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Introduction

« Higher bandwidth interconnects are needed to continue scaling Al clusters and support next-
generation Al models.

* The increase in bandwidth can be achieved by either increasing the number of lanes within a given
form factor or increasing the speed of each lane.

« This presentation aims to determine performance requirements for 448G channels and
Interconnect solutions using known channel configurations.

» The study will assess the performance of these channels at 448G using various modulation
techniques.

« The results will be compared to highlight potential advantages and limitations of each modulation
scheme within the 448G framework.

* The goal is to forecast the channel requirements that the industry will need to meet to achieve
448G performance.
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Typical Al Rack
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Interconnect Impairments for 448G data rates
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Analysis Methodology: Idealized Scale-Out Channels

« Two channel topologies, as shown below, are simulated to understand the requirements for 448G data
operation

« Channel impairments like Chip BGA attach, Via transition, Connector SMT attachment, twinax termination etc
iIdealized to achieve a smooth Insertion Loss across entire bandwidth

- Bandwidth (i.e. IL resonance frequency) is varied by modifying stub length of mating interface

* Insertion Loss at Nyquist frequencies is varied by adding trace loss.
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Analysis Methodology: Idealized Scale-Out Channels

« Co-packaged Copper (CPC) channels allows for longer reach compared to PCB channels for same insertion

loss

 Alternatively, CPC channels have lower Insertion Loss for same reach of PCB channels

« Power sum crosstalk (FEXT and NEXT) for both channel topologies is scaled to generate various signal to
noise ratios in the analysis
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Link block diagram

Near-end I
aggressor
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Transmitter

FEC
#

Constrained peak-to-peak amplitude

Die-to-die channel including crosstalk

Receiver analog front-end

rF———————— e — ———————

ADC = analog-to-digital converter

CDR = clock and data recovery

CTLE = continuous-time linear equalizer

DFE = decision feedback equalizer

FEC = forward error correction

FFE = feed-forward equalizer

MLSD = maximum-likelihood sequence detector
PGA = programmable gain amplifier

Far-end II
aggressor

Receiver digital signal processing
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Baseband pulse amplitude modulation (PAM) basics

8

Selection of modulation options for 450 Gb/s (425 Gb/s)

Modulation Dimensions Bits per Signaling Bandwidth, Distance
dimension rate, GBd GHz reduction, dB

225 112.5

PAM-4 1 2 (212.5) (106.25) R
180 90

PAM-6 2 2.5 (170) (85) 4.44
150 75

PAM-8 1 3 (142.5) (71.25) 7.36
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Performance versus signal-to-noise ratio (SNR)

g - Denser constellations require better SNR for the same BER
0] performance
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g oINS PN
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 Insertion loss, return loss (reflections), crosstalk, etc. all
influence SNR

1508 » This suggests that lower bandwidth channels also need lower
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PAM-4
=07 - Improved detection e.g., maximum likelihood sequence
detection, and additional error correction can be used to relax
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Translating channel characteristics to link performance

« BER is a function of SNR

a3
SNR = 10logyo | —
. . 0.
« BER target can be translated into a noise power budget "

* Map channel characteristics to noise budget terms _ o
Transmitter noise, jitter o,

Characteristic Noise power budget term(s) affected
| tion | IL > Residual inter-symbol interference
nsertion loss (IL) Oisi (e.g., reflections)  7isi

Opext: Ofext» Orx (NOISE €nhancement)

Insertion loss deviation | ¢?; (reflections)
(ILD) Opext» Ofexe: Orx (rOll-off, noise enhancement)

Far-end crosstalk noise afzext

Return loss (RL) of; (reflections) Near-end crosstalk noise

Other noise, margin ¢,

Power-sum near-end 0200t
crosstalk (PSNEXT)

Power-sum far-end Of ot Receiver noise, jitter g2,
crosstalk (PSFEXT)

= Addressed in this presentation
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Noise power due to insertion loss and roll-off
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Insertion loss and roll-off contribute to the noise budget through the
receiver equalizer

Equalizer applies gain to counteract the loss of the channel but this same
gain boosts internal sources of noise

Noise may be introduced at multiple points in the signal processing chain
The same principles apply to the enhancement of crosstalk noise

For a given channel, PAM-8 requires less equalization but is more
sensitive to noise
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Noise power due to near-end crosstalk
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Noise power due to far-end crosstalk
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Fraction of budget

Putting It all together
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Add noise terms for comparison to the total budget

Modulation advantage for one noise term can be offset by a
disadvantage for another noise term (or terms)

Portion of the noise budget must be reserved for terms not included
in this analysis e.g., reflections, jitter

Higher unallocated budget means higher confidence that a working
link is achievable

Roll-off relative to signaling rate has significant influence on the
fraction of the noise budget consumed however roll-off frequency
just past Nyquist frequency might be sufficient
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Summary and conclusions

« Encouraging signs that next-generation channels will be able to support 400G/lane using baseband
pulse amplitude modulation

« Channel bandwidth observations
— PAM-8: Better suited for longer-reach channels with the lowest bandwidth
— PAM-6: Best reach achieved at highest roll-off frequency (85 GHz)
— PAM-4: Not considered, roll-offs much lower than the Nyquist frequency (106-112 GHz)

« PAM-8 has the most challenging noise budget
» Generally, smaller constellations are preferred if the channel bandwidth supports it

« Crosstalk must be managed for best performance and resonances at higher frequencies should be
avoided

* Interconnect feasibility
— PAM-8: Potential to support longer reaches (than alternatives) over existing form factors
— PAM-6: Benefits from improvement to existing form factors (that may break backwards-compatibility)
— PAM-4: Requires completely new form factor and technology to meet performance requirements

@ BROADCOM
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Thank You
Q&A
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