OIF Publishes Transport SDN Framework Document

Key Findings from 2014 Demo Inspires Framework Architecture

Fremont, Calif. – May 19, 2015 –Following a 2014 prototype demonstration event, the Optical Internetworking Forum (OIF) has approved an SDN Framework whitepaper that paves the way for implementation of SDN in Carrier Networks. The whitepaper, titled “Framework for Transport SDN:  Components and APIs”, documents the SDN framework for multi-domain carrier networks.  It identifies critical open APIs for Transport SDN based on synthesis of the SDN layered architecture and the ITU-T ASON functional element model for optical network control.

SDN identifies interfaces separating infrastructure and control layers, and control layer from application layer.  The interface between infrastructure and control layers is termed the SouthBound Interface or SBI, the interface between control and application layers is termed the NorthBound Interface or NBI, and provides APIs to the application.

“In 2014, the prototype demonstration brought together multiple vendors and carriers to test cloud-bursting services, utilizing SDN principles and interfaces,” said Lyndon Ong of Ciena and co-chair of the OIF Market Awareness & Education Committee.  “The demonstration results factored into the development of a framework that allows SDN to be deployed over a carrier’s network with multiple, diverse domains.”

One of the key findings from the demonstration was that the separation introduced by the NBI and SBI enables SDN to be applied over greenfield (i.e., OpenFlow) and brownfield environments, allowing integration of domains controlled by management systems and domains using existing distributed control planes as well as centralized SDN.  A variety of SBI protocols could coexist in the carrier’s Transport SDN network, including the OpenFlow protocol, with extensions for optical networks.

NBI is an area of particular importance; by providing access to ASON functional elements, the NBI opens up access to the network control plane and provides greater programmability of services, improving the speed of service deployment and overall manageability of the network.  Functional elements accessible via NBI in this framework include Call Control, Connection Control, Topology and Path Computation.

The document assesses where existing protocols may be used to support NBI access.  In addition to existing protocols, there are benefits from defining new REST-based interfaces such as were prototyped in the demo, based on a common information model.

For a copy of the SDN framework document http://www.oiforum.com/documents/technical-white-papers/

About the OIF
The OIF facilitates the development and deployment of interoperable networking solutions and services. Members collaborate to drive Implementation Agreements (IAs) and interoperability demonstrations to accelerate and maximize market adoption of advanced internetworking technologies. OIF work applies to optical and electrical interconnects, optical component and network processing technologies, and to network control and operations including software defined networks and network function virtualization. The OIF actively supports and extends the work of national and international standards bodies. Launched in 1998, the OIF is the only industry group uniting representatives from across the spectrum of networking, including many of the world’s leading service providers, system vendors, component manufacturers, software and testing vendors. Information on the OIF can be found at http://www.oiforum.com

The OIF Launches New Integrated Photonics Projects

Two Implementation Agreements Published for Industry Use

Fremont, Calif. – May 7, 2015– In the wake of the Optical Internetworking Forum’s April quarterly meeting in Lisbon, Portugal, the organization announced that initial work has begun on technical specifications for high bandwidth optical modulators and receivers for coherent applications. Members also approved implementation agreements for 100G applications. The Q2 meeting also saw several OIF technical committees meet to continue the Forum’s work on the FlexEthernet and Common Electrical Interface (CEI) projects begun in 2014. Finally, based on the success of technical demonstrations in 2014, Forum members held initial discussions regarding an SDN-focused demo for 2016.

“Our members are working at full capacity right now,” said Karl Gass, of Qorvo and the OIF Physical and Link Layer Working Group vice chair, Optical. “With as many as 19 documents going to ballot this quarter alone we are completing technical work at an extremely fast pace. These two new electro-optical component projects will fill a gap in the line side component space, providing systems engineers more tools to increase channel capacity beyond 100Gb/s.”

The utilized coherent ASIC Baud Rate is no longer sufficient information to define the frequency response requirements for coherent electro-optical (EO) components now that the industry has embraced the use of preconditioning. The High Bandwidth Polarization Multiplexed Quadrature Optical Modulator project enables coherent electro-optical modulation of a wider optical spectrum per optical carrier defined in terms of frequency response. The Intradyne Coherent Receiver project proposes an improved RF high frequency response that enables coherent electro-optic demodulation of a wider optical spectrum per optical carrier.

Implementation Agreements Approved for Public

The IA for Integrated Dual Polarization Micro-Intradyne Coherent Receivers targets coherent 100G PM-QPSK applications with nominal symbol rates up to 32 GBaud in a CFP2 form factor. This IA also defines a low speed electrical interface incorporating an SPI bus for control of the TIAs in the coherent receiver.

The IA for Generation 2.0 100G Long-Haul DWDM Transmission Module-Electromechanical applies to optical line interface applications. The IA reduces the size and power consumption requirements by defining a 4×5 module that can be used for 100G long-haul DWDM transmission applications.

For more information go to http://www.oiforum.com/documents/implementation-agreements/

About the OIF
The OIF facilitates the development and deployment of interoperable networking solutions and services. Members collaborate to drive Implementation Agreements (IAs) and interoperability demonstrations to accelerate and maximize market adoption of advanced internetworking technologies. OIF work applies to optical and electrical interconnects, optical component and network processing technologies, and to network control and operations including software defined networks and network function virtualization. The OIF actively supports and extends the work of national and international standards bodies. Launched in 1998, the OIF is the only industry group uniting representatives from across the spectrum of networking, including many of the world’s leading service providers, system vendors, component manufacturers, software and testing vendors. Information on the OIF can be found at http://www.oiforum.com.

OIF demonstrates 50 Gbps signals using two modulations

Martin Rowe -March 30, 2015

Last week at OFC 2015, the OIF (Optical Internetworking Forum) demonstrated two 50 Gbps transmissions using both PAM4 and NRZ formats. Over the past year, PAM4 has emerged as what appears to be the modulation format of choice for many systems, although NRZ will still have its place.

PAM4, the topic of the Jitter Panel at DesignCon 2015, looks to become the modulation format for LR (long reach) and MR (medium reach) optical links. In particular, PAM4 looks to take over from NRZ for electrical links that lead up to an optical module and across backplanes. For XSR (extra-short reach) applications, NRZ is likely to live on in applications where signal-to-noise ratio is important such as within an optical module or in memory buses. The two videos below show demonstrations from the OIF booth.

In the first video, Scott Sommers of Molex shows a 50 Gbps PAM4 signal traveling over a 0.54 m Molex backplane. The signal is generated by an (AWG) arbitrary waveform generator from Keysight Technologies. The demo uses the AWG because silicon to generate the PAM4 signal isn’t yet available.

Silicon that can generate a 56 Gbps data stream using NRZ is available, and Jeff Twombly of Credo Semiconductor demonstrated it in the OIF booth. In this demonstration, a Credo 56G NRZ SerDes drove three demonstrations: a CEI-56G-VSR-NRZ channel, a CEI-56G-MR/LR-NRZ backplane and a CEI-56G-MR-NRZ passive copper cable. The video shows the signal passing through a 1 m length of copper cable.

OIF shows 56G electrical interfaces & CFP2-ACO

Gazettayte, Roy Rubenstein
Wednesday, March 25, 2015

The Optical Internetworking Forum (OIF) is using the OFC exhibition taking place in Los Angeles this week to showcase the first electrical interfaces running at 56 Gigabit. Coherent optics in a CFP2 pluggable module is also being demonstrated.

“The most important thing for everyone is power consumption on the line card”

The OIF – an industry organisation comprising communications service providers, internet content providers, system vendors and component companies – is developing the next common electrical interface (CEI) specifications. The OIF is also continuing to advance fixed and pluggable optical module specifications for coherent transmission including the pluggable CFP2 (CFP2-ACO).

“These are major milestones that the [demonstration] efforts are even taking place,” says Nathan Tracy, a technologist at TE Connectivity and the OIF technical committee chair.

Tracy stresses that the CEI-56G specifications and the CFP2-ACO remain works in progress. “They are not completed documents, and what the demonstrations are not showing are compliance and interoperability,” he says.

Five CEI-56G specifications are under development, such as platform backplanes and links between a chip and an optical engine on a line card (see Table below).

Moving from the current 28 Gig electrical interface specifications to 56 Gig promises to double the interface capacity and cut electrical interface widths by half. “If we were going to do 400 Gigabit with 25 Gig channels, we would need 16 channels,” says Tracy. “If we can do 50 Gig, we can get it down to eight channels.”  Such a development will enable chassis to carry more traffic and help address the continual demand for more bandwidth, he says.

But doubling the data rate is challenging. “As we double the rate, the electrical loss or attenuation of the signal travelling across a printed circuit board is significantly impacted,” says Tracy. “So now our reaches have to get a lot shorter, or the silicon that sends and receives has to improve to significant higher levels.”

One of the biggest challenges in system design is thermal management

Moreover, chip designers must ensure that the power consumption of their silicon do not rise. “We have to be careful as to what the market will tolerate, as one of the biggest challenges in system design is thermal management,” says Tracy. “We can’t just do what it takes to get to 56 Gigabit.”

To this aim, the OIF is pursuing two parallel tracks: using 56 Gigabit non-return-to-zero (NRZ) signalling and 4-level pulse amplitude modulation (PAM-4) which encodes two bits per symbol such that a 28 Gbaud signalling rate can be used. The 56 Gig NRZ uses simpler signalling but must deal with the higher associated loss, while PAM-4 does not suffer the same loss as it is similar to existing CEI-28 channels used today but requires a more complex design.

“Some [of the five CEI-56G specifications] use NRZ, some PAM-4 and some both,” says Tracy. The OIF will not say when it will complete the CEI-56G specifications. However, the projects are making similar progress while the OIF is increasing its interactions with other industry standards groups to shorten the overall timeline.

 

Source: OIF, Gazettabyte

Two of the CEI-56G specifications cover much shorter distances: the Extra Short Reach (XSR) and Ultra Short Reach (USR). According to the OIF, in the past it was unclear that the industry would benefit from interoperability for such short reaches.

“What is different at 56 Gig is that architectures are fundamentally being changed: higher data rates, industry demand for higher levels of performance, and changing fabrication technologies,” says Tracy. Such fabrication technologies include 3D packaging and multi-chip modules (MCMs) where silicon dies from different chip vendors may be connected within the module.

The XSR interface is designed to enable higher aggregate bandwidth on a line card which is becoming limited by the number of pluggable modules that can be fitted on the platform’s face plate. Density can be increased by using mid-board optics (an optical engine) placed closer to a chip. Here, fibre from the optical engine is fed to the front plate increasing the overall interface capacity.

The USR interface is to support stackable ICs and MCMs.

All are coming together in this pre-competitive stage to define the specifications, yet, at the same time, we are all fierce competitors

“The most important thing for everyone is power consumption on the line card,” says Tracy. “If you define these very short reach interfaces in such a way that these chips do not need as much power, then we have helped to enable the next generation of line card.”

The live demonstrations at OFC include a CEI-56G-VSR-NRZ channel, a CEI-56G-VSR-PAM QSFP compliance board, CEI-56G-MR/LR-PAM and CEI-56G-MR/LR-NRZ backplanes, and a CEI-56G-MR-NRZ passive copper cable.

The demonstrations reflects what OIF members are willing to show, as some companies prefer to keep their work private. “All are coming together in this pre-competitive stage to define the specifications, yet, at the same time, we are all fierce competitors,” says Tracy.

CFP2-ACO  

Also on display is working CFP2 analogue coherent optics (CFP2-ACO). The significance of coherent optics in a pluggable CFP2 is the promise of higher-density line cards. The CFP is a much bigger module and at most four can be fitted on a line card, while with the smaller CFP2, with its lower power consumption, up to eight modules are possible.

Using the CFP2-ACO, the coherent DSP-ASIC is external to the CFP2 module. Much work has been done to ensure that the electrical interface can support the analogue signalling between the CFP2 optics and the on-board DSP-ASIC, says Tracy.

At OFC, several companies have unveiled their CFP2-ACO products including Finisar, Fujitsu Optical Components, Oclaro and NEC, while Clariphy has announced a single-board reference design that includes its CL20010 DSP-ASIC and a CFP2-ACO slot.

 

OIF Members Lead the Industry in 56G Interfaces and Pluggable Coherent Optics

Collaboration Results in Groundbreaking Work

Fremont, Calif. – Feb. 24, 2015– Optical Internetworking Forum (OIF) members are leading the market again in a live technology demonstration at OFC 2015 in Los Angeles, March 24-26, 2015, booth #613. The OIF Technology Showcase 2015 – It’s Happening Now – 56G Electrical Interfaces and Pluggable Coherent Optics will highlight the OIF‘s groundbreaking technology work. The Forum’s 4th generation Common Electrical Interface, CEI-56G, enables users to achieve new heights in CEI data rates. The technology showcase event will also demonstrate the OIF’s CFP2-ACO technology, a coherent optics transceiver module in a CFP2 form factor, an optimal medium-term solution to maximize faceplate density and minimize install costs for metro/regional DWDM and data center applications.

“The OIF has always demonstrated industry leadership, and this year at OFC is no exception,” says Nathan Tracy, technologist at TE Connectivity and the OIF technical committee chair. “From key industry presentations on Carrier, SDN, and physical layer topics, to demonstrating live hardware that conveys the progress on defining pluggable coherent optics, the OIF brings the sharpest minds in optical networking together to solve the toughest problems. Our work on 56Gb/s interoperable electrical channel agreements is addressing multiple modulation solutions. By attracting developers whose expertise range from test equipment to optics to electronics to connectors to equipment OEMs, the OIF is developing the ecosystems required by future datacomm architectures.”

Demos and Participants

Live and static displays at the OIF Technology Showcase 2015 – It’s Happening Now – 56G Electrical Interfaces and Pluggable Coherent Optics:

  • Live CEI-56G-VSR-NRZ Channel with Credo Semiconductor, Multilane, Tektronix, Yamaichi Electronics
  • Live CEI-56G-VSR-PAM QSFP Compliance Board with Anritsu, Molex, Multilane, TE Connectivity, Tektronix, Yamaichi Electronics
  • CEI-56G-VSR-PAM Optical Static Display (concept) with Molex, Multilane, TE Connectivity
  • Live CEI-56G-MR/LR-PAM Backplane with Keysight Technologies, Molex
  • Live CEI-56G-MR/LR-NRZ Backplane with Credo Semiconductor, Keysight Technologies, TE Connectivity
  • Live CEI-56G-MR-NRZ Passive Copper Cable with Credo Semiconductor, Keysight Technologies, Molex, TE Connectivity, Yamaichi Electronics
  • CFP2-Analog Coherent Optics – Pluggable Coherent Optics with Keysight Technologies, Multilane

Static displays of equipment aimed at developing the ecosystems for 56G electrical interfaces and pluggable coherent optics will include modules, test equipment, connectors, compliance boards, DSPs, drivers, transimpedance amplifiers and components from ClariPhy Communications, Finisar, Inphi, Kandou Bus, MACOM, Molex, MoSys, Multilane, NEC Corporation, Oclaro, Qorvo and TE Connectivity.

About the OIF Technology Showcase

OIF Technology Showcase 2015 – It’s Happening Now – 56G Electrical Interfaces and Pluggable Coherent Optics

OIF member companies will unite under the banner of the OIF to showcase multi-vendor participation in the OIF Technology Showcase 2015. The OIF’s Physical and Link Layer demonstration highlights live CEI-56G electrical interfaces. Also demonstrated is the emerging ecosystem for CFP2-ACO pluggable coherent optics, including subcomponents and test equipment.

A public demonstration will be on display at #OFC2015, March 24-26 in Los Angeles in booth #613. Additional info can be found at http://www.oiforum.com/meetings-and-events/oif-ofc-2015-2/

Presentations at OFC

Service Provider Summit – Panel 1: Value and Cost of Multi-Layer SDN
March 25, 2015 – 9:15am-10:45am
Panelist: Vishnu Shukla, OIF President

OIF Panel: Transport SDN – Clearing the Roadblocks to Wide-scale Commercial Deployment
March 25, 2015 – 2:00pm-3:00pm – EXPO Theater II
Moderator: Dave Brown, OIF VP of Marketing, Alcatel-Lucent
Lead Speaker: Vishnu Shukla, OIF President, Verizon
Speakers: Ruiquan Jing, China Telecom; Lyndon Ong, OIF MA&E Committee Co-Chair – Networking, Ciena; Jonathan Sadler, OIF Technical Committee Vice Chair, Coriant

OIF Panel: OIF CEI-56G – It’s Happening Now
March 26, 2015 -10:30am-11:30am – EXPO Theater II
Moderator: Nathan Tracy, OIF Technical Committee Chair, TE Connectivity
Speakers: Ed Frlan, OIF PLL Interoperability WG Chair, Semtech; Brian Holden, OIF MA&E Committee Co-Chair – PLL, Kandou Bus, S.A.; Tom Palkert, OIF PLL WG Vice Chair Electrical, MoSys

OIF Panel: System Architectures Using OIF CEI-56G Interfaces
March 26, 2015 – 11:30am-12:30pm – EXPO Theater II
Moderator: David Stauffer, OIF PLL WG Chair and Board Member, Kandou Bus, S.A.
Speakers: Ed Frlan, OIF PLL Interoperability WG Chair, Semtech; Edward Priest, Juniper Networks; Nathan Tracy, OIF Technical Committee Chair, TE Connectivity

 

About the OIF
The OIF facilitates the development and deployment of interoperable networking solutions and services. Members collaborate to drive Implementation Agreements (IAs) and interoperability demonstrations to accelerate and maximize market adoption of advanced internetworking technologies. OIF work applies to optical and electrical interconnects, optical component and network processing technologies, and to network control and operations including software defined networks and network function virtualization. The OIF actively supports and extends the work of national and international standards bodies. Launched in 1998, the OIF is the only industry group uniting representatives from across the spectrum of networking, including many of the world’s leading service providers, system vendors, component manufacturers, software and testing vendors. Information on the OIF can be found at http://www.oiforum.com.

OIF Tackles Incremental Bandwidth Increases with FlexEthernet

Significant Strides Made on SDN, APIs, CEI

As members of the Optical Internetworking Forum gathered last month for their first quarterly meeting of 2015, the organization launched a new project to enable flexible Ethernet by providing a toolkit to expand the utility of existing and future Ethernet interfaces.  The new project, labeled FlexEthernet, provides a way for Ethernet equipment to more efficiently utilize optical link bandwidth. FlexEthernet toolkit provides channelization, bonding and sub-rate functionality to connect one or more Ethernet MACs using standard Ethernet PMDs between equipment, either directly or through transport links.

Building upon the OIF’s multi-link gearbox (MLG) work that addresses multilane configuration, FlexEthernet provides support for speeds in between and beyond the fixed speeds currently defined, driving a wider set of applications needed by data centers and carriers.

“Ethernet connections between routers or transport gear needs to be flexible by providing incremental increases in bandwidth,” said Nathan Tracy of TE Connectivity and the OIF’s Technical Committee chair.  “The proposed FlexEthernet toolkit bridges the gap between previous, current and next-gen rates.

At the quarterly meeting, OIF members prepared to approve the OIF’s SDN Framework, a technical white paper identifying components and interfaces requiring standardization to provide a cohesive SDN app development framework designed around Web 2.0 technologies. Members also made progress on developing implementation agreements for SDN APIs addressing Topology, Service Request, Connection Request and Path Computation.

“The OIF is ahead of the industry in identifying specific work that needs to be done to bring SDN to fruition,” said Jonathan Sadler, Coriant and the OIF’s Technical Committee vice chair.   “The API documents are the outcome of the prototype SDN demonstration that took place late last year. We have motivated, enthusiastic members working hard to finalize these APIs for service provider deployment.”

Members of the Physical and Link Layer Working group held a one-day interim meeting in addition to their usual three-day meeting discussing PAM4 and NRZ specifications as they continued work on the multiple CEI-56G projects.   The CEI-56G development work will increase the data rates by a factor of two over the data rate of CEI-28G while also defining new application spaces.  The group will hold another interim meeting before the Q2 meeting in April. For more information on the OIF’s CEI work see http://www.oiforum.com/technical-work/current-oif-work/

About the OIF
The OIF facilitates the development and deployment of interoperable networking solutions and services. Members collaborate to drive Implementation Agreements (IAs) and interoperability demonstrations to accelerate and maximize market adoption of advanced internetworking technologies. OIF work applies to optical and electrical interconnects, optical component and network processing technologies, and to network control and operations including software defined networks and network function virtualization. The OIF actively supports and extends the work of national and international standards bodies. Launched in 1998, the OIF is the only industry group uniting representatives from across the spectrum of networking, including many of the world’s leading service providers, system vendors, component manufacturers, software and testing vendors. Information on the OIF can be found at http://www.oiforum.com.

OIF’s FlexEthernet Project Targets DCI

News Analysis, Light Reading
Carol Wilson, Editor-at-large

February 12, 2015

Internet content providers and other network operators are looking for much fatter connections between their data centers than the current Ethernet service definitions can provide. So the Optical Internetworking Forum is stepping up with a new project to define more flexible Ethernet options for using the entire capacity of a given optical link. (See OIF Aims to Enable More Flexible Ethernet.)

Known as FlexEthernet, the project will establish a way for Ethernet equipment to use a variety of different tools such as channelization, bonding and sub-rate functionality to create those faster connections in a standard way, says Nathan Tracy, chairman of the Optical Internetworking Forum (OIF) ‘s Technical Committee and manager of industry standards for TE Connectivity (NYSE: TEL).

The idea is to supplement the Ethernet standard definitions developed by the IEEE with a common approach that can be brought to market more quickly, in time to meet the booming demand for faster connections between data centers, Tracy says.

“This uses the IEEE’s Ethernet in more flexible ways,” he notes.

Large Internet content providers are among those clamoring for the new flexibility, Tracy admits. While he doesn’t name specific companies, it’s apparent that Google (Nasdaq: GOOG), Apple Inc. (Nasdaq: AAPL) and Facebook are driving their own networking agendas and would benefit from this kind of connectivity.

One common feature set within FlexEthernet would allow a given link between two points to consume the full bandwidth of that link, beyond the published data rates that are typically 10 Gbit/s or 100 Gbit/s. “What FlexEthernet will enable a user to do is to start running data at the maximum rate of the link and then dial that down until it reaches an error rate that is acceptable,” Tracy says. “The traffic will go beyond the defined Ethernet service, but it will still look like Ethernet as the data goes on and off the link. That is one of the first apps of FlexEthernet and it is the one that drove this conversation a year ago.”

Another possible FlexEthernet option is to enable creation of custom data rates by using bonding of multiple rates — offering a 200Gbit/s service by bonding together two 100Gbit/s lanes, for example. The traditional way of doing this involves link aggregation, Tracy says, but that wouldn’t deliver the full 200 Gbit/s.

The IEEE would be expected to ultimately develop a standard approach to 200 Gbit/s, but that could be a couple of years away and, in the meantime, a standard approach to offering that kind of connection can be defined by the OIF.

“This would allow interim data rates for niches or specific needs until it is determined there is a broad market potential and broadly available technology” to do it via IEEE standards, Tracy says. The standards process isn’t forced ahead of what could be more efficient options in the long run.

FlexEthernet using an extension of the OIF’s multi-link gearbox will also allow the bundling of 10Gbit/s lines together so they can be supported by one 50-gig pin on an ASIC. This makes more efficient use of the limited number of pins on a given ASIC, Tracy notes.

The new project was launched at the OIF’s quarterly meeting earlier this year, along with the preparation of the OIF’s SDN Framework, a technical white paper which lays out the components and interfaces that will need to be standardized for SDN. That work is focused on establishing an applications development framework. (See SDN Tests Go Swimmingly, Says OIF and OIF Launches SDN Implementation Project.)

— Carol Wilson, Editor-at-Large, Light Reading

Ethernet speed tuning goal of OIF FlexEthernet project

Author Stephen Hardy,
Editorial Director and Associate Publisher, Lightwave

February 12, 2015

Optical Internetworking Forum (OIF) members decided last month at their first quarter 2015 meeting to launch a project that would enable systems designers and their customers to tune the transmission speeds of their Ethernet equipment to rates not specified in existing Ethernet standards.

The FlexEthernet project will build on the OIF’s previous development of the multi-link gearbox (MLG), a device that mitigates differences in the number of lanes between chip interfaces. For example, the MLG can translate between a chip that sends a 100-Gbps signal across 10 lanes of 10 Gbps and another that operates at 4×25 Gbps and allow the signal to be recovered in its original 10-lane form (see “OIF launches new interconnect, 100G projects” and “AppliedMicro demos OIF-compliant 100G/10G multi-link gearbox chip”). The new project will create ways of using channelization, bonding, and sub-rate functionality to enable data rates to be adjusted either above or below current Ethernet standards.

The effort responds to requests from data center operators for a way to maximize the capacity of existing network infrastructures, according to Nathan Tracy of TE Connectivity and the OIF’s Technical Committee chair. For example, if a particular link couldn’t support a 40 Gigabit Ethernet connection due to reach or interference factors, FlexEthernet would enable the user to reduce the transmission rate to the highest the link would support without having to drop all the way to 10 Gigabit Ethernet, Tracy said. Conversely, if an operator wanted to transmit at a higher rate than 100 Gigabit Ethernet, FlexEthernet would enable that as well.

Transmission rates of 200 Gbps would be possible today if the FlexEthernet project were complete, Tracy added.

However, it’s not complete – and, as is customary among OIF spokesmen, Tracy declined to predict when the FlexEthernet development project would finish.

In other action at the quarterly meeting, the OIF membership moved closer to approving its SDN Framework document and finishing development of implementation agreements for software-defined networking (SDN) APIs addressing topology, service request, connection request, and path computation (see “OIF to explore Transport SDN, CFP2” and “OIF looks to solidify Transport SDN APIs”). The Physical and Link Layer Working group also met to discuss the application of PAM-4 and NRZ modulation formats for various CEI-56G projects.

The groups will meet again in April.

OIF Advancing Transport SDN Agreements

News Analysis
Carol Wilson, Editor-at-large

11/20/2014

After successfully demonstrating Global Transport SDN, the Optical Internetworking Forum is starting an effort to develop implementation agreements for the interfaces used in that demo to link applications to an SDN controller. The move will address issues revealed in the demo about gaps in definitions for how user applications interact with the underlying transport network resources. (See OIF Launches SDN Implementation Project.)

The Optical Internetworking Forum (OIF) , which did the demo jointly with the Open Networking Foundation , is planning to develop these agreements for the two application programming interfaces (APIs) that were used in the demo — for service request and topology — as well as for path computation and link resource manager interfaces that the group has already identified in its SDN Framework. (See SDN Tests Go Swimmingly, Says OIF and OIF, ONF List Vendors in Transport SDN Demo.)

The implementation agreements are essentially agreements among multiple industry players on how something is done, in advance of standards development, says Jonathan Sadler, the Coriant exec who is OIF technical committee vice chair. The OIF’s SDN Framework has been in process since 2013 and a number of APIs have been identified in that work that need to be addressed. The two that were part of the demo — service request and topology — were given early importance but others will also be needed as SDN Global Transport is pushed toward commercial availability, he notes.In particular, implementation agreements will enable a common Service API to enable deployment across OpenFlow and non OpenFlow-based networking environments.

“The implementation agreement includes how to use REST and JSON — two specific technologies in Web 2.0 space — to convey the info needed for SDN in the transport environment” to set up services, Sadler says.

The goal is to have one approach and one programming language for the way applications talk to the network and request resources, he adds. Today, applications have multiple ways of talking to the network and requesting resources. A common approach will simplify the communications between applications, an SDN controller and the underlying network resources.

Ultimately, that will allow application developers to write one version and use it across multiple networks and different types of vendor equipment and controllers, which in turn will help drive broader application development.

— Carol Wilson, Editor-at-Large, Light Reading

OIF Launches New Project to Identify APIs for Transport SDN

Close on the heels of the joint Optical Internetworking Forum (OIF) and Open Networking Foundation (ONF) Global Transport SDN demonstration that concluded in October, the OIF has launched a new project to develop implementation agreements (IAs) for the application programming interfaces (APIs) used between application and network controller during the event. The new initiative will build on the Service Request and Topology APIs prototyped in the demonstration, culminating in IAs for use by carriers and equipment vendors. The new initiative will also create IAs for Service Request, Path Computation, Topology and Link Resource Manager interfaces that have been identified as part of the OIF’s upcoming SDN Framework document. The APIs to be delivered by the new project are based on REST and JSON principles enabling rapid and flexible application development.

“The prototype Transport SDN demonstration revealed a lack of definition for how user applications interact with transport network applications and resource functions,” said Jonathan Sadler, of Coriant and the OIF technical committee vice chair. “The programmability of Transport SDN requires some of the internal interfaces used by ASON to become open.”

In particular, a Service API is important as it allows applications to request connectivity services from the network. Having a common Service API allows a variety of applications to access services provided by the network, particularly in an environment with multiple domains with potentially different underlying control methods.

During the Global Transport SDN demonstration, different domains supported a number of South-Bound Interfaces (SBIs) with the Domain controller, including vendor-specific, standard OpenFlow version 1.3, and OpenFlow with optical extensions. The use of a common Service API allowed the same application to be tested across these heterogeneous domains.

Similarly, the Topology API allows applications to understand the connectivity available in the network.  A common Topology API allows a variety of applications to access network topology information, enabling support for new constraints and service criteria.

The Global Transport SDN demonstration implemented a prototype Topology API. Different domains exported their topology information enabling path computation to be performed outside of the controller.  These paths could then be requested using the Service API.  Additionally, the Service API responses had references to links and nodes in the topology, enabling the activated path to be shown.

Leadership Elections

The Forum conducted its annual leadership election with Doug Zuckerman of Applied Communication Sciences and Junjie Li with China Telecom elected to the OIF board of directors for one-year terms. Officers re-elected to two-year terms include Dave Brown of Alcatel-Lucent, vice president of marketing; Dave Stauffer, of Kandou Bus, secretary/treasurer; John McDonough, NEC Corp of America, vice president; and Torsten Wuth, of Coriant, Physical Layer User Group working group chair.

About the OIF
Launched in 1998, the OIF is the first industry group to unite representatives from data and optical networking disciplines, including many of the world’s leading carriers, component manufacturers and system vendors. The OIF promotes the development and deployment of interoperable networking solutions and services through the creation of Implementation Agreements (IAs) for optical, interconnect, network processing, component and networking systems technologies. The OIF actively supports and extends the work of standards bodies and industry forums with the goal of promoting worldwide compatibility of optical internetworking products. Information on the OIF can be found at http://www.oiforum.com.