Network Path State Machine

OIF Webinar October 9, 2024

Eric Maniloff - Ciena

Overview

- Intro to CMIS
 - Data Path State Machine (DPSM):
 - Applications advertising Key link to both DPSM & NPSM
 - DPSM Configuration: Commissioning and Provisioning
- The Network Path State Machine (NPSM)
 - What problems is this solving?
 - Implementation and operation
- Advanced Implementation
 - Multiplexing
 - Reconfiguration

CMIS: What & Why?

Common Management Interface Specification (CMIS)

Rev. 5.3

• CMIS in its own words:

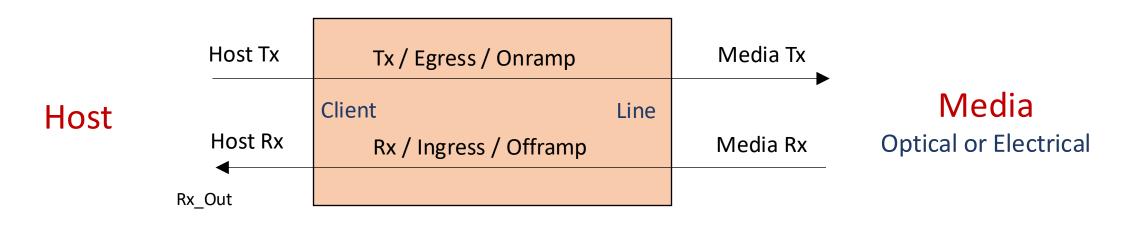
- This Common Management Interface Specification (CMIS) defines a generic management communication interface together with a generic management interaction protocol between hosts and managed modules.
- C = Common, with CMIS covering applications including QSFP-DD, OSFP, LPO, etc
 - CMIS is the base document, with supplementary documents covering specific applications

• Key People:

- Editor: Stefan Langenbach (Cisco)
- Management Track Chairs: Ian Alderdice (Ciena) & Gary Nicholl (Cisco)
- Where to find CMIS:
 - <u>https://www.oiforum.com/technical-work/implementation-agreements-ias/#Management</u>

CMIS Supplementary documents

- Extensions of CMIS cover the following application spaces
 - CMIS-VCS [6] defines signal integrity (SI) parameters that can be part of a so-called Versatile Control Set, generalizing and extending the original, fixed set of signal integrity controls described in section 6.2.3. Note that this functionality, when enabled, may "override" certain fields of the standard memory map, which, if applicable, will be specified in [6].
 - C-CMIS [7] provides specifications for modules with coherent transmission capabilities.
 - CMIS-FF [8] provides specifications of form factor specific management facilities typically implemented by additional and sometimes programmable discrete value hardware signals² that are available as per individual module form factor hardware specification³.
 - CMIS-LT [9] provides specifications in support of host to module electrical link training. More precisely, CMIS-LT specifies both data structures and mechanisms to emulate a bidirectional message exchange between the electrical link endpoints of a host lane for the purpose of link training (LT). Note that the activities and behaviors of the acting link endpoints that reside in both host and module and that actively use those facilities are specified elsewhere.
 - CMIS-ELSFP [10] provides specifications for external laser source resource modules.


CMIS register space

- The register map is provided in CMIS 5.3 section 8
- CMIS pages are 128 Bytes each
- There is one Lower page (00h), and multiple Upper Pages (00h-FFh)
 - Pages are referenced in Hex, Addresses in Decimal *Beware of confusion*
- CMIS defines Banked and Unbanked pages
- The register map provides full details of the implementation.
- Note: A shorthand for referencing addresses is:
 - Bytes: Bank:Page:Byte ex: 0:10h:128-129
 - Field: Page:Byte.bits ex: 10h:128.7-4

Module Terminology

(at the risk of stating the obvious)



- Various naming is used in the different sources -
 - Tx/Rx is used throughout CMIS

CMIS Memory Map

OIF

Figure 8-1 CMIS Module Memory Map (Conceptual View)

State Machines

- CMIS defines a number of Management State Machines:
 - Module State Machine governs the module behavior
 - Data Path State Machine (DPSM) is used to configure and manage the supported applications
 - In CMIS 5.0 the DPSM manages the full (Host + Media) configuration
 - In CMIS 5.1 the Network Path State Machine is added
 - The Network Path State Machine (NPSM) is used to configure and manage the media (line) side
 - Modules implementing the NPSM may have a mix of DP and NP applications
 - For hosts not implementing NPSM, DPSM is used for both host and media sides

Module State Machine

Reset ResetS The Module State Machine is FALSE "Resetting complete" illustrated here ResetS TRUE From all states except Resetting MgmtInit Reset and Resetting ResetS "Mgmtlnit TRUE complete" • Timing of MgmtInit = 2 seconds ResetS From all states except Reset TRUE ModuleLowPwr LowPwrS FALSE "ModulePwrDn Other durations advertised complete" LowPwrS TRUE ModulePwrDn ModulePwrUp "ModulePwrUp complete" LowPwrExS TRUE ModuleReady

Figure 6-3 Paged Memory Module State Machine (MSM) State Transition Diagram

9

Fault

Legend:

Steady state

Transient state

NameS: Transition signal logic name

FaultS

TRUE

Configuring Data Path Applications

- CMIS defines a method of changing operating modes based on Application Descriptors
 - Application descriptors include both Media side (Line) and Host side (client) configurations.
 - A module will advertise one or more supported applications
 - Max of 15 Applications are supported in CMIS \leq 5.2
- A host configures a Data Path by:
 - Selecting an application, data path settings, and corresponding host electrical settings in a Staged Control Set (SCS)

- Loading the Staged Set into the Active Control Set (ACS)
- Applications are advertised in Lower Page and Upper Page 01h.
 - Extended applications are available in CMIS 5.3

Supported Applications Advertising

- Applications are advertised using Application Descriptors through appsels
 - Lower Page includes the first 8 Appsels
 - Upper Page 01h provides the next 7 Appsels
- CMIS 5.3 provides additional groups of 15 Normalized Applications Descriptors (NADs) advertised in page banked page 1Ch
 - NAD's are not currently covered in this document
 - From the standpoint of the DPSM and NPSM, NADs simply increase the number of applications that can be advertised

Application Definition Example: 400ZR / (400GbE + 4x100GbE)

Byte	Bits	AppSel Code	Name	Value	Description
85	7-0	N/A	Module Type encoding	02h	Optical Interfaces: SMF
86	7-0		Host Electical Interface ID	11h	400GAUI-8 C2M
87	7-0		Module Media Interface ID	3Eh	400G-ZR
	7-4		Host Lane Count	8h	8 Host Lanes
88	3-0	001b	Media Lane Count	1h	1 Media Lanes
89	7-0	0010	Host Lane Assignment Options	01h	Permissable First Host Lane for Application: Lane 1
01h:176	7-0		Media Lane Assignment Options	01h	Permissible First Media Lane for Application: Lane 1
90	7-0		Host Electical Interface ID	0Dh	100GAUI-2 C2M
91	7-0		Module Media Interface ID	3Eh	400G-ZR
	7-4		Host Lane Count	2	
92	3-0	010b	Media Lane Count	1	
93	7-0		Host Lane Assignment Options	55h	1, 3, 5, 7
01h:177	7-0		Media Lane Assignment Options	01h	1 Media Lanes
94	7-0		Host Electical Interface ID	FFh	End of List of Supported Applications
95	7-0		Module Media Interface ID	0	
	7-4		Host Lane Count	0	
96	3-0	011b	Media Lane Count	0	
97	7-0		Host Lane Assignment Options	0	
01h:178	7-0		Media Lane Assignment Options	0	

Table 8-65 Staged Control Set 0, Data Path Configuration (Page 10h)

DPSM Configuration

- Data Paths are configured by:
 - 1. Creating a Staged Set Application
 - 2. Applying the Staged Set
 - 3. Initializing the Application

Byte	Bits	Field Name	Register Description	Туре
145	7-4	AppSelCodeLane1	SCS0::DPConfigLane1	RW
	3-1	DataPathIDLane1	See Table 8-64	Rqd.
	0	ExplicitControlLane1		
146	7-4	AppSelCodeLane2	SCS0::DPConfigLane2	RW
	3-1	DataPathIDLane2	See Table 8-64	Rqd.
	0	ExplicitControlLane2		
147	7-4	AppSelCodeLane3	SCS0::DPConfigLane3	RW
	3-1	DataPathIDLane3	See Table 8-64	Rqd.
	0	ExplicitControlLane3		
148	7-4	AppSelCodeLane4	SCS0::DPConfigLane4	RW
	3-1	DataPathIDLane4	See Table 8-64	Rqd.
	0	ExplicitControlLane4		
149	7-4	AppSelCodeLane5	SCS0::DPConfigLane5	RW
	3-1	DataPathIDLane5	See Table 8-64	Rqd.
	0	ExplicitControlLane5		
150	7-4	AppSelCodeLane6	SCS0::DPConfigLane6	RW
	3-1	DataPathIDLane6	See Table 8-64	Rqd.
	0	ExplicitControlLane6		
151	7-4	AppSelCodeLane7	SCS0::DPConfigLane7	RW
	3-1	DataPathIDLane7	See Table 8-64	Rqd.
	0	ExplicitControlLane7		
152	7-4	AppSelCodeLane8	SCS0::DPConfigLane8	RW
	3-1	DataPathIDLane8	See Table 8-64	Rqd.
	0	ExplicitControlLane8		

Table 8-63 Staged Control Set 0, Apply Triggers (Page 10h)

Byte	Bits	Field Name	Register Description	Туре
143	7	ApplyDPInitLane8	SCS0::ApplyDPInitLane <i></i>	WO
	6	ApplyDPInitLane7	0b: No action for host lane <i></i>	Rqd.
	5	ApplyDPInitLane6	1b: Trigger the Provision procedure using the Staged Control	
	4	ApplyDPInitLane5	Set 0 settings for host lane <i>, with feedback provided in</i>	
	3	ApplyDPInitLane4	the associated ConfigStatusLane <i> field</i>	
	2	ApplyDPInitLane3		
	1	ApplyDPInitLane2	Restriction: This byte must be written in a single-byte WRITE	
	0	ApplyDPInitLane1	Note: See Table 6-3 for preconditions and state dependencies	

2

Table 8-61 Data Path initialization control (Page 10h:128)

Byte	Bit	Field Name	Register Description	Туре
128	7	DPDeinitLane8	DPDeinitLane <i></i>	RW
	6	DPDeinitLane7	Data Path initialization control for host lane <i></i>	Rqd.
	5	DPDeinitLane6	0b: Initialize the Data Path associated with host lane	
	4	DPDeinitLane5	1b: Deinitialize the Data Path associated with host lane	
	3	DPDeinitLane4	All lanes of a Data Path must have the same value	
	2	DPDeinitLane3		
	1	DPDeinitLane2	Note: These bits represent static requests, not trigger events	
	0	DPDeinitLane1]	

Data Path State Machine

- The Data Path State Machine is illustrated here
- CMIS defaults DPDeactivated to false
- For DP applications this state machine controls the line and host sides
- DPDeactivated (DPD eactivated) DPDeinitS (Data PathDeinitS) FALSE "DPDeinit DPDeinitS complete" (Data PathDeinitS) DPDeinit DPInit TRUE (Data PathDeinit) (Data PathInit) "DPInit complete" DPReDeinitS (Data PathReDeinitS) TRUE DPInitialized (Data PathInitialized) DPDeactivateS Legend: (Data PathDeactivateS) FALSE "DPTxTurnOff Steady state DPDeactivateS complete" (Data PathDeactivateS) DPTxTurnOff DPTxTurnOn TRUE (Data PathTxTurnOff) (Data PathTxTurnOn) Transient state "DPTxTumOn complete" NameS: Transition DPDeactivateS signal logic name (Data PathDeactivateS) DPActivated TRUE (Data PathActivated)

Initial DPSM state

 In CMIS 5.1 the NPSM was introduced to handle multiplexing/uniplexing applications

Figure 6-5 Data Path State Machine (DPSM) State Transition Diagram

DP State and Active Set

• Page 11h displays the DP state, as well as the Active Contol Set

Byte	Bit	Field Name	Register Description (DPStateHostLane <i>)</i>	Туре
128	7-4	DPStateHostLane2	Data Path State of host lane 2 (see Table 8-84)	RO
	3-0	DPStateHostLane1	Data Path State of host lane 1 (see Table 8-84)	Rqd.
129	7-4	DPStateHostLane4	Data Path State of host lane 4 (see Table 8-84)	RO
	3-0	DPStateHostLane3	Data Path State of host lane 3 (see Table 8-84)	Rqd.
130	7-4	DPStateHostLane6	Data Path State of host lane 6 (see Table 8-84)	RO
	3-0	DPStateHostLane5	Data Path State of host lane 5 (see Table 8-84)	Rqd.
131	7-4	DPStateHostLane8	Data Path State of host lane 8 (see Table 8-84)	RO
	3-0	DPStateHostLane7	Data Path State of host lane 7 (see Table 8-84)	Rqd.

Table 8-83 Lane-associated Data Path States (Page 11h)

Table 8-84 Data Path State Encoding

Encoding	State
0h	Reserved
1h	DPDeactivated (or unused lane)
2h	DPInit
3h	DPDeinit
4h	DPActivated
5h	DPTxTurnOn
6h	DPTxTurnOff
7h	DPInitialized
8h-Fh	Reserved

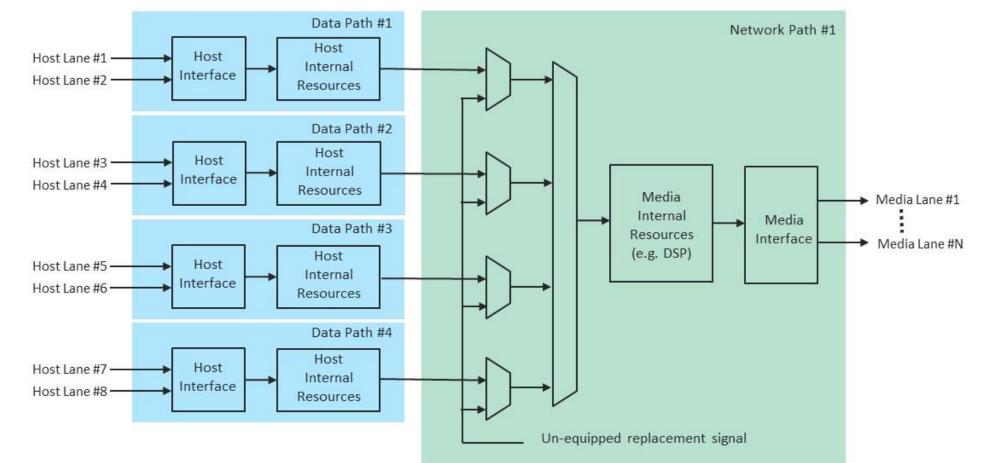
Table 8-93 Active Control Set, Provisioned Data Path Configuration (Page 11h)

Byte	Bits	Field Name	Register Description	Туре
206	7-4	AppSelCodeLane1	ACS::DPConfigLane1	RO
	3-1	DataPathIDLane1	See Table 8-92	Rqd.
	0	ExplicitControlLane1		
207	7-4	AppSelCodeLane2	ACS::DPConfigLane2	RO
	3-1	DataPathIDLane2	See Table 8-92	Rqd.
	0	ExplicitControlLane2		
208	7-4	AppSelCodeLane3	ACS::DPConfigLane3	RO
	3-1	DataPathIDLane3	See Table 8-92	Rqd.

DP Configuration status

- Error Codes:
 - 11h:202-205

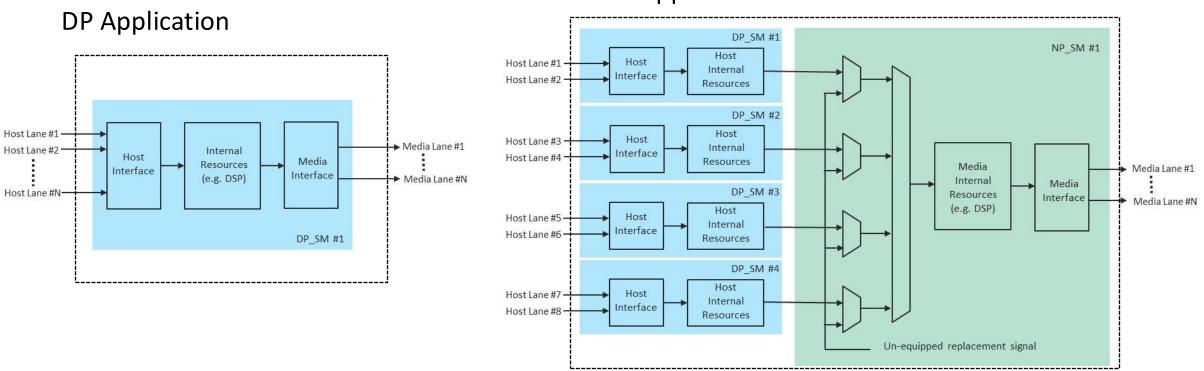
Encoding	Name	Value Description		
0h	ConfigUndefined	No status information available (initial register value)		
1h	ConfigSuccess	Positive Result Status: The last accepted configuration		
		command has been completed successfully		
2h		Negative Result Status (2h-Bh. Dh-Fh):		
	ConfigRejected	Configuration rejected: unspecific validation failure		
3h	ConfigRejectedInvalidAppSel	Configuration rejected: invalid AppSel code		
4h	ConfigRejectedInvalidDataPath	Configuration rejected: invalid set of lanes for AppSel		
5h	ConfigRejectedInvalidSI	Configuration rejected: invalid SI control settings		
6h	ConfigRejectedLanesInUse	Configuration rejected: some lanes not in DPDeactivated		
7h	ConfigRejectedPartialDataPath	Configuration rejected: lanes are only subset of DataPath		
8h	-	Reserved (other validation failures)		
9h	-			
Ah	-			
Bh	-			
(Ch)	ConfigInProgress	Execution Status: A configuration command is still being		
		processed by the module; a new configuration command is		
		ignored for this lane while ConfigInProgress.		
Dh	-	Custom Configuration rejected for custom reasons		
Eh	-			
Fh	-			


Network Path State Machine

- The Network Path State machine is defined to allow the Media side to be brought up independent of the host side
- This allows:
 - Multiplexing applications in which some (or all) ports are left un-initialized during the line side initialization
 - Applications in which the host traffic is not available when the line is initialized
 - Host traffic reconfiguration
- Multiplexed clients can be provisioned without the NPSM, by provisioning all host lanes in a Staged Set, and initializing simultaneously
 - This requires valid electrical signals on all host lanes when the data paths are initialized.
- Selection between mission-mode traffic and module generated replacement signals is supported

Network Path (NP) module – conceptual block diagram

In a NP module one or more data paths (where each data path is associated with a separate host interface) are mapped onto the media interface associated with a network path

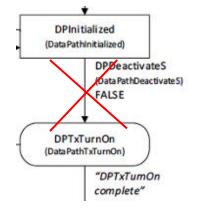


Note: Only one direction shown for clarity.

See: Gary Nicholl: https://www.oiforum.com/get/52355

Application Overview

NP Application


- In both cases an Application associates a group of host lanes to a group of media lanes
- A DP Application contains a single data path
- A NP Application contains a single network path and one or more host paths

NPSM Provisioning

- Applications advertised in Lower Page, Upper Page 01h are used to define host and media identifiers – This is unchanged from the DPSM
 - New advertising bits identify an application as a DP or NP application
- For NP applications:
 - The Media side provisioning is performed through the NPSM
 - The Host Paths are controlled by a modified DPSM
 - DPDeactivateS is forced to TRUE, limiting the steady states achievable to DPDeactivated and DPInitialized
- Application Selectors are loaded using the Page 10h Staged Sets
- The Network Path is configured using the Network Path Configuration Staged Sets in Page 16h
- NPSM instances will default to values corresponding to the default application:

All **NPSM** instances required to represent the power-up default Application defined in the Network Path Configuration field values of the Active Control Set are initially created and set-up during the **MgmtInit** state.

Initial NPSM state

NPSM largely mirrors the DPSM

OIF

CMIS NPSM

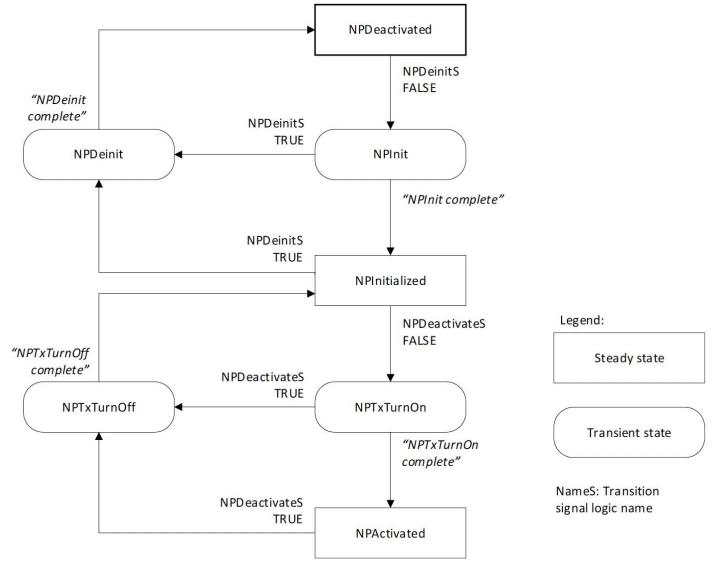


Figure 7-6 Network Path State Machine (NPSM) State Transition Diagram

Network Path Applications

- For a Network Path (NP) application the host is still controlled by the DPSM
 - In a NP application the Host Path is controlled by the legacy DP registers
 - When operating as a HP, the DP only operates on the host portion of the application
 - Achievable steady states are DPDeactivated and DPInitialized
- Media side and Tx control is performed by the NPSM
- In NP Applications the HP and NP are independently provisioned and initialized

HPs and NP are then (requested to be) **provisioned** into the relevant Active Control Set or NP Active Control Set in separate steps, by writing to the associated ApplyDPInit trigger register or ApplyNPInit register, respectively. As usual, the provisioning procedure includes (partial) validation prior to copying a Staged Control Set into the associated Active Control Set.

Page 16h: Network Path Functionality

Table 8-124 Page 16h Overview

Byte	Size	Subject Area	Description		
	(bytes)				
128-159	32	Provisioning			
128-135	8	NP Staged Control Set 0	Lane to NP Assignments Provisioning – Staged Control Set 0		
136-143	8	NP Staged Control Set 1	Lane to NP Assignments Provisioning – Staged Control Set 1		
144-159	16	-	Reserved[16]		
160-175	16	Control			
160	1	NP Control	Network Path initialization control		
161	1	-	Reserved[1]		
162-163	2	NP Source Selectors	Signal source selection at the Network Path connection points		
164-175	12	-	Reserved[12]		
176-191	16	Command & Response			
176	1	NP Apply SCS 0	Apply command for NP Staged Control Set 0		
177	1	NP Apply SCS 1	Apply command for NP Staged Control Set 1		
178-181	4	Configuration Status	Status of most recent Network Path configuration command		
182-191	10	-	Reserved[10]		
192-223	32	Status			
192-199	8	NP Active Control Set	Provisioned Network Path Configuration		
200-203	4	Network Path Status	Network Path State Machine state of each NP media lane		
204	1	NPInitPending Condition	Commissioning status (NPInitPending condition)		
205-223	19	-	Reserved[19]		
224-255	32	Advertisement			
224-225	2	NPSM Max Durations	Maximum durations for all NPSM transient states		
226	1	Options	Miscellaneous options		
227	1	-	Reserved[1]		
228-247	20	Mixed Multiplex Support	Advertising for mixed HP multiplexing support		
248-249	2	Application Advertisement	Application Advertisement Extensions		
250-255	6	-	Reserved[4]		

Note: NP State Change Flags are in Page 17h

NPSM Applications Advertisement

- Registers 16h:248-249 define each application as being a DP Application or NP Application
- If Bytes 248 & 249 = 00h, the applications are all managed entirely by the DPSM
 - Modules not implementing NPSM (including pre CMIS 5.1) will set these bits to zero
 - Hosts not implementing the NPSM (CMIS 5.0) will ignore these bits
 - A mix of DP and NP applications is possible

Byte	Bits	Field Name	Register Description	Туре
248	7	ExtAppDescriptor15	ExtAppDescriptor <i></i>	RW
	6	ExtAppDescriptor14	The Application Descriptor identified by AppSel <i>:</i>	Rqd.
	5	ExtAppDescriptor13	Ob: describes a supported DP Application	
	4	ExtAppDescriptor12	1b: (partially) describes a supported NP Application	
	3	ExtAppDescriptor11		
	2	ExtAppDescriptor10	Note: The value is irrelevant when the Application Descriptor	
	1	ExtAppDescriptor9	identified by AppSel <i> is unused.</i>	
	0	ExtAppDescriptor8		
249	7	ExtAppDescriptor7		
	6	ExtAppDescriptor6		
	5	ExtAppDescriptor5		
	4	ExtAppDescriptor4		
	3	ExtAppDescriptor3		
	2	ExtAppDescriptor2		
	1	ExtAppDescriptor1		
	0	-		

Application Definition Example: 400ZR (400GbE & 4x100GbE): NP Application

Byte	Bits	AppSel Code	Name	Value
вуте 85	7-0	N/A	Module Type encoding	02h
86	7-0		Host Electical Interface ID	11h
87	7-0	1	Module Media Interface ID	3Eh
	7-4	1	Host Lane Count	8h
88	3-0	001b	Media Lane Count	1h
	7-0	0100		01h
89			Host Lane Assignment Options	
	7-0			01h
01h:176			Media Lane Assignment Options	
90	7-0		Host Electical Interface ID	0Dh
91	7-0		Module Media Interface ID	3Eh
	7-4		Host Lane Count	2
92	3-0	010b	Media Lane Count	1
93	7-0		Host Lane Assignment Options	55h
01h:177	7-0		Media Lane Assignment Options	01h
94	7-0		Host Electical Interface ID	FFh
95	7-0]	Module Media Interface ID	0
	7-4		Host Lane Count	0
96	3-0	011b	Media Lane Count	0
97	7-0		Host Lane Assignment Options	0
01h:178	7-0		Media Lane Assignment Options	0

Page 16h

Byte	Bit	Name	Value Hex	Value	Арр Туре
	7	ExtAppDescriptor15		0	-
	6	ExtAppDescriptor14		0	-
	5	ExtAppDescriptor13		0	-
240	4	ExtAppDescriptor12		0	-
248	3	ExtAppDescriptor11	00h	0	-
	2	ExtAppDescriptor10		0	-
	1	ExtAppDescriptor9		0	-
	0	ExtAppDescriptor8		0	-
	7	ExtAppDescriptor7		0	-
	6	ExtAppDescriptor6		0	-
	5	ExtAppDescriptor5		0	-
240	4	ExtAppDescriptor4	0.Ch	0	-
249	3	ExtAppDescriptor3	06h	0	_
	2	ExtAppDescriptor2		1	NP
	1	ExtAppDescriptor1		1	NP
	0	-		0	Unused

Legacy modules would default Page 16h to 0's --> DP Only

NP Configuration – high level view of a possible stepped configuration

- In Module Low Power:
 - Host sets DPSM to DPDeinit (Page 10h:128) and NPSM to NPDeinit (16h:160)
- Application is configured into the Active Set (p10h), copying from a staged set, as in DP applications
- NP Staged Control Sets 0 &/or 1 (16h:128-135, 16h:136-143) are configured
- Active NP is written from NP SS 0 (16h:176) or NP SS 1 (16h:177) to the Active Set (16h:192-199) using ApplyNPInit
 - ApplyNPInit does not Initialize the NP
 - Configuration Status is available in 16h:178-181
 - NPInitPending is advertised in 16h:204 when the Active Set has not been initialized
- Signal Source selection on the Rx and Tx directions configured in 16h:162-163
- Network Path is initialized by setting 16h:160.n bit n to 0 for all host lanes feeding the NP, removing Deinit
- Host paths are initialized by setting 10h:128.n bit n to 0 for all host lanes being used
 - Host and Network initialization can be performed in either order

Network Path Provisioning

- The Network Path is provisioned to indicate the lanes feeding the NP:
 - NPID Indicates the first host lane feeding the NP
 - Each lane indicates whether it is in use as part of an NP application

Lane	Bits	Field Name	Register Description	Туре
<i></i>	7-4	-	Reserved	RW
	3-1	NPID	SCS <k>::NPIDLane<i></i></k>	Rqd.
			If host lane <i> feeds the Network Path of an NP Application</i>	
			instance, the NPIDLane <i> field stores the Network Path ID</i>	
			of that Network Path, which is defined as the number of the	
			first host lane feeding the Network Path, decremented by one.	
			If lane <i> is unused (NPInUseLane<i> = 0), the value of</i></i>	
			NPIDLane <i> is ignored.</i>	
			Note: All lanes of the Network Path of an Application that spans	
			multiple host lanes have the same NPID.	
			Note: For example, the NPID of a Network Path carrying the HP	
			of host lane 1 is 0 and the NPID of a NP where host lane 5 is	
			the lowest lane number feeding the NP is 4.	
	0	NPInUse	SCS <k>::NPInUseLane<i></i></k>	
			0b: host lane <i> is either part of the Data Path of a DP</i>	
			Application or it is unused	
			1b: host lane <i> is part of a Host Path that feeds the Network</i>	
			Path identified by the NPID field in a NP Application	

Table 8-133 Network Path Provisioning per Lane (NPConfigLane<i>)

Staged NP Sets

- Two staged sets are available.
 - NP Stage sets configure which host lanes are part of an NP

	10	ible o-154 Stayeu (control Set 0, Network Path Configuration (Page 16n)	
Byte	Bits	Field Name	Register Description	Туре
128	7-4	-	SCS0::NPConfigLane1	RW
	3-1	NPIDLane1	See Table 8-133	Rqd.
	0	NPInUseLane1		
129	7-4	-	SCS0::NPConfigLane2	RW
	3-1	NPIDLane2	See Table 8-133	Rqd.
	0	NPInUseLane2		
130	7-4	-	SCS0::NPConfigLane3	RW
	3-1	NPIDLane3	See Table 8-133	Rqd.
	0	NPInUseLane3		
131	7-4	-	SCS0::NPConfigLane4	RW
	3-1	NPIDLane4	See Table 8-133	Rqd.
	0	NPInUseLane4		
132	7-4	-	SCS0::NPConfigLane5	RW
	3-1	NPIDLane5	See Table 8-133	Rqd.
	0	NPInUseLane5		
133	7-4	-	SCS0::NPConfigLane6	RW
	3-1	NPIDLane6	See Table 8-133	Rqd.
	0	NPInUseLane6		
134	7-4	-	SCS0::NPConfigLane7	RW
	3-1	NPIDLane7	See Table 8-133	Rqd.
	0	NPInUseLane7		
135	7-4	-	SCS0::NPConfigLane8	RW
	3-1	NPIDLane8	See Table 8-133	Rqd.
	0	NPInUseLane8		
	-	•	·	-

Table 8-134 Staged Control Set 0, Network Path Configuration (Page 16h)

NPIDLane<i> is defined as the number of the first host lane feeding the Network Path, decremented by one.

NP SCS examples

Address	800GAUI-8	2x400GAUI-4	400GAUI-4	400GAUI-4
128	0001b	0001b	0001b	0000b
129	0001b	0001b	0001b	0000b
130	0001b	0001b	0001b	0000b
131	0001b	0001b	0001b	0000b
132	0001b	0001b	0000b	1001b
133	0001b	0001b	0000b	1001b
134	0001b	0001b	0000b	1001b
135	0001b	0001b	0000b	1001b
	8000	a die cide	4000	die eide

800G media side

28

400G media side

NP Control

 ApplyNPInit and NPDeinit are used to control NP configuration and the NPSM

Table 8-130 Staged Control Set 0, Apply Triggers (Page 16h)

Byte	Bits	Field Name	Register Description	Туре
176	7	ApplyNPInitLane8	SCS0::ApplyNPInitLane <i></i>	WO
	6	ApplyNPInitLane7	0b: No action for host lane <i></i>	Rqd.
	5	ApplyNPInitLane6	1b: Trigger the Provision procedure using the NP Staged	
	4	ApplyNPInitLane5	Control Set 0 settings for host lane <i>, with feedback</i>	
	3	ApplyNPInitLane4	provided in the associated NPConfigStatusLane <i> field</i>	
	2	ApplyNPInitLane3		
	1	ApplyNPInitLane2	Restriction: This byte must be written in a single-byte WRITE	
	0	ApplyNPInitLane1		

Table 8-131 Staged Control Set 1, Apply Triggers (Page 16h)

Byte	Bits	Field Name	Register Description	Туре
177	7	ApplyNPInitLane8	SCS1::ApplyNPInitLane <i></i>	WO
	6	ApplyNPInitLane7	0b: No action for host lane <i></i>	Rqd.
	5	ApplyNPInitLane6	1b: Trigger the Provision procedure using the NP Staged	
	4	ApplyNPInitLane5	Control Set 0 settings for host lane <i>, with feedback</i>	
	3	ApplyNPInitLane4	provided in the associated NPConfigStatusLane <i> field</i>	
	2	ApplyNPInitLane3		
	1	ApplyNPInitLane2	Restriction: This byte must be written in a single-byte WRITE	
	0	ApplyNPInitLane1		

Table 8-128 Network Path Initialization Control (Page 16h)

Byte	Bits	Field Name	Register Description	Туре
160	7	NPDeinitLane8	NPDeinitLane <i></i>	RW
	6	NPDeinitLane7	Initialization control for the Network Path fed by host lane <i></i>	Rqd.
	5	NPDeinitLane6	0b: Initialize the Network Path associated with host lane <i></i>	
	4	NPDeinitLane5	1b: Deinitialize the Network Path associated with host lane <i></i>	
	3	NPDeinitLane4		
	2	NPDeinitLane3	All host lanes feeding one Network Path must have the same	
	1	NPDeinitLane2	NPDeinitLane <i> value set</i>	
	0	NPDeinitLane1	Note: These bits represent static requests, not trigger events	

Table 8-132 NP Configuration Command Status registers (Page 16h)

NP Configuration Status

Byte	Bit	Field Name	Field Description	Туре
178	7-4	NPConfigStatusLane2	NPConfigStatusLane <i></i>	RO
	3-0	NPConfigStatusLane1	Provisioning Command Execution / Result Status	Rqd.
179	7-4	NPConfigStatusLane4		RO
	3-0	NPConfigStatusLane3	after the most recent configuration command.	Rqd.
180	7-4	NPConfigStatusLane6	See Table 8-133 for the encoding of values.	RO
	3-0	NPConfigStatusLane5	Note: There is no feedback to the host when an	Rqd.
181	7-4	NPConfigStatusLane8	Apply trigger is ignored after failed readiness test	RO
	3-0	NPConfigStatusLane7	(when another configuration is still in progress)	Rqd.

Table 8-133 NP Configuration Command Execution and Result Status Codes (Page 16h)

Encoding	Name	Value Description
0h	ConfigUndefined	No status information available (initial register value)
1h	ConfigSuccess	Positive Result Status: The last accepted configuration
		command has been completed successfully
2h		Negative Result Status (2h-Bh. Dh-Fh):
	ConfigRejected	Configuration rejected: unspecific validation failure
3h	ConfigRejectedInvalidAppSel	Configuration rejected: invalid AppSel codes
4h	ConfigRejectedInvalidNetworkPath	Configuration rejected: invalid set of lanes for AppSel
5h	-	Reserved
6h	ConfigRejectedLanesInUse	Configuration rejected: some lanes not in NPDeactivated
7h	ConfigRejectedPartialNetworkPath	Configuration rejected: lanes are only subset of Network Path
8h	-	Reserved (other validation failures)
9h	-	
Ah	-	
Bh	-	
Ch	ConfigInProgress	Execution Status: A configuration command is still being
		processed by the module; a new configuration command is
		ignored for this lane while ConfigInProgress.
Dh	-	Custom Configuration rejected for custom reasons
Eh	-	
Fh	-	

• On an apply, the configuration is evaluated, and a status is returned

• Note: Apply will be rejected unless the NP is in the NPdeactivated State

Network Path Active Control Set

• The NP Active Control Set displays the configured NP

Byte	Bits	Field Name	Register Description	Туре
192	7-4	-	ACS::NPConfigLane1	RO
	3-1	NPIDLane1	See Table 8-125	Rqd.
	0	NPInUseLane1		
193	7-4	-	ACS::NPConfigLane2	RO
	3-1	NPIDLane2	See Table 8-125	Rqd.
	0	NPInUseLane2		
194	7-4	-	ACS::NPConfigLane3	RO
	3-1	NPIDLane3	See Table 8-125	Rqd.
	0	NPInUseLane3		
195	7-4	-	ACS::NPConfigLane4	RO
	3-1	NPIDLane4	See Table 8-125	Rqd.
	0	NPInUseLane4		
196	7-4	-	ACS::NPConfigLane5	RW
	3-1	NPIDLane5	See Table 8-125	Rqd.
	0	NPInUseLane5		
197	7-4	-	ACS::NPConfigLane6	RW
	3-1	NPIDLane6	See Table 8-125	Rqd.
	0	NPInUseLane6		
198	7-4	-	ACS::NPConfigLane7	RW
	3-1	NPIDLane7	See Table 8-125	Rqd.
	0	NPInUseLane7		
199	7-4	-	ACS::NPConfigLane8	RW
	3-1	NPIDLane8	See Table 8-125	Rqd.
	0	NPInUseLane8		

Table 8-134 NP Active Control Set, Network Path Configuration (Page 16h)

Table 8-135 Lane-associated Network Path States (Page 16h)

Byte	Bit	Field Name	Register Description (NPStateHostLane <i>)</i>	Туре
200	7-4	NPStateHostLane2	Network Path State of host lane 2 (see Table 8-136)	RO
	3-0	NPStateHostLane1	Network Path State of host lane 1 (see Table 8-136)	Rqd.
201	7-4	NPStateHostLane4	Network Path State of host lane 4 (see Table 8-136)	RO
	3-0	NPStateHostLane3	Network Path State of host lane 3 (see Table 8-136)	Rqd.
202	7-4	NPStateHostLane6	Network Path State of host lane 6 (see Table 8-136)	RO
	3-0	NPStateHostLane5	Network Path State of host lane 5 (see Table 8-136)	Rqd.
203	7-4	NPStateHostLane8	Network Path State of host lane 8 (see Table 8-136)	RO
	3-0	NPStateHostLane7	Network Path State of host lane 7 (see Table 8-136)	Rqd.

Table 8-136 Network Path State Encoding

Encoding	State
0h	Reserved
1h	NPDeactivated (or unused lane)
2h	NPInit
3h	NPDeinit
4h	NPActivated
5h	NPTxTurnOn
6h	NPTxTurnOff
7h	NPInitialized
8h-Fh	Reserved

Table 8-137 Network Path Conditions (Page 16h)

Byte	Bits	Field Name	Register Description	Туре
204	7	NPInitPendingLane8	NPInitPendingLane <i></i>	RO
	6	NPInitPendingLane7	Ob: NPInit not pending	Rqd.
	5	NPInitPendingLane6	1b: Commissioning the NP Active Control Set during NPInit has	
	4	NPInitPendingLane5	not yet been executed after a successful ApplyNPInit, hence	
	3	NPInitPendingLane4	the NP Active Control Set content may still deviate from the	
	2	NPInitPendingLane3	actual hardware configuration.	
	1	NPInitPendingLane2		
	0	NPInitPendingLane1	Note: The setting SteppedConfigOnly is irrelevant for the NPSM.	

• Following an apply, InitPending is set to indicate the NPSM has not initialized

NP States

Replacement Signals

Page 16h allows advertising and control of replacement signals

- Register 226 advertises support for Tx and Rx path replacement signals
- Registers 162 and 163 allow selection of replacement signals or traffic

Byte	Bit	Field Name	Field Description	Туре
226	7-2	-	Reserved	RO
	1	ReplaceHPSignalTxSupported		Rqd.
			1b: Tx replacement signals for NP inputs are supported	
	0	ReplaceHPSignalRxSupported		
			1b: Rx replacement signals for NP outputs are supported	

Table 8-139 Miscellaneous Options (Page 16h)

Table 8-129 Network and Host Path Signal Source Selection (Page 16h)

Byte	Bits	Field Name	Register Description	Туре			
162	7	HPSourceRx8	HPSourceRx <i></i>	RW			
	6	HPSourceRx7	Controls the signal source feeding host lane <i> in Rx direction</i>	Cond.			
	5	HPSourceRx6	0b: Signal received from Network Path				
	4	HPSourceRx5	1b: Internally generated client replacement signal				
	3	HPSourceRx4	All host lanes belonging to the same HP must have the same				
	2	HPSourceRx3	HPSourceRx <i> value set</i>				
	1	HPSourceRx2					
	0	HPSourceRx1	Advertisement: 16h:226.0				
163	7	NPSourceTx8	NPSourceTx <i></i>	RW			
	6	NPSourceTx7	Controls the signal source feeding the Network Path input	Cond.			
	5	NPSourceTx6	related to the HP containing host lane <i></i>				
	4	NPSourceTx5	0b: Signal received from Host Path				
	3	NPSourceTx4	1b: Internally generated client replacement signal				
	2	NPSourceTx3	All host lanes belonging to the same HP must have the same				
	1	NPSourceTx2	NPSourceTx <i> value set</i>				
	0	NPSourceTx1	Advertisement: 16h:226.1				

Multiplexing

- The NPSM can support multiplexing of mixed-rate host signals
 - Mixed rate multiplexing is accomplished by programming a set of selfconsistent Appsels into the Active Set
 - All lanes must have the same Media Identifier
- Multiplexing has a restriction that All Host Lanes must be operating at the same rate:
 - 100GAUI-1, 200GAUI-2, 400GAUI-4 multiplexing can be supported
 - CAUI-4 and OTL4.4 multiplexing is NOT supported

 \rightarrow Although undesired this restriction is included to limit the advertising required for mixed rate multiplexing

Multiplexing Advertisement

- Enumerated multiplexing structures are advertised
- Registers 228-231 advertise HostInterfaceID's indicating the lane data rate
- Registers 232-247 are a bit mask for supported Mux structures

Table 8-149 Multiplex Lane Grouping Advertisement

Multiplex Structure HP DPID per Host Lane #										
	<u> </u>	ex Structure				_				
ID	# of HPs	HP Widths	1	2	3	4	5	6	7	8
0	8	1, 1, 1, 1, 1, 1, 1, 1, 1	1	2	3	4	5	6	7	8
1	1	8	1	1	1	1	1	1	1	1
2	2	4, 4	1	1	1	1	5	5	5	5
3	4	2, 2, 2, 2	1	1	3	3	5	5	7	7
4	3	4, 2, 2	1	1	1	1	5	5	7	7
5	4	4, 2, 1, 1	1	1	1	1	5	5	7	8
6	4	4, 1, 1, 2	1	1	1	1	5	6	7	7
7	5	4, 1, 1, 1, 1	1	1	1	1	5	6	7	8
8	3	2, 2, 4	1	1	3	3	5	5	5	5
9	4	2, 1, 1, 4	1	1	3	4	5	5	5	5
10	4	1, 1, 2, 4	1	2	3	3	5	5	5	5
11	4	1, 1, 1, 1, 4	1	2	3	4	5	5	5	5
12	5	2, 2, 2, 1, 1	1	1	3	3	5	5	7	8
13	5	2, 2, 1, 1, 2	1	1	3	3	5	6	7	7
14	5	2, 1, 1, 2, 2	1	1	3		5	5	7	7
15	5	1, 1, 2, 2, 2	1	2	3	3	5	5	7	7
16	6	2, 2, 1, 1, 1, 1	1	1	3	3	5	6	7	8
17	6	2, 1, 1, 2, 1, 1	1	1	3	4	5	5	7	8
18	6	2, 1, 1, 1, 1, 2	1	1	3	4	5	6	7	7
19	6	1, 1, 2, 2, 1, 1	1	2	3	3	5	5	7	8
20	6	1, 1, 2, 1, 1, 2	1	2	3	3	5	6	7	7
21	6	1, 1, 1, 1, 2, 2	1	2	3	4	5	5	7	7
22	6	2, 1, 1, 1, 1, 1, 1	1	1	3	4	5	6	7	8
23	7	1, 1, 2, 1, 1, 1, 1	1	2	3	3	5	6	7	8
24	7	1, 1, 1, 1, 2, 1, 1	1	2	3	4	5	5	7	8
25	7	1, 1, 1, 1, 1, 1, 2	1	2	3	4	5	6	7	7

Multiplexing Advertisement

Host Interface ID 0Dh = 100GAUI-2 : 50G lanes

Table 8-150 Multiplex Granularities Advertisement (Page 16h)

Byte	Bits	Field Name	Register Description	Туре
228	7-0	MuxGranularity1	U8 MuxGranularity <i></i>	RO
			0: Not supported (end of granularity list: after a zero value, all	Rqd.
229	7-0	MuxGranularity2	following MuxGranularity <i> fields are zero as well)</i>	-
		-	>0: HostInterfaceID indicating the lane data rate and the	
230	7-0	MuxGranularity3	multiplex rate granularity: all multiplexed signals have the	
		-	same lane data rate and a data rate that is a power of two	
231	7-0	MuxGranularity4	multiple of the multiplex rate granularity	

Table 8-151 Global Multiplex Structures Advertisement (Page 16h)

Byte	Bits	Field Name	Register Description	Туре
232-	31-0	MuxStructsSupported1	U32 MuxStructsSupported <i> contains a bit mask where</i>	RO
235			each bit <j> set indicates support for the multiplex structure</j>	Rqd.
236-	31-0	MuxStructsSupported2	ID <j> as defined in Table 8-149</j>	
239				
240-	31-0	MuxStructsSupported3		
243				
244-	31-0	MuxStructsSupported4		
247				

100GAUI-2, 200GAUI-4, 400GAUI-8 → Same Mux Granularity

Table 8-141 Multiplex Lane Grouping Advertisement

	Multiple	HP	P DF	DIQ	per	Ho	st L	ane	#	
ID	# of HPs	HP Widths	1	2	3	4	5	6	7	8
0	8	1, 1, 1, 1, 1, 1, 1, 1	1	2	3	4	5	6	7	8
1		8	1	1	1	1	1	1	1	1
2	2	4, 4	1	1	1	1	5	5	5	5
3	4	2, 2, 2, 2	1	1	3	3	5	5	7	7
4	3	4, 2, 2	1	1	1	1	5	5	7	7
5	4	4, 2, 1, 1	1	1	1	1	5	5	7	8
6	4	4, 1, 1, 2	1	1	1	1	5	6	7	7
7	5	4, 1, 1, 1, 1	1	1	1	1	5	6	7	8
8	(3)	2, 2, 4	1	1	3	3	5	5	5	5
9	4	2, 1, 1, 4	1	1	3	4	5	5	5	5
10	4	1, 1, 2, 4	1	2	3	3	5	5	5	5
11	4	1, 1, 1, 1,	1	2	3	4	5	5	5	5
12	5	2, 2, 2, 1, 1	1	1	3	3	5	5	7	8
13	5	2, 2, 1, 1, 2	1	1	3	3	5	6	7	7
14	5	2, 1, 1, 2, 2	1	1	3		5	5	7	7
15	5	1, 1, 2, 2, 2	1	2	3	3	5	5	7	7
16	6	2, 2, 1, 1, 1, 1	1	1	3	3	5	6	7	8
17	6	2, 1, 1, 2, 1, 1	1	1	3	4	5	5	7	8
18	6	2, 1, 1, 1, 1, 2	1	1	3	4	5	6	7	7
19	6	1, 1, 2, 2, 1, 1	1	2	3	3	5	5	7	8
20	6	1, 1, 2, 1, 1, 2	1	2	3	3	5	6	7	7
21	6	1, 1, 1, 1, 2, 2	1	2	3	4	5	5	7	7
22	6	2, 1, 1, 1, 1, 1, 1	1	1	3	4	5	6	7	8
23	7	1, 1, 2, 1, 1, 1, 1	1	2	3	3	5	6	7	8
24	7	1, 1, 1, 1, 2, 1, 1	1	2	3	4	5	5	7	8
25	7	1, 1, 1, 1, 1, 1, 2	1	2	3	4	5	6	7	7

Table 8-141 Multiplex Lane Grouping Advertisement

Multiplexing Advertisement

4Ch: 100GAUI-1, 200GAUI-2, 400GAUI-4, 800GAUI-8 → Same Mux Granularity : 100G Lanes

Table 8-150 Multiplex Granularities Advertisement (Page 16h)

Byte	Bits	Field Name	Register Description	Туре
228	7-0	MuxGranularity1	U8 MuxGranularity <i></i>	RO
	\searrow		0: Not supported (end of granularity list: after a zero value, all	Rqd.
229	7-0	MuxGranularity2	following MuxGranularity <i> fields are zero as well)</i>	
			>0: HostInterfaceID indicating the lane data rate and the	
230	7-0-	MuxGranularity3	multiplex rate granularity: all multiplexed signals have the	
			same lane data rate and a data rate that is a power of two	
231	7-0	MuxGranularity4	multiple of the multiplex rate granularity	

Table 8-151 Global Multiplex Structures Advertisement (Page 16h)

Byte	Bits	Field Name	Register Description	Туре
232-	31-0	MuxStructsSupported1	U32 MuxStructsSupported <i> contains a bit mask where</i>	RO
235			each bit <j> set indicates support for the multiplex structure</j>	Rqd.
236-	31-0	MuxStructsSupported2	TD <j> as defined in Table 8-149</j>	
239				
240-	31-0	MuxStructsSupported3		
243				
244-	31-0	MuxStructsSupported4		
247				

	Multipl	HP DPID per Host Lane #								
ID	# of HPs	HP Widths	1	2	3	4	5	6	7	8
0	8	1, 1, 1, 1, 1, 1, 1, 1, 1	1	2	3	4	5	6	7	8
1	1	8	1	1	1	1	1	1	1	1
2	2	4, 4	1	1	1	1	5	5	5	5
3	4	2, 2, 2, 2	1	1	3	3	5	5	7	7
4	3	4, 2, 2	1	1	1	1	5	5	7	7
5	4	4, 2, 1, 1	1	1	1	1	5	5	7	8
6	4	4, 1, 1, 2	1	1	1	1	5	6	7	7
7	5	4, 1, 1, 1, 1	1	1	1	1	5	6	7	8
8	(3)	2, 2, 4	1	1	3	3	5	5	5	5
9	4	2, 1, 1, 4	1	1	3	4	5	5	5	5
10	4	1, 1, 2, 4	1	2	3	3		5		5
11	4	1, 1, 1, 1,	1	2	3	4	5	5	5	5
12	5	2, 2, 2, 1, 1	1	1	3	3	5	5	7	8
13	5	2, 2, 1, 1, 2	1	1	3	3	5	6	7	7
14	5	2, 1, 1, 2, 2	1	1	3		5	5	7	7
15	5	1, 1, 2, 2, 2	1	2	3	3	5	5	7	7
16	6	2, 2, 1, 1, 1, 1	1	1	3	3	5	6	7	8
17	6	2, 1, 1, 2, 1, 1	1	1	3	4	5	5	7	8
18	6	2, 1, 1, 1, 1, 2	1	1	3	4	5	6	7	7
19	6	1, 1, 2, 2, 1, 1	1	2	3	3	5	5	7	8
20	6	1, 1, 2, 1, 1, 2	1	2	3	3	5	6	7	7
21	6	1, 1, 1, 1, 2, 2	1	2	3	4	5	5	7	7
22	6	2, 1, 1, 1, 1, 1, 1	1	1	3	4	5	6	7	8
23	7	1, 1, 2, 1, 1, 1, 1	1	2	3	3	5	6	7	8
24	7	1, 1, 1, 1, 2, 1, 1	1	2	3	4	5	5	7	8
25	7	1, 1, 1, 1, 1, 1, 2	1	2	3	4	5	6	7	7

Reconfiguration

- Coherent modules typically support reconfiguration of host traffic when the Media side is unchanged
 - For example, running an 800ZR media side application allows reconfiguration from 8x800GAUI-8 to 2x400GAUI-4 or (400GAUI-4)+(2x200GAUI-2) without line reconfiguration
- A Network Path requires configuration with (partial) Application Descriptors all containing the same Media ID
 - The NP Active Set is defined by the # of lanes + Host Starting Lane Number
 - This is identical for any mix of traffic with the same lane count & starting Lane
- Reconfiguration in which the Media ID Changes requires De-initializing the Network Path
 - For example, changing from 800ZR to FlexO-8-DO must first de-Initialize the NP

Threshold updates

- Prior to CMIS-5.3, no discussion of updating thresholds based on the Application was provided
 - Different Applications may however have different optical power, BER, eSNR, etc. Levels at which warnings and alarms should be raised

- In CMIS-5.3, Page 02h and VDM thresholds may be updated after an application change
 - For the DPSM, thresholds are updated after the DP reaches DPInitialized
 - For the NPSM
 - Media thresholds are updated when the NPSM reaches NPInitialized
 - Host thresholds are updated after the Host Side reaches DPInitialized
- Host SW should read the thresholds following (re)initialization

New topics in CMIS 5.3

- Extended Appsels (NADs) have been defined in CMIS 5.3 to expand the addressable applications – see page 1Ch.
- Host Lane Switching Allows redirection of Host Lanes to additional data paths

Topics for evolution / further work (my opinions)

- NPSM Modules in legacy hosts
 - Legacy hosts attempting to control a module's NP application through the DPSM registers would fail
 - Defaults would currently turn on the media side of a module as soon as the Module reaches Module_Ready
- More detailed Multiplexing Applications need definition
 - CMIS restrictions on lane mixing are prohibitively and un-necessarily strict

41

• Improved muxing likely advertised through a CDB command

Summary

• The NPSM was added into CMIS 5.1 to allow the media side and host side to be decoupled

- The NPSM Opens up more complex module behavior:
 - Multiplexing
 - Replacement signals
 - In service traffic changes
- CMIS is continuing to evolve to allow standardized behavior

Thank You!

