

TX/RX, Channel, and Signaling Investigations at 448 Gbps

Mike Li, Hsinho Wu, Masashi Shimanouchi, Alon Meisler, Ajay Balankutty, Kemal Aygun, Itamar Levin Intel

OIF 448G WKSP, April, 2025

448 Gbps COM Performance Evaluations

PAM4 versus PAM6 Modulation

Case 1: Packages/channels have adequate bandwidth to accommodate the PAM4/PAM6 modulation schemes

448Gbps PAM4 and PAM6 Die/Package Characteristics

448Gbps PAM6 Die/Pkg vs 224Gbps Die/Pkg Type A 33mm

 Die and package models were frequency scaled from 224 Gbps-PAM4 to support 448Gbps-PAM4/PAM6

448Gbps PAM4 Test Channel Characteristics

Frequency scaled from the 224 Gbps-PAM4 end-to-end channels [1][2][3], which
include 1m cable assembly.

- 448G-PAM4 Nyquist freq., 112GHz, IL ~= 16 to 28dB (39 test channels)
- Including 2 FEXT and 1 NEXT

Note:

[1] https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_04_230629.zip

[2] https://www.ieee802.org/3/dj/public/tools/CR/lim 3dj 03 230629.zip

[3] https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_07_2309.zip

448Gbps PAM6 Test Channel Characteristics

• Frequency scaled from 224 Gbps-PAM4 end-to-end channels [1][2][3], which include 1m cable assembly.

- 448G-PAM6 Nyquist freq., 89.6 GHz, IL ~= 16 to 28 dB (39 test channels)
- Including 2 FEXT and 1 NEXT

Note:

[1] https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_04_230629.zip

[2] https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_03_230629.zip

[3] https://www.ieee802.org/3/dj/public/tools/CR/lim 3dj 07 2309.zip

OIF 448Gbps Signaling for AI Workshop - April 15-16, 2025

intel

448Gbps PAM4 COM Configuration #1/ #2 Highlights

- Scaling from 224G-PAM4 based on the latest CEI-224G-LR (oif2023.235.08) spec
 - Baud rate (f_b): 224 Gbd
 - Die/Package:
 - Based on Reference Package Type A with trace length 33mm (TX) and 31mm (RX)
 - Frequency scaled to maintain same IL as with 224G PAM4
 - AFE/Noise BW (f_r): Scale by baud rate
 - Jitter (A_DD, sigmaRJ): #1: Scale by baud rate; #2: PAM6 Jitter
 - Noise (eta_0): #1: eta_0 is inversely scaled down per baud rate; #2: PAM6 eta_0
 - Rise/Fall Time (T_r): #1: Scale by baud rate; #2: PAM6 Rise/Fall Time
 - Equalizer:
 - TX FFE not used to save computation time. Spec. configuration TBD.
 - RX CTLE: Scale by baud rate, i.e. same HF Pole/Zero divider ratio, LF Pole/Zero divider ratio = 160
 - RX FFE fixed taps: 8 pre-taps + 16 post-taps
 - RX FFE floating taps: 4 group of 4 consecutive taps up to 160 UI
 - MLSE: 1 tap

448Gbps PAM6 COM Configuration #1/#2

- Scaling from 224G-PAM4 based on latest CEI-224G-LR (<u>oif2023.235.08</u>) spec
 - Baud rate (f_b): 179.2 Gbd
 - Die/Package:
 - Based on Reference Package Type A with trace length 33mm (TX) and 31mm (RX)
 - Frequency scaled to maintain same IL as with 224G PAM4
 - AFE/Noise BW (f_r): Scale by baud rate
 - Jitter (A_DD, sigma_RJ): #1: Scale by baud rate; #2: PAM4 Jitter
 - Noise (eta_0): #1: eta_0 is inversely scaled down per baud rate; #2: PAM4 eta_0
 - Rise/Fall Time (T_r): #1: Scale by baud rate; #2: PAM4 Rise/Fall Time
 - Equalizer:
 - TX FFE not used to save computation time. Spec. configuration TBD.
 - RX CTLE: Scale by baud rate, i.e. same HF Pole/Zero divider ratio, LF Pole/Zero divider ratio = 128
 - RX FFE fixed taps: 8 pre-taps + 16 post-taps
 - RX FFE floating taps: 4 group of 4 consecutive taps up to 160 UI
 - MLSE: 1 tap

448Gbps COM Investigation Configurations Summary

Parameter	448G-PAM4 Config #1	448G-PAM4 Config #2*	448G-PAM6 Config #1	448G-PAM6 Config #2*			
f_b (Gbd)	224		179.2				
Die/Package	Scaled from OIF-CEI-224G p	per PAM4 baud rate	Scaled from OIF-CEI-224G per PAM6 baud rate				
L	2	1	6				
CTLE Pole/Zero	f_b / [2.5, 2	1, 2.5, 160]	f_b/ [2.5, 1, 2.5, 128]				
T_r (ps)	1.9	2.37	2.37	1.9			
sigma_RJ (UI)	0.01	0.0125	0.01	0.008			
A_DD (UI)	0.02	0.025	0.02	0.016			
eta_0 (V ² /GHz)	5e-9	6.25e-9	6.25e-9	5e-9			

*Note: *: Config #2 is an alternative of Config #1 with device characteristics from the other modulation scheme.*

448G COM Analysis Results w/ PAM4 Channels

- COM scales inverse-linearly with die-to-die IL
- COM performance per die-to-die IL:
 - PAM4 Config #1 > PAM4 Config #2 > PAM6 Config #2 > PAM6 Config #1

- IL limit target based on 3dB COM pass rate
 - PAM4 Config #1: ~39 dB
 - PAM4 Config #2: ~37 dB
 - PAM6 Config #1: ~31 dB
 - PAM6 Config #2: ~33 dB

With same TX/RX Jitter/Noise/Rise-Fall-Time, PAM4 outperforms PAM6 by additional ~6 dB die-to-die IL with PAM4 test channels

448G COM Analysis Results w/ PAM6 Channels

Case 1: Summary and Conclusions

• When channel bandwidth is sufficient to support PAM4/PAM6 modulation schemes, the maximum die-to-die IL:

Modulation Scheme	Max. Die-to-Die IL (dB)	Notes
PAM4 Config #1	39	Channel BW >> 112 GHz, Scaled TX/RX Performance
PAM4 Config #2	37	Channel BW >> 112 GHz, Scaled TX/RX w/ PAM6 Jitter/T_r
PAM6 Config #1	31	Channel BW >> 89.6 GHz, Scaled TX/RX Performance
PAM6 Config #2	33	Channel BW >> 89.6 GHz, Scaled TX/RX w/ PAM4 Jitter/T_r

448 Gbps COM Performance Evaluations

PAM4 versus PAM6 Modulation

Case 2: Packages/channels bandwidth is restricted to ≥PAM4 or ≥ PAM6 Nyquist frequency

448G Channel Modifications to Emulate Bandwidth Limitations

- TE [4] showed today's interconnects have 3 dB BW ~= 80 GHz and ~30 dB IL degradation within <10 GHz
 - Note that 80 GHz BW won't be able to support 448 Gbps PAM6
- PAM6 BW-limited Channel Experiments
 - For 448Gbps PAM6, BW_{3dB} needs to above 89.6GHz (Nyq. freq. of 448Gbps PAM6)
 - Experimented with BW_{3dB}: 89.6~97.6GHz
 - Also need a LPF with steep roll-off to emulate IL notch(s):
 - Butterworth LPF was chosen due to its characteristics
 - Experiments showed that we need ≥40th order Butterworth LPF to emulate the TE connector characteristics
- Similar experiments was set up for PAM4 BW-limited channels
 - BW_{3dB}: 112~120 GHz

[4] Introductory Contribution on Some 448 Gbps Tradeoffs

freq, GHz

inte

448Gbps PAM4 Test Channels with Bandwidth Limits Characteristics (Butterworth LPF 40th-order BW_{3dB} = 120 GHz shown)

- Frequency scaled 224 Gbps end-to-end channels [1][2][3], which include 1m cable assembly.
 - 448G-PAM4 Nyquist freq., 112 GHz, IL ~= 14 to 28 dB (45 test channels)
 - Including 2 FEXT and 1 NEXT
 - Butterworth LPF 40th-order BW = 120 GHz was applied on victim and FEXT

Note:

[1] https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_04_230629.zip

[2] https://www.ieee802.org/3/dj/public/tools/CR/lim 3dj 03 230629.zip

[3] https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_07_2309.zip

448Gbps PAM6 Test Channels with Bandwidth Limits Characterist (Butterworth LPF 40th-order BW_{3dB} = 97.6 GHz shown)

- Frequency scaled 224 Gbps end-to-end channels [1][2][3], which include 1m cable assembly.
 - 448G-PAM6 Nyquist freq., 89.6 GHz, IL ~= 14 to 28 dB (45 test channels)
 - Including 2 FEXT and 1 NEXT
 - Butterworth LPF 40th-order BW = 97.6 GHz was applied on victim and FEXT

Note: [1] https://www.ieee802.org/3/dj/public/tools/CR/lim 3dj 04 230629.zip

[2] https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_03_230629.zip

[3] https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_07_2309.zip

448G PAM4 COM Analysis Results w/ Bandwidth-limited PAM4 Channels Butterworth LPF 40th-order BW_{3dB} = 112 GHz shown)

38

40

42

0.95

0.9

0.85

0.75

0.7

26

28

30

32

34

Die-to-Die IL (dB)

36

3dB Pass Rate

WOO 0.8

PAM4 PAM4CH PAM4+PAM6JN PAM4CH

IL Thre

COM scales inverse-linearly with die-to-die IL

- COM performance per die-to-die IL:
 - PAM4 Config #1 > PAM4 Config #2

- IL limit target based on 3dB COM pass rate
 - PAM4 Config #1: ~38 dB
 - PAM4 Config #2: ~36.5 dB

LPF w/ BW=120 GHz slightly reduced PAM4 supportable Die-to-Die IL by 1~1.5 dB due to phase distortion and Gibbs phenomenon caused by the sharp rolloff LPF

448G PAM6 COM Analysis Results w/ Bandwidth-limited PAM6 Channels (Butterworth LPF 40th-order BW_{3dB} = 97.6 GHz shown)

OIF 448Gbps Signaling for AI Workshop - April 15-16, 2025

intel

Case 2: Summary and Conclusions

• When channels are bandwidth-limited w.r.t. PAM4 modulation scheme, max. IL_{Die-to-Die}:

Modulation Scheme	Channel Bandwidth (GHz)	Max. Die-to-Die IL (dB)	Notes		
PAM4 Config #1	112	38	Scaled TV /DV Derformance		
	120	38	Scalea TX/RX Perjormance		
PAM4 Config #2	112	36.5	Scaled TV/DV w/ DAME litter/T r		
	120	36.5	Sculeu IX/KX W/ PAIVIO JILLEI/I_I		

• PAM6 is expected to support IL_{Die-to-Die} up to 30~32 dB per studies in Case 1.

When channels are bandwidth-limited w.r.t. PAM6 modulation scheme, max. IL_{Die-to-Die}:

Modulation Scheme	Channel Bandwidth (GHz)	Max. Die-to-Die IL (dB)	Notes		
PAM6 Config #1	89.6	<29	Scaled TX/RX Performance		
	97.6	30			
PAM6 Config #2	89.6	29	Sociad TV/DV w/ DANAA littor/T r		
	97.6	33	Sculeu TX/RX W/ PAIVI4 JILLEI/T_T		

PAM4 does not have solution space due to IL roll-off

Summary and Conclusions

• When channel bandwidth (BW) is way beyond PAM4 Nyquist freq., PAM4 always outperforms PAM6

• PAM4 can support additional 6 dB IL_{Die-to-Die} than PAM6

• When channel is bandwidth-limited with significant roll-off, the modulation scheme works if:

- PAM4: Channel BW \geq 112 GHz and IL_{Die-to-Die} \leq ~38 dB
- PAM6: Channel BW \geq 90 GHz and IL_{Die-to-Die} \leq ~30 dB

• Note

• The above conclusions are under the assumptions that SerDes TX/RX and package are scaled per Slides 6-8 and Appendix B.

Appendix A.

448 Gbps Test Channel Distributions

448G PAM4 and PAM6 Test Channel IL Distributions

Distribution of CEI 448G LR Channel Die-to-Die IL at CEI Nyquist Freq (w/ PKGA33A31)

448G PAM4 and PAM6 Test Channels (w/ LPF) IL Distributions

IL at Nyquist Fereq (dB)

Distribution of CEI 448G LR Channel Die-to-Die IL at CEI Nyquist Freq (w/ PKGA33A31)

Appendix B.

448 Gbps COM Configuration

448Gbps COM Configuration (PAM4 Config #1 shown)

Table 93A-1 parameters				I/O control			Table 93A–3 parameters				SAVE_CONFIG2MAT	0	
Parameter	Setting	Units	Information	DIAGNOSTICS	1	logical	Parameter	Setting	Units	Information	Receiver testing		
f_b	224	GBd		DISPLAY_WINDOW	1	logical	package_tl_gamma0_a1_a 2	[5e-4 0.00065 0.0003]			RX_CALIBRATION	0	logical
f_min	0.05	GHz		CSV_REPORT	1	logical	package_tl_tau	0.006141	ns/mm		Sigma BBN step	5.00E-03	V
Dolta f	0.01	CH2			.\results\CACR_set1_{dat	:	packago 7 c	[92 92 ; 70 70; 80 80; 100	Ohm		ICN parameters		
Deita_i	0.01	0112		KLSOLI_DIK	e}\		package_z_c	100]	Onin				
C_d	[0.4e-4 0.9e-4 1.1e-4;0.4e-4 0.9e-4 1.1e-4]	nF	[TX RX]	SAVE_FIGURES	0	logical	z_p (TX)	[8 24 30 45; 1 1 1 1; 1 1 1 1; 0.5 0.5 0.5 0.5]	l mm	[test cases to run]	f_v	0.268	Fb
L_s	[0.13 0.15 0.14; 0.13 0.15 0.14]	nH	[TX RX]	Port Order	[1324]		z_p (NEXT)	[8 24 30 45; 1 1 1 1; 1 1 1 1; 0.5 0.5 0.5 0.5]	l mm	[test cases]	f_f	0.268	Fb
C_b	[0.15e-4 0.15e-4]	nF	[TX RX]	RUNTAG	KR_eval_		z_p (FEXT)	[8 24 30 45; 1 1 1 1; 1 1 1 1; 0.5 0.5 0.5 0.5]	l mm	[test cases]	f_n	0.268	Fb
R_0	50	Ohm		COM_CONTRIBUTION	1	logical	z_p (RX)	[8 24 30 45; 1 1 1 1; 1 1 1 1; 0.5 0.5 0.5 0.5]	l mm	[test cases]	f_2	60.000	GHz
R_d	[46.25 46.25]	Ohm	[TX RX]				C_p	[0.4e-4 0.4e-4]	nF	[test cases]	A_ft	0.450	V
PKG_NAME	PKG_LowR_CLASSA PKG_LowR_CLASSA		TX RX	TDR and ERL options			Operational				A_nt	0.600	V
A_v	0.385	V		TDR	0	logical	ERL Pass threshold	10	dB			a	
A_te	0.385	V		ERL	0	logical	COM Pass threshold	3	db		Parameter	Setting	1.4 db/in @
A_ne	0.48125	V		ERL_ONLY	0	ns	DER_0	1.00E-04			board_tl_gamma0_a1_a2	[0 6.44084e-4 3.6036e- 05]	53.125G
z_p select	[5]			TR_TDR	0.005		T_r	0.00190	ns		board_tl_tau	5.790E-03	ns/mm
L	4			N	7000	logical	FORCE_TR	1	logical		board_Z_c	100	Ohm
M	32			TDR_Butterworth	1		PMD_type	C2C			z_bp (TX)	32	mm
filter and Eq		4.0		beta_x	0		EW	1			z_bp (NEXT)	32	mm
t_r	0.55	*tb		rho_x	0.618		MLSE	1	logical		z_bp (FEXT)	32	mm
c(0)	0.54		min	IDR_W_IXPKG	0	UI	ts_anchor	1			z_bp (RX)	32	mm
c(-1)	0		[min:step:max]	N_bx	16		sample_adjustment	[-16, 16]			C_0	[0.2e-4 0]	nF
c(-2)	0		[min:step:max]	fixture delay time	[00]		Local Search	0			C_1	[0.2e-4 0]	nF
c(-3)	0		[min:step:max]	Tukey_Window	1		Filter: Rx FFE				Include PCB	0	logical
c(-4)	0		[min:step:max]	Noise, jitter		UI	ffe_pre_tap_len	8	UI		Seletions (rectangle, gaussian,dual_rayleigh,tri angle		
c(1)	0		[min:step:max]	sigma_RJ	0.01	UI	ffe_post_tap_len	16	UI		Histogram_Window_Weig ht	gaussian	selection
N_b	1	UI		A_DD	0.02	V^2/GH z	ffe_pre_tap1_max	0.7			Qr	0.02	UI
b_max(1)	0.85		As/dffe1	eta_0	5.00E-09	dB	ffe_post_tap1_max	0.7					
b_max(2N_b)	0.3		As/dfe2N_b	SNR_TX	33.5		ffe_tapn_max	0.7					
b_min(1)	0		As/dffe1	R_LM	0.95		FFE_OPT_METHOD	MMSE		FV-LMS or MMSE			
b_min(2N_b)	-0.3	S	As/dfe2N_b				num_ui_RXFF_noise	2048					
g_DC	[-20:1:0]	dB	[min:step:max]				Floating Tap Control						
f_z	89.60	GHz					N_bg	4	0 1 2 or 3 groups				
f_p1	89.60	GHz					N_bf	4	taps per group				
f_p2	224.00	GHz					N_f	160	UI span for floating taps				
g_DC_HP	[-6:1:0]		[min:step:max]				bmaxg	0.05	max DFE value fo floating taps	r			
f_HP_PZ	1.4	GHz					B_float_RSS_MAX	0.1	rss tail tap limit		Notoci		
Butterworth	1	logical	include in fr				N_tail_start	17	(UI) start of tail		NOLES:		
		-							Laps limit		 COM v4.80 	was used in t	his studv