

System and Rack Design considerations for 400G

Mark Nowell, Fellow, Cisco

OIF 448G AI Workshop, April 15-16, 2025

Acknowledgements: This presentation would not exist without the inputs, expertise, and patience of many Cisco colleagues! Thanks to the Anthony Torza, Brian Welch and Cisco SI team including David Nozadze; Sayed Ashraf Mamun; Wenbin Ma; and Mike Sapozhnikov

Ethernet Speed Transitions in Al Networks

Majority of the switch ports in Al back-end Networks to be 800 Gbps in 2025 and 1600 Gbps in 2027, showing a very fast migration to the highest speeds available in the market.

Dell'Oro: 95N01_Advanced_Research_AI_Networks_For_AI_Workloads_Report_3Q24

ASIC density continues to redefine how products are built. Gates & GHz. SerDes & Interconnect. Optics & wavelengths.

Credit: adapted from slide by Rakesh Chopra & John Chapman https://blogs.cisco.com/sp/co-packaged-optics-and-an-open-ecosystem

System Architectures evolve with technology

Fixed Box

Vertical Linecard System (VLC) Modular & Rack System

Interconnects for an AI/ML world

AI/ML is a disruptive event for traditional networking

		Traditional Front-end DC	AI/ML Back-end DC	Lots of interconnect → Speed matters → Power matters	
Rack Bandwidth (ToR/MoR)		3.2T-12.8T	>> 100T	\rightarrow Density matters	
Rack power		~10 kW	100 kW+	Massive rack density increase → Power matters	
Packet Loss impact (reliability)		Low importance	Critical importance	 → Copper cables matter → Density matters → Thermal solutions matter 	
Latency importance	Absolute	Low	Low		
	Tail	-	High	Job completion time (JCT) →Link BER performance critical. →Tail latency most important	

What to define and why?

System design considerations @ 400G

- 400G technology forces a complete end-to-end co-design mindset. Every detail matters
- Evolution from 50G→ 100G → 200G has made it clear that separate specialties are less and less able to be optimize independently
- 400G will be the hardest yet.
 - Margins are diminishing
 - Reliability requirements are heightened due to AI deployment scale
 - New technologies, materials, packaging, fabrication techniques, modulations, connectors all need to be brought to production
 - SNR impacts with greater sensitivity to channel impairments

Simple view

OIF 448Gbps Signaling for Al Workshop - April 15-16, 2025

Simple view – key takeaway's

- Liquid cooling should be assumed. Reduces thermal challenges, but does not reduce the focus on power efficiency
- The duality of both copper and optics need to be supported to cover the breadth of requirements
 - Pluggable solution needed
- Some traditional (Legacy?) system design approaches are running out of runway. Need to understand what are acceptable channels to architect (and standardize) around.

Complex view: At 400G co-consideration of every aspect is necessary

Even assuming a co-packaged copper (CPC) approach as the basis of designs numerous and interrelated challenges remain.

Higher speed signaling:

- New modulations for electrical (and optical?)
- Increased Loss
- Increased coupling
- Greater sensitivity to channel impairments, skew, nonlinearity
- New SerDes, DSPs, PLLs
- Improved FEC(?)
- Link Reliability

Complex packaging:

- Larger packages
- Increased Loss
- Manufacturing challenges
- Reliability

Next Gen pluggable:

- New connector approach
- New form factor
- Optics and Copper
- Reliability/FIT/Retention

SerDes Rate Increase: Enhanced Challenges

2x SerDes Rate = 4x - 6x more lossAccelerating loss with increased skew

P/N Skew Budget

As the data rates increase, design and statistical skew will have a significant impact on loss **Skew becomes critical item to control**

Channel Transitions

Channel transitions degrade link performance which is amplified by an SNR impact due to modulation. New packaging & fabrication techniques. New connectors will be key.

Twinax cables aren't immune

Multiple Cable Skew Signatures Exist Key to understand the Signature & Impact on Performance.

CISCO © 2023 Cisco and/or its affiliates. All rights reserved. Cisco Public

SerDes Rate Increase: Old methods break down

EM Field analysis showing effectiveness of ground via isolation

Return Loss & Cross Talk

200G PAM4 (56G) ¼ wavelength (0.6mm) is smaller than ASIC ball pitch (0.9mm) **Traditional use of ground vias to isolate signals fail** Return loss & cross-talk require new methods for optimization

Rule of thumb design limits:

 $\lambda/2$; cut off by GND via fence resonances λ /4 ; signal via localization λ /8 ; GND via fence shielding

SerDes Rate Increase

- PAM4 (electrical) system channels do not appear feasible.
 - PAM4 (optical) generally preferred.
- PAM6/8 under investigation
 - SNR impact
 - Signal:
 - Mitigate channel loss with improved techniques such as CPC
 - Noise:
 - Skew, Coupling, Reflections, Transitions, Non-linearities all have heightened impact
 - Packaging, connectors, channels
- FEC becomes a trade-off between link reliability/performance and latency. Increased FEC overhead can have diminishing return due to device f_T limitations

OSFP wipe

Stub Length L

(toward Host PCB)

SerDes Rate Increase: Existing OSFP connectors

Current card edge connector approaches look limited beyond 200G

- Return Loss is very high
- Near-end crosstalk is very high
- Far-end crosstalk looks manageable

Curl

Via + stripline (toward Optical Module)

• EM simulations @ 400G are not encouraging & BW limited.

	RL [dB] (0-53GHz)	IL [dB] ~53GHz	PSNEXT [dB] ~53GHz	PSFEXT [dB] ~53GHz
Industry Ranges for 1X1 OSFP Connectors	-6 to -9dB	-1.5 to -4dB	-35 to -44dB	-25 to-30dB

*Measured and de-embedded

Connector Mating Consistency

Preliminary EM analysis of various connector structures (one shown below)

- Show viable performance without mating & manufacturing variations
- Very sensitive to minor offset 8-10dB degradation in RL is observed
 - (Suggests a 2-piece smaller connector would have better mating consistency and tolerances to forces)

OIF 448Gbps Signaling for Al Workshop - April 15-16, 2025

Top view of a p/n mating pair within a connector

400G Optics

- Optimized modulation for optics being different from electrical implies that pluggables will be retimed.
 - Initial priority would be an optimized interface for short reaches. Market forecasts suggest strong need for defining a common interface to support volumes.
 - Radix priorities push towards parallel fiber interfaces
 - Allows some evolution of interfaces to happen for different (longer) reaches as market becomes clear
- Co-packaged Optics
 - Will co-exist with pluggable, so common optical interface definition will be needed.
 - Power reductions due to co-packaging will drive adoption.

400G: Where do we stand?

- The details really matter!
- Establishing the system and network (initial) requirements is imperative to allow these interdependencies to be analyzed and traded off.
- Need to restrict the scope to what are "reasonable" implementations
- Key will be to define an initial starting point for industry specs. There will be time to build out the full
 portfolio of specs
 - Electrical interface capable of supporting pluggable (Is there an acceptable DAC reach of tbd?)
 - Active copper to extend reach
 - Short optical interface capable of supporting intra-DC, high radix, compatible with pluggable/CPO.

ılıılı cısco

The bridge to possible