

Navigating the Path to 448G: Architectural and Ecosystem Considerations Over Electrical Interfaces

Mike Klempa, Behzad Dehlaghi, Tony Carusone, Todd Bermensolo

April 16, 2025

Al Interconnect Scaling Dominant Driver for 448G

Rack-to-Rack & Beyond: Optics

🛆 ALPHAWAVE SEMI

Up to ≈ 10 km

Scale-Up: Multi-rack ⇒ Longer reaches ⇒ Includes optics

0'5

100 – 500 mm CPC CPC CPC CPC SerDes ASIC SerDes SerDes ASIC SerDes Package Substrate Package Substrate PCB

C2C connection

448 Gb/s Electrical Feasibility using COM Special thanks to Behzad Dehlaghi for the analysis

Simulation Setup – Channel Models

- Two sets of channel models are used in this study
 - 1. C2C 9 mm Package + 500 mm CPC + 11 mm Package
 - a) Current generation SiFlyHD
 - b) Next generation SiFlyHDplus
 - 2. C2M 25 mm Package 400 mm CPC
 - a) "Limit of today's pluggable"
 - b) "New pluggable, familiar feel"
 - c) "New pluggable, New paradigm"
- Crosstalk is included in the analysis
 - 2x FEXT1 channels are included

C2C Channel models from Samtec

Simulation Setup – COM Sheet

Table 93A-1 parameters					I/O control			Table 93A-3 parameters		SAVE_CONFIG	2MAT	0		
Parameter	Setting	Units	Information	DIAGNOSTICS	• 0	logical	Parameter	Setting	Units	Information		Rec	eiver testing	
f_b	212.5	GBd		DISPLAY_WINDOW	0	logical	package_tl_gamma0_a1_a2	[5e-4 0.00065 0.0003]			RX_CALIBRA	TION	0	logical
f min	0.05	GHz		CSV REPORT	• 0	logical	package tl tau	0.006141	ns/mm		Sigma BBN s	tep	5.00E-03	V
Delta_f	0.01	GHz		RESULT_DIR	.\results\400g\400G	{date}\	package Z c	[92 92 ; 70 70; 80 80; 100 100]	Ohm			ICN	parameters	
C_d	[0.4e-4 0.9e-4 1.1e-4;0.4e-4 0.9e-4 1.1e-4]	рE	[TX RX]	SAVE_FIGURES	0	logical	z_p (TX)	[12 30 45; 1 1 1; 1 1 1; 0.5 0.5 0.5]	mm	[test cases]	f_v		0.139	Eb
L_S	[0.13 0.15 0.14; 0.13 0.15 0.14]	υH	[TX RX]	Port Order	[1324]		z_p (NEXT)	[12 30 45; 1 1 1; 1 1 1; 0.5 0.5 0.5]	mm	[test cases]	f_f		0.139	Eb
C_b	[0.3e-4 0.3e-4]	nF	[TX RX]	RUNTAG			z_p (FEXT)	[12 30 45; 1 1 1; 1 1 1; 0.5 0.5 0.5]	mm	[test cases]	f_n		0.139	Fb
R_0	50	Ohm		COM_CONTRIBUTION	• 0	logical	z_p (RX)	[12 30 45; 1 1 1; 1 1 1; 0.5 0.5 0.5]	mm	[test cases]	f_2		123.250	GHz
R_d	[50 50]	Ohm	[TX RX]				C_p	[0.4e-4 0.4e-4]	nE	[TX RX]	A_ft		0.450	V
PKG_NAME	PKG_MODEL PKG_MODEL		TX RX	TDR an	ERL options	logical	A_v	0.413	V	vp/vf=	A_nt		0.450	V
z p select	1		[test cases to run]	TDB	0	logical	A fe	0.413	V	vp/vf=				
L	4			ERL	• 0	logical	A ne	0.45	V	~~~	Paramete	r	Setting	-
м	32			ERL ONLY	0	ns		Operational			board tl gamma	0 a1 a2 06.	44084e-4 3.6036e-	05 1.5 db/in @ 56G
	filter and Eq			TR TDR	0.01	~	ERL Pass threshold	10	dB		board tl t	au	5.790E-03	ns/mm
fr	0.58	*fb		N	4000	logical	COM Pass threshold	3	db		board Z	c	100	Ohm
c(0)	0.55	~~~	min	TDR Butterworth	1		DER 0	2.40E-04			z bp (TX)	32	mm
c(-1)	[-0.4:0.05:0]		[min:step:max]	beta x	0		Tr	2.35E-03	ns		z bp (NEX	, T)	32	mm
c(-2)	[0:0.05:0.1]		[min:step:max]	rho x	0.618		FORCE TR	1	logical		z bp (FFX	T)	32	mm
c(-3)	0		[min:step:max]	TDR W TXPKG	0	UI	PMD type	C2C	iogicai		z bp (RX)	32	mm
c(1)	0		[min:step:max]	N bx	20	~	FW	1	-		C 0	,	[0.2e-4 0]	nE
N b	1	UI	[fixture delay time	[00]		MLSE	1	-		C 1		[0.2e-4 0]	nE
b max(1)	0.75	~	As/dffe1	Tukey Window	1		ts anchor	1	_		Include PC	B	0	logical
b max(2N b)	0.3		As/dfe2N b	No	se, litter	UI	sample adjustment	[-8.8]			Seletion	s (rectangle, g	aussian.dual_ravlei	gh.triangle
b min(1)	0		As/dffe1	sigma RJ	0.01	Ű	Local Search	2	-		Histogram Windo	w Weigh	gaussian	selection
b min(2N b)	-0.15		As/dfe2N b	A DD	0.02	V^2/GHz	DER CDR	1.00E-02	-	Maximimum DER_DEE that MLSE will be evaluated	Or		0.02	UI
g DC	[-10:2:0]	dB	[min:step:max]	eta 0	4.00E-09	dB	0	0.00E+00	ns	MLSE Implementation penalty	~			~~~~~
f z	42.5	GHz	[minocepimax]	SNR TX	33	40	4	Filter: RX FFE	~~~~	mage implementation penalty				
f p1	42.5	GHz		RIM	0.95		ffe pre tap len	10	UI					
f p2	106.25	GHz		11-2022 BenArtsi pkg	oif2022.065.02		ffe post tap len	80	Ũ					
g DC HP	0		[min:step:max]	highlighted are under re-o	onsideration		ffe pre tap1 max	1	~					
f HP P7	1.32815	GHz	[ffe post tap1 max	1						
Bessel Thomson	0	logical	Bessel filter				ffe tapp max	1						
Raised Cosine	0	logical	RaisedCosine filter				FFE OPT METHOD	MMSE		FV-LMS or MMSE				
Butterworth	1	logical	Butterworth filter											
RC Start	6.70E+10	Hz	start freq for RCos				num ui RXFF noise	1024						-
RC end	1.23E+11	Hz	end freg for RCos				ΤO	0	mUI	Needed for C2M VEC calculations				
								Floating Tap Control		0 1 2 or 3 groups				
							N bg	0		taps per group				
							N bf	4		UI span for floating taps				
							N_f	80		max DFE value for floating taps				
START	PKG_MODEL						bmaxg	0.2		rss tail tap limit				
Table 93A-3 parameters						B_float_RSS_MAX	0.1		start of tail taps limit					
Parameter	Setting	Units	Information				N_tail_start	25	Ų					
package_tl_gamma0_a1_a2	[5e-4 0.00065 0.000293]													
package_tl_tau	0	ns/mm												
package_Z_c	[87.5 87.5; 95 95; 100 100; 100 100]	Ohm												
R_d	[50 50]	Ohm												
z_p (TX)	[0; 0; 0; 0]	mm	[test cases]											
z_p (NEXT)	[0; 0; 0; 0]	mm	[test cases]											
z_p (FEXT)	[0; 0; 0; 0]	mm	[test cases]											
z_p (RX)	[0; 0; 0; 0]	mm	[test cases]											
C_p	[0 0]	nE	[TX RX]											
A_v	0.413	V	vp/vf=											
A_fe	0.413	V	vp/vf=											
A_ne	0.45	V												
.END														

Simulation Setup – COM Parameters

 COM 4.8 is used in our analysis 	Parameter	Nominal Valu	
 N_qb is used to model ADC quantization noise 	Front-end Improvement ^a	40%	
 Nominal values, parameters in our analysis: 	TX SNR	33 dB	
 Percentage of improvement compared to 200G LC network 	TX RLM	0.95	
 C_d/C_b/Ls parameters are simply scaled down together 	RX Bandwidth ^b	100 GHz	
 More complicated LC networks might be needed b) Assuming a 4th order Butterworth filter 	CTLE P1/Z ^c	75 GHz	
c) DC gain values are [-10:2:0] and up to 10 dB of boost is	CTLE P2	140 GHz	
achieved by moving zero to a location below this frequency	No of FFE Pre-cursors	20	
 COM implementation penalty of 3 dB is not 	No of FFE Post-cursors	50	
included in the BER, therefore we need to build	ADC ENOB	7 bit	
margin into our BER target	RX Noise Density	4e-9 V ² /GHz	
BER=2.4e-4	Random Jitter	70 fs	
	Dual-Dirac Jitter	150 fs	

Value

Simulation Setup – COM Extrapolation

- S-parameters only go up to 100 GHz for C2M channels
 - Missing channel data >100 GHz leaves uncertainty in the results and potentially wrong conclusions
 - The industry needs data with reasonable certainty out to 150 GHz from the ecosystem
- Two different extrapolation methods are used in COM to show the impact of the method chosen
 - ~1.5 dB difference in COM resulting in 1-2 orders of magnitude difference in BER for PAM4
- Extrapolation methods used for the analysis shown in this presentation:
 - Magnitude extrapolation = "trend_to_DC"
 - Phase extrapolation = "trend_and_shift_to_DC"

COM Results – 448 Gb/s with and without MLSD

- PAM6 outperforms PAM4 across channels with limited bandwidth
- Further improvements in C2C channels needed to enable PAM4
- C2M Ch-C shows the best recipe for success
 - This could change once channel data above 100 GHz becomes available
- MLSD is necessary to give us the margin we need
 - Samtec C2C SiFlyHDPlus results for PAM4 with MLSD are worse than without

COM Results – 425 Gb/s vs 448 Gb/s

• Trade-off between the FEC overhead and gain is more pronounced than EVER at 400G!

-10

-15

[q] -20 -25 -30

-35

mar

100

150

Amphenol C2M Ch-A

COM Results – Sensitivity to Different Parameters C2M Amphenol Channel C [448 Gb/s PAM4]

- Taking that previous performance across various channels (nominal) and sweeping SerDes parameters finding additional margin at 448 Gb/s PAM4
 - Assuming the extrapolation assumption stands, and the real channel data 100-150 GHz follows it
- The challenges:
 - Analog bandwidth of front-end networks and CTLE/VGA
 - With the same ESD capacitance, can we get the bandwidth we need for 448 Gb/s?
 - Jitter
 - AFE doesn't benefit as much as the digital as we go to more advanced nodes how can we keep jitter low at these data rates? Especially in 2nm and below?
 - ADC ENOB
 - Need to maintain ENOB as sampling frequency is increased

COM Results – Sensitivity to Different Parameters C2C Samtec SiFlyHDPlus [448 Gb/s PAM4]

- There is not much we can do on the SerDes side to meet the performance requirement at 448 Gb/s
 - Using MLSD would help, but may not have enough margin at 448 Gb/s
 - As shown in the previous slides, at 425 Gb/s there is still a chance for PAM4
- Without further improving the interconnect, we'd need to go to PAM6 at 448 Gb/s here

COM Results – Sensitivity to Different Parameters C2C Samtec SiFlyHDPlus [448 Gb/s PAM6]

- PAM6 relaxes the sensitivity to front-end network and VGA/CTLE significantly
- The main challenges for PAM-6 are jitter and TX SNR
 - The more we can push the SNR, the more benefit we get from higher order modulations such as PAM6

The Role of Standards in the Rapid Evolution of Al Networks A message from the OIF PLL Interop Chair

Timeline of IEEE Ethernet Standards Development

Accelerating Timelines vs. Massive Scaling

If you want to go fast, go alone. If you want to go far, go together.

Al Hardware upgrading on 12-month cadence

Typical standard development timeline: 3 years for each generation

Thank you!

Simulation Setup - Front-End Network Improvements

- What improvements to the LC network mean in terms of bandwidth
 - 60% improvements mean getting close to 200 GHz bandwidth from the front-end networks!
- Improvements are quantified with respect to the numbers from the 200G COM sheet
 - The details can be found on the COM sheet

