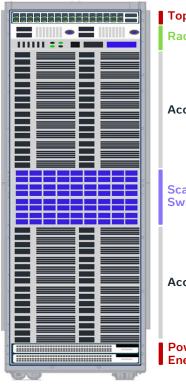
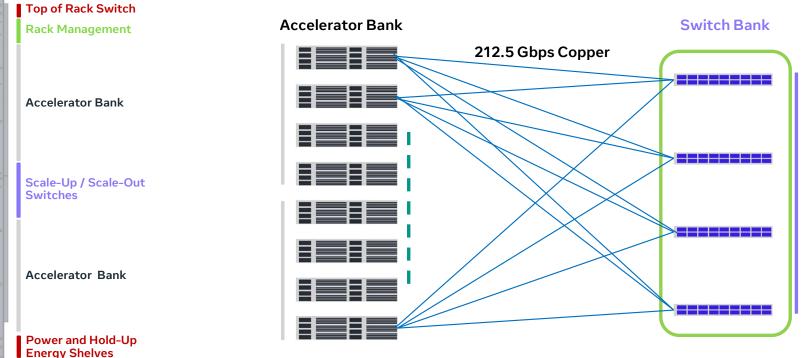


AI Systems and Interconnects: LR Channel for Scale-up


Srinivas V., Xu Wang 04-15-2025

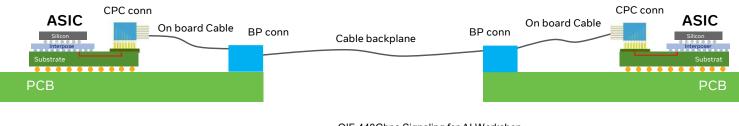

Meta

Overview

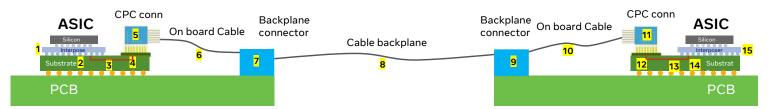
- Consideration for long reach (LR) type channels to support single hop high bandwidth connectivity between accelerators
 - Systems form factors are the same as current generation making this challenging
- Contribution covers an initial assessment for an LR channel for scale-up connectivity
 - Assumes use of Co-packaged Copper Interconnect (CPC) on both ends
 - Evaluates feasibility with Baseband PAM modulation

Current Generation Scaleup Connectivity

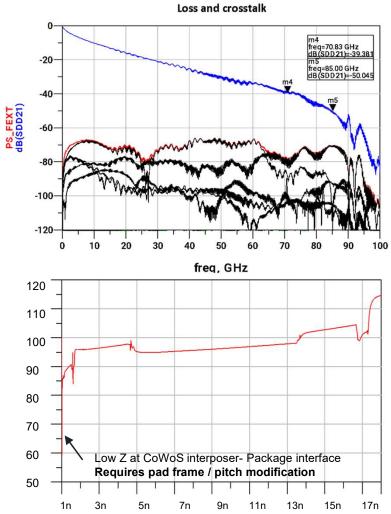
- All to all connectivity between accelerators and switches
- 1 to N GPUs per tray
- Configurable no of network trays
- Long reach (LR) links for scale-up

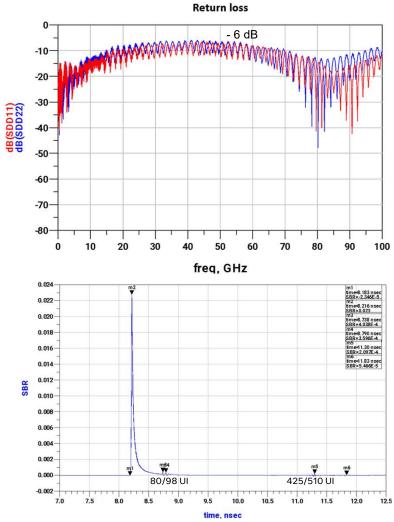

Current and Next Gen Scaleup Connectivity

• 212G Scale up


- · Near package connector + flyover cables through a dedicated cable backplane cartridge
- Near package connector + flyover cables through an orthogonal direct connector attach
- Worst case cable lengths end to end can be close to ~2 meters
- Packages can consume 25-30% of the overall channel budget
- Manage impairments with package resonances and package/PCB footprint crosstalk

- Next Generation Scale-up
 - Support similar cable backplane connectivity and physical reach as previous generation ~ 2 meters
 - CPC connector attach to the same first level package as CoWoS interposer
 - Eliminates package resonances and PCB crosstalk impairments
 - Limited cable lengths to 1.6 m at this stage for early analysis
 - On board cable lengths can be eventually stretched using gauge adapters to go from AWG 32 on CPC side to AWG 26 towards the backplane side to make up the difference


448 Gbps LR Channel with CPC connectors



	Interconnect (Bump to Bump)	Notes
1	CoWoS-L interposer	1, 2 are extracted together
2	Organic substrate c4 escape routing, 10 mm, 16/35/16 um	80 C, nomSR, GL107 (current generation material) ^{1, 2}
3	Organic substrate wiring, 30.4 mm, 86 ohms, 40/64/40 um	80 C, nomSR, GL107, 0.165 dB/mm at 75 GHz (current generation material) ¹
4	CPC connector footprint	
5	Next gen CPC connector	Diff pair count / footprint optimized
6	On board cable 300 mm, 92 ohms	AWG 32, 0.368 dB/inch at 75 GHz (current generation cable)
7	Next gen Backplane IO connector	Cable in-out M-F
8	Cable Backplane, 1.0 meter, 90 ohms	AWG26, 0.205 dB/inch at 75 GHz (current generation cable)
9	Next gen Backplane IO connector	Cable in-out M-F
10	On board cable 300 mm, 92 ohms	AWG 32, 0.368 dB/inch at 75 GHz (current generation cable)
11	Next gen CPC connector	Diff pair count / footprint optimized
12	CPC connector footprint	
13	Organic substrate wiring, 23 mm, 86 ohms, 40/64/40 um	80 C, nomSR, GL107, 0.165 dB/mm at 75 GHz (current generation material)
14	Organic substrate c4 escape routing, 10 mm, 16/35/16 um	80 C, nomSR, GL107, (current generation material)
15	CoWoS-L Interposer	14, 15 are extracted together

Note 1: Scope for improvement with next gen build-up, skip layer routing and next gen cable interconnect Note 2: Nominal surface roughness

OIF 448Gbps Signaling for AI Workshop April 15-16, 2025

COM Analysis

- Computation based on COM 4.8, with following modifications to 802.3dj config^[1] parameters
 - Data rate: 425 Gbps
 - + Device parasitics (C_d, L_s) scaled by ~30%
 - DER_0:1E-4
 - FFE: 7+1+40 fixed; floating tap span to 100 UI
 - A_v: 0.385 V; N_qb: 6.5; η_0 :1E-09 V²/GHz
 - Crosstalk files included in the simulations

	PAM-8	PAM-8 ^[2]	PAM-6	PAM-6 ^[2]
COM margin	-1.55	-0.13	-1.93	-0.91
DER_DFE	2.70E-03	8.60E-04	4.60E-03	2.20E-03
DER_MLSE ^[3]	9.95E-04	1.25E-04	1.50E-03	4.21E-04

- COM results do not show sufficient margin, needs more investigation
- CPC connector launch and the backplane connector mating interface contribute to late reflections (~ 2x over the tray cable delay)
- Note 1: Baseline 448G config spreadsheet from Rich Mellitz
- Note 2: Increased floating tap groups to 4 and span to 550 UI

Note 3: Turned off additional impairment penalty applied before MLSE calculation (modified code from Hossein Shakiba)

Serdes IP Vendor Analysis

	Data rate	Channel	DSP	Conclusions
Marvell	• 425Gbps	CPC/long reach	FFE+DFE+MLSD	 PAM6 modulation - yields 1dB SNR margin with respect to KP FEC limit (< 5E-5) PAM8 modulation - yields 2.4 dB SNR margin with respect to KP FEC (<4e-6) Additional note: <i>Adding optionally Inner FEC is going to improve the SNR margin</i>
Maxlinear	 430 Gbps 7.5% FEC overhead	CPC/long reach	FFE+DFE+MLSD	 Tx with 1.2 V swing > 8+ dB Tx pre-emphasis (5 tap FFE) BER < 1E-5 (both PAM-8, 6)
Broadcom	 425 Gb/s not including inner code overhead 170 Gbaud PAM-6 142.5 Gbaud PAM-8 	CPC/long reach	Includes MLSD	 PAM-6 not analyzed PAM-8 needs inner code with 2.4 dB net coding gain for 3 dB margin [1] Significant reflection(s) with very high round-trip delay
		 Lower loss CPC/long reach Package lengths reduced to 25 mm on each substrate ~4.5 dB reduction at 70.8 GHz 	Includes MLSD	 PAM-6 needs inner code with 1.3 dB net coding gain for 3 dB margin PAM-8 needs inner code with 1.4 dB net coding gain for 3 dB margin Significant reflection(s) with very high round-trip delay

[1] Net coding gain is coding gain adjusted for higher signaling rate due to encoding. Margin is relative to the IEEE P802.3dj maximum BER allowance (2.76e-4)

Summary

- Copper interconnect with LR reach is required for high bandwidth connectivity between accelerators
 - Support similar physical reach as today's system form factors
 - Retimer less configurations preferred
- CPC attach directly to ASIC substrate might be the only viable option to support this interface
 - Requires development of low loss, high bandwidth wire gauge transition adapters
 - Enable small CPC footprint on package and large ~ AWG26 type gauge for bulk of the interconnect
- Analysis with Meta LR channel
 - Poor convergence with COM (needs deeper investigation)
 - Some channel improvements possible to improve (loss/reflections)
 - More analysis needed to converge on an optimal solution with necessary DSP + FEC, considering trade-offs with IO power/design complexity
 - Measured data on channels and with test chips