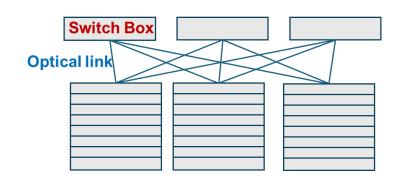


Introduction

- 6 months ago in EA's TEF:
 - Agreement on need of next generation interconnect driven by scale-out and scale-up network
 - Electrical signaling recognized as the main unknown factor
 - Exploration of various technologies: BIDI, SE-MIMO, PAM4/6/8
- 6 months later now
 - Industry showed demo of 1.6T coherent and 400G-PAM4 optics, both will be interfacing with 400G electrical signaling eventually
 - Still looking for more information regarding electrical link, which seems the biggest challenge here
 - Focus down PAM4 and PAM6, we will look at the common ground of optical and electrical interfaces,
 with the constraints from a switch system


Building the switch system: in the Rack

Lane Speed	backplane Link loss Per CEI-LR	Pluggable module Link Loss Per CEI-VSR	Preferred usage
50Gbps	30dB	10dB	4m for inter rack
100Gbps	28.5dB	16dB	4m for inter rack
200Gbps	40dB-IL _{dd} (equiv. 28~22dB ball to ball)	32dB-IL _{dd} With 28.2dB allocated from host up to connector	Up to 2m passive for intra rack AEC to extend to neighbouring racks
Next: 448Gbps	40? dB-IL _{dd} (< ? dB in ball to ball)	? dB-IL _{dd} (concerns on 1D connector bandwidth and loss)	Keep using electrical for intra-rack especially, scale-up

Building the switch system: Connecting the Racks

- The un-resolved concerns resolving:
 - Recent progress showed in OFC build confidence of 400G-PAM4 optics
 - Accommodate growing radix, 512→1024, for flat networking topology
 - High reliability as needed in both training and inference
 - The challenge points to passive electrical link again, and form factor

ASIC CPC DSP OE Package PCB

MTBF First Power Down

Mean Time to Replace

Module: MTBF_{lane} accumulated by 8 lanes

Switch: Not triggered

Module: hot plug & play

Switch: MTBF_{lane} accumulated by 512 lanes If you want to change the components, power dwon the switch, all 512 lanes are affected.

OE w/ socket: Some effort OE solered: back to factory

Switch: MTBF_{lane} accumulated by 512 lanes

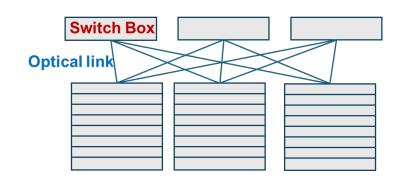
PCB

ASIC

NPO OE

PCB

CPO OE


ASIC

Package

PCB

Building the switch system: Connecting the Racks

- The un-resolved concerns resolving:
 - Recent progress showed in OFC build confidence of 400G-PAM4 optics
 - Accommodate growing radix, 512→1024, for flat networking topology
 - High reliability as needed in both training and inference
 - The challenge points to passive electrical link again, and form factor

Preferred. But huge challenge with VSR channel

ASIC CPC DSP OE

Package
PCB

MTBF First Power Down

Module: MTBF_{lane} accumulated by 8 lanes

Switch: Not triggered

Mean Time to Replace

Module: hot plug & play

PCB

ASIC

NPO OE

Package

PCB

CPO OE

ASIC

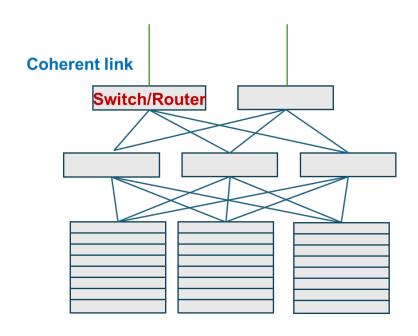
Package

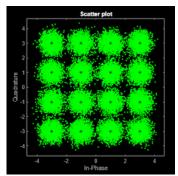
PCB

Switch: MTBF_{lane} accumulated by 512 lanes If you want to change the components, power dwon the switch, all 512 lanes are affected.

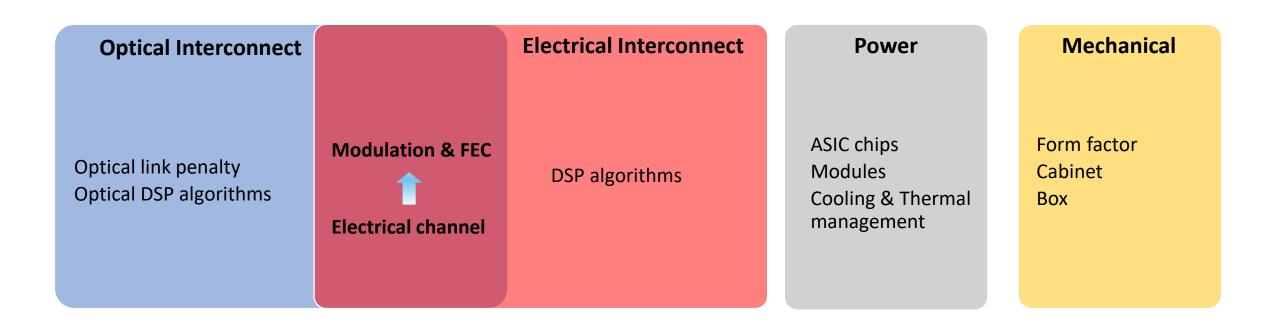
Switch: MTBF_{lane} accumulated by 512 lanes

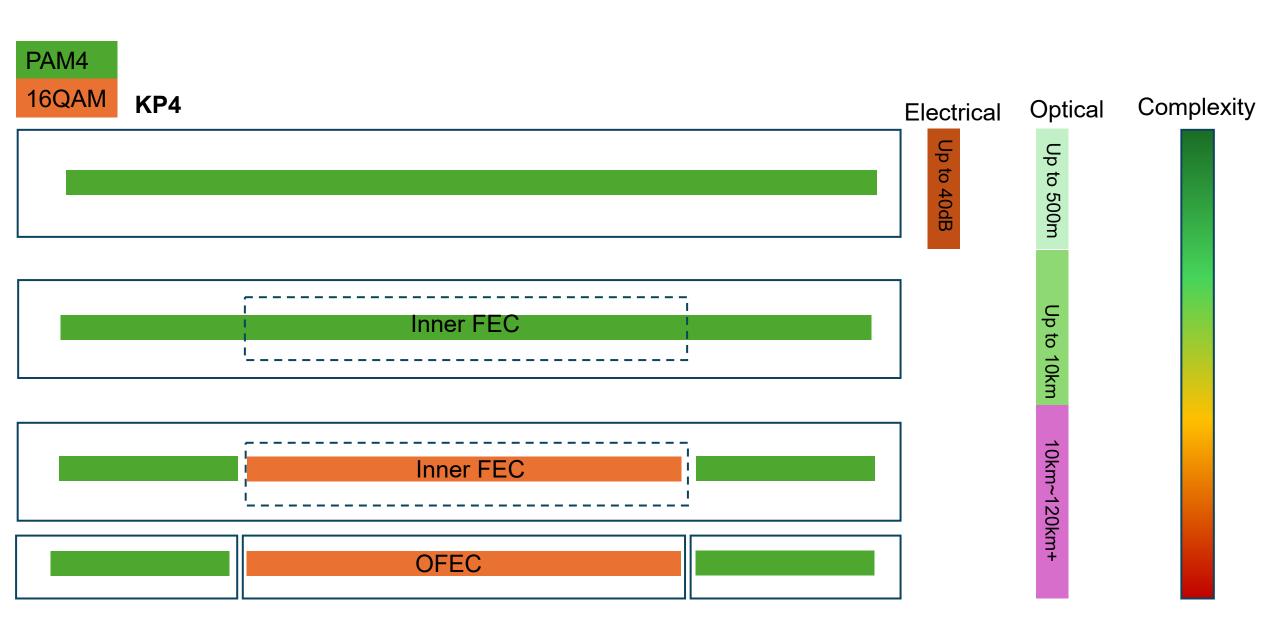
OE w/ socket: Some effort OE solered: back to factory


Building the switch system: Connecting the DCs


- 1600ZR/ZR+ being developed in OIF
- 1.6T-CL in OIF addressing the need of coherent for AI campus, i.e. short reach, point-to-point, low power

Simple question:

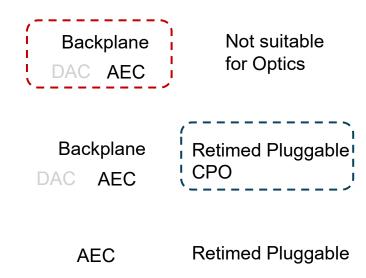

Do we want to roll back 15 years to on-board coherent?



Building the switch system

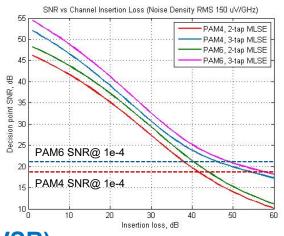
Conflicts of interest within the system visit the common ground first

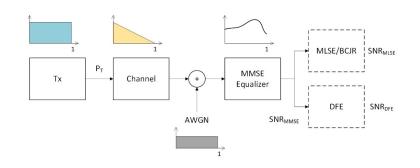
Modulation and FEC architecture – Now with 200Gbps


Modulation and FEC architecture – IMDD

PAM6 PAM4

Technology Choices

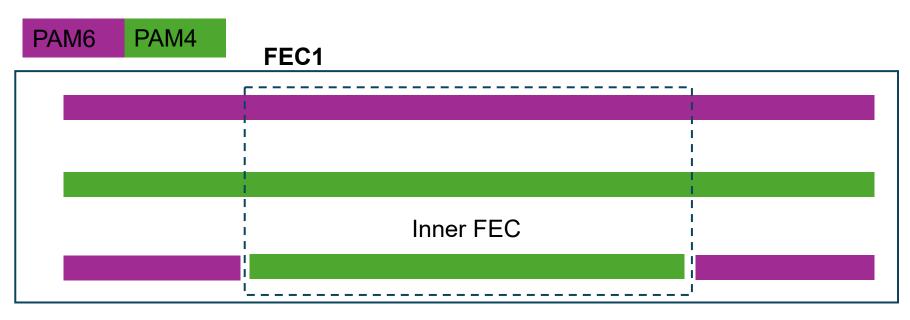

	PAM4	PAM6
Baud Rate (GBd)	212.5	170
BW Nyquist (GHz)	106.25	85
BW _{nq} x1.2 (GHz)	127.5	102
Required SNR @1e-4(dB)	18.2	21.8


Coding gain available from other choices of FEC1

Preliminary analysis of PAMn + IL + SNR

The case of electrical interconnect (backplane):

- Assuming FEC1 = KP4
- Consider two partial equalization cases
- 80% BW limit & white noise
- Both PAM4 and PAM6 show potential for 40dB+ IL



The case of pluggable modules (AUI-C2M/VSR):

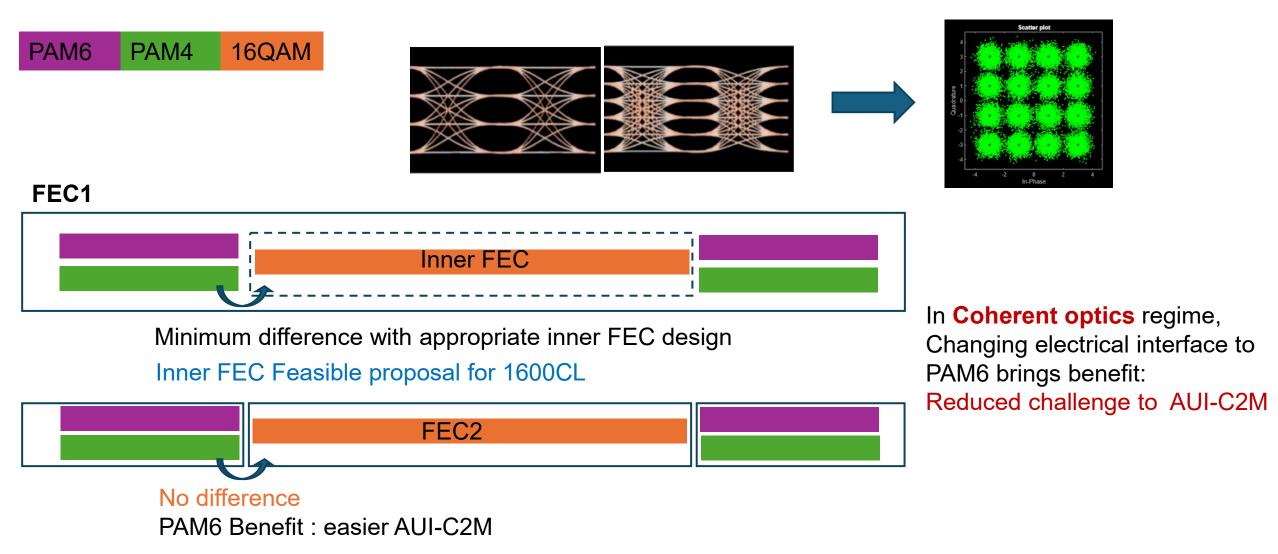
- Assuming FEC1 = KP4
- interpolating the three channel data sets in kocsis e4ai 01 250327 upto 115GHz
- Filter gain (TX FFE & CTLE) are considered
- AFE noise (AWGN) is included @ CTLE input

Modulation	Bandwidth/GHz	Required slicer	Salz margin (dB)		
		SNR@1e-4(dB)	Channel A	Channel B	Channel C
PAM4	112	18.2	5.79	7.11√	9.63√
PAM6	89.6	21.8	6.42√	7.01√	8.24

Modulation and FEC architecture – IMDD

Extend Electrical Link budget

May Extend Optical reach


May benefit AUI-C2M & Extend optical Reach

OH Same as 200G	PAM4	PAM4 Inner FEC	PAM6	PAM6 Inner FEC	
Baud Rate (GBd)	212.5	226.875	170	181.5	
BW Nyquist (GHz)	106.25	113.4375	85	90.75	
BW _{nq} x1.2 (GHz)	127.5	136.125	102	108.9	
Added e-channel loss	+ 2~8dB* and probably worse Cost and gain doesn't sum up		+ 1.5~7dB** Something worthy of consideration		

Technology limited to:
AEC
Retimed pluggable optics

^{*}Extrapolated from kocsis e4ai 01 250327 A/B/C reference Channel; **estimated from kocsis e4ai 01 250327 A/B/C reference Channel

Modulation and FEC architecture – Coherent

Mandatory for ZR/ZR+ optics, currently at 1600ZR with next hop to 3.2T/6.4T not that far away

Modulation and FEC architecture

Technologies paving the way to a new balance

New connectors to maintain loss budget

- CPC connectors showing 100GHz+ BW, e.g. Luxshare showcased in 2024OCP
- 2D connectors/twinax cable to front panel pluggable: HDC in EEI is the project addressing new need.

Advanced substrate and packaging technologies further reduces loss

- New materials such as glass substrate, ultra high density PCB, polymer infill
- 2.5D and 3D packaging of OE chiplets, e.g. TSMC coupe, etc.

Advanced algorithms and FEC codesign to extend the life of current interconnect architecture

- Duobinary PAM4 offers high spectral efficiency, supporting higher data rates in bandwidth-limited scenarios.
- Nonlinear compensation algorithm in Electrical and Optical channels with higher nonlinear impairments.
- Low complexity MAP algorithm provides more reliable soft information to FEC

Asymmetrical architecture could be a safe net

- PAM6 electrical for intra-rack interconnect may help the reach
- PAM4 electrical interfacing with IMDD help reduce power
- Higher radix and lower rate(<400G) for intra-rack is also a feasible choice to support greater than 1m cable or backplane

Key Takeaways

- Electrical link awaits new technology on packaging and connector to close 1m cabling requirement
- Optical IMDD link may benefit from NPO and CPO for power savings, but impact to MTBF need to be considered.
- Coherent link becomes even more relevant as its application going towards 2km+
 - Maintaining Ethernet's Plug-and-play is key
 - Lower power always needed
 - Creating the simple answer to the debate on supporting pluggable: Yes
- A solution space of modulation and FEC architecture was examined
- Building a switch system in the next AI era means: Finding new balance between E and O