

OIF Common Electrical I/O (CEI) -112G Interoperability Demo

OFC 2022

March 8-10 – San Diego CA

OIF's Common Electrical I/O (CEI) Work Has Been a Significant Industry Contributor

Name	Rate per pair	Year	Activities that Adopted, Adapted or were influenced by the OIF CEI
CEI-112G	112Gbps	2022	Seven channel reach projects in progress, IEEE, InfiniBand, T11 (Fibre Channel), Interlaken, ITU.
CEI-56G	56Gbps	2017	IEEE, InfiniBand, T11 (Fibre Channel), Interlaken, ITU
CEI-28G	28 Gbps	2012	InfiniBand EDR, 32GFC, SATA 3.2, SAS-4,100GBASE-KR4, CR4, CAUI4, Interlaken, ITU
CEI-11G	11 Gbps	2008	InfiniBand QDR, 10GBASE-KR, 10GFC, 16GFC, SAS-3, RapidIO v3, Interlaken, ITU
CEI-6G	6 Gbps	2004	4GFC, 8GFC, InfiniBand DDR, SATA 3.0, SAS-2, RapidIO v2, HyperTransport 3.1, Interlaken, ITU
SxI5	3.125 Gbps	2002-3	Interlaken, FC 2G, InfiniBand SDR, XAUI, 10GBASE-KX4, 10GBASE-CX4, SATA 2.0, SAS-1, RapidIO v1, ITU
SPI4, SFI4	1.6 Gbps	2001-2	SPI-4.2, HyperTransport 1.03
SPI3, SFI3	0.800 Gbps	2000	(from PL3)

OIF CEI-112G Development Application Space

- PAM4 modulation scheme becomes dominant in OIF CEI-112 Gbps interface IA
- One SerDes core is not able to efficiently cover multiple applications from XSR to LR
- For short reach applications, simpler and lower power equalizations are desired

CEI-112G-LR

This interoperability demo consists of multivendor LR silicon transmitting 106.25 Gbps PRBS31Q PAM4 signals over a multivendor LR channel emulating high density 256x100G (25.6T) and 512x100G (51.2T) line card implementations while exceeding the BER target requirements.

CEI-112G-LR

These interoperability demo's consists of multivendor LR silicon and silicon to test equipment transmitting 106.25 Gbps PRBS31Q PAM4 signals over a 2m Copper Cable and Module Compliance Boards while exceeding the BER target requirements.

CEI-112G-MR

This interoperability demo consists of multivendor MR silicon transmitting 106.25 Gbps PRBS31Q PAM4 signals over a multivendor MR channel consisting of a mated compliance set of test fixtures and channel loss board at a bit error rate in of 1E-10.

This demo uses a DSP/CDR to drive a channel loss emulating high density line card implementations, delivering an eye-opening exceeding target TP1a draft targets.

This demo consists of a single 106.25 Gbps PRBS31Q PAM4 signal being transmitted from silicon traversing a 16dB VSR passive channel terminated by FEC capable test equipment. The VSR channel consists a mated compliance test fixture set and channel loss board. The measured Bit Error Rate is in the 1E-10 range.

CEI-112G-Linear

This interoperability demo consists of the linear conversion of an optical input from a 400G DR-4 module sent over 2km of SMF to an electrical signal via PD+TIA. The electrical signal is then sent through an OSFP connector to a BERT which integrates receive FFE functionality and achieves a link BER which exceeds standard requirements. There is no discrete DSP in the Rx path before the BERT, saving module power and cost.

CEI-224G Framework Document

	=	
	CONTENTS	
GLOSS	ARY [†]	
1 EXE	CUTIVE SUMMARY	
2 INTE	RODUCTION	
2.1 Pu	rpose	
2.2 M	otivation	
2.3 C	allenges and possible solution space	
2.3.1	Challenges of cost, power and electrical link reach	
2.3.2	Challenges of channel requirements and characteristics	
2.3.3	Challenges of material characteristics, properties, fabrication and modeling	
2.3.4	Challenges of modulation, equalization, target DER, and FEC/latency	
2.3.5	Challenges of test and measurement	
2.4 Su	mmary	
3 INTE	RCONNECT APPLICATIONS	2
3.1 Di	e to Die Interconnect Within a Package	
3.2 Di	e to optical engine within a package	
3.3 CH	ip to Nearby Optical Engine	
3.4 CI	ip to Module	
3.5 CH	ip to Chip within PCBA	
3.6 PC	BA to PCBA across a Backplane/Midplane or a copper cable	
3.7 Ct	assis to Chassis within a Rack	
3.8 Ra	ck to Rack side-by-side	
3.9 Lo	nger links	
3.10 In	terconnect Application Summary	
4 POII	NTS OF INTEROPERABILITY	3
5 OPF	ORTUNITIES FOR FUTURE WORK	3
6 RFI	ATION TO OTHER STANDARDS	3
	IMARY	

- Summarizes the consensus findings and guidance for new OIF CEI-224G projects
- Identifies key technical challenges for next generation systems
 - Power, density, performance, reach and cost
- Defines electrical interconnection applications and discusses some of the interoperability test challenges
- Establishes baseline materials that will enable 1.6/3.2 Tbps rate architectures and lower cost, lower complexity 800G and 400G architectures

OIF-FD-CEI-224G-01.0 published in February 2022

OIF CEI-224G New Project Starts

- New Projects started at OIF Q1 2022 meeting
- One SerDes core might not be able to cover multiple applications from XSR to LR
- For short reach applications, simpler and lower power equalizations are desired

Participating Members!

www.oiforum.com