

Energy Efficient Interfaces OIF Interop Demos for EEI

Energy Efficient Interfaces (EEI) @ OFC 2025

Energy Efficient Interfaces (EEI)

- EEI Interoperability Agreements
- Interoperability Demonstrations

What is needed?

Al compute connectivity is on an unsustainable path as it grows to larger clusters

https://www.energy.gov/ne/articles/5-facts-know-about-three-mile-island

What is needed:

- Copper for shorter reaches
- Optics for increased connectivity over longer distances
- Links that are:
 - Energy efficient links
 - Low latency links
 - High reliability links
- And these links must support a variety of protocols (Ethernet, PCIe, UEC, UALINK, NVLINK, IB, etc.)

Next generation links for AI compute

Targets for next generation EEI links for AI compute

Hyperscaler members provide requirements for the next generation of EEI links

	Parameter	Compute - Local	Compute - Network	Front - End
	Scale	Local	10's or racks	Data center
	Reach [m]	~ 10m	~100m	1km
	BW Density [Tbs/mm] (Tx + Rx)	2.0 to 4.0	2.0 to 4.0	Std Ethernet
-	Latency¹ [ns]	< 5.0 + tof	< 5.0 + tof	< 20.0 + tof
	Energy Utilization ¹ [pJ/b]	< 5.0	< 10.0	< 10.0
	Reliability (link errors)	high (low latency FEC w/ CRC)	high (Iower latency FEC)	Std Ethernet
	Reliability (hw failures)	high	high	Std

Approaches for EEI link interfaces for scale-up

Pluggable

Replaceable modules:

- Non-retimed (e.g. LPO, LINEAR, passive copper)
- Tx-retimed (e.g. RTLR, LRO) (Tx diagnostics)
- Fully-retimed (full diagnostics)

On-Board

- Increased density
- Shorter electrical channel
- Replacement requires card removal

Co-packaged

- Highest density
- Shortest electrical channel
- Replacement requires repair of ASIC's package
- Configured during ASIC packaging

Energy Efficient Interface Activities at the OIF

OIF's Co-Packaging Projects

√ Co-packaging Framework Project

OIF-Co-Packaging-FD-01.0 – Co-Packaging Framework Document

√ 3.2T Co-packaged Engine

<u>OIF-Co-Packaging-3.2T-Module-01.0 – Implementation Agreement for a 3.2Tb/s Co-Packaged (CPO) Module</u>

✓ External Laser Source (ELSFP)

External Laser Small Form Factor Pluggable (ELSFP) Implementation Agreement (August 2023)

√ Management Interface for ELSFP

<u>OIF-ELSFP-CMIS-01.0 – Implementation Agreement for External Laser Small Form</u> Factor Pluggable (ELSFP) CMIS

Energy Efficient Interfaces for AI

✓ System Vendor Requirements for Energy Efficient Interfaces

 Document the EEI requirements as provided by the end-users for AI/ML optical and electrical links

Energy Efficient Interface Framework

 Study and initiate new standards for dense, low power, low latency links for AI/ML

RTLR Project (Retimed Transmitter, Linear Receiver)

 Address lower latency and low power applications utilizing transmit retimed optical transceivers (e.g. Ethernet, UEC, etc.)

CEI-Linear (Non-Retimed Interface)

Low power optical interface (LPO, CPO, & NPO)

COI Project (Compute Optics Interface)

 Address energy efficient, low latency photonic interfaces for transport of traffic for Al scale-up applications

High-Density Connector Project

Defining requirements for next generation connectors

Summary

Al compute connectivity is on an unsustainable path as it grows to larger clusters

https://www.energy.gov/ne/articles/5-facts-know-about-three-mile-island

The OIF is working on the next generation of links:

- ✓ Copper for shorter reaches
- ✓ Optics for increased connectivity over longer distances
- ✓ Links that are:
 - Energy efficient links
 - Low latency links
 - High reliability links
- ✓ And these links must support a variety of protocols (Ethernet, PCIe, UEC, UALINK, NVLINK, IB, etc.)

Energy Efficient Interfaces (EEI) @ OFC 2025

Energy Efficient Interfaces (EEI)

- EEI Interoperability Agreements
- 3.2T Optical Module for Co-Packaging Project
 - ELSFP Project
 - Electrical Interfaces for EEI
 - XSR, XSR+
 - RTLR (Retimed Transmit Linear Receive)
 - ☐ Linear (Non-retimed) (a.k.a. LPO)
 - Interoperability Demonstrations

3.2T Optical Module

Channel components cross-section

3.2T Module Dimensions

- 32 x 112G XSR to Standard Optics:
 - 8 x 400G DR4
 - 8 x 400G FR4 (incl. 200G mode)
- Copper Cable Assembly compatible

- Power capability:
 - 56W (Internal Laser option)
 - 48W (External Laser option)

LGA Pin Map for 3.2T Module

- Supply rails:
 12V, 3.3V, 2.6V, 1.8V, 1.2V,
 0.9V, 0.7V
- Comms Electrical: 1.2V SPI
- Comms protocol: CMIS
- 400G and 800G (2x400G) port grouping defined
 - For low power modes and 2x400G-FR4 cable assignment

Copyright © 2025 OIF

Energy Efficient Interfaces (EEI) @ OFC 2025

Energy Efficient Interfaces (EEI)

- EEI Interoperability Agreements
 - 3.2T Optical Module for Co-Packaging Project

- ELSFP Project
- Electrical Interfaces for EEI
 - XSR, XSR+
 - RTLR (Retimed Transmit Linear Receive)
 - ☐ Linear (Non-retimed) (a.k.a. LPO)
- Interoperability Demonstrations

Why ELSFP?

OIF defining common External Laser Pluggable

- Industry need for co-packaged and near-packaged systems
 - Systems need faceplate density
 - External laser modules need common specification for economies of scale
- Form factor to span multiple system generations
 - Plan for optical & thermal scaling

External Laser Small Form Factor Pluggable

- ELSFPs provide CW laser power for optical engines (OEs).
- Decreases thermal power density in the system
- Each large system will likely need multiple (i.e. 8 or 16) ELSFPs
- The light from a given ELSFP can feed more than a single OE.
- A pluggable form factor helps to ensure total system reliability and a "hot swap" replacement if a single laser or ELSFP module fails.
- Eye safety is achieved by a blind mate optical connector internal to the system.

Initial Technical Concept

Density

- Blind mate pluggable
- Width similar to OSFP (16 modules wide with standard management I/O)

Commonality

- Industry standard 3.3V Supply
- CMIS (Common Management Interface Specification)

Scaling

- Optical power classes
- Thermal power classes
- Belly-to-belly configurations
- Riding heat sink for system flexibility

- Two "MT style" ferrules for future proofing
 - Support for 8 PM fibers per MT ferrule
 - One ELSFP to support multiple CPO modules

Single Port ELSFP Design

ELSFP Module-Side Optical Connector

OFC25 OIF EEI Interop

ELSFP Electro-Optical Connector

Module Bottom side Electrical Contacts

Host side Electro-Optical Connector

Additional pins for control/management, laser safety (i.e. presence pin), and spares for future proofing Optical connector sub-assembly (pink) is separable from the board mounted electrical connector sub assembly

ELSFP Mating Sequence

STEP 1: Coarse alignment (PCB-to-host receptacle)

STEP 2: Coarse alignment (Optical coarse alignment pins)

STEP 3: Fine alignment (ferrule guide pins)

STEP 4: Ferrule end-faces in contact

STEP 5: Electrical contact (presence pin)

- Host side optical connector sub assembly has float to enable fine optical alignment.
- PCB and optical coarse alignment pins mate prior to fine alignment of optical ferrule guide pins .
- Ferrule end-faces to contact prior to electrical contact.

Optical Power Classes for ELSFP

ELSFP Optical Power Classes	Power/λ/Core +/- 1.5dB
Super Low Power - SLP	2dBm
Ultra Low Power - ULP	5dBm
Very Low Power - VLP	8dBm
Low Power - LP	11dBm
Medium Power - MP	14dBm
High Power - HP	17dBm
Very High Power - VHP	20dBm
Ultra High Power - UHP	23dBm
Super High Power - SHP	26dBm

Combs

Single-Channel

_ Multi-Channel

> *Naming convention inspired by ITU Radio Frequency Band Nomenclature

ELSFP's eco-system drives innovation

The ELSFP's eco-system continues to innovate and has yielded impressive improvements in energy efficiency (PCE), a key component of next generation energy efficient interfaces

Eye Safety

ELSFP's blind mate optical connector paired with a system interlock enables a safer co-packaged system implementation for users.

Similar to EDFAs with powerful CW lasers, Class 3B and 4 lasers can be used inside ELSFP and systems can be deployed in unrestricted locations.

Energy Efficient Interfaces (EEI) @ OFC 2025

Energy Efficient Interfaces (EEI)

- EEI Interoperability Agreements
 - 3.2T Optical Module for Co-Packaging Project
 - ELSFP Project
- Electrical Interfaces for EEI
 - XSR, XSR+
 - □ RTLR (Retimed Transmit Linear Receive)
 - Linear (Non-retimed) (a.k.a. LPO)
 - Interoperability Demonstrations

Electrical interfaces options for optical links

Retimed

Fully Retimed Optical Link (Retimed Tx, Retimed Rx)

High power, Long electrical reach, Full diagnostics

Tx Retimed

RTLR: Half-Retimed Optical Link (Retimed Tx, Linear Rx)

Balance of electrical reach with power, Full Tx diagnostics

Non-Retimed

Linear: Non-Retimed Optical Link (Linear Tx, Linear Rx)

Low power, short electrical reach, Limited diagnostics

Slow Wide I/F

Co-packaged: Retimed Optical Chiplet Link Based Link

Low power, very short reach, Full diagnostics, not serviceable

CEI – An Essential Building Block for Co-packaging

Pluggable Module Channel Example Illustration

- Channel loss: 16dB ball to ball (22-24dB bump to bump)
- Typical pluggable connectors: IL of ~1dB with RL of -10dB @26.5GHz

CPO/NPO Channel Example Illustration

- Channel loss: CPO 10dB bump to bump; NPO 13dB bump to bump
- Optional separable interconnect performance example: LGA socket: IL of ~0.05dB with RL of -40dB @26.5GHz (oif2020.341.01, Nathan Tracy)
- Avoids/reduces major discontinuities.
- Optical modules are not end user pluggable.
- Significant power saving opportunity over VSR to be captured.
- A broad interoperable ecosystem is the key to success and can only be achieved through standardization.

CEI-112G-XSR-PAM4 for Co-packaging

Category	IL at Nyquist (Max, dB)	BER (Max)
CAT1	10	1e-6
CAT2	10	1e-8
CAT3	8	1e-9

- Baud rates supported: 36 Gsyms/s to 58 Gsyms/s
- Based on loss and jitter budgets between TX and RX using copper signal traces in a SIP(System in a Package) to enable low power consumption
- Three channel categories are defined, allowing optimization for various applications.
- Timeline
 - Project started in April 2018.
 - Draft specification is becoming technically stable.
 Few pending items to be addressed.

CEI-112G-XSR+ -PAM4 for Near Packaging

- The emergence of Near Package Optics (NPO) Architecture
 - Co-packaging requires significant package substrate size increase and technology advancement, which adds risk to goals of availability, cost and multi-vendor support.
 - Instead of a monolithic package approach, Near Packaging relies on advanced PCB technology for dense high-speed routing without significant power penalty.
 - Near Packaging architecture takes advantage of existing technologies and more robustly enables an open ecosystem implementation.
- Additional margin also strengthens a broader supply base for co-packaging implementation and adoption.

- Baud rates supported: 36 Gsyms/s to 58 Gsyms/s
 - Optimize for Ethernet rate @ 106.25Gbps the key application for CPO/NPO
 - Insertion loss < 13dB @ 26.5625GHz Nyquist bump to bump with up to 1 separable interconnect.
- Enable the lowest practical energy consumption (pJ/b) implementation.
- Leverage specification methodology and other work from existing CEI 112 projects.

Optional Separable Interconnect

Optical Module (OM)

Package Substrate (Optional)

Co-Packaged Assembly Substrate
(PCB Interposer)

Optical Transceiver Retimer Permutations

Fully Retimed Optical Link "DSP": Highest Power, Longest Reach

DSP/retimer module OIF-CEI-112G-VSR-PAM4 supports 16 dB channel on egress with some optical output compliance expectation

Ingress path includes DSP/retimer in the module and supports 16 dB channel to Host ASIC (OIF-CEI-112G-VSR-PAM4)

Retimed Transmit Linear Receiver (RTLR) "LRO" Optical Link: Balance of Reach, Power

OIF-EEI-112G-RTLR is meant to be identical to above on the egress channel (OIF-CEI-112G-VSR-PAM4)

Ingress path removes the DSP/retimer in the module and uses an enhanced version of OIF **CEI-112G-Linear-PAM4** specifications by utilizing host ASIC DSP SerDes capability

Linear Non-retimed Optical Link "LPO": Lowest Power, Shortest Reach

Egress path removes the DSP/retimer in the module and uses OIF **CEI-112G-Linear-PAM4** specifications by utilizing host ASIC DSP SerDes capability

Ingress path removes the DSP/retimer in the module and uses OIF **CEI-112G-Linear-PAM4** specifications by utilizing host ASIC DSP SerDes capability

Energy Efficient Interfaces (EEI) @ OFC 2025

Energy Efficient Interfaces (EEI)

■ EEI Interoperability Agreements

Interoperability Demonstrations

Interoperability Demonstrations: External Laser Small Form Factor: ELSFP

Demonstrating 3 ELSFP modules showcasing the ecosystem

- Lasers: 8 lasers per module (1310nm)
- Output power: 20-25 dBm
- Both cooled and uncooled lasers

Interoperability Demonstrations:

External Laser Small Form Factor: ELSFP

AOI

Maintenance tools for optical connections

- Inspection tool
- Cleaning tool

After Cleaning

Joint Demo: 112G RTLR & Linear Interoperability

EEI Conceptual Demo for Al Compute

Compute Chassis

Showing an array of compute and switch cards interconnected with a variety of optical connectivity options

Al backend compute employs low latency links to interconnect local accelerators in a cache coherent way. The local links are typically PCle-like (NVLink, UALink, etc). Groups of compute clusters are interconnected with lower latency Ethernet / InfiniBand connections

Accelerator Cards

Variety of next gen PCle compute cards plugged into a PCle chassis

Next-Gen Switch

Card located in compute chassis highlighting an ASIC with 4Tb/mm edge bandwidth and Ethernet interfaces on board. Optical links powered by ELSFP.

Accelerator Servers Next-gen AI compute blades heterogenous complex packages for dense scale out connections, along with integrated with fron access capabilities

Thank-you

