

Measurement Results for a 448 Gbps Physical Channel

Andrew Josephson Technologist April 15, 2025

Agenda

- Motivation:
 - -Demonstrate the 448 Gbps performance of measured interconnect hardware
- Illustrate:
 - The upper bounds of interconnect performance with precision hardware
- Insights:
 - From the anatomy of measurements spanning 110 GHz
- PAM4/6/8 Tradeoffs
 - Focused on channel consideration from COM Results
- Discussion:
 - -Relationships to future practical interconnect design

Cabled Host Empirical Upper Bound

- Generalize cabled host interconnect as 35mm of planar routing to cable to front panel connector with 100% implementation freedom.
- The result is very similar to today's precision RF test fixtures with 1.00mm cabling.
- Leverage existing empirical characterization to 110GHz.
- Non-scalable RF fixture design rules

BE90 EVB Measured Performance

- 4.5dB to 14dB 224Gbps Channels
- No resonant notch filter response to 110GHz
- -1dB ILD BW ~ 95GHz
- -15dB RL BW ~ 95GHz
- **P/N Skew < 0.5ps**
- P/N Coupling <80dB to 90GHz
- 1.65dB/25mm PCB Strip lines @56GHz
- 1.00mm coax termination to RF047 Coax Cable to BE90C ferrule.

OIF 448Gbps Signaling for AI Workshop April 15-16, 2025

Set up for Computing 448Gbps COM

COM with improved die load terminations

- -Blue is 224 Gbps reference model
- -Red is 448 Gbps estimated model

Some 448 Gbps COM Set-up Parameters

- Quantization (ENOB)
 - 5 and 6.5 bits
- Noise eta_0
 - 1e-9, 3e-9, & 5e-9 V²/GHz
- Modulation
 - PAM 4,6,8
- 224 Gbps and 448 Gbps die terminations
 - Reduced loss (~ 40% lower loss) estimated for 448 Gbps termination
 - 0 mm, 10 mm, and 30 mm 224 Gbps packages but co-package connection
 - 0 mm emulates test equipment
- Using 224 Gbps reference package t-line model, single element
- RxFFE
 - 7 Pre/ 18 post, 2 groups of 4 floating taps to 100 UI
- DER_0 = 2e-5
- R_LM = 0.95
- 1+α MLSD

BE90 ISI Loss Channel Emulator Responses

OIF 448Gbps Signaling for AI Workshop April 15-16, 2025

COM appears to favor PAM 6

PAM 6 seem to be an optimum when

- eta0=1e-9
- package length = 30 mm
- channel loss at 87 GHz = 30 dB
- ENOB = 6.5 bits

COM (w/wo MLSD) and IL (die to die/channel only)

The performance has high linear relation to noise (eta0), package loss (length), and quantization (ENOB)

OIF 448Gbps Signaling for AI Workshop April 15-16, 2025

Scaling is a Challenge

Layer	Туре	Thickness (um)	Construction	Dk Df			Stripline Wiring Cross Section					
L01		38	18um + Plating	HV	LP2		215				215	
D01	Preg	76	1X1078 (67%)	2.84	0.0015		100				100	
L02		25	12um + Plating	HV	LP2		215				215	
D02	Preg	76	1X1078 (67%)	2.84	0.0015		100				100	
L03		25	12um + Plating	HV	LP2		215	272	218	272	215	
D03	Preg	76	1X1078 (67%)	2.84	0.0015		100				100	
L04		25	12um + Plating	HV	LP2		215				215	
D04	Preg	76	1X1078 (67%)	2.84	0.0015		100				100	
L05		25	18um + Plating	HV	LP2		215				215	
D05	Core	76	1X1078 (64%)	2.84	0.0015		100				100	
L06		25	18um + Plating	HV	LP2		215				215	
D06	Preg	76	1X1078 (67%)	2.84	0.0015		100				100	
L07		25	12um + Plating	HV	LP2		215				215	
D07	Preg	76	1X1078 (67%)	2.84	0.0015		100				100	
L08		25	12um + Plating	HV	LP2		215				215	
D08	Preg	76	1X1078 (67%)	2.84	0.0015		100				100	
L09		25	12um + Plating	HV	LP2		215				215	
D09	Preg	76	1X1078 (67%)	2.84	0.0015		100				100	
L10		38	18um + Plating	HV	LP2		215				215	

BE90 EVB Via BOR

- Precision RF test fixtures do not require scalable design rules as do digital applications.
- Qty = 146 unique laser drills per 110GHz SE BOR down to 250um pitch.
- One 218um wide trace in skip layer routing layer in 5 HDI buildup layers netting 1.65dB/inch at 56GHz.
- 6mm Diff Pair Pitch
- Leveraging HDI technology for z-axis interconnect bandwidth is not independent from achievable stripline loss/inch.
 - Low surface roughness copper foils are challenging in buildup due to decreased peel strength. Inner layer in buildup are outer layers of the sub-assembly.

Summary

- Today's precision RF test fixtures give access to empirical channel s-parameter data sets of relevant bandwidth, loss, and physical reach for 448G COM parameter analysis.
- Understanding their implementations and performance limitations gives insight into our future scalable 448Gbps system design space.
 - Maximizing both planar package Z-axis interconnect BW and stripline loss performance beyond these implementation 'local maximums' will be extremely challenging while also dimensionally shrinking to enable digital systems scaling.

SUDEN SERVICE®

