
 Network Processing Forum Software Working Group

Topology Manager Functional API
Implementation Agreement

22 December, 2004
Revision 1.0

Editor(s):
Hormuzd Khosravi, Intel Corporation, hormuzd.m.khosravi@intel.com

Copyright © 2004 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction other than the following, (1) the above copyright notice and this paragraph must be
included on all such copies and derivative works, and (2) this document itself may not be modified in any way, such
as by removing the copyright notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

By downloading, copying, or using this document in any manner, the user consents to the terms and conditions of
this notice. Unless the terms and conditions of this notice are breached by the user, the limited permissions granted
above are perpetual and will not be revoked by the NPF or its successors or assigns.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS
WITHOUT ANY WARRANTY OF ANY KIND. THE INFORMATION, CONCLUSIONS AND OPINIONS
CONTAINED IN THE DOCUMENT ARE THOSE OF THE AUTHORS, AND NOT THOSE OF NPF. THE NPF
DOES NOT WARRANT THE INFORMATION IN THIS DOCUMENT IS ACCURATE OR CORRECT. THE
NPF DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED THE IMPLIED LIMITED WARRANTIES OF MERCHANTABILITY, TITLE OR
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", “MAY", and "OPTIONAL" in the remainder of this
document are to be interpreted as described in the NPF Software API Conventions
Implementation Agreement revision 1.0.

For additional information contact:
The Network Processing Forum, 39355 California Street,

Suite 307, Fremont, CA 94538
+1 510 608-5990 phone info@npforum.org

 FAPI Task Group Page 1 of 26

mailto:hormuzd.m.khosravi@intel.com
mailto:info@npforum.org

 Network Processing Forum Software Working Group

Table of Contents
1 Revision History ... 3
2 Introduction... 3

2.1 Assumptions and External Requirements ... 3
2.2 Scope... 3
2.3 Dependencies .. 3

3 Data Types .. 4
3.1 FAPI Topology Types... 4
3.2 Data Structures for Completion Callbacks ... 8
3.3 Data Structures for Event Notifications.. 9

4 Functions... 11
4.1 Completion Callback .. 11
4.2 Event Notification Function Calls .. 12
4.3 Callback Registration/Deregistration Function Calls 13
4.4 Event Registration/Deregistration Function Calls .. 15
4.5 Topology Discovery APIs... 17
4.6 Examples of Topology Discovery APIs used with LFB APIs........................ 19

5 References... 21
6 API Call and Event Capabilities ... 22

6.1 Common Function Calls ... 22
6.2 Table of Events ... 22

Appendix A Header file information... 23
Appendix B Acknowledgements... 27
Appendix C List of companies belonging to NPF DURING APPROVAL PROCESS 28

Table of Figures
Figure 1: A sample LFB graph consisting of Ingress, IPSec Tunnel, IPv4 Forwarder and Egress

LFBs.. 19
Figure 2: A sample LFB graph exposing DiffServ functionality. .. 20

 FAPI Task Group Page 2 of 26

 Network Processing Forum Software Working Group

1 Revision History
1.0 10/27/2004 Created Rev 1.0 of the implementation agreement by taking the Topology

Manager FAPI document (npf2002.438.00) and making minor editorial
corrections.

2 Introduction
The Functional API (FAPI) is used by vendors to expose board-level functionality. FAPI exposes
the functionality specific to each board, as such, it is expected that the set of functions exposed
will vary just as the network processing elements on different boards vary. While variance in the
set of exposed functions is expected, for each type of function the methods used and the
semantics of the function is expected to be vendor agnostic and consistent. Thus, while one
board might expose functionality for IPv4 forwarding and NAT, perhaps based on a
programmable network processor, and another board might expose functionality for IPv4
forwarding and MPLS using a classification chip and QoS chip, the IPv4 functionality exposed
would be the same, at least as to the syntax used. Differences might exist in capabilities
(supported numbers of forwarding entries, maximum rate of forwarding, etc.) but not in syntax.
The same method would be used to add a forwarding entry, using the same data structures. In
order to expose the variation in functions provided by different boards the FAPI model defines
two sets of APIs. These are the FAPI Topology Discovery APIs and the FAPI Logical Function
Block APIs.
The FAPI Topology Discovery APIs are used to learn the presence of types of functions on a
device and acquire handles used to configure instances of those functions. The learning aspects
of the FAPI Topology Discovery APIs are expected to be used in scenarios where a blade is “hot
plugged” into a system and the control plane must learn the type of blade it is. The handle
retrieval methods of the FAPI Topology Discovery APIs are used both in “hot plug” scenarios
and in static configuration scenarios, and allow a client program to programmatically acquire
handles for use in configuring the tables which control forwarding device behavior.
The FAPI Logical Function Block APIs are used to configure LFB resources and associate
resources between LFBs. For example, they can be used to configure Data Path functions such as
IPv4 forwarding, MPLS forwarding, tunneling in conjunction with IPv4, etc. The FAPI LFB
APIs are specific to different LFBs and will be discussed in separate contributions.

2.1 Assumptions and External Requirements
This API is aligned with the requirements set by the ForCES WG [FORCESREQ] in the IETF.

2.2 Scope
This contribution concentrates on the details of the FAPI Topology Discovery APIs. LFB
specific capability APIs are not covered in this contribution. This API does not provide a means
to dynamically change the LFB topology.

2.3 Dependencies
This API depends on the SWAPI Software Conventions [SWAPICON] contribution.

 FAPI Task Group Page 3 of 26

 Network Processing Forum Software Working Group

3 Data Types

3.1 FAPI Topology Types
3.1.1 Handle Types

typedef NPF_Uint32_t NPF_BlockId_t;

This is a 32-bit value that is used to identify an LFB or block, is unique per FE and it is obtained
using the Topology APIs. This value is transparent to the application or client of the API,
however it is a small number, which starts with 1 (0 is reserved) and can be used as an index into
an array. It can only be assigned by the Topology FAPI implementation.

typedef NPF_Uint32_t NPF_FE_Handle_t;

This is a 32-bit value that is used to identify an FE, is unique per System and it is obtained using
the NPF_F_topologyGetFEInfoList() function.

3.1.2 FE Identifier

typedef struct NPF_FE_ProductDesignator_s {
 NPF_Uint32_t enterpriseNo;
 NPF_Char_t vendorSpecificID[16];
} NPF_FE_ProductDesignator_t;

This is a unique FE Identifier structure, which should be unique across FE reboot cycles. The
enterpriseNo field is the unique SNMP enterprise number as assigned by IANA
(http://www.iana.org/assignments/enterprise-numbers). The vendorSpecificID can contain any
vendor specific information. Note that the application cannot alter the FE Product Designator
and it is assigned by the Topology FAPI implementation.

3.1.3 FE Information

typedef struct NPF_FEInfo_s {
 NPF_FE_Handle_t feHandle;

 NPF_FE_ProductDesignator_t feDesignator;
 NPF_Uint32_t locationID;
} NPF_FEInfo_t;

This structure describes the FE. The feHandle field is the FE Handle used to identify an FE, the
feDesignator is a unique FE identifier. This identifier is constant across FE reboot cycles. The
locationID is used to denote the location or slot of the FE in a chassis.

typedef struct NPF_FEInfoList_s {
 NPF_Uint32_t feCount;
 NPF_FEInfo_t *feArray;
} NPF_FEInfoList_t;

 FAPI Task Group Page 4 of 26

http://www.iana.org/assignments/enterprise-numbers

 Network Processing Forum Software Working Group

This structure defines an array of NPF_FEInfo_t structures. The feCount field defines the
number of entries in the array and feArray is a pointer to the start of the array of NPF_FEInfo_t
structures.

3.1.4 Block Type

typedef struct NPF_BlockType_s {
 NPF_Uint32_t blockType;
 NPF_Char_t *blockDescriptor;
} NPF_BlockType_t;

This structure describes the Block type. The blockType field is a pre-defined LFB type, the
blockDescriptor is a text description of the LFB. The blockDescriptor is a Null terminated string
with maximum length of 256 bytes.

The 32-bit blockType is divided into four types of ranges, NPF-standardized, Proprietary,
Experimental and Reserved, as follows:

0x00000000-0x07ffffff: Used for block types standardized by NPF.
0x08000000-0x3fffffff: Reserved for future use.
0x40000000-0x47ffffff: Used for exported but proprietary block types. It is
anticipated that a vendor's solution offered to an integrator may need to
include vendor-specific block types in addition to the block types already
standardized by NPF. This range is reserved for such vendor specific block
types. Allocation of this range must be coordinated among vendors in order to
avoid collision in multi-vendor integrations.
0x48000000-0x77ffffff: Reserved for future use.
0x78000000-0x7fffffff: For experimental use. This is an uncoordinated range
meant for proprietary (intra-company) experimentation.

The corresponding header file definitions are as follows:

#define NPF_LFB_TYPE_STD_MIN 0x00000000
#define NPF_LFB_TYPE_STD_MAX 0x07ffffff
#define NPF_LFB_TYPE_PROP_MIN 0x40000000
#define NPF_LFB_TYPE_PROP_MAX 0x47ffffff
#define NPF_LFB_TYPE_EXP_MIN 0x78000000
#define NPF_LFB_TYPE_EXP_MAX 0x7fffffff

Here are block types for LFBS which have currently been defined:

#define NPF_LFB_TYPE_IPv4_PREFIX 10
#define NPF_LFB_TYPE_IPv4_NEXTHOP 11
#define NPF_LFB_TYPE_DIFFSERV_METER 12
#define NPF_LFB_TYPE_GENERIC_CLASSIFIER 13
#define NPF_LFB_TYPE_MESSAGING 14

Note: The definition of the complete set of Block types is out of scope of this document. These
should be defined in the corresponding FAPI documents.

 FAPI Task Group Page 5 of 26

 Network Processing Forum Software Working Group

3.1.5 LFB Edge Attributes

typedef struct NPF_ LFB_Edge_Attribute_s {
 NPF_BlockId_t lfbId;
 NPF_Uint32_t lfbInputPortId;
 NPF_Uint32_t lfbOuputPortId;
} NPF_LFB_Edge_Attribute_t;

This structure defines the LFB edge attributes. It consists of the lfbId which identifies the LFB,
the lfbInputPortId which identifies the input port on the LFB from which the connection to this
LFB originates and the lfbOutputPortId which identifies the output port on this LFB. Since the
upstream LFB structure always points to the LFB Edge structure, this structure does not need to
identify the upstream LFB.

3.1.6 LFB Instance (Node), LFB Instance List

typedef struct NPF_LFBInstance_s {
 NPF_Uint32_t lfbId;
 NPF_BlockType_t lfbType;
 NPF_Uint16_t toLFBCount;
 NPF_ LFB_Edge_Attribute_t *toLFBArray;
} NPF_LFBInstance_t;

This structure describes the LFB node. The lfbId, lfbType identify the LFB or block (Id and
Type) from which the connection originates and toLFBArray defines the array of LFB edges
(connections to other LFBs) which originate from this LFB.

typedef struct NPF_LFBInstanceList_s {
 NPF_FE_Handle_t feHandle;
 NPF_Uint32_t nodeCount;
 NPF_LFBInstance_t *nodeArray;
} NPF_LFBInstanceList_t;

This structure defines an array of NPF_LFBInstance_t structures. The feHandle refers to the
corresponding FE, nodeCount defines the number of entries in the array and nodeArray is a
pointer to the start of the array of NPF_LFBInstance_t structures. The order of nodes in the array
is not specified i.e. it might be in order of increasing block ID or tree-walk order or some other
order.

3.1.7 Error Codes

typedef NPF_Uint32_t NPF_F_topologyErrorType_t;

This defines the asynchronous error codes returned in the function callbacks.

#define NPF_FTOPOLOGY_BASE_ERR 1000 /* Base value of 1000 wrt other NPF codes
*/

/* Invalid FE handle */
#define NPF_FTOPOLOGY_E_INVALID_FE_HANDLE \

 FAPI Task Group Page 6 of 26

 Network Processing Forum Software Working Group

 ((NPF_F_topologyErrorType_t) NPF_FTOPOLOGY_BASE_ERR + 1)

 FAPI Task Group Page 7 of 26

 Network Processing Forum Software Working Group

3.2 Data Structures for Completion Callbacks
A completion callback is defined for each of the functions in this API.

3.2.1 Callback Type

The callback response contains one of the following codes, indicating the function that was
called to cause the callback. This code tells the application how to interpret the data included in
the union that is part of the response structure.

 /* completion callback types */

typedef enum NPF_F_topologyCallbackType {
NPF_F_TOPOLOGY_GET_FE_INFOLIST = 1,

 NPF_F_TOPOLOGY_GET_GRAPH_NODELIST = 2
} NPF_F_topologyCallbackType_t;

3.2.2 Callback Data

This is the callback response structure which is passed to the caller in the asynchronous response
from a function call. It contains an error/success code, the callback type that identifies the
function called and a function-specific structure embedded in a union.

typedef struct {
NPF_F_topologyCallbackType_t type;
NPF_F_topologyErrorType_t error;
union {

NPF_FEInfoList_t feInfoArray;
NPF_LFBInstanceList_t lfbNodeArray;

} u;
} NPF_F_topologyCallbackData_t;

Table 2-1. Callback type to Callback data mapping table

Callback Type Callback Data
NPF_F_TOPOLOGY_GET_FE_INFOLIST NPF_FEInfoList_t
NPF_F_TOPOLOGY_GET_GRAPH_NODELIST NPF_LFBInstanceList_t

 FAPI Task Group Page 8 of 26

 Network Processing Forum Software Working Group

3.3 Data Structures for Event Notifications
The following sections detail the information related to Topology events. When an event
notification routine is invoked, one of the parameters will be a structure of information related to
one or more events.

3.3.1 Event Notification Types
The event type indicates the type of event data in the union of event structures returned in
NPF_F_topologyEventData_t.

/*
 * This structure enumerates the events defined for
 * Topology Manager API.
 */
typedef enum NPF_F_topologyEvent {
 NPF_F_TOPOLOGY_NEW_FE_APPEAR = 1,
 NPF_F_TOPOLOGY_FE_DISAPPEAR = 2,
 NPF_F_TOPOLOGY_LFB_TOPO_CHANGE = 3
} NPF_F_topologyEvent_t;

/*
 * Definitions for Topology events to be
 * used in event Mask.
 */
#define NPF_F_TOPOLOGY_EV_NEW_FE_APPEAR (1 << 1)
#define NPF_F_TOPOLOGY_EV_FE_DISAPPEAR (1 << 2)
#define NPF_F_TOPOLOGY_LFB_TOPO_CHANGE (1 << 3)

3.3.2 Event Notification Structures
This section describes the various events which MAY be implemented.

It is important to note that even if an implementation does not support any of these events, the
implementation still needs to provide the register and deregister event function to enable
interoperability.

This structure defines all the possible event definitions for Topology FAPI. An event type field
indicates which member of the union is relevant in the specific structure.

/*
 * This structure represents a single event in the event array. The
 * type field indicates the specific event in the union.
 */
typedef struct {
 NPF_F_topologyEvent_t type;
 union {
 NPF_FEInfo_t feInfo;
 } u;
} NPF_F_topologyEventData_t;

This structure represents the data parameter provided when the event notification routine is
invoked. It contains a count of events and an array of structures providing event specific

 FAPI Task Group Page 9 of 26

 Network Processing Forum Software Working Group

information.

/*
 * This structure is provided when the event notification handler
 * is invoked. It specifies one or more Topology FAPI events.
 */
typedef struct {
 NPF_uint32_t numEvents;
 NPF_F_topologyEventData_t *eventArray;
} NPF_F_topologyEventArray_t;

 FAPI Task Group Page 10 of 26

 Network Processing Forum Software Working Group

4 Functions

4.1 Completion Callback
This callback function is for the application to register an asynchronous response handling
routine to the Topology FAPI implementation.

4.1.1 Completion Callback Function Signature

typedef void (*NPF_F_topologyCallBackFunc_t)(
NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_F_topologyCallbackData_t ftopologyCallbackData);

4.1.1.1 Description
This callback function is for the application to register asynchronous response handling
routine to the NPF FAPI Topology API implementation. This callback function is
intended to be implemented by the application, and be registered to the NPF FAPI
Topology API implementation through NPF_F_topologyRegister() function.

4.1.1.2 Input Parameters
• userContext

The context item that was supplied by the application when the completion callback
function was registered.

• correlator
The correlator item that was supplied by the application when the FAPI Topology API
function call was made. The correlator is used by the application mainly to distinguish
between multiple invocations of the same function.

• ftopologyCallbackData
Response information related to the FAPI Topology API function call. Contains
information that are common among all functions, as well as information that are specific
to a particular function. See NPF_ftopologyCallbackData_t definition for details.

4.1.1.3 Output Parameters
None.

4.1.1.4 Return Value
None.

 FAPI Task Group Page 11 of 26

 Network Processing Forum Software Working Group

4.2 Event Notification Function Calls
This event notification function is for the application to register an event handler routine to the
Topology FAPI implementation.

4.2.1 NPF_F_topologyEventCallFunc_t

typedef void (*NPF_F_topologyEventCallFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_F_topologyEventArray_t data);

4.2.1.1 Description
This function is a registered event notification routine for handling Topology FAPI
events.

4.2.1.2 Input Parameters
• userContext - The context item that was supplied by the application when the event

callback routine was registered.

• data – A structure containing an array of event data structures and a count to
indicate how many events are present. Each of these NPF_F_topologyEventData_t
members contains event specific information and a type field to identify the
particular event.

4.2.1.3 Output Parameters
None

4.2.1.4 Return Value
None

 FAPI Task Group Page 12 of 26

 Network Processing Forum Software Working Group

4.3 Callback Registration/Deregistration Function Calls
This section defines the registration and de-registration functions used to install and remove an
asynchronous response callback routine.

4.3.1 Completion Callback Registration Function

NPF_error_t NPF_F_topologyRegister(
NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_F_topologyCallbackFunc_t ftopologyCallbackFunc,
NPF_OUT NPF_F_topologyCallbackHandle_t

 *ftopologyCallbackHandle);

4.3.1.1 Description
This function is used by an application to register its completion callback function for
receiving asynchronous responses related to NPF FAPI Topology API function calls.
Application may register multiple callback functions using this function. The callback
function is identified by the pair of userContext and ftopologyCallbackFunc, and for each
individual pair, a unique ftopologyCallbackHandle will be assigned for future reference.
Since the callback function is identified by both userContext and ftopologyCallbackFunc,
duplicate registration of same callback function with different userContext is allowed.
Also, same userContext can be shared among different callback functions. Duplicate
registration of the same userContext and ftopologyCallbackFunc pair has no effect, and
will output a handle that is already assigned to the pair, and will return
NPF_E_ALREADY_REGISTERED.

Note : NPF_F_topologyRegister() is a synchronous function and has no completion
callback associated with it.

4.3.1.2 Input Parameters
• userContext

A context item for uniquely identifying the context of the application registering the
completion callback function. The exact value will be provided back to the registered
completion callback function as its 1st parameter when it is called. Application can assign
any value to the userContext and the value is completely opaque to the NPF FAPI
Topology API implementation.

• ftopologyCallbackFunc
The pointer to the completion callback function to be registered.

4.3.1.3 Out Parameters
• ftopologyCallbackHandle

A unique identifier assigned for the registered userContext and ftopologyCallbackFunc
pair. This handle will be used by the application to specify which callback function to be
called when invoking asynchronous NPF FAPI Topology API functions. It will also be
used when de-registering the userContext and ftopologyCallbackFunc pair.

 FAPI Task Group Page 13 of 26

 Network Processing Forum Software Working Group

4.3.1.4 Return Values
• NPF_NO_ERROR

The registration completed successfully.
• NPF_E_BAD_CALLBACK_FUNCTION

ftopologyCallbackFunc is NULL.
• NPF_E_ALREADY_REGISTERED

No new registration was made since the userContext and ftopologyCallbackFunc pair
was already registered.
Note: Whether this should be treated as an error or not is dependent on the application.

4.3.2 Completion Callback Deregistration

NPF_error_t NPF_F_topologyDeregister(
NPF_IN NPF_F_topologyCallbackHandle_t

 ftopologyCallbackHandle);

4.3.2.1 Description
This function is used by an application to de-register a pair of user context and callback
function.
Note: If there are any outstanding calls related to the de-registered callback function, the
callback function may be called for those outstanding calls even after de-registration.
Note: NPF_F_topologyEventRegister() is a synchronous function and has no completion
callback associated with it.

4.3.2.2 Input Parameters
• ftopologyCallbackHandle

The unique identifier representing the pair of user context and callback function to be de-
registered.

4.3.2.3 Output Parameters
None.

4.3.2.4 Return Values
• NPF_NO_ERROR

The de-registration completed successfully.
• NPF_E_BAD_CALLBACK_HANDLE
The API implementation does not recognize the callback handle. There is no effect to the
registered callback functions.

 FAPI Task Group Page 14 of 26

 Network Processing Forum Software Working Group

4.4 Event Registration/Deregistration Function Calls
This section defines the registration and de-registration functions used to install and remove an
event handler routine

4.4.1 NPF_F_topologyEventRegister

NPF_error_t NPF_F_topologyEventRegister(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_F_topologyEventCallFunc_t eventCallFunc,
 NPF_IN NPF_eventMask_t eventMask,
 NPF_OUT NPF_callbackHandle_t *eventCallHandle);

4.4.1.1 Description
This function is used by an application to register its event handling routine for receiving
notifications of Topology events. Applications MAY register multiple event handling
routines using this function. The event handling routine is identified by the pair of
userContext and eventCallFunc, and for each individual pair, a unique eventCallHandle
will be assigned for future reference.

Since the event handling routine is identified by both userContext and eventCallFunc,
duplicate registration of the same event handling routine with a different userContext is
allowed. Also, the same userContext can be shared among different event handling
routines. Duplicate registration of the same userContext and eventCallFunc pair has no
effect, and will output a handle that is already assigned to the pair, and will return
NPF_E_ALREADY_REGISTERED.

4.4.1.2 Input Parameters
• userContext – A context item for uniquely identifying the context of the application

registering the event handling routine. The exact value will be provided back to the
registered event handling routine as its first parameter when it is called.
Applications can assign any value to the userContext and the value is completely
opaque to the Topology FAPI implementation

• eventCallFunc – The pointer to the event handling routine to be registered.

• eventMask – This is a bit mask of the Topology events. It allows the application to
register for those selected events.

4.4.1.3 Output Parameters
• eventCallHandle - A unique identifier assigned for the registered userContext and

eventCallFunc pair. This handle will be used when deregistering the userContext
and eventCallFunc pair.

4.4.1.4 Return Values
• NPF_NO_ERROR - The registration completed successfully.

• NPF_E_BAD_CALLBACK_FUNCTION – The eventCallFunc is NULL, or
otherwise invalid.

 FAPI Task Group Page 15 of 26

 Network Processing Forum Software Working Group

• NPF_E_CALLBACK_ALREADY_REGISTERED – No new registration was made
since the userContext and eventCallFunc pair was already registered.

4.4.2 NPF_F_topologyEventDeregister

NPF_error_t NPF_F_topologyEventDeregister(
 NPF_IN NPF_callbackHandle_t eventCallHandle);

4.4.2.1 Description
This function is used by an application to de-register an event handler routine which was
previously registered to receive notifications of Topology events. It represents a unique
user context and event handling routine pair.

4.4.2.2 Input Parameters
• eventCallHandle - The unique identifier returned to the application when the event

callback routine was registered.

4.4.2.3 Output Parameters
None

4.4.2.4 Return Values
• NPF_NO_ERROR - The de-registration completed successfully.

• NPF_E_BAD_CALLBACK_HANDLE – The de-registration did not complete
successfully due to problems with the callback handle provided.

 FAPI Task Group Page 16 of 26

 Network Processing Forum Software Working Group

4.5 Topology Discovery APIs
The FAPI Topology Discovery APIs are used to determine what logical function blocks are
implemented by a device and the sequence in which packets flow through them. These APIs are
expected to be used when a blade is “plugged in” to a system or when a blade boots up and an
application needs to get FE handles and block ids to use to programmatically configure and
control the blade. The graph of block connections that a device supports will be queried by
applications.

4.5.1 NPF_F_topologyGetFEInfoList()

NPF_error_t NPF_F_topologyGetFEInfoList(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t correlator);

4.5.1.1 Description
This function is used to retrieve information about the FEs in the system.

4.5.1.2 Input Parameters
• cbHandle: The callback handle returned by NPF_ftopologyRegister() call.
• correlator: A 32-bit value that will be returned in the callback for this function call.

4.5.1.3 Output Parameters
None.

4.5.1.4 Return Codes
• NPF_NO_ERROR: The function call was accepted, and a callback will occur or has

already occured.
• NPF_E_BAD_CALLBACK_HANDLE: The cbHandle parameter is invalid; no callback

will occur.

4.5.1.5 Asynchronous Callback Response
• feInfoArray: The NPF_FEInfoList_t struct as part of NPF_ftopologyCallbackData_t is

returned to the caller of the API.

 FAPI Task Group Page 17 of 26

 Network Processing Forum Software Working Group

4.5.2 NPF_F_topologyGetLFBInstanceList()

NPF_error_t NPF_F_topologyGetLFBInstanceList(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_FE_Handle_t feHandle);

4.5.2.1 Description
This function is used to get the array of all LFB nodes in the DG (directed graph) for the
particular FE. Note that the LFB topology of a given FE is not necessarily a connected
graph, it may be a collection of sub-graphs (each being a connected graph by itself), and
it can even contain nodes that are not (yet) connected to any other nodes.

4.5.2.2 Input Parameters
• cbHandle: The callback handle returned by NPF_ftopologyRegister() call.
• correlator: A 32-bit value that will be returned in the callback for this function call.
• feHandle: The FE Handle returned by NPF_ftopologyGetFEInfoList_t() call.

4.5.2.3 Output Parameters
None.

4.5.2.4 Return Codes
• NPF_NO_ERROR: The function call was accepted, and a callback will occur or has

already occured.
• NPF_E_BAD_CALLBACK_HANDLE: The cbHandle parameter is invalid; no callback

will occur.

4.5.2.5 Asynchronous Callback Response
• NPF_FTOPOLOGY_E_INVALID_FE_HANDLE: The feHandle is invalid.
• lfbNodeArray: The NPF_LFBInstanceList_t as part of NPF_ftopologyCallbackData_t is

returned to the caller of the API.

 FAPI Task Group Page 18 of 26

 Network Processing Forum Software Working Group

4.6 Examples of Topology Discovery APIs used with LFB APIs

This section describes some usage scenarios for the Topology Discovery APIs used in
conjunction with LFB APIs to query and configure LFBs and datapath functions. It uses pseudo-
code to describe this wherever appropriate. These examples and the LFB APIs used are for
illustration purpose only.

A sample example of a LFB graph is shown in Figure 1. It consists of four LFBs: Ingress, IPSec
Tunnel, IPv4 Forwarder and Egress, which are connected together and expose the logical
functionality of a blade.

Figure 1: A sample LFB graph consisting of Ingress, IPSec Tunnel, IPv4 Forwarder and Egress LFBs

Ingress
(Table with ingress

port info)

IPSec
Tunnel

IPv4
Forwarder
(LPM, DMAC,

Egress port table)

Egress
(Table with egress

port info)

he application uses NPF_F_topologyGetFEInfoList () to find the FEs in the system and

e

 order to configure any LFB in the above graph, the application would use the specific LFB

ight also have information needed to associate a Tunnel entry with an entry in

nother example of a LFB graph exposing DiffServ functionality is shown in Figure 2

T
NPF_F_topologyGetLFBInstanceList () to find all the LFB connectivity information in th
system.

In
API. For example, it would configure an IPSec Tunnel using the tunnel specific API below.
NPF_F_tunnel_AddEntry (feHandle, blockID, tunnelData);

 the Key, security where tunnelData is a specific struct which would have fields such as
Algorithm, etc.
The tunnelData m
the IPv4 Forwarder. Also, note that the blockID used in the call is obtained from the Topology
APIs.

A . It

ress. consists of six LFBs: Ingress, 6-tuple DiffServ Classifier, Meter, Marker, Scheduler and Eg

Ingress
(Table with

ingress
port info)

6-Tuple
Classifier

Meter

Egress
(Table with
egress port

info)

Marker/
Dropper Scheduler

 FAPI Task Group Page 19 of 26

 Network Processing Forum Software Working Group

Figure 2: A sample LFB graph exposing DiffServ functionality.

The application would scribed before.

 order to configure a particular DiffServ policy in the blade, the application would need to
e

kID, clfrData);

s and might have a common

 query the LFB information in the same manner as de

In
configure individual LFBs. For example, to set up some marking action for a 5-tuple filter, th
application would make the following API calls.
NPF_F_5tupleClfr_AddEntry (feHandle, bloc

F_F_meter_AddEntry (feHandle, blockID, meterData); NP

where the clfrData and meterData structs are specific to those LFB
field such as FlowId to associate each other’s entries.

 FAPI Task Group Page 20 of 26

 Network Processing Forum Software Working Group

5 References
[FORCESREQ] ”Requirements for Separation of IP Control and Forwarding”, H. Khosravi, T. Anderson et

al, July 2003. (http://www.ietf.org/rfc/rfc3654.txt)
[DIFFSERV] ”An Informal Management Model for Diffserv Routers”, Y. Bernet et al, May 2002.

(http://www.ietf.org/rfc/rfc3290.txt)
[SWAPICON] “SwAPI Software Conventions Implementation Agreement”, Rev 2.0, Network Processing

Forum, August 2002

 FAPI Task Group Page 21 of 26

 Network Processing Forum Software Working Group

6 API Call and Event Capabilities
These tables are included as a summary for informative purposes.

6.1 Common Function Calls

API function Name Function
Required

NPF_F_topologyCallBackFunc Required
NPF_F_topologyEventCallFunc Required
NPF_F_topologyRegister Required
NPF_F_topologyDeregister Required
NPF_F_topologyEventRegister Required
NPF_F_topologyEventDeregister Required
NPF_F_topologyGetFEInfoList Required
NPF_F_topologyGetLFBInstanceList Required

6.2 Table of Events

Event Name Event Required
NPF_F_TOPOLOGY_NEW_FE_APPEAR Optional
NPF_F_TOPOLOGY_FE_DISAPPEAR Optional
NPF_F_TOPOLOGY_LFB_TOPO_CHANGE Optional

 FAPI Task Group Page 22 of 26

 Network Processing Forum Software Working Group

APPENDIX A HEADER FILE INFORMATION
/*
 * This header file defines typedefs, constants, and functions
 * for the NP Forum Functional Topology Manager API
 */
#ifndef __NPF_F_TOPO_H
#define __NPF_F_TOPO_H

#ifdef __cplusplus
extern "C" {
#endif

/*---
 *
 * Common Data Types
 *
 ---/

typedef NPF_Uint32_t NPF_BlockId_t;

typedef NPF_Uint32_t NPF_FE_Handle_t;

typedef struct NPF_FE_ProductDesignator_s {
 NPF_Uint32_t enterpriseNo;
 NPF_Char_t vendorSpecificID[16];
} NPF_FE_ProductDesignator_t;

typedef struct NPF_FEInfo_s {
 NPF_FE_Handle_t feHandle;

 NPF_FE_ProductDesignator_t feDesignator;
 NPF_Uint32_t locationID;
} NPF_FEInfo_t;

typedef struct NPF_FEInfoList_s {
 NPF_Uint32_t feCount;
 NPF_FEInfo_t *feArray;
} NPF_FEInfoList_t;

typedef struct NPF_BlockType_s {
 NPF_Uint32_t blockType;
 NPF_Char_t *blockDescriptor;
} NPF_BlockType_t;

typedef struct NPF_ LFB_Edge_Attribute_s {
 NPF_BlockId_t lFBId;
 NPF_Uint32_t lfbInputPortId;
 NPF_Uint32_t lfbOuputPortId;
} NPF_LFB_Edge_Attribute_t;

typedef struct NPF_LFBInstance_s {
 NPF_Uint32_t lfbId;
 NPF_BlockType_t lFBType;
 NPF_Uint16_t toLFBCount;

 FAPI Task Group Page 23 of 26

 Network Processing Forum Software Working Group

 NPF_ LFB_Edge_Attribute_t *toLFBArray;
} NPF_LFBInstance_t;

typedef struct NPF_LFBInstanceList_s {
 NPF_FE_Handle_t feHandle;
 NPF_Uint32_t nodeCount;
 NPF_LFBInstance_t *nodeArray;
} NPF_LFBInstanceList_t;

typedef NPF_Uint32_t NPF_F_topologyErrorType_t;

#define NPF_FTOPOLOGY_BASE_ERR 1000 /* Base value of 1000 wrt other NPF codes
*/

/* Invalid FE handle */
#define NPF_FTOPOLOGY_E_INVALID_FE_HANDLE \
 ((NPF_F_topologyErrorType_t) NPF_FTOPOLOGY_BASE_ERR + 1)

/*---
 *
 * Completion Callback Data Types
 *
 ---/

/* completion callback types */
typedef enum NPF_F_topologyCallbackType {

NPF_F_TOPOLOGY_GET_FE_INFOLIST = 1,
 NPF_F_TOPOLOGY_GET_GRAPH_NODELIST = 2
} NPF_F_topologyCallbackType_t;

typedef struct {

NPF_F_topologyCallbackType_t type;
NPF_F_topologyErrorType_t error;
union {

NPF_FEInfoList_t feInfoArray;
NPF_LFBInstanceList_t lfbNodeArray;

} u;
} NPF_F_topologyCallbackData_t;

/*---
 *
 * Event Notification Data Types
 *
 ---/

/*
 * This structure enumerates the events defined for
 * Topology Manager API.
 */
typedef enum NPF_F_topologyEvent {
 NPF_F_TOPOLOGY_NEW_FE_APPEAR = 1,
 NPF_F_TOPOLOGY_FE_DISAPPEAR = 2,

 FAPI Task Group Page 24 of 26

 Network Processing Forum Software Working Group

 NPF_F_TOPOLOGY_LFB_TOPO_CHANGE = 3
} NPF_F_topologyEvent_t;

/*
 * Definitions for Topology events to be
 * used in event Mask.
 */
#define NPF_F_TOPOLOGY_EV_NEW_FE_APPEAR (1 << 1)
#define NPF_F_TOPOLOGY_EV_FE_DISAPPEAR (1 << 2)
#define NPF_F_TOPOLOGY_LFB_TOPO_CHANGE (1 << 3)

/*
 * This structure represents a single event in the event array. The
 * type field indicates the specific event in the union.
 */
typedef struct {
 NPF_F_topologyEvent_t type;
 union {
 NPF_FEInfo_t feInfo;
 } u;
} NPF_F_topologyEventData_t;

/*
 * This structure is provided when the event notification handler
 * is invoked. It specifies one or more Topology FAPI events.
 */
typedef struct {
 NPF_uint32_t numEvents;
 NPF_F_topologyEventData_t *eventArray;
} NPF_F_topologyEventArray_t;

/*---
 *
 * Function Call Prototypes
 *
 ---/

typedef void (*NPF_F_topologyCallBackFunc_t)(

NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_correlator_t correlator,
NPF_IN NPF_F_topologyCallbackData_t ftopologyCallbackData);

typedef void (*NPF_F_topologyEventCallFunc_t) (
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_F_topologyEventArray_t data);

NPF_error_t NPF_F_topologyRegister(

NPF_IN NPF_userContext_t userContext,
NPF_IN NPF_F_topologyCallbackFunc_t ftopologyCallbackFunc,
NPF_OUT NPF_F_topologyCallbackHandle_t *ftopologyCallbackHandle);

NPF_error_t NPF_F_topologyDeregister(

NPF_IN NPF_F_topologyCallbackHandle_t ftopologyCallbackHandle);

 FAPI Task Group Page 25 of 26

 Network Processing Forum Software Working Group

NPF_error_t NPF_F_topologyEventRegister(
 NPF_IN NPF_userContext_t userContext,
 NPF_IN NPF_F_topologyEventCallFunc_t eventCallFunc,

 NPF_IN NPF_eventMask_t eventMask,
 NPF_OUT NPF_callbackHandle_t *eventCallHandle);

NPF_error_t NPF_F_topologyEventDeregister(
 NPF_IN NPF_callbackHandle_t eventCallHandle);

NPF_error_t NPF_F_topologyGetFEInfoList(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t correlator);

NPF_error_t NPF_F_topologyGetLFBInstanceList(
 NPF_IN NPF_callbackHandle_t cbHandle,
 NPF_IN NPF_correlator_t correlator,
 NPF_IN NPF_FE_Handle_t feHandle);

#ifdef __cplusplus
}
#endif

#endif /* __NPF_F_TOPO_H */

 FAPI Task Group Page 26 of 26

 Network Processing Forum Software Working Group

APPENDIX B ACKNOWLEDGEMENTS

Working Group Chair: Alex Conta

Working Group Editor: John Renwick

Task Group Chair: Alistair Munro

The following individuals are acknowledged for their participation in the FAPI TG
teleconferences, plenary meetings, mailing list, and/or for their NPF contributions used for the
development of this Implementation Agreement. This list may not be all-inclusive since only
names supplied by member companies for inclusion here will be listed. The NPF wishes to
thank all active participants to this Implementation Agreement, whether listed here or not.

The list is in alphabetical order of last names:

Steven Blake, Modular Networks, Inc.
Gamil Cain, Intel
Jason Goldschmidt, Sun Microsystems
Reda Haddad, Ericsson
Zsolt Haraszti, Modular Networks, Inc.
Hormuzd Khosravi, Intel
Vinoj Kumar, Agere Systems
David Maxwell, IDT
David Putzolu, Intel
John Renwick, Agere Systems
Michael Speer, Sun Microsystems

 FAPI Task Group Page 27 of 26

 Network Processing Forum Software Working Group

 FAPI Task Group Page 28 of 26

APPENDIX C LIST OF COMPANIES BELONGING TO NPF DURING APPROVAL
PROCESS

Agere Systems HCL Technologies Nortel Networks

Altera Hifn NTT Electronics

AMCC IBM PMC Sierra

Analog Devices IDT Seaway Networks

Avici Systems Infineon Technologies AG Sensory Networks

Cypress Semiconductor Intel Sun Microsystems

Enigma Semiconductor IP Fabrics Teja Technologies

Ericsson IP Infusion TranSwitch

Erlang Technologies Kawasaki LSI U4EA Group

ETRI Motorola Xelerated

EZChip NetLogic Xilinx

Flextronics Nokia

	Revision History
	Introduction
	Data Types
	
	Handle Types
	FE Identifier
	FE Information
	Block Type
	LFB Edge Attributes
	LFB Instance (Node), LFB Instance List
	Error Codes
	Callback Type
	Callback Data
	Event Notification Types
	Event Notification Structures

	Functions
	
	Completion Callback Function Signature
	Description
	Input Parameters
	Output Parameters
	Return Value

	NPF_F_topologyEventCallFunc_t
	Description
	Input Parameters
	Output Parameters
	Return Value

	Completion Callback Registration Function
	Description
	Input Parameters
	Out Parameters
	Return Values

	Completion Callback Deregistration
	Description
	Input Parameters
	Output Parameters
	Return Values

	NPF_F_topologyEventRegister
	Description
	Input Parameters
	Output Parameters
	Return Values

	NPF_F_topologyEventDeregister
	Description
	Input Parameters
	Output Parameters
	Return Values

	NPF_F_topologyGetFEInfoList()
	Description
	Input Parameters
	Output Parameters
	Return Codes
	Asynchronous Callback Response

	NPF_F_topologyGetLFBInstanceList()
	Description
	Input Parameters
	Output Parameters
	Return Codes
	Asynchronous Callback Response

	References
	API Call and Event Capabilities

