
Network Processing Forum Software Working Group

ATM Task Group 1

ATM Adaptation Layer 1 (AAL1) Transmit
LFB and Functional API

Implementation Agreement
January 23, 2006

Revision 1.0

Editor:

Vedvyas Shanbhogue, Intel, vedvyas.shanbhogue@intel.com

Copyright © 2006 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THIS DOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", “MAY", and "OPTIONAL" in the remainder of this document are to be interpreted as
described in the NPF Software API Conventions Implementation Agreement revision 1.0.

For additional information contact:
The Network Processing Forum, 39355 California Street,

Suite 307, Fremont, CA 94538
+1 510 608-5990 phone  info@npforum.org

Network Processing Forum Software Working Group

ATM Task Group 2

Table of Contents
1 Revision History ... 3
2 Introduction... 4

2.1 Acronyms.. 4
2.2 Assumptions.. 5
2.3 Scope ... 5
2.4 External Requirements and Dependencies.. 5

3 AAL1 Transmit LFB Description... 6
3.1 AAL1 Transmit LFB Inputs.. 7
3.2 AAL1 Transmit Outputs ... 7
3.3 Accepted Inputs .. 7
3.4 Input Modifications... 8
3.5 Relationship with Other LFBs .. 8

4 Data Types .. 10
4.1 Common LFB Data Types .. 10
4.2 Data Structures for Completion Callbacks ... 10
4.3 Data Structures for Event Notifications.. 11
4.4 Error Codes ... 11

5 Functional API (FAPI).. 13
5.1 Required Functions ... 13
5.2 Conditional Functions... 13
5.3 Optional Functions.. 15

6 References... 16
Appendix A Header File Information.. 17
Appendix B Acknowledgements... 19
Appendix C List of companies belonging to NPF during approval process 20

Table of Figures
Figure 2.1: Example of PDH interface to AAL1 VC interoworking to provide structured and
unstructure circuit emulation services ...4
Figure 3.1: AAL1 Transmit LFB ..6
Figure 3.2: Virtual Link Instances...6
Figure 3.2: Cooperation between AAL1 Transmit and TDM Receive LFB.................................8

List of Tables
Table 3.1: AAL1 Transmit LFB Inputs ..7
Table 3.2: Input Metadata for AAL1 Transmit LFB ..7
Table 3.3: AAL1 Transmit LFB Outputs ...7
Table 3.4: Output Metadata for AAL1 Transmit LFB ...7
Table 4.1: Callback type to callback data mapping table... 11

Network Processing Forum Software Working Group

ATM Task Group 3

1 Revision History
Revision Date Reason for Changes

1.0 01/23/06 Rev 1.0 of the AAL1 Transmit LFB and Functional API
Implementation Agreement. Source: npf2006.022.00.

Network Processing Forum Software Working Group

ATM Task Group 4

2 Introduction
This implementation agreement defines the ATM Adaptation Layer 1 (AAL1) Transmit LFB and lists the
configurations required by the LFB. The AAL1 provides a mechanism to its service users to transfer and
deliver service data units with a constant bit rate across an ATM network.

The AAL1 Transmit LFB receives TDM payload from the TDM receive LFB and performs the SAR and
CS sublayer functions required for assembling AAL1 SAR PDU as per ITU recommendation I.363.1.

The AAL1 VCs are bound to PDH interfaces for interworking between the TDM and ATM domains.
Interworking between the ATM and PDH interfaces is performed by binding AAL1 VCs to PDH
interfaces using a parent-child relationship as shown below. A given AAL1 VC may be bound to one and
only one PDH interface.

Figure 2.1: Example of PDH interface to AAL1 VC interoworking to provide
structured and unstructure circuit emulation services

2.1 Acronyms
• ATM: Asynchronous Transfer Mode

• AAL: ATM Adaptation Layer

• AAL1: ATM Adaptation Layer Type 1

• API: Application Programming Interface

• CS: Convergence Sublayer

• FEC: Forward error correction

Network Processing Forum Software Working Group

ATM Task Group 5

• FAPI: Functional API

• IA: Implementation Agreement

• ID: Identifier

• LFB: Logical Functional Block

• NNI: Network Node Interface

• PTI: Payload Type Indicator

• PVC: Permanent Virtual Connection

• RTS: Residual Time Stamp

• SDT: Structured Data Transfer

• SRTS: Synchronous Residual Time Stamp

• SAR: Segmentation and Reassembly

• SDU: Service Data Unit

• SSCS: Service specific convergence sublayer

• UNI: User Network Interface

• VC: Virtual Channel

2.2 Assumptions
The AAL1 Transmit LFB obtains its configurations from the ATM Configuration Manager Functional
API implementation. The mechanism used to obtain this configuration is not in the scope of NPF.

2.3 Scope
This IA describes the configurations required by the LFB for VP/VC links and interfaces. The IA also
specifies the metadata generated and consumed by this LFB.

2.4 External Requirements and Dependencies
This document depends on the following documents:

• This document depends on the NPF Software API Conventions Implementation Agreement
document [SWAPICON] for basic type definitions. (Refer section 5.1 of Software API
Conventions IA Revision 2.0).

• This document depends on Software API Conventions Implementation agreement Revision 2.0
for below the type definitions

o NPF_error_t – Refer section 5.2 of Software API Conventions IA Rev 2.0
o NPF_callbackHandle_t - Refer section 5.2 of Software API Conventions IA Rev 2.0
o NPF_callbackType_t - Refer section 5.2 of Software API Conventions IA Rev 2.0
o NPF_userContext_t - Refer section 5.2 of Software API Conventions IA Rev 2.0
o NPF_errorReporting_t - Refer section 5.2 of Software API Conventions IA Rev 2.0

• This document depends on Topology Manager Functional API Implementation Agreement
Revision 1.0 for the below type definitions

o NPF_BlockId_t – Refer section 3.1.1 of Topology Manager Functional API IA Rev 1.0
o NPF_FE_Handle_t – Refer section 3.1.1 of Topology Manager Functional API IA Rev

1.0

• ATM Software API Architecture Framework Implementation Agreement Revision 1.0 defines the
architectural framework for the ATM FAPIs.

• ATM Configuration Manager Functional API Implementation Agreement Revision 1.0 defines
the functions to configure and manage ATM LFBs on a forwarding element.

Network Processing Forum Software Working Group

ATM Task Group 6

3 AAL1 Transmit LFB Description
The AAL1 Transmit LFB receives TDM payload from the TDM interface. The CS sublayer function
blocks the received TDM data to form 47-octet blocks of SAR PDU payload. Depending on the
configuration of the AAL1 VC emulating the circuit, the CS functions may fill the SAR PDU fully or till
a configured number of octets have been received from the TDM interface. The SAR sublayer functions
are then carried out to add a one byte SAR PDU header to the 47-octet block to form the SAR PDU. The
SAR PDU is then sent to the ATM layer for transmission on the line after execution of suitable functions
like queuing, scheduling etc. The format in which the LFB expects the TDM payload and associated CAS
information (in SDT mode) is outside the scope of NPF.

The LFB may contain multiple instances of VC links identified by their VC Link IDs. The TDM payload
received from the TDM interface are associated with the VC link on which the corresponding circuit is
emulated using the interface ID of the PDH interface on which the TDM payload was received. A VC
link instance may be bound to the PDH interface that is emulated by this VC link.

Such virtual link instances are depicted in Figure 3.2 below. The maximum number of VC links is an
attribute of the AAL1 Transmit LFB and may be queried as such.

The AAL1 Transmit LFB is modeled as shown in Figure 3.1:

n4

AAL1 Transmit

AAL1 Transmit
Instance Name

TDM_IN(0)

ATM_SDU_OUT(1)

EXC(2)

Figure 3.1: AAL1 Transmit LFB

The AAL1 Transmit LFB when configured to operate in the SRTS mode for source clock recovery
computes the residual time stamp to convey timing information to the receiver. The mechanisms used to
determine the RTS is outside the scope of NPF.

VC Link 2

VC Link 3

VC Link 4

VC Link N

VC Link 1

. . .

Figure 3.2: Virtual Link Instances

Network Processing Forum Software Working Group

ATM Task Group 7

3.1 AAL1 Transmit LFB Inputs

Table 3.1: AAL1 Transmit LFB Inputs

Symbolic Name Input ID Description
TDM_IN 0 This is the only input for the AAL1 Transmit LFB

and is used to receive TDM payload for transfer
over the AAL1 VC link.

3.1.1 Metadata Required

Table 3.2: Input Metadata for AAL1 Transmit LFB

Metadata tag Access method Description

META_IF_ID Read Metadata identifying the TDM interface on which
the TDM payload was received.

3.2 AAL1 Transmit Outputs

Table 3.3: AAL1 Transmit LFB Outputs

Symbolic Name Output ID Description

ATM_SDU_OUT 1 This is the normal output for the AAL1 Transmit
LFB through which the SAR PDU is passed to the
next LFB in the processing chain

EXC 2 The TDM payload is sent to this output if
processing failed due to errors.

3.2.1.1 Metadata Produced

Table 3.4: Output Metadata for AAL1 Transmit LFB

Metadata tag Access method Description

META_CONN_ID Write Metadata identifying the VC link on which the
SAR PDU is to be transmitted.

META_ATM_LP Write Loss priority to be used for the ATM cell.

META_ATM_PTI Write The payload type indicating the type of payload to
be carried in the ATM cell requested for
transmission.

3.3 Accepted Inputs
The AAL1 Transmit LFB can accept TDM payloads from PDH interfaces of type

• DS0 – Structured data transfer only

• DS0 Bundle – Structured data transfer (NxDS0)

• T1 – Unstructured data transfer

Network Processing Forum Software Working Group

ATM Task Group 8

• T3 – Unstructured data transfer

• E1 – Unstructured data transfer

• E3 – Unstructured data transfer

• J2 – Unstructured data transfer

The CAS information in case of structured data transfer service may be provided along with the TDM
payload at the input or through other means like shared memory tables etc. The framing and format of the
TDM input is outside the scope of NPF.

3.4 Input Modifications
The AAL1 Transmit LFB receives TDM payload from the TDM interface. The CS sublayer function of
the AAL1 Transmit LFB blocks the received TDM data to form 47-octet blocks of SAR PDU payload.

3.5 Relationship with Other LFBs
The AAL1 Transmit LFB is placed in the processing chain after the TDM Receive LFB and receives
ATM SDUs received over VC links carrying AAL1 traffic.

The EXC output of the AAL1 Transmit LFB could be connected to an LFB that receives TDM payloads
which are discarded by the AAL1 Transmit LFB due to various errors. Depending on system design this
may be either dropper, or other LFB that makes a decision how to utilize such inputs.

The AAL1 Transmit LFB may be preceded in the topology by any LFB that can produce the information
required by the AAL1 Transmit LFB at its input. Downstream (not necessarily next) of the AAL1
Transmit LFB, there should be LFBs that can utilize the information generated at output by AAL1
Transmit LFB. The exact design and connections between the AAL1 Transmit LFB and cooperating
blocks is specific to the vendor that provides Forwarding Element design and FAPI implementation. The
sequences of actions that configure AAL1 Transmit LFB and TDM Receive LFB instance, and
cooperation between these two LFBs is schematically depicted in Figure 3.3.

TDM Transmit

AAL1 Transmit LFB

TDM_IN
ATM_SDU_OUT

EXC

To next
LFB

MEDIA_IN TDM_OUT

TDM Receive LFB

AAL1 Transmit

VC Link 1
VCLinkID=ID1

...

ATM Configuration
Manager

2

1

4

Metadata:
if_ID := X

NPF IM API Implementation
NPF ATM SAPI
Implementation

3

TDM Receive

Metadata:
ConnId:= ID1
LP:=X
PTI:=Y

Figure 3.3: Cooperation between AAL1 Transmit and TDM Receive LFB

This figure shows part of an example Forwarding Element that contains ATM configuration manager,
AAL1 Transmit LFB and TDM Receive LFBs. The AAL1 Transmit LFB and the TDM Receive LFB is

Network Processing Forum Software Working Group

ATM Task Group 9

connected in chain. The sequence of actions that configure a TDM interface and bind a VC link to the
TDM interface may be defined as follows (see corresponding numbers in circles in the figure):

1. The NPF IM API is invoked to create a PDH interface. The system software below the NPF IM
API assigns an interface ID X to the interface and invokes the TDM Receive LFB FAPI to
configure the interface.

2. The NPF ATM SAPI API is invoked to create an ATM VC link instance. The system software
below the NPF ATM SAPI assigns a VC link ID (‘ID1’) to the VC link and invokes the ATM
configuration manager FAPI to create the VC link. The ATM configuration manager FAPI call
leads to creation of a VC link instance in the AAL1 Transmit LFB.

3. The NPF ATM SAPI API is invoked to bind the ATM VC link to the PDH interface. The system
software below the NPF ATM SAPI invokes the ATM configuration manager FAPI to bind the
VC link to the PDH interface.

4. A TDM payload is received by the AAL1 Transmit LFB over the PDH interface emulated by VC
Link ID1. The AAL1 Transmit LFB performs the AAL1 SAR and CS functions on the received
payload and passes the ATM SDU to the next LFB in the processing chain.

Network Processing Forum Software Working Group

ATM Task Group 10

4 Data Types

4.1 Common LFB Data Types

4.1.1 LFB Type Code
It is possible to use the FAPI Topology Discovery APIs to discover an AAL1 Transmit LFB in a
forwarding element using a block type value for the AAL1 Transmit LFB.

#define NPF_F_AAL1TRANSMIT_LFB_TYPE 43

4.1.2 AAL1 Virtual Channel Link Characteristics
The AAL1 Transmit LFB requires below configurations for each VC link.

• VC link ID

• Bound PDH Interface ID

• AAL1 sub type – NULL, voice band, synchronous circuit emulation, asynchronous circuit
emulation, high quality audio, video

• Rate of the CBR service and rate multiplier

• Clock recovery type – synchronous, asychronous using SRTS, adaptive clock recovery

• Forward error correction type – none, loss sensitive FEC, delay sensitive FEC

• CAS transport mode – basic mode, E1 mode, DS1 superframe, DS1 extended super frame, J2
mode

• Whether partial cell fill mode enabled and user information size in partially filled cells if
configured.

• Adminstrative status – Up/Down/Testing

4.2 Data Structures for Completion Callbacks

4.2.1 AAL1 Transmit LFB Attributes query response
The attributes of an AAL1 Transmit LFB are the following:

typedef struct {
NPF_uint32_t maxVcl; /* Maximum possible VC links */
NPF_uint32_t curNumVcl; /* Current number of VC links */

} NPF_F_AAL1TransmitLFB_AttrQueryResponse_t;

The maxVcl field contains the maximum number of VC links supported in this AAL1 Transmit LFB. The
curNumVcl field contains the number of VC link configured in the AAL1 Transmit LFB.

4.2.2 Asynchronous Response
The Asynchronous Response data structure is used during callbacks in response to API invocations.

/*
* An asynchronous response contains an error or success code, and in some
* cases a function specific structure embedded in a union.
*/
typedef struct { /* Asynchronous Response Structure */
 NPF_F_AAL1TransmitErrorType_t error; /* Error code for response */
 union {
 /* NPF_F_AAL1TransmitLFB_AttributesQuery() */
 NPF_F_AAL1TransmitLFB_AttrQueryResponse_t lfbAttrQueryResponse;
 } u;
} NPF_F_AAL1TransmitAsyncResponse_t;

Network Processing Forum Software Working Group

ATM Task Group 11

4.2.3 Callback Type
This enumeration is used to indicate reason for invoking the callback function.

/*
* Completion Callback Types, to be found in the callback
* data structure, NPF_F_AAL1TransmitCallbackData_t.
*/
typedef enum NPF_F_AAL1TransmitCallbackType {
 NPF_F_AAL1TRANSMIT_LFB_ATTR_QUERY = 1,
} NPF_F_AAL1TransmitCallbackType_t;

4.2.3.1 Callback Data
An asynchronous response contains an error or success code and a function-specific structure
embedded in a union in the NPF_F_AAL1TransmitCallbackData_t structure.

/*
* The callback function receives the following structure containing
* of a asynchronous responses from a function call.
* For the completed request, the error code is specified in the
* NPF_F_AAL1TransmitAsyncResponse_t structure, along with any other
* information
*/
typedef struct {
 NPF_F_AAL1TransmitCallbackType_t type; /* Which function called? */
 NPF_BlockId_t blockId;/* ID of LFB generating callback */
 NPF_F_AAL1TransmitAsyncResponse_t resp; /* response structure */
} NPF_F_AAL1TransmitCallbackData_t;

The callback data that returned for different callback types is summarized in Table 4.1.

Table 4.1: Callback type to callback data mapping table

Callback Type Callback Data
NPF_F_AAL1TRANSMIT_ATTR_QUERY NPF_F_AAL1TransmitLFB_AttrQueryResponse_t

4.3 Data Structures for Event Notifications

4.3.1 Event Notification Types
None

4.3.2 Event Notification Structures
None

4.4 Error Codes

4.4.1 Common NPF Error Codes
The common error codes that are returned by AAL1 Transmit LFB are listed below:

• NPF_NO_ERROR - This value MUST be returned when a function was successfully invoked.
This value is also used in completion callbacks where it MUST be the only value used to
signify success.

• NPF_E_UNKNOWN - An unknown error occurred in the implementation such that there is no
error code defined that is more appropriate or informative.

• NPF_E_BAD_CALLBACK_HANDLE - A function was invoked with a callback handle that did
not correspond to a valid NPF callback handle as returned by a registration function, or a

Network Processing Forum Software Working Group

ATM Task Group 12

callback handle was registered with a registration function belonging to a different API than
the function call where the handle was passed in.

• NPF_E_BAD_CALLBACK_FUNCTION - A callback registration was invoked with a function
pointer parameter that was invalid.

• NPF_E_CALLBACK_ALREADY_REGISTERED - A callback or event registration was invoked
with a pair composed of a function pointer and a user context that was previously used for an
identical registration.

• NPF_E_FUNCTION_NOT_SUPPORTED - This error value MUST be returned when an optional
function call is not implemented by an implementation. This error value MUST NOT be
returned by any required function call. This error value MUST be returned as the function
return value (i.e., synchronously).

4.4.2 LFB Specific Error Codes
This section defines AAL1 Transmit Configuration and management APIs error codes. These codes
are used in callbacks to deliver results of the requested operations.

/* Asynchronous error codes (returned in function callbacks) */
typedef NPF_uint32_t NPF_F_AAL1TransmitErrorType_t;

#define NPF_AAL1TRANSMIT_BASE_ERR (NPF_F_AAL1TRANSMIT_LFB_TYPE * 100)
#define NPF_E_AAL1TRANSMIT_INVALID_AAL1TRANSMIT_BLOCK_ID

 (NPF_AAL1TRANSMIT_BASE_ERR + 0)

Network Processing Forum Software Working Group

ATM Task Group 13

5 Functional API (FAPI)

5.1 Required Functions
None

5.2 Conditional Functions
The conditional API functions for registration and de-registration of the completion callback
functions need to be implemented if any of the optional functions defined for this LFB are
implemented.

5.2.1 Completion Callback Function
typedef void (*NPF_F_AAL1TransmitCallbackFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_F_AAL1TransmitCallbackData_t data);

5.2.1.1 Description
This callback function is for the application to register an asynchronous response handling routine to
the AAL1 Transmit API implementation. This callback function is intended to be implemented by the
application, and be registered to the AAL1 Transmit API implementation through the
NPF_F_AAL1TransmitRegister function.

5.2.1.2 Input Parameters
• userContext - The context item that was supplied by the application when the completion

callback routine was registered.

• correlator - The correlator item that was supplied by the application when the AAL1
Transmit API function call was invoked.

• data - The response information related to the particular callback type.

5.2.1.3 Output Parameters
None

5.2.1.4 Return Values
None

5.2.2 Completion Callback Registration Function
NPF_error_t NPF_F_AAL1TransmitRegister(

NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_F_AAL1TransmitCallbackFunc_t callbackFunc,
NPF_OUT NPF_callbackHandle_t *callbackHandle);

5.2.2.1 Description
This function is used by an application to register its completion callback function for receiving
asynchronous responses related to AAL1 Transmit API function calls. Applications MAY register
multiple callback functions using this function. The pair of userContext and callbackFunc
identifies the callback function. For each individual pair, a unique callbackHandle will be
assigned for future reference. Since the callback function is identified by both userContext and
callbackFunc, duplicate registration of the same callback function with a different userContext
is allowed. Also, the same userContext can be shared among different callback functions.
Duplicate registration of the same userContext and callbackFunc pair has no effect, and will
output a handle that is already assigned to the pair, and will return NPF_E_ALREADY_REGISTERED.

Network Processing Forum Software Working Group

ATM Task Group 14

5.2.2.2 Input Parameters
• userContext – A context item for uniquely identifying the context of the application

registering the completion callback function. The exact value will be provided back to the
registered completion callback function as its first parameter when it is called. Applications
can assign any value to the userContext and the value is completely opaque to the API
implementation.

• callbackFunc – The pointer to the completion callback function to be registered.

5.2.2.3 Output Parameters
• callbackHandle - A unique identifier assigned for the registered userContext and

callbackFunc pair. This handle will be used by the application to specify which callback
function to be called when invoking asynchronous NPF AAL1 Transmit API functions. It
will also be used when deregistering the userContext and callbackFunc pair.

5.2.2.4 Return Values
• NPF_NO_ERROR - The registration completed successfully.

• NPF_E_BAD_CALLBACK_FUNCTION – The callbackFunc is NULL, or otherwise invalid.

• NPF_E_ALREADY_REGISTERED – No new registration was made since the userContext
and callbackFunc pair was already registered.

5.2.2.5 Notes
• This API function may be invoked by any application interested in receiving asynchronous

responses for AAL1 Transmit API function calls.

• This function operates in a synchronous manner, providing a return value as listed above.

5.2.3 Completion Callback Deregistration Function
NPF_error_t NPF_F_AAL1TransmitDeregister(

NPF_IN NPF_callbackHandle_t callbackHandle);

5.2.3.1 Description
This function is used by an application to deregister a user context and callback function pair.

5.2.3.2 Input Parameters
• callbackHandle - The unique identifier returned to the application when the completion

callback routine was registered.

5.2.3.3 Output Parameters
None

5.2.3.4 Return Values
• NPF_NO_ERROR - De-registration was completed successfully.

• NPF_E_BAD_CALLBACK_HANDLE – De-registration did not complete successfully due to
problems with the callback handle provided.

5.2.3.5 Notes
• This API function MAY be invoked by any application no longer interested in receiving

asynchronous responses for AAL1 Transmit API function calls.

• This function operates in a synchronous manner, providing a return value as listed above.

• There may be a timing window where outstanding callbacks continue to be delivered to the
callback routine after de-registration function has been invoked. It is the implementation’s
responsibility to guarantee that the callback function is not called after the deregister function
has returned.

Network Processing Forum Software Working Group

ATM Task Group 15

5.3 Optional Functions

5.3.1 LFB Attributes Query Function
NPF_error_t NPF_F_AAL1TransmitLFB_AttributesQuery(

NPF_IN NPF_callbackHandle_t callbackHandle,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_errorReporting_t errorReporting,
NPF_IN NPF_FE_Handle_t feHandle,
NPF_IN NPF_BlockId_t blockId);

5.3.1.1 Description
This function call is used to query ONLY one AAL1 Transmit LFB’s attributes at a time. If the AAL1
Transmit LFB exists, the various attributes of this LFB are returned in the completion callback.

5.3.1.2 Input Parameters
• callbackHandle - The unique identifier provided to the application when the completion

callback routine was registered.

• correlator - A unique application invocation context that will be supplied to the
asynchronous completion callback routine.

• errorReporting - An indication of whether the application desires to receive an
asynchronous completion callback for this API invocation.

• feHandle - The FE Handle returned by NPF_F_topologyGetFEInfoList() call.

• blockId – The unique identification of the AAL1 Transmit LFB.

5.3.1.3 Output Parameters
None

5.3.1.4 Return Values
• NPF_NO_ERROR - The operation is in progress.

• NPF_E_UNKNOWN - The LFB attributes was not queried due to invalid AAL1 Transmit block
ID passed in input parameters.

• NPF_E_BAD_CALLBACK_HANDLE - The LFB attributes was not queried because the callback
handle was invalid.

• NPF_E_FUNCTION_NOT_SUPPORTED - The function call is not supported.

5.3.1.5 Asynchronous Response
There may be multiple asynchronous callbacks to this request. Possible error codes are:

• NPF_NO_ERROR – Operation completed successfully.

• NPF_E_AAL1TRANSMIT_INVALID_AAL1TRANSMIT_BLOCK_ID – LFB ID is not an ID of
LFB that has AAL1 Transmit functionality

The lfbAttrQueryResponse field of the union in the NPF_F_AAL1TransmitAsyncResponse_t
structure returned in callback contains response data. The error code is returned in the error field.

Network Processing Forum Software Working Group

ATM Task Group 16

6 References
The following documents contain provisions, which through reference in this text constitute provisions of
this specification. At the time of publication, the editions indicated were valid. All referenced documents
are subject to revision, and parties to agreements based on this specification are encouraged to investigate
the possibility of applying the most recent editions of the standards indicated below.

[FORCESREQ] “Requirement for separation of IP control and forwarding”, H.Khosravi,
T.Anderson et al, November, 2003 (RFC 3654).

[FAPITOPO] ”Topology Manager Functional API”,
http://www.npforum.org/techinfo/topology_fapi_npf2002%20438%2023.pdf ,
Network Processing Forum.

[SWAPICON] “Software API Conventions Revision 2”,
http://www.npforum.org/techinfo/APIConventions2_IA.pdf, Network Processing
Forum.

[ATMLFBARC] “ATM Software API Architecture Framework”,
http://www.npforum.org/techinfo/npf2004.088.12.pdf, Network Processing Forum.

[ATMMGR] “ATM Configuration Manager Functional API”,
http://www.npforum.org/techinfo/npf2004.165.31.pdf, Network Processing Forum.

Network Processing Forum Software Working Group

ATM Task Group 17

Appendix A Header File Information

/*
 * This header file defines typedefs, constants and structures
 * for the NP Forum AAL1 Transmit Functional API
 */
#ifndef __NPF_F_AAL1_TRANSMIT_H__
#define __NPF_F_AAL1_TRANSMIT_H__

#ifdef __cplusplus
extern "C" {
#endif

/* AAL1 Transmit LFB Type ID */
#define NPF_F_AAL1TRANSMIT_LFB_TYPE 43

/* Asynchronous error codes (returned in function callbacks) */
typedef NPF_uint32_t NPF_F_AAL1Transmit_ErrorType_t;

#define NPF_AAL1TRANSMIT_BASE_ERR (NPF_F_AAL1TRANSMIT_LFB_TYPE * 100)
#define NPF_E_AAL1TRANSMIT_INVALID_AAL1Transmit_BLOCK_ID

 (NPF_AAL1TRANSMIT_BASE_ERR + 0)

/**
 * Enumerations and types for AAL1 Transmit LFB *
 **/
typedef struct {
 NPF_uint32_t maxVcl; /* Maximum possible VC links */
 NPF_uint32_t curNumVcl; /* Current number of VC links */
} NPF_F_AAL1TransmitLFB_AttrQueryResponse_t;

/*
 * Completion Callback Types, to be found in the callback
 * data structure, NPF_F_AAL1TransmitCallbackData_t.
 */
typedef enum NPF_F_AAL1TransmitCallbackType {
 NPF_F_AAL1TRANSMIT_LFB_ATTR_QUERY = 1,
} NPF_F_AAL1TransmitCallbackType_t;

/*
* An asynchronous response contains an error or success code, and in some
* cases a function specific structure embedded in a union.
*/
typedef struct { /* Asynchronous Response Structure */
 NPF_F_AAL1TransmitErrorType_t error;
 union {
 /* NPF_F_AAL1TransmitLFB_AttributesQuery() */
 NPF_F_AAL1TransmitLFB_AttrQueryResponse_t lfbAttrQueryResponse;
 } u;
} NPF_F_AAL1TransmitAsyncResponse_t;
/*
* The callback function receives the following structure containing
* of a asynchronous responses from a function call.
* For the completed request, the error code is specified in the
* NPF_AAL1TransmitAsyncResponse_t structure, along with any other information
*/
typedef struct {
 NPF_F_AAL1TransmitCallbackType_t type; /* Which function called? */
 NPF_IN NPF_BlockId_t blockId;/* ID of LFB generating callback */

Network Processing Forum Software Working Group

ATM Task Group 18

 NPF_F_AAL1TransmitAsyncResponse_t resp; /* response structure */
} NPF_F_AAL1TransmitCallbackData_t;

typedef void (*NPF_F_AAL1TransmitCallbackFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_F_AAL1TransmitCallbackData_t data);

/**
 * AAL1 Transmit LFB Registration/De-registration Functions *
 **/

NPF_error_t NPF_F_AAL1TransmitRegister(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_F_AAL1TransmitCallbackFunc_t callbackFunc,
 NPF_OUT NPF_callbackHandle_t *callbackHandle);

NPF_error_t NPF_F_AAL1TransmitDeregister(
 NPF_IN NPF_callbackHandle_t callbackHandle);

/**
 * AAL1 Transmit LFB optional functions *
 **/
NPF_error_t NPF_F_AAL1TransmitLFB_AttributesQuery(
 NPF_IN NPF_callbackHandle_t callbackHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_errorReporting_t errorReporting,
 NPF_IN NPF_FEHandle_t feHandle,
 NPF_IN NPF_BlockId_t blockId);
#ifdef __cplusplus
}
#endif
#endif /* __NPF_F_AAL1_TRANSMIT_H__ */

Network Processing Forum Software Working Group

ATM Task Group 19

Appendix B Acknowledgements

Working Group Chair: Alex Conta

Task Group Chair: Per Wollbrand

The following individuals are acknowledged for their participation to ATM Task Group teleconferences,
plenary meetings, mailing list, and/or for their NPF contributions used for the development of this
Implementation Agreement. This list may not be all-inclusive since only names supplied by member
companies for inclusion here will be listed. The NPF wishes to thank all active participants to this
Implementation Agreement, whether listed here or not.

The list is in alphabetical order of last names:

Pat Carr, Wintegra

Pål Dammvik, Ericsson

Patrik Herneld, Ericsson

Ajay Kamalvanshi, Nokia

Arthur Mackay, Freescale

Michael Persson, Ericsson

Tiberu Petrica, Freescale

John Renwick, Agere Systems

Vedvyas Shanbhogue (ed.), Intel

Roger Smith, Wintegra

Keith Williamson, Motorola

Paul Wilson, Freescale

Per Wollbrand, Ericsson

Network Processing Forum Software Working Group

ATM Task Group 20

Appendix C List of companies belonging to NPF during approval process

Agere Systems IDT Sensory Networks

AMCC Infineon Technologies AG Sun Microsystems

Analog Devices Intel Teja Technologies

Cypress Semiconductor IP Fabrics TranSwitch

Enigma Semiconductor IP Infusion U4EA Group

Ericsson Motorola Wintegra

Flextronics Mercury Computer Systems Xelerated

Freescale Semiconductor Nokia Xilinx

HCL Technologies NTT Electronics

Hifn PMC-Sierra

