYPE_IPV4 = 1,
 NPF_F_NHTYPE_IPV6 = 2,
 NPF_F_NHTYPE_NHLFE = 3
} NPF_F_NHType_t;

/*
 * Need to use the NHLFE entry id from NHLFE LFB (typedef)
 */
typedef NPF_uint32_t NPF_F_NHLFE_Entryid_t ;/* This type should be defined in
 * the NHLFE LFB
 */

typedef NPF_uint32_t NPF_F_NHFlags_t;

#define NPF_F_NHFLAGS_STATS_ON 0x1; /*enables stats on the next hop*/
#define NPF_F_NHFLAGS_COPYTOCP 0x2; /*delivers a copy to CP*/

typedef enum {
 NPF_F_NHOPTION_BASIC = 0, /*use IP address in Next Hop struct*/
 NPF_F_NHOPTION_DIRECT = 1, /*use dest. IP in pkt*/
 NPF_F_NHOPTION_DROP = 2, /*Black hole*/
 NPF_F_NHOPTION_TOCP = 3 /*Send to CP*/
} NPF_F_NHOption_t;

typedef struct {
 NPF_F_NHOption_t option;
 NPF_F_NHFlags_t flags;
 NPF_uint32_t egressMTU;
 NPF_uint32_t egressVif; /*egress vif id*/
 NPF_uint8_t TTL;
 NPF_F_NHType_t type;
 union {
 NPF_IPv4Address_t IPv4NextHop;
 NPF_IPv6Address_t IPv6NextHop;
 NPF_F_NHLFEEntrid_t NHLFENextHop;
 } u;
} NPF_F_NHNextHop_t;

typedef struct {
 NPF_uint64_t packetCount;
 NPF_uint64_t byteCount;
} NPF_F_NHStatistics_t;

typedef enum {
 NPF_F_NHSELECTORTYPE_NONE = 0,
 NPF_F_NHSELECTORTYPE_WEIGHT = 1, /*Based on weight*/
 NPF_F_NHSELECTORTYPE_DSCP = 2, /*Based on DSCP*/
 NPF_F_NHSELECTORTYPE_ROUNDROBIN = 3 /*Round Robin per packet*/
} NPF_F_NHSelectorType_t;

 FAPI Task Group Page 57 of 66

Network Processing Forum Software Working Group

typedef NPF_uint32_t NPF_F_NHEntityId_t;

typedef struct {
 NPF_F_NHEntityId_t nextHopId;
 union {
 NPF_uint32_t weightPolicy;
 NPF_uint8_t DSCPPolicy;
 } u;
} NPF_F_NHSelectorEntry_t;

typedef struct {
 NPF_F_NHSelectorType_t type;
 NPF_uint32_t numEntries;
 NPF_F_NHSelectorEntry_t *nhSelectorEntriesArray;
 NPF_F_NHEntityId_t defaultNextHopEntityId;
} NPF_F_NHSelector_t;

typedef enum {
 NPF_F_NHENTITY_NONE = 0,
 NPF_F_NHENTITY_NHSELECTOR = 1,
 NPF_F_NHENTITY_NEXTHOP = 2
} NPF_F_NHEntityType_t;

typedef struct {
 NPF_F_NHEntityType_t type;
 union {
 NPF_F_NHNextHop_t nextHop;
 NPF_F_NHSelector_t nhSelector;
 } u;
} NPF_F_NHEntity_t;

typedef struct {
 NPF_F_NHEntityId_t nhEntityId;
 NPF_F_NHEntity_t nhEntity;
} NPF_F_NHEntityWithId_t;

typedef struct {
 NPF_F_NHEntityId_t nhEntityId;
 NPF_F_NHEntity_t nhEntity;
} NPF_F_NHEntityQueryResp_t;

typedef NPF_uint32_t NPF_F_NHTableHandle_t;

typedef NPF_uint32_t NPF_F_NHTableId_t;

typedef struct {
 NPF_F_NHTableId_t nhTableId;
 NPF_F_NHTableHandle_t tableHandle;
} NPF_F_NHTableHandleId_t;

typedef struct {
 NPF_uint32_t numEntries;
 NPF_F_NHTableHandleId_t *nhTableHandleIdEntries;
} NPF_F_NHTablesHandlesQueryResp_t;
typedef struct {
 NPF_uint32_t maxNumTables;

 FAPI Task Group Page 58 of 66

Network Processing Forum Software Working Group

 NPF_uint32_t maxTableSize;
} NPF_F_NHLFBQueryResp_t;

typedef enum {
 NPF_F_NH_EXCEPTION_RESERVED = 0,
 NPF_F_NH_EXCEPTION_ICMP = 1,
 NPF_F_NH_EXCEPTION_RPF_FAILED = 2,
 NPF_F_NH_EXCEPTION_TTL_ZERO = 3,
 NPF_F_NH_EXCEPTION_DROP = 4,
 NPF_F_NH_EXCEPTION_SENDTOCP = 5
} NPF_F_NHException_t;

typedef NPF_uint32_t NPF_F_NHReturnCode_t;

typedef struct {
 NPF_F_NHReturnCode_t returnCode;
 union {
 NPF_F_NHTableHandle_t tableHandle;
 NPF_uint32_t tableSpaceRemaining;
 NPF_F_NHEntityId_t nhEntityId;
 NPF_F_NHEntityQueryResp_t nhEntityQueryResp;
 NPF_F_NHStatistics_t nhStatistics;
 NPF_F_NHTablesHandlesQueryResp_t nhTablesHandlesIds;
 NPF_F_NHLFBQueryResp_t nhLFBInfo;
 }u;
} NPF_F_NHAsyncResponse_t;

typedef enum {
 NPF_F_NH_RESERVED = 0,
 NPF_F_NH_TABLE_HANDLE_CREATE = 1,
 NPF_F_NH_TABLE_FLUSH = 2,
 NPF_F_NH_TABLE_HANDLE_DELETE = 3,
 NPF_F_NH_TABLE_ATTRIBUTE_QUERY = 4,
 NPF_F_NH_ENTITY_ADD = 5,
 NPF_F_NH_ENTITY_DELETE = 6,
 NPF_F_NH_ENTITY_MODIFY = 7,
 NPF_F_NH_ENTITY_FLAGS_MODIFY = 8,
 NPF_F_NH_ENTITY_OPTION_MODIFY = 9,
 NPF_F_NH_ENTITY_EGRESSMTU_MODIFY = 10,
 NPF_F_NH_ENTITY_TTL_MODIFY = 11,
 NPF_F_NH_ENTITY_IPV4ADDR_MODIFY = 12,
 NPF_F_NH_ENTITY_IPV6ADDR_MODIFY = 13,
 NPF_F_NH_ENTITY_QUERY = 14,
 NPF_F_NH_STATISTICS_QUERY = 15,
 NPF_F_NH_STATISTICS_RESET = 16,
 NPF_F_NH_TABLESHANDLES_QUERY = 17,
 NPF_F_NH_LFB_QUERY = 18
} NPF_F_NHCallbackType_t;

typedef struct {
 NPF_F_NHCallbackType_t type;
 NPF_boolean_t allOk;
 NPF_uint32_t numResp;
 NPF_F_NHAsyncResponse_t *resp;
} NPF_F_NHCallbackData_t;

 FAPI Task Group Page 59 of 66

Network Processing Forum Software Working Group

typedef enum {
 NPF_F_NH_TABLE_MISS_EVENT = 1,
 NPF_F_NH_ENTITY_MISS_EVENT = 2
} NPF_F_NHEvent_t;

typedef struct {
 NPF_F_NHTableId_t tableId; /*Metadata received on input port*/
} NPF_F_NHTableMiss_Event_t;

typedef struct {
 NPF_F_NHTableId_t tableId; /*Metadata received on input port*/
 NPF_F_NHEntityId_t nhEntityId; /*Metadata received on input port*/
} NPF_F_NHEntityMiss_Event_t;

typedef struct {
 NPF_F_NHEvent_t type;
 union {
 NPF_F_NHTableMiss_Event_t tableMiss;
 NPF_F_NHEntityMiss_Event_t entityMiss;
 } u;

 /* Associated with an event is the IP packet
 */
 NPF_uint32_t packetSize;
 NPF_uint8_t *packetBuffer;
} NPF_F_NHEventInfo_t;

typedef struct {
 NPF_uint32_t numEvents;
 NPF_F_NHEventInfo_t *eventArray;
} NPF_F_NHEventArray_t;

#define NPF_F_NH_EVMASK_TABLE_MISS (1<<1)
#define NPF_F_NH_EVMASK_ENTITY_MISS (1<<2)

typedef void (*NPF_F_NHCallBackFunc_t)(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_F_NHCallbackData_t nhCallbackData);

NPF_error_t NPF_F_NHRegister(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_F_NHCallBackFunc_t nhCallbackFunc,
 NPF_OUT NPF_callbackHandle_t *nhCallbackHandle);

NPF_error_t NPF_F_NHDeregister(
 NPF_IN NPF_callbackHandle_t nhCallbackHandle);

typedef void (*NPF_F_NHEventCallFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_OUT NPF_F_NHEventArray_t data);

NPF_error_t NPF_F_NHEventRegister(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_F_NHEventCallFunc_t nhEventCallFunc,
 NPF_IN NPF_eventMask_t eventMask,

 FAPI Task Group Page 60 of 66

Network Processing Forum Software Working Group

 NPF_OUT NPF_callbackHandle_t *nhEventCallHandle);

NPF_error_t NPF_F_NHEventDeregister(
 NPF_IN NPF_callbackHandle_t eventCallHandle);

NPF_error_t NPF_F_NHTableHandleCreate (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableId_t nhTableId);

NPF_error_t NPF_F_NHTableFlush (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle);

NPF_error_t NPF_F_NHTableHandleDelete (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle);

NPF_error_t NPF_F_NHEntityAdd (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_NHEntityWithId_t *nhEntityWithIdArray);

NPF_error_t NPF_F_NHEntityDelete (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_NHEntityId_t *nhEntityIdArray);

NPF_error_t NPF_F_NHEntityModify (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_uint32_t numEntries,

 FAPI Task Group Page 61 of 66

Network Processing Forum Software Working Group

 NPF_IN NPF_F_NHEntityWithId_t *nhEntityWithIdArray);

NPF_error_t NPF_F_NHEntityFlagsModify (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_F_NHEntityId_t nhEntityId,
 NPF_IN NPF_F_NHFlags_t newFlags);

NPF_error_t NPF_F_NHEntityOptionModify (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_F_NHEntityId_t nhEntityId,
 NPF_IN NPF_F_NHOption_t newOption);

NPF_error_t NPF_F_NHEntityEgressMTUModify (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_F_NHEntityId_t nhEntityId,
 NPF_IN NPF_uint32_t newEgressMTU);

NPF_error_t NPF_F_NHEntityTTLModify (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_F_NHEntityId_t nhEntityId,
 NPF_IN NPF_uint8_t newTTL);

NPF_error_t NPF_F_NHEntityIPv4AddressModify (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_F_NHEntityId_t nhEntityId,
 NPF_IN NPF_IPv4Address_t newIPv4Address);

NPF_error_t NPF_F_NHEntityIPv6AddressModify (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,

 FAPI Task Group Page 62 of 66

Network Processing Forum Software Working Group

 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_F_NHEntityId_t nhEntityId,
 NPF_IN NPF_IPv6Address_t newIPv6Address);

NPF_error_t NPF_F_NHTableAttributeQuery (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle);

NPF_error_t NPF_F_NHEntityQuery (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_NHEntityId_t *nhEntityIdArray);

NPF_error_t NPF_F_NHStatisticsQuery (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_NHEntityId_t *nhEntityIdArray);

NPF_error_t NPF_F_NHStatisticsReset (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle,
 NPF_IN NPF_F_NHTableHandle_t nhTableHandle,
 NPF_IN NPF_uint32_t numEntries,
 NPF_IN NPF_F_NHEntityId_t *nhEntityIdArray);

NPF_error_t NPF_F_NHTablesHandleQuery (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle);

NPF_error_t NPF_F_NHLFBQuery (
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t lfbHandle);

 FAPI Task Group Page 63 of 66

Network Processing Forum Software Working Group

APPENDIX B FUNCTIONALITY NOT SUPPORTED IN IPV4 SAPI REV1.0
The following is a list of items that may need to be revised in the IPv4 SAPI IA Rev1.0 in order
to support suggested functionality in the Next Hop LFB:

• This Next Hop LFB is based on the discrete model. The IPv4 SAPI states that the discrete
model is optional.

• The notion of Next Hop Selector, firstly introduced in the MPLS SAPI IA, is not
supported in the IPv4 SAPI. And thus, the flexibility of having different Next Hop
Selector types is missing from the IPv4 SAPI IA Revision 1.0. Note that this document
supports the MPLS SAPI Next Hop Selector Equivalent.

• The Next hop structures defined here and in the IPv4 SAPI are not aligned (TTL, ..).
• The IPv4 SAPI does not support optional counters per Next Hop entry.
• Optional functions NPF_F_NHStatisticsQuery(), NPF_F_NHStatisticsReset(),

NPF_F_NHTablesHandleQuery(), are not supported in the IPv4 SAPI. Other individual
next hop parameters set functions are also not supported.

 FAPI Task Group Page 64 of 66

Network Processing Forum Software Working Group

APPENDIX C ACKNOWLEDGEMENTS

Working Group Chair: Alex Conta

Working Group Editor: John Renwick

Task Group Chair: Alistair Munro

The following individuals are acknowledged for their participation in the FAPI TG
teleconferences, plenary meetings, mailing list, and/or for their NPF contributions used for the
development of this Implementation Agreement. This list may not be all-inclusive since only
names supplied by member companies for inclusion here will be listed. The NPF wishes to thank
all active participants to this Implementation Agreement, whether listed here or not.

The list is in alphabetical order of last names:

Steven Blake, Modular Networks, Inc.
Gamil Cain, Intel
Ellen Deleganes, Intel
Reda Haddad, Ericsson (Document Editor)
Zsolt Harazsti, Modular Networks, Inc.
Hormuzd Khosravi, Intel
Vinoj Kumar, Agere Systems
David Maxwell, IDT
Alistair Munro, u4eatech
David Putzolu, Intel
John Renwick, Agere Systems

 FAPI Task Group Page 65 of 66

Network Processing Forum Software Working Group

APPENDIX D LIST OF COMPANIES BELONGING TO NPF DURING APPROVAL
PROCESS

Agere Systems Hifn PMC Sierra

Altera IBM Seaway Networks

AMCC IDT Sensory Networks

Analog Devices Infineon Technologies AG Sun Microsystems

Avici Systems Intel Teja Technologies

Cypress Semiconductor IP Fabrics TranSwitch

Enigma Semiconductor IP Infusion U4EA Group

Ericsson Motorola Wintegra

Erlang Technologies Mercury Computer Systems Xelerated

Flextronics NetLogic Xilinx

Freescale Semiconductor Nokia ZNYX Networks

HCL Technologies NTT Electronics

 FAPI Task Group Page 66 of 66

	Revision History
	Introduction
	Acronyms / Definitions
	Assumptions
	Scope
	External Requirements and Dependencies

	LFB Detailed Description
	LFB Input Ports
	Metadata Required
	Optional Metadata

	LFB Output Ports
	Metadata Produced

	Relationship with other LFBs

	Data Types
	Common LFB Data Types
	Next Hop type
	IPv4 Next Hop
	IPv6 Next Hop
	MPLS Next Hop
	Next Hop Flags
	Next Hop Options
	Next Hop Structure
	Next Hop Statistics Structure
	Next Hop Selector policy type
	Next Hop Selector weight policy
	Next Hop Selector DSCP policy
	Next Hop Selector Round Robin policy
	Next Hop Entity Id
	Next Hop Selector entry
	Next Hop Selector
	Next Hop Entity type
	Next Hop Entity
	Next Hop Entity with Id
	Next Hop Entity Query Response
	Next Hop Table Handle
	Next Hop Table Id
	Next Hop Table Handle Id
	Next Hop Tables Handles Query Response
	Next Hop LFB Query Response
	Exception Handling

	Data Structures for Completion Callbacks
	Asynchronous Response
	Callback Type
	Callback Data

	Data Structures for Event Notifications
	Event Notification Types
	Next Hop Table Miss Event
	Next Hop Entity Miss Event
	Event Notification Structures

	Error Codes
	Common NPF Error Codes
	LFB Specific Error Codes

	Functional APIs (FAPIs)
	Required Functional APIs
	Completion Callback Function
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Value
	Asynchronous Response
	Notes
	Completion Callback Registration Function
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Completion Callback Deregistration
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Event Callback Function
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Event Registration Function
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Event Deregistration Function
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Next Hop Table Handle Create
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Next Hop Table Flush
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Next Hop Table Handle Delete
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Next Hop Entity Add
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Next Hop Entity Delete
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Next Hop Entity Modify
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Next Hop Entity Flags Modify
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Next Hop Entity Option Modify
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Next Hop Entity egressMTU Modify
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Next Hop Entity TTL Modify
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Next Hop Entity IPv4 Address Modify
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Next Hop Entity IPv6 Address Modify
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes

	Optional Functional APIs
	Next Hop Table Attribute Query
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Next Hop Entity Query
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Next Hop Statistics Query
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Next Hop Statistics Reset
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Next Hop Tables Handles Query
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes
	Next Hop LFB Query
	Syntax
	Description
	Input Parameters
	Output Parameters
	Return Values
	Asynchronous Response
	Notes

	References

